1
|
Chen C, Pei L, Ren W, Sun J. Development and validation of a prognostic prediction model for endometrial cancer based on CD8+ T cell infiltration-related genes. Medicine (Baltimore) 2024; 103:e40820. [PMID: 39654198 PMCID: PMC11630932 DOI: 10.1097/md.0000000000040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/04/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy with increasing incidence and mortality. The tumor immune microenvironment significantly impacts cancer prognosis. Weighted Gene Co-Expression Network Analysis (WGCNA) is a systems biology approach that analyzes gene expression data to uncover gene co-expression networks and functional modules. This study aimed to use WGCNA to develop a prognostic prediction model for EC based on immune cell infiltration, and to identify new potential therapeutic targets. WGCNA was performed using the Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma dataset to identify hub modules associated with T-lymphocyte cell infiltration. Prognostic models were developed using LASSO regression based on genes in these hub modules. The Search Tool for the Retrieval of Interacting Genes/Proteins was used for protein-protein interaction network analysis of the hub module. Gene Set Variation Analysis identified differential gene enrichment analysis between high- and low-risk groups. The relationship between the model and microsatellite instability, tumor mutational burden, and immune cell infiltration was analyzed using The Cancer Genome Atlas data. The model's correlation with chemotherapy and immunotherapy resistance was examined using the Genomics of Drug Sensitivity in Cancer and Cancer Immunome Atlas databases. Immunohistochemical staining of EC tissue microarrays was performed to analyze the relationship between the expression of key genes and immune infiltration. The green-yellow module was identified as a hub module, with 4 genes (ARPC1B, BATF, CCL2, and COTL1) linked to CD8+ T cell infiltration. The prognostic model constructed from these genes showed satisfactory predictive efficacy. Differentially expressed genes in high- and low-risk groups were enriched in tumor immunity-related pathways. The model correlated with EC-related phenotypes, indicating its potential to predict immunotherapeutic response. Basic leucine zipper activating transcription factor-like transcription factor(BATF) expression in EC tissues positively correlated with CD8+ T cell infiltration, suggesting BATF's crucial role in EC development and antitumor immunity. The prognostic model comprising ARPC1B, BATF, CCL2, and COTL1 can effectively identify high-risk EC patients and predict their response to immunotherapy, demonstrating significant clinical potential. These genes are implicated in EC development and immune infiltration, with BATF emerging as a potential therapeutic target for EC.
Collapse
Affiliation(s)
- Chao Chen
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Lipeng Pei
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Wei Ren
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jingli Sun
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Deng RZ, Zheng X, Lu ZL, Yuan M, Meng QC, Wu T, Tian Y. Effect of colorectal cancer stem cells on the development and metastasis of colorectal cancer. World J Gastrointest Oncol 2024; 16:4354-4368. [PMID: 39554751 PMCID: PMC11551631 DOI: 10.4251/wjgo.v16.i11.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role - immune checkpoints - and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Run-Zhi Deng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Xin Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Zhong-Lei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Ming Yuan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Qi-Chang Meng
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Tao Wu
- Department of General Surgery, West China Hospital of Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Yu Tian
- Department of Thoracic Surgery, Yancheng No. 1 People’s Hospital, Affiliated Hospital of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu Province, China
| |
Collapse
|
3
|
Duan W, Wang W, He C. A novel potential inflammation-nutrition biomarker for predicting lymph node metastasis in clinically node-negative colon cancer. Front Oncol 2023; 13:995637. [PMID: 37081978 PMCID: PMC10111825 DOI: 10.3389/fonc.2023.995637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
Background The purpose of this study is to investigate the predictive significance of (platelet × albumin)/lymphocyte ratio (PALR) for lymph node metastasis (LNM) in patients with clinically node-negative colon cancer (cN0 CC). Methods Data from 800 patients with primary CC who underwent radical surgery between March 2016 and June 2021 were reviewed. The non-linear relationship between PALR and the risk of LNM was explored using a restricted cubic spline (RCS) function while a receiver operating characteristic (ROC) curve was developed to determine the predictive value of PALR. Patients were categorized into high- and low-PALR cohorts according to the optimum cut-off values derived from Youden's index. Univariate and multivariate logistic regression analyses were used to identify the independent indicators of LNM. Sensitivity analysis was performed to repeat the main analyses with the quartile of PALR. Results A total of eligible 269 patients with primary cN0 CC were retrospectively selected. The value of the area under the ROC curve for PALR for predicting LNM was 0.607. RCS visualized the uptrend linear relationship between PALR and the risk of LNM (p-value for non-linearity > 0.05). PALR (odds ratio = 2.118, 95% confidence interval, 1.182-3.786, p = 0.011) was identified as an independent predictor of LNM in patients with cN0 CC. A nomogram incorporating PALR and other independent predictors was constructed with an internally validated concordance index of 0.637. The results of calibration plots and decision curve analysis supported a good performance ability and the sensitivity analysis further confirmed the robustness of our findings. Conclusion PALR has promising clinical applications for predicting LNM in patients with cN0 CC.
Collapse
|
4
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Aloizos G, Tsagarakis A, Damaskos C, Garmpis N, Garmpi A, Papavassiliou AG, Karamouzis MV. Implication of gut microbiome in immunotherapy for colorectal cancer. World J Gastrointest Oncol 2022; 14:1665-1674. [PMID: 36187397 PMCID: PMC9516653 DOI: 10.4251/wjgo.v14.i9.1665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/09/2022] [Accepted: 07/31/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) constitutes the third most frequently reported malignancy in the male population and the second most common in women in the last two decades. Colon carcinogenesis is a complex, multifactorial event, resulting from genetic and epigenetic aberrations, the impact of environmental factors, as well as the disturbance of the gut microbial ecosystem. The relationship between the intestinal microbiome and carcinogenesis was relatively undervalued in the last decade. However, its remarkable effect on metabolic and immune functions on the host has been in the spotlight as of recent years. There is a strong relationship between gut microbiome dysbiosis, bowel pathogenicity and responsiveness to anti-cancer treatment; including immunotherapy. Modifications of bacteriome consistency are closely associated with the immunologic response to immunotherapeutic agents. This condition that implies the necessity of gut microbiome manipulation. Thus, creatingan optimal response for CRC patients to immunotherapeutic agents. In this paper, we will review the current literature observing how gut microbiota influence the response of immunotherapy on CRC patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Nikolaos Papadopoulos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital of Athens, Athens 11521, Attica, Greece
| | - Georgios Aloizos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital of Athens, Athens 11521, Attica, Greece
| | | | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
5
|
Fu MS, Pan SX, Cai XQ, Hu YX, Zhang WJ, Pan QC. Analysis of ARHGAP4 Expression With Colorectal Cancer Clinical Characteristics and Prognosis. Front Oncol 2022; 12:899837. [PMID: 35847897 PMCID: PMC9278087 DOI: 10.3389/fonc.2022.899837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background This study aims to analyze the correlation between ARHGAP4 in the expression and clinical characteristics of colorectal cancer (CRC), and the influence of ARHGAP4 expression on the prognosis of CRC, and to evaluate whether ARHGAP4 is a potential prognostic oncotarget for CRC. Methods ARHGAP4 was identified using the Gene Expression Omnibus database through weighted gene coexpression network analysis. Using the Gene Expression Profiling Interactive Analysis to perform and analyze the expression and prognosis of ARHGAP4 in CRC. The expression of AGRGAP4 and immune cells was analyzed by the Tumor IMmune Estimation Resource online database. Finally, immunohistochemistry was used to analyze the expression difference and prognosis of ARHGAP4 in CRC and adjacent normal tissues, as well as the relationship between AGRGAP4 expression and clinical features of CRC. Results We identified ARHGAP4 that is related to the recurrence of CRC from GSE97781 data. ARHGAP4 has not been reported in CRC. The high expression of ARHGAP4 in select colon adenocarcinoma indicates a poor prognosis by database analysis. In our clinical data results, ARHGAP4 is highly expressed in CRC and lowly expressed in normal tissues adjacent to cancer. Compared with the low-expression group, the high-expression group has a significantly poorer prognosis. In colon cancer, the B-cell, macrophage, neutrophil, and dendritic-cell levels are downregulated after ARHGAP4 gene knockout; the levels of CD8+ and CD4+ T cells, neutrophils, and dendritic cells are upregulated after the amplification of the ARHGAP4 gene. In addition, ARHGAP4 expression is related to N,M staging and clinical staging. Conclusion ARHGAP4 is highly expressed in CRC, and the high expression of ARHGAP4 has a poor prognosis. The expression of ARHGAP4 in CRC is related to the immune cells such as B cells, CD8+ and CD4+ T cells, macrophages, neutrophils, and dendritic cells. ARHGAP4 is correlated with N,M staging and clinical staging in CRC. ARHGAP4 may be a potential biomarker for the prognosis of CRC.
Collapse
Affiliation(s)
- Ming-sheng Fu
- Department of Gastroenterology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Shu-xian Pan
- Department of Nephrology of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Xun-quan Cai
- Department of Gastroenterology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yuan-xin Hu
- Department of Gastroenterology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Wei-jie Zhang
- Department of Gastroenterology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qin-cong Pan
- Department of Gastroenterology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Saini A, Dalal P, Sharma D. Deciphering the Interdependent Labyrinth between Gut Microbiota and the Immune System. Lett Appl Microbiol 2022; 75:1122-1135. [PMID: 35730958 DOI: 10.1111/lam.13775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
The human gut microbiome interacts with each other and the host, which has significant effects on health and disease development. Intestinal homeostasis and inflammation are maintained by the dynamic interactions between gut microbiota and the innate and adaptive immune systems. Numerous metabolic products produced by the gut microbiota play a role in mediating cross-talk between gut epithelial and immune cells. In the event of an imbalance between the immune system and microbiota, the body becomes susceptible to infections, and homeostasis is compromised. This review mainly focuses on the interplay between microbes and the immune system, such as, T-cell and B-cell mediated adaptive responses to microbiota and signaling pathways for effective communication between the two. We have also highlighted the role of microbes in the activation of the immune response, the development of memory cells, and how the immune system determines the diversity of human gut microbiota. The review also explains the relationship of commensal microbiota and their relation in the production of immunoglobulins.
Collapse
Affiliation(s)
- Anamika Saini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India.,Amity Institute of Biotechnology, Amity University Jaipur, Rajasthan, 302006
| | - Priyanka Dalal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India
| |
Collapse
|
7
|
Lin A, Qi C, Li M, Guan R, Imyanitov EN, Mitiushkina NV, Cheng Q, Liu Z, Wang X, Lyu Q, Zhang J, Luo P. Deep Learning Analysis of the Adipose Tissue and the Prediction of Prognosis in Colorectal Cancer. Front Nutr 2022; 9:869263. [PMID: 35634419 PMCID: PMC9131178 DOI: 10.3389/fnut.2022.869263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Research has shown that the lipid microenvironment surrounding colorectal cancer (CRC) is closely associated with the occurrence, development, and metastasis of CRC. According to pathological images from the National Center for Tumor diseases (NCT), the University Medical Center Mannheim (UMM) database and the ImageNet data set, a model called VGG19 was pre-trained. A deep convolutional neural network (CNN), VGG19CRC, was trained by the migration learning method. According to the VGG19CRC model, adipose tissue scores were calculated for TCGA-CRC hematoxylin and eosin (H&E) images and images from patients at Zhujiang Hospital of Southern Medical University and First People's Hospital of Chenzhou. Kaplan-Meier (KM) analysis was used to compare the overall survival (OS) of patients. The XCell and MCP-Counter algorithms were used to evaluate the immune cell scores of the patients. Gene set enrichment analysis (GSEA) and single-sample GSEA (ssGSEA) were used to analyze upregulated and downregulated pathways. In TCGA-CRC, patients with high-adipocytes (high-ADI) CRC had significantly shorter OS times than those with low-ADI CRC. In a validation queue from Zhujiang Hospital of Southern Medical University (Local-CRC1), patients with high-ADI had worse OS than CRC patients with low-ADI. In another validation queue from First People's Hospital of Chenzhou (Local-CRC2), patients with low-ADI CRC had significantly longer OS than patients with high-ADI CRC. We developed a deep convolution network to segment various tissues from pathological H&E images of CRC and automatically quantify ADI. This allowed us to further analyze and predict the survival of CRC patients according to information from their segmented pathological tissue images, such as tissue components and the tumor microenvironment.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chang Qi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mujiao Li
- College of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Guan
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Wang
- First People's Hospital of Chenzhou City, Chenzhou, China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Qingwen Lyu
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Jian Zhang
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Peng Luo
| |
Collapse
|
8
|
丁 婷, 曾 楚, 胡 丽, 余 明. [Establishment of a prediction model for colorectal cancer immune cell infiltration based on the cancer genome atlas (TCGA) database]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:203-208. [PMID: 35435180 PMCID: PMC9069037 DOI: 10.19723/j.issn.1671-167x.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To study the correlation between immune cell infiltration in colorectal cancer tissue and clinical prognosis and to explore the levels of some immune cell genes for predicting the prognosis of patients with glioma colorectal cancer. METHODS In this study, we extracted colorectal cancer data from the cancer genome atlas (TCGA). Based on a deconvolution algorithm (called CIBERSORT) and clinically annotated expression profiles, the analysis assessed the infiltration patterns of 22 immune cells in colorectal cancer tissue to determine the association between each cell type and survival. Differences in five-year survival rate effectively illustrate the clinical prognostic value of each immune cell proportion in colorectal cancer, using a bar graph, correlation-based heatmap to represent the proportion of immune cells in each colorectal cancer sample. RESULTS A total of 473 colorectal cancer tissues and 41 normal control tissues were extracted from the TCGA database, and the comparative analysis showed that there were differences in the proportion of various TIICs in colorectal cancer tissues, which could characterize individual differences and have prognostic value. Among the cell subsets studied, the proportions of memory B cells, plasma cells, CD4+ T cells, natural killer (NK) cells, M0 macrophages, M2 macrophages, and activated mast cells were significantly different between normal and cancer tissues. Resting NK cells, CD8+ T cells, and plasma cells were associated with T phase, activated dendritic cells were associated with N phase, and eosinophils, M1 macrophages, and activated mast cells were associated with M phase. Survival analysis showed that activated dendritic cells were positively associated with five-year survival rate in colorectal cancer patients. Naive CD4+ T cells were inversely associated with five-year survival rate. CONCLUSION There are different degrees of immune cell infiltration in colorectal cancer tissues, and these differences may be important determinants of prognosis and treatment response. We conducted a new gene expression-based study of immune cell subtype levels and prognosis in colorectal cancer, which has potential clinical prognostic value in colorectal cancer patients.
Collapse
Affiliation(s)
- 婷婷 丁
- />上海市浦东医院,复旦大学附属浦东医院肿瘤科,上海 201399Department of Oncology, Shanghai Pudong Hospital, Pudong Hospital Affiliated to Fudan University, Shanghai 201399, China
| | - 楚雄 曾
- />上海市浦东医院,复旦大学附属浦东医院肿瘤科,上海 201399Department of Oncology, Shanghai Pudong Hospital, Pudong Hospital Affiliated to Fudan University, Shanghai 201399, China
| | - 丽娜 胡
- />上海市浦东医院,复旦大学附属浦东医院肿瘤科,上海 201399Department of Oncology, Shanghai Pudong Hospital, Pudong Hospital Affiliated to Fudan University, Shanghai 201399, China
| | - 明华 余
- />上海市浦东医院,复旦大学附属浦东医院肿瘤科,上海 201399Department of Oncology, Shanghai Pudong Hospital, Pudong Hospital Affiliated to Fudan University, Shanghai 201399, China
| |
Collapse
|
9
|
Li R, Ugai T, Xu L, Zucker D, Ogino S, Wang M. Utility of Continuous Disease Subtyping Systems for Improved Evaluation of Etiologic Heterogeneity. Cancers (Basel) 2022; 14:1811. [PMID: 35406583 PMCID: PMC8997600 DOI: 10.3390/cancers14071811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Molecular pathologic diagnosis is important in clinical (oncology) practice. Integration of molecular pathology into epidemiological methods (i.e., molecular pathological epidemiology) allows for investigating the distinct etiology of disease subtypes based on biomarker analyses, thereby contributing to precision medicine and prevention. However, existing approaches for investigating etiological heterogeneity deal with categorical subtypes. We aimed to fully leverage continuous measures available in most biomarker readouts (gene/protein expression levels, signaling pathway activation, immune cell counts, microbiome/microbial abundance in tumor microenvironment, etc.). We present a cause-specific Cox proportional hazards regression model for evaluating how the exposure-disease subtype association changes across continuous subtyping biomarker levels. Utilizing two longitudinal observational prospective cohort studies, we investigated how the association of alcohol intake (a risk factor) with colorectal cancer incidence differed across the continuous values of tumor epigenetic DNA methylation at long interspersed nucleotide element-1 (LINE-1). The heterogeneous alcohol effect was modeled using different functions of the LINE-1 marker to demonstrate the method's flexibility. This real-world proof-of-principle computational application demonstrates how the new method enables visualizing the trend of the exposure effect over continuous marker levels. The utilization of continuous biomarker data without categorization for investigating etiological heterogeneity can advance our understanding of biological and pathogenic mechanisms.
Collapse
Affiliation(s)
- Ruitong Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (R.L.); (S.O.)
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lantian Xu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - David Zucker
- Department of Statistics and Data Science, Hebrew University, Jerusalem 91905, Israel;
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (R.L.); (S.O.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA 02115, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Villanueva CM, Espinosa A, Gracia-Lavedan E, Vlaanderen J, Vermeulen R, Molina AJ, Amiano P, Gómez-Acebo I, Castaño-Vinyals G, Vineis P, Kogevinas M. Exposure to widespread drinking water chemicals, blood inflammation markers, and colorectal cancer. ENVIRONMENT INTERNATIONAL 2021; 157:106873. [PMID: 34543938 DOI: 10.1016/j.envint.2021.106873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Trihalomethanes (THMs) and nitrate are widespread chemicals in drinking water associated with colorectal cancer risk but mechanisms are not well understood. OBJECTIVES We explored the association between exposure to THMs and nitrate in drinking water and inflammation markers, and the link with colorectal cancer risk. METHODS A subset of 198 colorectal cancer cases and 205 controls from the multicase-control study MCC-Spain were included. Average concentration of THMs (chloroform, bromodichloromethane, dibromochloromethane, bromoform) and nitrate in tap water at the residence was estimated from age 18 until 2 years before the interview ("long term") and for a recent period (3 years before diagnosis). Serum levels of EGF, eotaxin, G-CSF, IL-17E, IL-1rA, IL-8, IP-10, MDC, MPO, periostin, VEGF, and C-reactive protein (CRP) were measured. We estimated the linear association between inflammation markers and exposure among controls, and the odds ratio of colorectal cancer associated with THM and nitrate exposure, and inflammation markers. A mediation analysis was conducted to identify inflammation markers in the pathway between THM/nitrate exposure and colorectal cancer. RESULTS Serum concentrations of EGF, IL-8, IL-17E and eotaxin increased with recent residential levels of brominated THMs, chloroforom and/or total THM. No associations were observed for nitrate and for long-term residential THM levels. All residential exposures except chloroform were positively associated with colorectal cancer. Serum concentrations of VEGF and periostin were positively associated with colorectal cancer, while EGF was inversely associated. One protein-exposure combination (periostin-recent ingested brominated THMs) slightly mediated the association with colorectal cancer risk. DISCUSSION Results suggest that estimated THM exposure is involved in inflammation processes. However, the study design was limited to stablish etiologically relevant associations between the protein levels and colorectal cancer risk. The lack of association between nitrate exposure and inflammation markers suggests other biological mechanisms are involved in the link with colorectal cancer.
Collapse
Affiliation(s)
- Cristina M Villanueva
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| | - Ana Espinosa
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Esther Gracia-Lavedan
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Antonio José Molina
- The Research Group in Gene - Environment and Health Interactions (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain; Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, Spain
| | - Pilar Amiano
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Public Health Division of Gipuzkoa, Biodonostia Research Institute, San Sebastian, Spain
| | - Inés Gómez-Acebo
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universidad de Cantabria, Santander, Spain
| | - Gemma Castaño-Vinyals
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, UK; Italian Institute of Technology, Genova, Liguria, Italy
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
11
|
Greco L, Rubbino F, Morelli A, Gaiani F, Grizzi F, de’Angelis GL, Malesci A, Laghi L. Epithelial to Mesenchymal Transition: A Challenging Playground for Translational Research. Current Models and Focus on TWIST1 Relevance and Gastrointestinal Cancers. Int J Mol Sci 2021; 22:11469. [PMID: 34768901 PMCID: PMC8584071 DOI: 10.3390/ijms222111469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Resembling the development of cancer by multistep carcinogenesis, the evolution towards metastasis involves several passages, from local invasion and intravasation, encompassing surviving anoikis into the circulation, landing at distant sites and therein establishing colonization, possibly followed by the outgrowth of macroscopic lesions. Within this cascade, epithelial to mesenchymal transition (EMT) works as a pleiotropic program enabling cancer cells to overcome local, systemic, and distant barriers against diffusion by replacing traits and functions of the epithelial signature with mesenchymal-like ones. Along the transition, a full-blown mesenchymal phenotype may not be accomplished. Rather, the plasticity of the program and its dependency on heterotopic signals implies a pendulum with oscillations towards its reversal, that is mesenchymal to epithelial transition. Cells in intermixed E⇔M states can also display stemness, enabling their replication together with the epithelial reversion next to successful distant colonization. If we aim to include the EMT among the hallmarks of cancer that could modify clinical practice, the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers needs to be filled. We review the knowledge on EMT, derived from models and mechanistic studies as well as from translational studies, with an emphasis on gastrointestinal cancers (GI).
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Alessandra Morelli
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Alberto Malesci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
| |
Collapse
|
12
|
Wang DK, Zuo Q, He QY, Li B. Targeted Immunotherapies in Gastrointestinal Cancer: From Molecular Mechanisms to Implications. Front Immunol 2021; 12:705999. [PMID: 34447376 PMCID: PMC8383067 DOI: 10.3389/fimmu.2021.705999] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is a leading cause of cancer-related mortality and remains a major challenge for cancer treatment. Despite the combined administration of modern surgical techniques and chemoradiotherapy (CRT), the overall 5-year survival rate of gastrointestinal cancer patients in advanced stage disease is less than 15%, due to rapid disease progression, metastasis, and CRT resistance. A better understanding of the mechanisms underlying cancer progression and optimized treatment strategies for gastrointestinal cancer are urgently needed. With increasing evidence highlighting the protective role of immune responses in cancer initiation and progression, immunotherapy has become a hot research topic in the integrative management of gastrointestinal cancer. Here, an overview of the molecular understanding of colorectal cancer, esophageal cancer and gastric cancer is provided. Subsequently, recently developed immunotherapy strategies, including immune checkpoint inhibitors, chimeric antigen receptor T cell therapies, tumor vaccines and therapies targeting other immune cells, have been described. Finally, the underlying mechanisms, fundamental research and clinical trials of each agent are discussed. Overall, this review summarizes recent advances and future directions for immunotherapy for patients with gastrointestinal malignancies.
Collapse
Affiliation(s)
| | | | | | - Bin Li
- Ministry of Education (MOE), Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Bai J, Chen H, Bai X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J Clin Lab Anal 2021; 35:e23810. [PMID: 33938589 PMCID: PMC8183910 DOI: 10.1002/jcla.23810] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Due to advances in understanding the immune microenvironment of colorectal cancer (CRC), microsatellite classification (dMMR/MSI-H and pMMR/MSS) has become a key biomarker for the diagnosis and treatment of CRC patients and therefore has important clinical value. Microsatellite status is associated with a variety of clinicopathological features and affects drug resistance and the prognosis of patients. CRC patients with different microsatellite statuses have different compositions and distributions of immune cells and cytokines within their tumor microenvironments (TMEs). Therefore, there is great interest in reversing or reshaping CRC TMEs to transform immune tolerant "cold" tumors into immune sensitive "hot" tumors. This requires a thorough understanding of differences in the immune microenvironments of MSI-H and MSS type tumors. This review focuses on the relationship between CRC microsatellite status and the immune microenvironment. It focuses on how this relationship has value for clinical application in diagnosis and treatment, as well as exploring the limitations of its current application.
Collapse
Affiliation(s)
- Junge Bai
- The Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Hongsheng Chen
- Department of General SurgeryThe Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Xuefeng Bai
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
14
|
Yu M, Song XG, Zhao YJ, Dong XH, Niu LM, Zhang ZJ, Shang XL, Tang YY, Song XR, Xie L. Circulating Serum Exosomal Long Non-Coding RNAs FOXD2-AS1, NRIR, and XLOC_009459 as Diagnostic Biomarkers for Colorectal Cancer. Front Oncol 2021; 11:618967. [PMID: 33777763 PMCID: PMC7996089 DOI: 10.3389/fonc.2021.618967] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Exosomes derived from cancer cells encapsulate various kinds of tumor-specific molecules and thus can interact with adjacent or distant cells to mediate information exchange. Long non-coding RNAs (lncRNAs) in exosomes have the potential as diagnostic and prognostic biomarkers in different types of cancers. The current study was aimed to identify circulating exosomal lncRNAs for the diagnosis of colorectal cancer (CRC). Methods Exosomes were isolated from the serum by ultracentrifugation and verified by transmission electron microscope (TEM), qNano, and immunoblotting. Exosomal lncRNAs FOXD2-AS1, NRIR, and XLOC_009459 were selected by lncRNA microarray and validated by qPCR in 203 CRC patients and 201 healthy donors. The receiver operating characteristic curve (ROC) was used to assess the diagnostic efficiency of serum exosomal lncRNAs. Results Exosomal FOXD2-AS1, NRIR, and XLOC_009459 (TCONS_00020073) levels were significantly upregulated in 203 CRC patients and 80 early-stage CRC patients compared to 201 healthy donors, possessing the area under the curve (AUC) of 0.728, 0.660, and 0.682 for CRC, as well as 0.743, 0.660, and 0.689 for early-stage CRC, respectively. Notably, their combination demonstrated the markedly elevated AUC of 0.736 for CRC and 0.758 for early-stage CRC, indicating their potential as diagnostic biomarkers for CRC. Conclusions Our data suggested that exosomal lncRNAs FOXD2-AS1, NRIR, and XLOC_009459 act as the promising biomarkers for the diagnostics of CRC and early-stage CRC.
Collapse
Affiliation(s)
- Miao Yu
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Jinan Qilu Medical Inspection Co., Ltd., Jinan, China
| | - Xing-Guo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ya-Jing Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao-Han Dong
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li-Min Niu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhi-Jun Zhang
- Department of Clinical Laboratory, Tai'an City Central Hospital, Tai'an, China
| | - Xiao-Ling Shang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - You-Yong Tang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xian-Rang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
15
|
Li N. CircTBL1XR1/miR-424 axis regulates Smad7 to promote the proliferation and metastasis of colorectal cancer. J Gastrointest Oncol 2020; 11:918-931. [PMID: 33209488 PMCID: PMC7657834 DOI: 10.21037/jgo-20-395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This study analyzed the effect of circular RNA (circRNA), TBL1XR1, on the malignant progression of colon cancer cells and explored its possible molecular mechanism. METHODS The expression levels of circTBL1XR1 in colorectal cancer and paracancerous tissues were detected by quantitative real-time polymerase chain (qRT-PCR). Changes in circTBL1XR1 expression in normal intestinal epithelial cells and colon cancer cell lines were detected at the cellular level. LoVo and SW620 cells with the highest circTBL1XR1 expression were transfected with circTBL1XR1, and the transfection efficiency was verified by qRT-PCR. The effects of circTBL1XR1 on the proliferation, migration, and invasion of colon cancer cells were detected by MTT, Transwell migration, and invasion assay, and a subcutaneous tumor model. Target genes of circTBL1XR1 were verified by luciferase reporter assay. Expression levels of circTBL1XR1 target genes were detected by qRT-PCR and Western blotting. RESULTS circTBL1XR1 was highly expressed in colon cancer patients. circTBL1XR1 expression in colon cancer cells was also higher than that in normal intestinal cells. In vivo and in vitro experimental results showed that overexpression of circTBL1XR1 enhanced the proliferation, migration, and invasion of colon cancer cells. After lowering circTBL1XR1, the ability of migration and invasion of colon cancer cells was significantly reduced. Bioinformatics retrieval and luciferase reporter gene assay confirmed that circTBL1XR1 can bind to microRNA-424 (miR-424) and that the Smad7 gene is the target gene of miR-424. CONCLUSIONS circTBL1XR1 was highly expressed in colon cancer, and miR-424 was poorly expressed in colon cancer cells. circTBL1XR1 regulates the expression of Smad7 through miR-424, thereby affecting the malignant progression of colorectal cancer.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Laboratory, First Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Lu G, Chen L, Wu S, Feng Y, Lin T. Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer. DISEASE MARKERS 2020; 2020:8974793. [PMID: 32454908 PMCID: PMC7238334 DOI: 10.1155/2020/8974793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and comprehensive analysis of TIICs and its therapeutic value in esophageal cancer (EC). The proportions of 22 TIICs were evaluated between 150 normal tissues and 141 tumor tissues of EC by the CIBERSORT algorithm. Besides, correlation analyses between proportions of TIICs and clinicopathological characters, including age, gender, histologic grade, tumor location, histologic type, LRP1B mutation, TP53 mutation, tumor stage, lymph node stage, and TNM stage, were conducted. We constructed a risk score model to improve prognostic capacity with 5 TIICs by least absolute shrinkage and selection operator (lasso) regression analysis. The risk score = -1.86∗plasma + 2.56∗T cell follicular helper - 1.37∗monocytes - 3.64∗activated dendritic cells - 2.24∗resting mast cells (immune cells in the risk model mean the proportions of immune cell infiltration in EC). Patients in the high-risk group had significantly worse overall survival than these in the low-risk group (HR: 2.146, 95% CI: 1.243-3.705, p = 0.0061). Finally, we identified Semustine and Sirolimus as two candidate compounds for the treatment of EC based on CMap analysis. In conclusion, the proportions of TIICs may be important to the progression, prognosis, and treatment of EC.
Collapse
Affiliation(s)
- Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Liping Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Shengjie Wu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yuao Feng
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tiesu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
17
|
Zhang Y, Song J, Zhao Z, Yang M, Chen M, Liu C, Ji J, Zhu D. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases. Cancer Lett 2020; 470:84-94. [DOI: 10.1016/j.canlet.2019.10.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 02/09/2023]
|
18
|
Payandeh Z, Khalili S, Somi MH, Mard-Soltani M, Baghbanzadeh A, Hajiasgharzadeh K, Samadi N, Baradaran B. PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol 2020; 235:5461-5475. [PMID: 31960962 DOI: 10.1002/jcp.29494] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is still considered as the third most frequent cancer in the world. Microsatellite instability (MSI), inflammation, and microRNAs have been demonstrated as the main contributing factors in CRC. Subtype 1 CRC is defined by NK cells infiltration, induction of Th1 lymphocyte and cytotoxic T cell responses as well as upregulation of immune checkpoint proteins including programmed cell death-1 (PD-1). Based on the diverse features of CRC, such as the stage and localization of the tumor, several treatment approaches are available. However, the efficiency of these treatments may be decreased due to the development of diverse resistance mechanisms. It has been proven that monoclonal antibodies (mAbs) can increase the effectiveness of CRC treatments. Nowadays, several mAbs including nivolumab and pembrolizumab have been approved for the treatment of CRC. Immune checkpoint receptors including PD-1 can be inhibited by these antibodies. Combination therapy gives an opportunity for advanced treatment for CRC patients. In this review, an update has been provided on the molecular mechanisms involved in MSI colorectal cancer immune microenvironment by focusing on PD-ligand 1 (PD-L1) and treatment of patients with advanced immunotherapy, which were examined in the different clinical trial phases. Considering induced expression of PD-L1 by conventional chemotherapeutics, we have summarized the role of PD-L1 in CRC, the chemotherapy effects on the PD-1/PD-L1 axis and novel combined approaches to enhance immunotherapy of CRC by focusing on PD-L1.
Collapse
Affiliation(s)
- Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasser Samadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical, Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Ma TM, Sun LP, Dong NN, Sun MJ, Yuan Y. Protein expression trends of DNMT1 in gastrointestinal diseases: From benign to precancerous lesions to cancer. World J Gastrointest Oncol 2019; 11:1141-1150. [PMID: 31908719 PMCID: PMC6937440 DOI: 10.4251/wjgo.v11.i12.1141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In recent years, the incidence of gastrointestinal (GI) cancer in China has increased annually. Early detection and appropriate therapy are considered to be the key to treat GI cancer. DNMT1 takes an active part in the advancement of GI cancer, which will change as the disease progresses. But its expression characteristics in the dynamic variations of GI carcinogenesis are still unclear.
AIM To investigate the expression characteristics of DNMT1 in different GI diseases.
METHODS We detected the expression of DNMT1 in 650 cases of different GI diseases by immunohistochemistry, including 90 cases of chronic superficial gastritis (CSG), 72 cases of atrophic gastritis with intestinal metaplasia (AG/GIM), 54 cases of low-grade intraepithelial neoplasia (GLIN), 66 cases of high-grade intraepithelial neoplasia (GHIN), 71 cases of early gastric cancer (EGC), 90 cases of normal intestinal mucosa (NIM), 54 cases of intestinal low-grade intraepithelial neoplasia (ILIN), 71 cases of intestinal high-grade intraepithelial neoplasia (IHIN), and 82 cases of early colorectal cancer (ECRC).
RESULTS In the CSG group, all cases showed weakly positive or negative expression of DNMT1. However, in other four groups (AG/GIM, GLIN, GHIN, and EGC), the positive expression rate gradually increased with the severity of the diseases; the negative or weakly positive cases accounted for 55.56% (40/72), 38.89% (21/54), 1.52% (1/66), and 1.41% (1/71), respectively. Besides, the moderately positive cases were 44.44% (32/72), 57.41% (31/54), 80.30% (53/66), and 43.66% (31/71), respectively. The strongly positive cases only existed in the GLIN (3.70%, 2/54), GHIN (18.18%, 12/66), and EGC (54.93%, 39/71) groups. The differences between any two groups were statistically significant (P < 0.05). Similarly, in the NIM group, cases with weakly positive expression of DNMT1 were predominant (91.11%, 82/90), and the rest were moderately positive cases (8.89%, 8/90). In the ILIN, IHIN, and ECRC groups, the rates of cases with weak or negative expression of DNMT1 were 46.30% (25/54), 12.68% (9/71), and 4.88% (4/82), respectively; with moderately positive expression were 53.70% (29/54), 71.83% (51/71), and 34.15% (28/82), respectively; and with strongly positive expression were 0.00% (0/54), 15.49% (11/71), and 60.98% (50/82), respectively. The differences between any two groups were also statistically significant (P < 0.05).
CONCLUSION The overexpression of DNMT1 protein could effectively predict early GI cancers and severe precancerous lesions, which may have potential clinical application value.
Collapse
Affiliation(s)
- Tian-Miao Ma
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Nan-Nan Dong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming-Jun Sun
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
20
|
Borroni EM, Qehajaj D, Farina FM, Yiu D, Bresalier RS, Chiriva-Internati M, Mirandola L, Štifter S, Laghi L, Grizzi F. Fusobacterium nucleatum and the Immune System in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2019; 15:149-156. [DOI: 10.1007/s11888-019-00442-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Zhang Y, Xu J, Zhang N, Chen M, Wang H, Zhu D. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett 2019; 458:123-135. [DOI: 10.1016/j.canlet.2019.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
|
22
|
Hamada T, Nowak JA, Milner DA, Song M, Ogino S. Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms. J Pathol 2019; 247:615-628. [PMID: 30632609 PMCID: PMC6509405 DOI: 10.1002/path.5236] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
Molecular pathological epidemiology (MPE) is an integrative transdisciplinary field that addresses heterogeneous effects of exogenous and endogenous factors (collectively termed 'exposures'), including microorganisms, on disease occurrence and consequences, utilising molecular pathological signatures of the disease. In parallel with the paradigm of precision medicine, findings from MPE research can provide aetiological insights into tailored strategies of disease prevention and treatment. Due to the availability of molecular pathological tests on tumours, the MPE approach has been utilised predominantly in research on cancers including breast, lung, prostate, and colorectal carcinomas. Mounting evidence indicates that the microbiome (inclusive of viruses, bacteria, fungi, and parasites) plays an important role in a variety of human diseases including neoplasms. An alteration of the microbiome may be not only a cause of neoplasia but also an informative biomarker that indicates or mediates the association of an epidemiological exposure with health conditions and outcomes. To adequately educate and train investigators in this emerging area, we herein propose the integration of microbiology into the MPE model (termed 'microbiology-MPE'), which could improve our understanding of the complex interactions of environment, tumour cells, the immune system, and microbes in the tumour microenvironment during the carcinogenic process. Using this approach, we can examine how lifestyle factors, dietary patterns, medications, environmental exposures, and germline genetics influence cancer development and progression through impacting the microbial communities in the human body. Further integration of other disciplines (e.g. pharmacology, immunology, nutrition) into microbiology-MPE would expand this developing research frontier. With the advent of high-throughput next-generation sequencing technologies, researchers now have increasing access to large-scale metagenomics as well as other omics data (e.g. genomics, epigenomics, proteomics, and metabolomics) in population-based research. The integrative field of microbiology-MPE will open new opportunities for personalised medicine and public health. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jonathan A Nowak
- Department of Pathology Program in MPE Molecular Pathological Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology Program in MPE Molecular Pathological Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Gunter MJ, Alhomoud S, Arnold M, Brenner H, Burn J, Casey G, Chan AT, Cross AJ, Giovannucci E, Hoover R, Houlston R, Jenkins M, Laurent-Puig P, Peters U, Ransohoff D, Riboli E, Sinha R, Stadler ZK, Brennan P, Chanock SJ. Meeting report from the joint IARC-NCI international cancer seminar series: a focus on colorectal cancer. Ann Oncol 2019; 30:510-519. [PMID: 30721924 PMCID: PMC6503626 DOI: 10.1093/annonc/mdz044] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite significant progress in our understanding of the etiology, biology and genetics of colorectal cancer, as well as important clinical advances, it remains the third most frequently diagnosed cancer worldwide and is the second leading cause of cancer death. Based on demographic projections, the global burden of colorectal cancer would be expected to rise by 72% from 1.8 million new cases in 2018 to over 3 million in 2040 with substantial increases anticipated in low- and middle-income countries. In this meeting report, we summarize the content of a joint workshop led by the National Cancer Institute and the International Agency for Research on Cancer, which was held to summarize the important achievements that have been made in our understanding of colorectal cancer etiology, genetics, early detection and treatment and to identify key research questions that remain to be addressed.
Collapse
Affiliation(s)
- M J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France.
| | - S Alhomoud
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M Arnold
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - H Brenner
- Division of Clinical Epidemiology and Aging Research, Division of Preventive Oncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - J Burn
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - G Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville
| | - A T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, USA
| | - A J Cross
- School of Public Health, Imperial College London, London, UK
| | | | - R Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - R Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - M Jenkins
- Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Australia
| | - P Laurent-Puig
- SIRIC CARPEM, APHP European Georges Pompidou Hospital Paris, Universite Paris Descartes, Paris, France
| | - U Peters
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle
| | - D Ransohoff
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina, Chapel Hill
| | - E Riboli
- School of Public Health, Imperial College London, London, UK
| | - R Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Z K Stadler
- Memorial Sloan Kettering Cancer Center, New York, USA
| | - P Brennan
- Section of Genetics, International Agency for Research on Cancer, Lyon, France
| | - S J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
24
|
Duan L, Yang W, Wang X, Zhou W, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Advances in prognostic markers for colorectal cancer. Expert Rev Mol Diagn 2019; 19:313-324. [PMID: 30907673 DOI: 10.1080/14737159.2019.1592679] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
25
|
Ogino S, Nowak JA, Hamada T, Milner DA, Nishihara R. Insights into Pathogenic Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. ANNUAL REVIEW OF PATHOLOGY 2019; 14:83-103. [PMID: 30125150 PMCID: PMC6345592 DOI: 10.1146/annurev-pathmechdis-012418-012818] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence indicates that diet, nutrition, lifestyle, the environment, the microbiome, and other exogenous factors have pathogenic roles and also influence the genome, epigenome, transcriptome, proteome, and metabolome of tumor and nonneoplastic cells, including immune cells. With the need for big-data research, pathology must transform to integrate data science fields, including epidemiology, biostatistics, and bioinformatics. The research framework of molecular pathological epidemiology (MPE) demonstrates the strengths of such an interdisciplinary integration, having been used to study breast, lung, prostate, and colorectal cancers. The MPE research paradigm not only can provide novel insights into interactions among environment, tumor, and host but also opens new research frontiers. New developments-such as computational digital pathology, systems biology, artificial intelligence, and in vivo pathology technologies-will further transform pathology and MPE. Although it is necessary to address the rarity of transdisciplinary education and training programs, MPE provides an exemplary model of integrative scientific approaches and contributes to advancements in precision medicine, therapy, and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA;
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
26
|
Koh H, Hamada T, Song M, Liu L, Cao Y, Nowak JA, da Silva A, Twombly T, Morikawa T, Kim SA, Masugi Y, Kosumi K, Shi Y, Gu M, Li W, Du C, Chen Y, Li W, Liu H, Li C, Wu K, Nosho K, Inamura K, Hanyuda A, Zhang X, Giannakis M, Chan AT, Fuchs CS, Nishihara R, Meyerhardt JA, Ogino S. Physical Activity and Colorectal Cancer Prognosis According to Tumor-Infiltrating T Cells. JNCI Cancer Spectr 2019; 2:pky058. [PMID: 31276098 PMCID: PMC6591576 DOI: 10.1093/jncics/pky058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/15/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Background Evidence suggests that high-level physical activity may potentially reduce cancer mortality through its immune enhancement effect. We therefore hypothesized that survival benefits associated with physical activity might be stronger in colorectal carcinomas with lower immune reaction at diagnosis. Methods Using molecular pathological epidemiology databases of 470 colon and rectal carcinoma cases in the Nurses’ Health Study and the Health Professionals Follow-up Study, we assessed the prognostic association of postdiagnosis physical activity in strata of densities of CD3+ cells, CD8+ cells, CD45RO (PTPRC)+ cells, or FOXP3+ cells in tumor tissue. Cox proportional hazards regression model was used to adjust for potential confounders, including microsatellite instability, CpG island methylator phenotype, long interspersed nucleotide element-1 methylation, KRAS, BRAF, and PIK3CA mutations, and expression of CTNNB1 (beta-catenin), PTGS2 (cyclooxygenase-2), and IRS1. Results The association of postdiagnosis physical activity with colorectal cancer-specific mortality differed by CD3+ cell density (Pinteraction < .001). Multivariable-adjusted colorectal cancer-specific mortality hazard ratios for a quartile-unit increase in physical activity were 0.56 (95% confidence interval = 0.38 to 0.83) among cases with the lowest quartile of CD3+ cell density compared with 1.14 (95% confidence interval = 0.79 to 1.65) in cases with the highest quartile. We observed no differential survival association of physical activity by densities of CD8+ cells, CD45RO+ cells, or FOXP3+ cells. Conclusions The association between postdiagnosis physical activity and colorectal cancer survival appeared stronger for carcinomas with lower T cell infiltrates, suggesting an interactive effect of exercise and immunity on colorectal cancer progression.
Collapse
Affiliation(s)
- Hideo Koh
- Department of Oncologic Pathology.,Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Mingyang Song
- Department of Nutrition.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Li Liu
- Department of Oncologic Pathology.,Department of Nutrition.,Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sun A Kim
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Yan Shi
- Department of Oncologic Pathology.,Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Mancang Gu
- Department of Oncologic Pathology.,College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, P.R. China
| | | | | | | | | | | | | | - Kana Wu
- Department of Nutrition.,Department of Epidemiology.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akiko Hanyuda
- Department of Nutrition.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Andrew T Chan
- Department of Immunology and Infectious Diseases.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT.,Department of Medicine, Yale School of Medicine, New Haven, CT.,Smilow Cancer Hospital, New Haven, CT
| | - Reiko Nishihara
- Department of Oncologic Pathology.,Department of Nutrition.,Department of Epidemiology.,Department of Immunology and Infectious Diseases.,Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Department of Oncologic Pathology.,Department of Epidemiology.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
27
|
Hamada T, Nowak JA, Masugi Y, Drew DA, Song M, Cao Y, Kosumi K, Mima K, Twombly TS, Liu L, Shi Y, da Silva A, Gu M, Li W, Nosho K, Keum N, Giannakis M, Meyerhardt JA, Wu K, Wang M, Chan AT, Giovannucci EL, Fuchs CS, Nishihara R, Zhang X, Ogino S. Smoking and Risk of Colorectal Cancer Sub-Classified by Tumor-Infiltrating T Cells. J Natl Cancer Inst 2019; 111:42-51. [PMID: 30312431 PMCID: PMC6335108 DOI: 10.1093/jnci/djy137] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Evidence indicates not only carcinogenic effect of cigarette smoking but also its immunosuppressive effect. We hypothesized that the association of smoking with colorectal cancer risk might be stronger for tumors with lower anti-tumor adaptive immune response. Methods During follow-up of 134 981 participants (3 490 851 person-years) in the Nurses' Health Study and Health Professionals Follow-up Study, we documented 729 rectal and colon cancer cases with available data on T-cell densities in tumor microenvironment. Using the duplication-method Cox regression model, we examined a differential association of smoking status with risk of colorectal carcinoma subclassified by densities of CD3+ cells, CD8+ cells, CD45RO (PTPRC)+ cells, or FOXP3+ cells. All statistical tests were two-sided. Results The association of smoking status with colorectal cancer risk differed by CD3+ cell density (Pheterogeneity = .007). Compared with never smokers, multivariable-adjusted hazard ratios for CD3+ cell-low colorectal cancer were 1.38 (95% confidence interval = 1.09 to 1.75) in former smokers and 1.59 (95% confidence interval = 1.14 to 2.23) in current smokers (Ptrend = .002, across smoking status categories). In contrast, smoking status was not associated with CD3+ cell-high cancer risk (Ptrend = .52). This differential association appeared consistent in strata of microsatellite instability, CpG island methylator phenotype, or BRAF mutation status. There was no statistically significant differential association according to densities of CD8+ cells, CD45RO+ cells, or FOXP3+ cells (Pheterogeneity > .04, with adjusted α of 0.01). Conclusions Colorectal cancer risk increased by smoking was stronger for tumors with lower T-lymphocyte response, suggesting an interplay of smoking and immunity in colorectal carcinogenesis.
Collapse
Affiliation(s)
| | - Jonathan A Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Program in Molecular Pathological Epidemiology, Department of Pathology
| | | | - David A Drew
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | | | - Li Liu
- Department of Oncologic Pathology
- Department of Nutrition
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Yan Shi
- Department of Oncologic Pathology
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | | | - Mancang Gu
- Department of Oncologic Pathology
- College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, P.R. China
| | | | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - NaNa Keum
- Department of Nutrition
- Department of Food Science and Biotechnology, Dongguk University, Goyang, the Republic of Korea
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Medicine, and Channing Division of Network Medicine
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Kana Wu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Department of Epidemiology
| | - Molin Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andrew T Chan
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Edward L Giovannucci
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Department of Epidemiology
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT
- Department of Medicine, Yale School of Medicine, New Haven, CT
- Smilow Cancer Hospital, New Haven, CT
| | - Reiko Nishihara
- Department of Oncologic Pathology
- Program in Molecular Pathological Epidemiology, Department of Pathology
- Department of Nutrition
- Department of Epidemiology
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xuehong Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Department of Oncologic Pathology
- Program in Molecular Pathological Epidemiology, Department of Pathology
- Department of Epidemiology
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
28
|
Dimitriou N, Felekouras E, Karavokyros I, Alexandrou A, Pikoulis E, Griniatsos J. Neutrophils to lymphocytes ratio as a useful prognosticator for stage II colorectal cancer patients. BMC Cancer 2018; 18:1202. [PMID: 30509242 PMCID: PMC6278137 DOI: 10.1186/s12885-018-5042-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background The incidence of colorectal cancer (CRC) is expected to increase by 80% in year 2035. Even though advantages in treatment of CRC have being made over the last decades, the outcome remains poor. Recently, several inflammatory markers including pretreatment neutrophil to lymphocyte ratio (NLR), have being used as prognostic factors, since host inflammatory response to cancer is believed to determine disease progression. The aim of this study is to evaluate the prognostic significance of pretreatment NLR, in terms of overall survival (OS), 5-year survival, disease-free survival (DFS) and recurrence, in CRC patients who underwent curative resection. Methods We retrospectively reviewed 296 patients, who were submitted to elective surgery as first therapeutic option in curative intent, between January 2010 and December 2015. Pretreatment NLR, as well as demographics, clinical, histopathologic, and laboratory data were analyzed. Univariate and multivariate analyses were conducted to identify prognostic factors associated with OS, 5-year survival, DFS and recurrence. Results The cutoff point of NLR was calculated with Kaplan-Meier curves and log-rank test to 4.7. Univariate and multivariate analyses disclosed elevated NLR as a significant dismal prognostic factor for DFS (HR 1.88; 95% CI 1.01–3.52; p = 0.048), 5-year survival (HR 2.14; 95% CI 1.12–4.10; p = 0.021) and OS (HR 2.11; 95% CI 1.11–4.03; p = 0.023). In a subgroup analysis, in patients with stage II CRC, NLR > 4.7 was a stronger poor predictor for DFS (HR 2.76; 95% CI 1.07–7.13; p = 0.036), 5-year survival (HR 3.84; 95% CI 1.39–10.63; p = 0.01) and OS (HR 3.62; 95% CI 1.33–4.82; p = 0.012). After adjusting stage for gender, age, location of the primary tumor, differentiation, as well as the presence of perineural, vascular, and lymphovascular invasion, the significance of NLR > 4.7 became more prominent for DFS (HR 2.85; 95% CI 1.21–6.73; p = 0.0176), 5-year survival (HR 4.06; 95% CI 1.66–9.93; p = 0.002) and OS (HR 4.07; 95% CI 1.69–9.91; p = 0.002) in stage II patients. Conclusion Pretreatment NLR > 4.7 is a poor prognostic factor for DFS, 5-year survival and OS in CRC patients undergoing curative resection. The dismal prognostic effect of NRL is magnified in Stage II CRC patients.
Collapse
Affiliation(s)
- Nikoletta Dimitriou
- Department of Surgery, National and Kapodistrian University of Athens, Medical School, Laiko Hospital, Agiou Thoma 17 str, GR 115-27, Athens, Greece.
| | - Evangelos Felekouras
- Department of Surgery, National and Kapodistrian University of Athens, Medical School, Laiko Hospital, Agiou Thoma 17 str, GR 115-27, Athens, Greece
| | - Ioannis Karavokyros
- Department of Surgery, National and Kapodistrian University of Athens, Medical School, Laiko Hospital, Agiou Thoma 17 str, GR 115-27, Athens, Greece
| | - Andreas Alexandrou
- Department of Surgery, National and Kapodistrian University of Athens, Medical School, Laiko Hospital, Agiou Thoma 17 str, GR 115-27, Athens, Greece
| | - Emmanuel Pikoulis
- Department of Surgery, National and Kapodistrian University of Athens, Medical School, Laiko Hospital, Agiou Thoma 17 str, GR 115-27, Athens, Greece
| | - John Griniatsos
- Department of Surgery, National and Kapodistrian University of Athens, Medical School, Laiko Hospital, Agiou Thoma 17 str, GR 115-27, Athens, Greece
| |
Collapse
|
29
|
Hamada T, Liu L, Nowak JA, Mima K, Cao Y, Ng K, Twombly TS, Song M, Jung S, Dou R, Masugi Y, Kosumi K, Shi Y, da Silva A, Gu M, Li W, Keum N, Wu K, Nosho K, Inamura K, Meyerhardt JA, Nevo D, Wang M, Giannakis M, Chan AT, Giovannucci EL, Fuchs CS, Nishihara R, Zhang X, Ogino S. Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. Eur J Cancer 2018; 103:98-107. [PMID: 30219720 PMCID: PMC6195453 DOI: 10.1016/j.ejca.2018.07.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND High-level plasma 25-hydroxyvitamin D [25(OH)D] has been associated with lower colorectal cancer incidence and mortality. Considering evidence indicating immunomodulatory effects of vitamin D, we hypothesised that survival benefits from high systemic vitamin D level might be stronger for colorectal carcinoma with lower immune response to tumour. METHODS Using 869 colon and rectal cancer cases within the Nurses' Health Study and Health Professionals Follow-up Study, we assessed the prognostic association of postdiagnosis 25(OH)D score [derived from diet and lifestyle variables to predict plasma 25(OH)D level] in strata of levels of histopathologic lymphocytic reaction. The Cox proportional hazards regression model was adjusted for potential confounders, including microsatellite instability, CpG island methylator phenotype, LINE-1 methylation, PTGS2 (cyclooxygenase-2) expression and KRAS, BRAF and PIK3CA mutations. RESULTS The association of postdiagnosis 25(OH)D score with colorectal cancer-specific mortality differed by levels of peritumoural lymphocytic reaction (pinteraction = 0.001). Multivariable-adjusted mortality hazard ratios for a quintile-unit increase of 25(OH)D score were 0.69 [95% confidence interval (CI), 0.54-0.89] in cases with negative/low peritumoural lymphocytic reaction, 1.08 (95% CI, 0.93-1.26) in cases with intermediate peritumoural reaction and 1.25 (95% CI, 0.75-2.09) in cases with high peritumoural reaction. The survival association of the 25(OH)D score did not significantly differ by Crohn's-like lymphoid reaction, intratumoural periglandular reaction or tumour-infiltrating lymphocytes. CONCLUSIONS The association between the 25(OH)D score and colorectal cancer survival is stronger for carcinomas with lower peritumoural lymphocytic reaction. Our results suggesting interactive effects of vitamin D and immune response may contribute to personalised dietary and lifestyle intervention strategies.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Hubei, PR China
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yin Cao
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tyler S Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Seungyoun Jung
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ruoxu Dou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yohei Masugi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yan Shi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Chinese PLA General Hospital, Beijing, PR China
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mancang Gu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, PR China
| | - Wanwan Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Food Science and Biotechnology, Dongguk University, Goyang, Republic of Korea
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Daniel Nevo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molin Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Smilow Cancer Hospital, New Haven, CT, USA
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
30
|
Hamada T, Zhang X, Mima K, Bullman S, Sukawa Y, Nowak JA, Kosumi K, Masugi Y, Twombly TS, Cao Y, Song M, Liu L, da Silva A, Shi Y, Gu M, Li W, Koh H, Nosho K, Inamura K, Keum N, Wu K, Meyerhardt JA, Kostic AD, Huttenhower C, Garrett WS, Meyerson M, Giovannucci EL, Chan AT, Fuchs CS, Nishihara R, Giannakis M, Ogino S. Fusobacterium nucleatum in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunol Res 2018; 6:1327-1336. [PMID: 30228205 DOI: 10.1158/2326-6066.cir-18-0174] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
The presence of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue has been associated with microsatellite instability (MSI), lower-level T-cell infiltrates, and poor clinical outcomes. Considering differences in the tumor-immune microenvironment between MSI-high and non-MSI-high carcinomas, we hypothesized that the association of F. nucleatum with immune response might differ by tumor MSI status. Using samples from 1,041 rectal and colon cancer patients within the Nurses' Health Study and Health Professionals Follow-up Study, we measured F. nucleatum DNA in tumor tissue by a quantitative polymerase chain reaction assay. Multivariable logistic regression models were used to examine the association between F. nucleatum status and histopathologic lymphocytic reactions or density of CD3+ cells, CD8+ cells, CD45RO (PTPRC)+ cells, or FOXP3+ cells in strata of tumor MSI status. We adjusted for potential confounders, including CpG island methylator phenotype; LINE-1 methylation; and KRAS, BRAF, and PIK3CA mutations. The association of F. nucleatum with tumor-infiltrating lymphocytes (TIL) and intratumoral periglandular reaction differed by tumor MSI status (P interaction = 0.002). The presence of F. nucleatum was negatively associated with TIL in MSI-high tumors [multivariable odds ratio (OR), 0.45; 95% confidence interval (CI), 0.22-0.92], but positively associated with TIL in non-MSI-high tumors (multivariable OR 1.91; 95% CI, 1.12-3.25). No significant differential association was observed for peritumoral lymphocytic reaction, Crohn-like lymphoid reaction, or T-cell densities. In conclusion, the association of F. nucleatum with immune response to colorectal carcinoma differs by tumor MSI status, suggesting that F. nucleatum and MSI status interact to affect antitumor immune reactions. Cancer Immunol Res; 6(11); 1327-36. ©2018 AACR See related Spotlight on p. 1290.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Yasutaka Sukawa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yohei Masugi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tyler S Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yan Shi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Mancang Gu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, P.R. China
| | - Wanwan Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Hideo Koh
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Food Science and Biotechnology, Dongguk University, Goyang, the Republic of Korea
| | - Kana Wu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Aleksandar D Kostic
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Smilow Cancer Hospital, New Haven, Connecticut
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
31
|
Xiong Y, Wang K, Zhou H, Peng L, You W, Fu Z. Profiles of immune infiltration in colorectal cancer and their clinical significant: A gene expression-based study. Cancer Med 2018; 7:4496-4508. [PMID: 30117315 PMCID: PMC6144159 DOI: 10.1002/cam4.1745] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/29/2018] [Accepted: 08/01/2018] [Indexed: 12/25/2022] Open
Abstract
Immune infiltration of colorectal cancer (CRC) is closely associated with clinical outcome. However, previous work has not accounted for the diversity of functionally distinct cell types that make up the immune response. In this study, based on a deconvolution algorithm (known as CIBERSORT) and clinical annotated expression profiles, we comprehensively analyzed the tumor‐infiltrating immune cells present in CRC for the first time. The fraction of 22 immune cells subpopulations was evaluated to determine the associations between each cell type and survival and response to chemotherapy. As a result, profiles of immune infiltration vary significantly between paired cancer and paracancerous tissue and the variation could characterize the individual differences. Of the cell subpopulations investigated, tumors lacking M1 macrophages or with an increased number of M2 macrophages, eosinophils, and neutrophils were associated with the poor prognosis. Unsupervised clustering analysis using immune cell proportions revealed five subgroups of tumors, largely defined by the balance between macrophages M1, M2, and NK resting cells, with distinct survival patterns, and associated with well‐established molecular subtype. Collectively, our data suggest that subtle differences in the cellular composition of the immune infiltrate in CRC appear to exist, and these differences are likely to be important determinants of both prognosis and response to treatment.
Collapse
Affiliation(s)
- Yongfu Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - He Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxian You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Hamada T, Soong TR, Masugi Y, Kosumi K, Nowak JA, da Silva A, Mu XJ, Twombly TS, Koh H, Yang J, Song M, Liu L, Gu M, Shi Y, Nosho K, Morikawa T, Inamura K, Shukla SA, Wu CJ, Garraway LA, Zhang X, Wu K, Meyerhardt JA, Chan AT, Glickman JN, Rodig SJ, Freeman GJ, Fuchs CS, Nishihara R, Giannakis M, Ogino S. TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology 2018; 7:e1442999. [PMID: 29900052 DOI: 10.1080/2162402x.2018.1442999] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022] Open
Abstract
Inhibitors targeting the PDCD1 (programmed cell death 1, PD-1) immune checkpoint pathway have revolutionized cancer treatment strategies. The TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PDCD1 ligand 1, PD-L1) expression and tumor-infiltrating lymphocytes (TIL) has been proposed to predict response to immunotherapy. It remains to be determined clinical, pathological, and molecular features of TIME subtypes of colorectal cancer. Using 812 colon and rectal carcinoma cases from the Nurses' Health Study and Health Professionals Follow-up Study, we examined the association of tumor characteristics and survival outcomes with four TIME subtypes (TIME 1, CD274low/TILabsent; TIME 2, CD274high/TILpresent; TIME 3, CD274low/TILpresent; and TIME 4, CD274high/TILabsent). In survival analyses, Cox proportional hazards models were adjusted for potential confounders, including microsatellite instability (MSI) status, CpG island methylator phenotype (CIMP) status, LINE-1 methylation level, and KRAS, BRAF, and PIK3CA mutation status. TIME subtypes 1, 2, 3 and 4 had 218 (27%), 117 (14%), 103 (13%), and 374 (46%) colorectal cancer cases, respectively. Compared with TIL-absent subtypes (TIME 1 and 4), TIL-present subtypes (TIME 2 and 3) were associated with high-level MSI, high-degree CIMP, BRAF mutation, and higher amounts of neoantigens (p < 0.001). TIME subtypes were not significantly associated with colorectal cancer-specific or overall survival. In conclusion, TIL-present TIME subtypes of colorectal cancer are associated with high levels of MSI and neoantigen load, supporting better responsiveness to cancer immunotherapy. Further studies examining tumor molecular alterations and additional factors in the tumor microenvironment may inform development of immunoprevention and immunotherapy strategies.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Thing Rinda Soong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yohei Masugi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Xinmeng Jasmine Mu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler S Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Hideo Koh
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Juhong Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, P.R. China
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Mancang Gu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, P.R. China
| | - Yan Shi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Scott J Rodig
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|