1
|
Ujong UP, Ibor ME, Iwara IA, Eteng MU. Synergistic effect and biochemical evaluation of kolaviron and quercetin on rat-model benign prostate hyperplasia. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-16. [PMID: 40381204 DOI: 10.1080/10286020.2025.2501022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
This study examined the effects of kolaviron and quercetin, individually and combined, on biochemical and histopathological changes in testosterone-induced benign prostatic hyperplasia (BPH) in male Wistar rats. Forty-two rats were divided into six groups, with BPH induced in all but the control group. Treatments included kolaviron, quercetin, their combination, and finasteride. BPH increased PSA, 5-α reductase, DHT, kidney and liver function markers, and altered lipid profiles. Treatments reduced these elevations and improved testosterone and HDL-c levels. Findings suggest that kolaviron and quercetin effectively ameliorate BPH, indicating their potential as affordable, non-invasive options for BPH management.
Collapse
Affiliation(s)
- Ujong P Ujong
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Cross River State, Okuku Campus, Cross River State, 540001, Nigeria
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, 540211, Nigeria
| | - Mbang E Ibor
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, 540211, Nigeria
| | - Iwara A Iwara
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, 540211, Nigeria
| | - Mbeh U Eteng
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, 540211, Nigeria
| |
Collapse
|
2
|
Abdel-Fattah MM, Abo-El Fetoh ME, Afify H, Ramadan LAA, Mohamed WR. Probenecid ameliorates testosterone-induced benign prostatic hyperplasia: Implications of PGE-2 on ADAM-17/EGFR/ERK1/2 signaling cascade. J Biochem Mol Toxicol 2023; 37:e23450. [PMID: 37352135 DOI: 10.1002/jbt.23450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most prevalent clinical disorders in the elderly. Probenecid (Prob) is a well-known FDA-approved therapy for gout owing to its uricosuric effect. The present study evaluated the use of Prob for BPH as a COX-2 inhibitor. Prob (100 and 200 mg/kg) was intraperitoneally injected into male Wistar rats daily for 3 weeks. In the second week, testosterone (3 mg/kg) was subcutaneously injected to induce BPH. Compared with BPH-induced rats, Prob treatment reduced prostate weight and index and improved histopathological architecture. The protease activity of ADAM-17/TACE and its ligands (TGF-α and TNF-α) were regulated by prob, which in turn abolished EGFR phosphorylation, and several inflammatory mediators (COX-2, PGE2, NF-κB (p65), and IL-6) were suppressed. By reducing the nuclear import of extracellular regulated kinase protein 1/2 (ERK1/2), Prob helped re-establish the usual equilibrium between antiapoptotic proteins like Bcl-2 and cyclin D1 and proapoptotic proteins like Bax. All of these data point to Prob as a promising treatment for BPH because of its ability to inhibit COX-2-syntheiszed PGE2 and control the ADAM-17/TGF-α-induced EGFR/ERK1/2 signaling cascade. These findings might help to repurpose Prob for the treatment of BPH.
Collapse
Affiliation(s)
- Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed E Abo-El Fetoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian-Russian University, Cairo, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian-Russian University, Cairo, Egypt
| | - Laila A A Ramadan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian-Russian University, Cairo, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
El-Shafei NH, Zaafan MA, Kandil EA, Sayed RH. Simvastatin ameliorates testosterone-induced prostatic hyperplasia in rats via modulating IGF-1/PI3K/AKT/FOXO signaling. Eur J Pharmacol 2023; 950:175762. [PMID: 37164119 DOI: 10.1016/j.ejphar.2023.175762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Benign prostatic hyperplasia (BPH) is characterized by non-malignant enlargement of prostate cells causing many lower urinary tract symptoms. BPH pathogenesis includes androgens receptors signaling pathways, oxidative stress, apoptosis, and possibly changes in IGF-1/PI3K/AKT/FOXO pathway. Altogether, modulating IGF-1/PI3K/AKT/FOXO signaling along with regulating oxidative stress and apoptosis might preserve prostatic cells from increased proliferation. Beyond statins' common uses, they also have anti-inflammatory, antioxidant, and anti-tumor effects. This study aims to determine simvastatin's beneficial effect on testosterone-induced BPH. Rats were randomly allocated into four groups, 9 rats each. The control group received olive oil subcutaneously and distilled water orally for 30 consecutive days. The second group received simvastatin (20 mg/kg, p.o.) dissolved in distilled water. The BPH-induced group received testosterone enanthate (3 mg/kg, s.c.) dissolved in olive oil, and the BPH-induced treated group received both simvastatin and testosterone. Testosterone significantly increased prostate index and severity of histopathological alterations in prostate tissues as well as 5-alpha reductase enzyme level in contrast to simvastatin treatment that reversed the testosterone-induced alterations in these parameters. Likewise, testosterone up-regulated IGF-1/PI3K/AKT signaling pathway and down-regulated FOXO transcription factor. It also decreased apoptotic markers level in prostatic tissue BAX, caspase-3, and caspase-9, while it elevated Bcl-2 level. In addition, it alleviated reduced GSH and GPX5 levels and SOD activity. Simvastatin treatment significantly opposed testosterone's effect on all aforementioned parameters. In conclusion, this study demonstrates that simvastatin is a possible treatment for BPH which may be attributed to its effect on IGF-1/PI3K/AKT/FOXO signaling pathway as well as anti-oxidant and apoptotic effects.
Collapse
Affiliation(s)
- Nyera H El-Shafei
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| | - Mai A Zaafan
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
4
|
Cryptotanshinone modulates proliferation, apoptosis, and fibrosis through inhibiting AR and EGFR/STAT3 axis to ameliorate benign prostatic hyperplasia progression. Eur J Pharmacol 2022; 938:175434. [PMID: 36462735 DOI: 10.1016/j.ejphar.2022.175434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a chronic proliferative non-tumorous disease that mainly bothers males older than 50 and significantly disturbs the quality of life. Cryptotanshinone (CTS), a herbal extract, has been proven with therapeutic effects on various diseases. However, the effects and possible mechanisms of CTS in BPH have not yet been elucidated. This study aims to investigate the efficacy of CTS on the BPH-associated pathological processes and the possible mechanisms underlying it. Herein, CTS was intragastrically administrated to estradiol/testosterone (E2/T) (1:100)-induced BPH rats, and finasteride (Fi) was used as the positive control. Human benign prostatic hyperplasia epithelial cells (BPH-1) and normal human prostate stromal cells (WPMY-1) were used for the in vitro experiments. Results indicated that E2/T injection was able to induce BPH manifestation, featured with increased prostate index. Furthermore, it accelerated proliferation, epithelial-mesenchymal transition (EMT), stromal collagen deposition, and inhibited apoptosis of rat prostate. However, the administration of CTS partially reversed the changes mentioned above. The therapeutic effects of CTS on BPH were also confirmed by in vitro experiments. The efficacy of CTS on these processes might be attributed to the suppression of AR and EGFR/STAT3 axis activity. In conclusion, CTS might suppress BPH progression by modulating proliferation, apoptosis, EMT, and stromal collagen deposition via suppressing AR and EGFR/STAT3 axis.
Collapse
|
5
|
Park JY, Park WY, Park J, Ahn KS, Lee JH, Kwak HJ, Um JY. Therapeutic role of Glycyrrhiza Uralensis fisher on benign prostatic hyperplasia through 5 alpha reductase regulation and apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154371. [PMID: 35964456 DOI: 10.1016/j.phymed.2022.154371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is an age-related disease in adult men. There are two pharmacological treatments for BPH. However, these synthetic materials have various risks, many studies are being conducted to develop new drugs from natural sources. PURPOSE In this study, we proposed a beneficial effect of Glycyrrhiza uralensis Fischer on the development and progression of BPH, focusing on the androgen receptor (AR) and 5α-reductase 2 (5AR2) signaling axis. METHODS To explain the therapeutic efficacy of a water extract of G. uralensis (GUWE) for BPH, we used testosterone propionate (TP)-induced BPH rat models and TP-treated RWPE-1 human prostate epithelial cells. RESULTS In the TP-induced BPH rat models, GUWE reduced the enlarged prostate weight, prostate index, prostate epithelial thickness, and serum DHT levels. In addition, the protein levels of AR and 5AR2 in prostate tissues were significantly decreased by GUWE treatment. Furthermore, GUWE induced apoptosis signaling through an increase of Bcl-2 associated X protein (Bax), caspase 3, and Poly (ADP-ribose) polymerase (PARP) and a decrease of B-cell lymphoma-extra-large (Bcl-xL) in prostate tissues of TP-induced BPH rats. These findings were also confirmed in TP-treated RWPE-1 cells. Fi treatment markedly decreased the sperm count in the epididymis of BPH rats, but GUWE treatment did not affect the sperm count, suggesting less toxicity. CONCLUSION These findings suggested that GUWE reduces the development of BPH by inhibiting AR-5AR2 and activating the apoptosis signaling pathway. Furthermore, unlike finasteride, GUWE did not affect sperm count. Therefore, we suggest that GUWE has a potential as a safer alternative option for BPH treatment.
Collapse
Affiliation(s)
- Ja Yeon Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Yong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jun Hee Lee
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, 16227, Republic of Korea.
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Wang K, Huang D, Zhou P, Su X, Yang R, Shao C, Wu J. Bisphenol A exposure triggers the malignant transformation of prostatic hyperplasia in beagle dogs via cfa-miR-204/KRAS axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113430. [PMID: 35325610 DOI: 10.1016/j.ecoenv.2022.113430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The prostatic toxicity of bisphenol A (BPA) exposure is mainly associated with hormonal disturbances, thus interfering with multiple signal pathways and increasing the susceptibility to prostatic lesions. This study concentrates predominantly on the potential effect and mechanisms of low-dose BPA exposure on prostates in adult beagle dogs. The dogs were orally given BPA (2, 6, 18 μg/kg/day) and vehicle for 8 weeks, followed by blood collection and dissection. The ascended organ coefficient and volume of prostates, thickened epithelium, as well as histopathological observation have manifested that BPA exposure could trigger the aberrant prostatic hyperplasia in beagle dogs. Hormone level detection revealed that the ratios of estradiol (E2) to testosterone (T) (E2/T) and prolactin (PRL) to T (PRL/T) were up-regulated in the serum from BPA group. Based on microRNA (miRNA) microarray screening and functional enrichment analysis, BPA might facilitate the progression of prostate tumorigenesis in beagle dogs via cfa-miR-204 and its downstream target KRAS oncogene. Subsequently, the overexpression of KRAS, CDKN1A, MAPK1, VEGFA, BCL2 and PTGS2 was validated. These findings provide a series of underlying targets for preventing the initiation and metastasis of BPA-induced prostatic hyperplasia and tumorigenesis, while the regulatory relationship headed with KRAS requires further investigation.
Collapse
Affiliation(s)
- Kaiyue Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Ping Zhou
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China.
| |
Collapse
|
7
|
Cao X, Shang Y, Kong W, Jiang S, Liao J, Dai R. Flavonoids derived from Anemarrhenae Rhizoma ameliorate inflammation of benign prostatic hyperplasia via modulating COX/LOX pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114740. [PMID: 34737006 DOI: 10.1016/j.jep.2021.114740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flavonoids are the main components of the traditional Chinese medicine Anemarrhenae Rhizoma (dried rhizome of Anemarrhena asphodeloides Bge.), which has been reported to possess activity against inflammation and tumor. AIM OF STUDY Regulation of the arachidonic acid (AA) cascade through cyclooxygenase (COX) and lipoxygenase (LOX) represent the two major pathways to treat inflammatory of benign prostatic hyperplasia (BPH). In this study, Anemarrhenae Rhizoma flavonoids and its main compounds (mangiferin, neomangiferin and isomangiferin) were investigated for effects on AA metabolism. METHODS Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used to monitor AA metabolites in BPH rats and in PC-3 cells. COX-2 and 5-LOX protein and mRNA levels were measured by Western blot and qPCR, respectively, along with histopathological assessment of prostate tissues. RESULTS Treatment with flavonoids significantly ameliorated BPH-associated prostate inflammation and inhibited the expression of COX-2 and 5-LOX at the protein and mRNA levels. Quantitative metabolomic analysis of blood plasma showed flavonoids treatment decreased AA levels and its metabolites associated with the COX and LOX pathways. Further exploration of the flavonoid compounds mangiferin, neomangiferin and isomangiferin showed they inhibited AA metabolism to varying degrees in PC-3 cell cultures. CONCLUSION Anemarrhenae Rhizoma flavonoids act to inhibit BPH-related inflammation in vivo and in vitro by targeting AA metabolism and interfering with COX and LOX pathways. The identification of mangiferin, neomangiferin and isomangiferin as anti-inflammatory components suggests flavonoids interventions represent a promising therapeutic approach for BPH.
Collapse
Affiliation(s)
- Xiaotong Cao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Ying Shang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Weigui Kong
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Shuqing Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Jun Liao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Ronghua Dai
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
8
|
Semenov AL, Gubareva EA, Ermakova ED, Dorofeeva AA, Tumanyan IA, Radetskaya EA, Yurova MN, Aboushanab SA, Kanwugu ON, Fedoros EI, Panchenko AV. Astaxantin and Isoflavones Inhibit Benign Prostatic Hyperplasia in Rats by Reducing Oxidative Stress and Normalizing Ca/Mg Balance. PLANTS (BASEL, SWITZERLAND) 2021; 10:2735. [PMID: 34961206 PMCID: PMC8704012 DOI: 10.3390/plants10122735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/03/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a common pathology among aging men. Despite the broad pharmacological interventions, the available remedies to treat BPH are yet not devoid of side effects. Herbal compounds are suggested to be an alternative option for the BPH treatment. In our study, we evaluated the effect of kudzu isoflavones and astaxanthin on the BPH animal model. The animals were randomly divided into five groups: control; testosterone-induced BPH group; and three BPH-induced groups, which received intragastrically for 28 days finasteride (5 mg/kg) as a positive control, isoflavones (200 mg/kg), and astaxanthin (25 mg/kg). BPH was induced by castration of animals and subsequent subcutaneous injections of prolonged testosterone (25 mg/kg). Prostate index and histology, biochemical parameters, and antioxidant activity were evaluated. A significant decrease in prostate weight, immunohistochemical markers, and normalization of prostate Ca/Mg ratio was found in all treatment groups. Astaxanthin treatment also resulted in decreased epithelial proliferation and normalized superoxide dismutase activity. In conclusion, both isoflavones and astaxanthin inhibited BPH development at a level comparable to finasteride in terms of prostate weight, prostatic epithelium proliferation, and prostate tissue cumulative histology score. These results suggest that isoflavones and especially astaxanthin could serve as a potential alternative therapy to treat BHP.
Collapse
Affiliation(s)
- Alexander L. Semenov
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Ekaterina A. Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Elena D. Ermakova
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russia
| | - Anastasia A. Dorofeeva
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russia
| | - Irina A. Tumanyan
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
- SCAMT Institute, ITMO University, Lomonosova St. 9, 191002 St. Petersburg, Russia
| | - Ekaterina A. Radetskaya
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Maria N. Yurova
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Saied A. Aboushanab
- Institute of Chemical Technology, Ural Federal University Named after The First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia; (S.A.A.); (O.N.K.)
| | - Osman N. Kanwugu
- Institute of Chemical Technology, Ural Federal University Named after The First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia; (S.A.A.); (O.N.K.)
| | - Elena I. Fedoros
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Andrey V. Panchenko
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| |
Collapse
|
9
|
Peng Y, Peng C, Wu Y, Sun C, Li X. Chemical profiles of the active fraction from Prinsepia utilis Royle leaves and its anti-benign prostatic hyperplasia evaluation in animal models. BMC Complement Med Ther 2021; 21:272. [PMID: 34715848 PMCID: PMC8555178 DOI: 10.1186/s12906-021-03446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background The Prinsepia utilis Royle leaves (P. utilis) is a folk herb used for benign prostatic hyperplasia (BPH) control by ethnic minorities for centuries in China with rich in resources. Our previous studies have confirmed the anti-BPH effect of its water extract (QCJ) and the active fraction (Fr. B) separated from the QCJ by animal test. The Fr. B from P. utilis should be a potential candidate for BPH control. Methods In this study, the chemical ingredients of Fr. B were identified by UPLC-QTOF-MS, and quantified by HPLC. Murine animal models were divided into 8 groups, Sham rats, BPH rats, BPH rats administered with finasteride (1 mg/kg), BPH rats administered with Pule’an (460 mg/kg), BPH rats administered with low, high dosage of QCJ (860 mg/kg, 2580 mg/kg respectively), BPH rats administered with low, high dosage of Fr. B (160 mg/kg, 480 mg/kg respectively). The expression of vascular endothelial growth factor (VEGF) in the prostate tissue of rats was tested, and serum levels of dihydrotestosterone (DHT), testosterone (T), estradiol (E2), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and total superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), malondialdehyde (MDA) in prostate homogenate were measured. One-way ANOVA followed by LSD was used for statistical analysis. Results The BPH rats treated by Fr. B exhibited significant reductions of VEGF and MDA levels, as well as significant increases of SOD, GSH-Px and CAT in the prostate tissue after 28 day administration (P < 0.05). Moreover, Fr. B significantly reduced DHT, DHT/E2 ratio, TNF-α, while increased T levels in serum of BPH rats (P < 0.05). UPLC-QTOF-MS analysis revealed 10 flavonoids as the key constituents of this fraction, which accounted for 54.96% of all substance of Fr. B. The relative contents of compound 1, 2 are 11.1%, 13% in Fr. B respectively. Conclusions These results indicated that the Fr. B obtained from P. utilis alleviated the symptoms of BPH rats through multiple mechanisms including reduction of DHT/E2 ratio, inhibition of growth factor, anti-inflammation and anti-oxidation, in which flavonoids might be the key constituents. It supported the hypothesis that the Fr. B should be further explored as a candidate for BPH patients.
Collapse
Affiliation(s)
- Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Yang Wu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Chongzhi Sun
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
10
|
Zhao Y, Zhang Y, Li Y, Yang M, Yuan J, Cao Y, Xu L, Ma X, Lin S, An J, Wang S. Yohimbine hydrochloride inhibits benign prostatic hyperplasia by downregulating steroid 5α-reductase type 2. Eur J Pharmacol 2021; 908:174334. [PMID: 34265299 DOI: 10.1016/j.ejphar.2021.174334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a frequently encountered disease in older men that affects sexual function and is capable of causing lower urinary tract dysfunction. Unfortunately, current treatment options for BPH primarily seek to address the lower urinary tract dysfunction aspect of the disease and do not improve sexual function. Yohimbine has been effectively used for decades to treat erectile dysfunction. Therefore, the objective of this study was to evaluate the inhibitory effect of yohimbine on BPH and explore the associated underlying mechanisms. Thirty-six rats were randomly divided into the control, BPH, finasteride (1 mg/kg), and yohimbine (2, 4, and 8 mg/kg) groups. Except for the rats in the control group, those in the other groups were subcutaneously injected testosterone propionate (5 mg/kg/day) daily for a period of 4 weeks to establish BPH models. They were also administration the corresponding drug daily for a period of 6 weeks. After the treatments, in addition to determining prostate wet weight and index, the histopathological status of the prostate was observed, and the levels of testosterone, dihydrotestosterone, prostatic acid phosphatase, the prostate-specific antigen, proliferating cell nuclear antigen, and steroid 5α-reductase were determined. Specifically, the administration of 2, 4, and 8 mg/kg yohimbine inhibited prostatic index increase by 46.7, 55.1, and 69.3%, respectively, in BHP rats. Further, yohimbine significantly reduced the levels of dihydrotestosterone, prostatic acid phosphatase, prostate-specific antigen, proliferating cell nuclear antigen, and steroid 5α-reductase, suggesting that it exerts beneficial effects against BPH by modulating the steroid 5α-reductase pathway.
Collapse
Affiliation(s)
- Yani Zhao
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China.
| | - Yan Zhang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Yao Li
- Key Laboratory Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Min Yang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Jiani Yuan
- Air Force Hospital of Western Theater Command, Chengdu, 610000, Sichuan, China
| | - Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lu Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xuexinyu Ma
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Sisong Lin
- Key Laboratory Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Junming An
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China.
| | - Siwang Wang
- Key Laboratory Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
11
|
Hidrox ® and Chronic Cystitis: Biochemical Evaluation of Inflammation, Oxidative Stress, and Pain. Antioxidants (Basel) 2021; 10:antiox10071046. [PMID: 34209690 PMCID: PMC8300770 DOI: 10.3390/antiox10071046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Interstitial cystitis/painful bladder syndrome (IC/PBS) is a chronic bladder condition characterized by frequent urination, inflammation, oxidative stress, and pain. The aim of the study was to evaluate the anti-inflammatory and antioxidant effects of an oral administration of Hidrox® (10 mg/kg) in the bladder and spinal cord in a rodent model of IC/BPS. The chronic animal model of cystitis was induced by repeated intraperitoneal injections of cyclophosphamide (CYP) for five consecutive days. Treatment with Hidrox® began on the third day of the CYP injection and continued until the 10th day. CYP administration caused macroscopic and histological bladder changes, inflammatory infiltrates, increased mast cell numbers, oxidative stress, decreased expression of the tight endothelial junction (e.g., zonula occludens-1 (ZO-1) and occludin), and bladder pain. Treatment with Hidrox® was able to improve CYP-induced inflammation and oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. It was also able to reduce bladder pain which was aggravated by the activation of neuroinflammation in the central nervous system. In particular, Hidrox® reduced the brain-derived neurotrophic factor (BDNF), as well as the activation of astrocytes and microglia, consequently reducing mechanical allodynia. These results indicate that nutritional consumption of Hidrox® can be considered as a new therapeutic approach for human cystitis, increasing the conceivable potential of a significant improvement in the quality of life associated with a lowering of symptom intensity in patients with IC/BPS.
Collapse
|
12
|
Saponaro M, Giacomini I, Morandin G, Cocetta V, Ragazzi E, Orso G, Carnevali I, Berretta M, Mancini M, Pagano F, Montopoli M. Serenoa repens and Urtica dioica Fixed Combination: In-Vitro Validation of a Therapy for Benign Prostatic Hyperplasia (BPH). Int J Mol Sci 2020; 21:E9178. [PMID: 33276425 PMCID: PMC7730996 DOI: 10.3390/ijms21239178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is an age-related chronic disorder, characterized by the hyperproliferation of prostatic epithelial and stromal cells, which drives prostate enlargement. Since BPH aetiology and progression have been associated with the persistence of an inflammatory stimulus, induced both by Nuclear Factor-kappa B (NF-κB) activation and reactive oxygen species (ROS) production, the inhibition of these pathways could result in a good tool for its clinical treatment. This study aimed to evaluate the antioxidant and anti-inflammatory activity of a combined formulation of Serenoa repens and Urtica dioica (SR/UD) in an in vitro human model of BPH. The results confirmed both the antioxidant and the anti-inflammatory effects of SR/UD. In fact, SR/UD simultaneously reduced ROS production, NF-κB translocation inside the nucleus, and, consequently, interleukin 6 (IL-6) and interleukin 8 (IL-8) production. Furthermore, the effect of SR/UD was also tested in a human androgen-independent prostate cell model, PC3. SR/UD did not show any significant antioxidant and anti-inflammatory effect, but was able to reduce NF-κB translocation. Taken together, these results suggested a promising role of SR/UD in BPH and BPH-linked disorder prevention.
Collapse
Affiliation(s)
- Miriam Saponaro
- Department of Medicine, University of Padova, 35128 Padova, Italy;
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy;
| | - Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy; (I.G.); (G.M.); (V.C.); (E.R.); (G.O.)
| | - Giulia Morandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy; (I.G.); (G.M.); (V.C.); (E.R.); (G.O.)
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy; (I.G.); (G.M.); (V.C.); (E.R.); (G.O.)
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy; (I.G.); (G.M.); (V.C.); (E.R.); (G.O.)
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy; (I.G.); (G.M.); (V.C.); (E.R.); (G.O.)
| | - Ilaria Carnevali
- Clinical Research Department of Schwabe Pharma Italia, 39100 Bolzano, Italy;
| | - Massimiliano Berretta
- Department of Medical Oncology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Mariangela Mancini
- Urological Clinic, Department of Surgical, Oncological and Gastroenterological Sciences, School of Medicine and Surgery, University of Padova, 35124 Padova, Italy;
| | | | - Monica Montopoli
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy;
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy; (I.G.); (G.M.); (V.C.); (E.R.); (G.O.)
| |
Collapse
|
13
|
Metabolic profiling, in vitro bioaccessibility and in vivo bioavailability of a commercial bioactive Epilobium angustifolium L. extract. Biomed Pharmacother 2020; 131:110670. [DOI: 10.1016/j.biopha.2020.110670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023] Open
|
14
|
Akbar Karami A, Sheikhsoleimani M, Reza Memarzadeh M, Haddadi E, Bakhshpour M, Mohammadi N, Mehdi Mirhashemi S. Urtica Dioica Root Extract on Clinical and Biochemical Parameters in Patients with Benign Prostatic Hyperplasia, Randomized Controlled Trial. Pak J Biol Sci 2020; 23:1338-1344. [PMID: 32981268 DOI: 10.3923/pjbs.2020.1338.1344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Benign Prostatic Hyperplasia (BPH) is a common urological disorder as men get older. BPH can cause uncomfortable urinary tract symptoms. Given the high incidence of the disease, further research is an undeniable necessity for its better management. In this research, the efficacy of Urtica Dioica root extract (UDE) on clinical and biochemical parameters were evaluated in this type of patients. MATERIALS AND METHODS Participants were 60 men with BPH that randomly allocated to two equal groups (Intervention = 30 and Comparison = 30). Block balanced Randomization method was performed using a computer by a trained nurse. Intervention and comparison groups received 450 mg day-1 UDE and placebo as tablets for 12 weeks, respectively. The main outcome was changes in International Prostate Symptoms Score (IPSS) from baseline to end of treatment. Data were collected by completing a standard questionnaire and performing relevant tests based on common laboratory methods. RESULTS UDE had an intermediate effect on IPSS, a small effect on serum high-sensitivity C-reactive protein (hs-CRP), intermediate to large effect on malondialdehyde (MDA) levels and intermediate effect on superoxide dismutase (SOD) activity. The magnitude of the effects of UDE on other parameters was overall negligible compared to the comparison and not significant. No side effects were seen in these patients following tablet usage. CONCLUSION UDE consumption for 12 weeks among BPH patients had clinically significant effects on IPSS, serum hs-CRP, MDA and SOD activity.
Collapse
|
15
|
Yu ZJ, Yan HL, Xu FH, Chao HC, Deng LH, Xu XD, Huang JB, Zeng T. Efficacy and Side Effects of Drugs Commonly Used for the Treatment of Lower Urinary Tract Symptoms Associated With Benign Prostatic Hyperplasia. Front Pharmacol 2020; 11:658. [PMID: 32457631 PMCID: PMC7225336 DOI: 10.3389/fphar.2020.00658] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is the most common benign disease of the prostate gland and is caused by benign hyperplasia of the smooth muscle cells and stromal cells in this important gland. BPH is also the most common disease underlying lower urinary tract symptoms (LUTS). The incidence of BPH increases with age and affects more than half of all men 50 years or older. BPH mainly exerts effects on urinary function and can seriously reduce a patient's quality of life. At present, treatment for BPH aims primarily to improve the quality of life and reduce the risk of BPH-related complications. Pharmacological therapy is recommended for moderate-to-severe cases of LUTS that are suggestive of BPH. A range of drugs is currently available to treat this condition, including α1-adrenoceptor antagonists, 5α-reductase inhibitors (5-ARIs), phosphodiesterase type 5 inhibitors (PDE5Is), muscarinic receptor antagonists (MRAs), β3-adrenoceptor agonists, and plant extracts. Of these, the most commonly used drugs in the clinic are α1-adrenoceptor antagonists, 5-ARIs, and combination therapy. However, these drugs exert their effects via various mechanisms and are associated with adverse reactions. The purpose of this review is to provide current comprehensive perspectives on the mechanisms of action, efficacy, and adverse reactions associated with the drugs most commonly used for the treatment of BPH.
Collapse
Affiliation(s)
- Zhao-Jun Yu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Department of Graduate School, Nanchang University, Nanchang, China
| | - Hai-Lan Yan
- Department of Clinical Medicine, Xi'an Jiao Tong University Health Science Center, Xi'an, China
| | - Fang-Hua Xu
- Department of Pathology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Hai-Chao Chao
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Lei-Hong Deng
- Department of Ultrasound, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang-Da Xu
- Medical Department of Graduate School, Nanchang University, Nanchang, China
| | - Jian-Biao Huang
- Medical Department of Graduate School, Nanchang University, Nanchang, China
| | - Tao Zeng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Chen B, Cao D, Chen Z, Huang Y, Lin T, Ai J, Liu L, Wei Q. Estrogen regulates the proliferation and inflammatory expression of primary stromal cell in benign prostatic hyperplasia. Transl Androl Urol 2020; 9:322-331. [PMID: 32420138 PMCID: PMC7214965 DOI: 10.21037/tau.2020.02.08] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background To investigate the expression of estrogen receptor (ER) in prostate tissues of benign prostatic hyperplasia (BPH) individuals, and the effects of estrogen regulating the proliferation and inflammatory expressions of primary prostate stromal cells in BPH. Methods A total of 44 human BPH prostate tissues were collected to explore the expression of ER by immunohistochemistry (IHC). Cell proliferation, mRNA and protein expressions were analyzed in primary prostate stromal cells treated with estrogen or estrogen plus fulvestrant through cell count kit-8 (CCK-8) assay, quantitative real-time polymerase chain reaction (qPCR), IHC and western blot, respectively. Results Firstly, ERβ was positive, and ERα was negative in the transition zone of prostate among all the 44 individuals with BPH. Secondly, the effects could be partially inhibited by fulvestrant, of estrogen promoting the proliferation of primary prostate stromal cells cultured in dulbecco’s modified eagle medium (DMEM) supplemented with 2% fetal bovine serum (FBS). Thirdly, estrogen up-regulates the mRNA levels of C-C chemokine receptor type 3 (CCR3), CD40 ligand (CD 40L), C-X-C motif chemokine ligand 9 (CXCL9) and interleukin 10 (IL10), and down-regulates the mRNA levels of C-C chemokine receptor type 4 (CCR4) and interleukin 17C (IL17C). Then, the protein expressions of CCR3, CCR4, CD40L, IL10 and IL17C are positive, and CXCL9 is negative in the third-generation primary prostate stromal cells. Finally, the effects could be partially inhibited by fulvestrant, of estrogen up-regulating the protein levels of CD40L and IL10. Conclusions The expressions of ER in human BPH prostate tissues are zone-dependent. Estrogen promoting the proliferation of primary prostate stromal cells cultured in DMEM supplemented with 2% FBS. The expressions of CCR3, CCR4, CD 40L, IL17C, CXCL9 and IL10 are regulated by estrogen in primary prostate stromal cells.
Collapse
Affiliation(s)
- Bo Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dehong Cao
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianhai Lin
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Akanni OO, Owumi SE, Olowofela OG, Adeyanju AA, Abiola OJ, Adaramoye OA. Protocatechuic acid ameliorates testosterone-induced benign prostatic hyperplasia through the regulation of inflammation and oxidative stress in castrated rats. J Biochem Mol Toxicol 2020; 34:e22502. [PMID: 32227675 DOI: 10.1002/jbt.22502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/04/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
Protocatechuic acid (PA) is a polyphenol-recognized for its efficacy as an antioxidant-possesses anticancer, anti-inflammatory, antioxidant properties. The efficacy of PA in the management of benign prostatic hyperplasia (BPH) has not been investigated. Forty-two castrated rats (n = 7) were treated as follows: control (corn oil), BPH only received testosterone propionate (TP) (TP 3 mg/kg intraperitoneally), BPH + PA (TP 3 mg/kg + PA 40 mg/kg), BPH + finasteride (Fin) (TP 3 mg/kg + Fin 10 mg/kg), PA only (40 mg/kg: by gavage), and Fin only (10 mg/kg: by gavage) for 4 weeks. In BPH rats, there were significant (P < .05) increases in prostatic (250%) and organosomatic (280%) weights compared with controls. Cotreatment decreased prostatic weights by 19% (PA) and 21% (Fin). Markers of inflammation: myeloperoxidase activities increased in serum (148%) and prostate (70%), as well as nitric oxide levels serum (92%) and prostatic (95%). Proinflammatory cytokines interleukin-1β and tumor necrosis factor-α increased by 3.6- and 2.8-fold. Furthermore, prostatic malondialdehyde, superoxide dismutase, and serum total acid phosphatase increased by 97%, 25%, and 48%, respectively. Histology revealed poor architecture and severe proliferation of the prostate in BPH rats. Inflammation and oxidative stress markers, as well as the histological alteration in BPH rats, was attenuated (P < .05) upon cotreatment with PA and comparable with Fin cotreatment. These results suggest that PA mitigates oxido-inflammatory responses and restored prostatic cytoarchitecture to levels comparable with control in rats induced with BPH.
Collapse
Affiliation(s)
- Olubukola O Akanni
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Biological Sciences, McPherson University, Lagos, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Olusoji J Abiola
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatosin A Adaramoye
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
18
|
Vafa A, Afzal SM, Barnwal P, Rashid S, Shahid A, Alpashree, Islam J, Sultana S. Protective role of diosmin against testosterone propionate-induced prostatic hyperplasia in Wistar rats: Plausible role of oxidative stress and inflammation. Hum Exp Toxicol 2019; 39:1133-1146. [DOI: 10.1177/0960327119889655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Benign prostatic hyperplasia (BPH) is an important key health concern for aging men. Polyphenolic compounds have been found to possess important roles in the inhibition of numerous ailments that involve reactive oxygen species and inflammation. Diosmin is a citrus flavone that possesses antioxidant, anti-inflammatory, antiproliferative, and anticancer activities, so based on these properties of diosmin, we decided to evaluate its effect on testosterone propionate (TP)-induced BPH. A total of 30 Wistar rats were randomly assigned to five groups having six animals in each. This study was of 28 days in which TP (5 mg kg−1) was administered to induce BPH in the last 10 days of the study. It was found that diosmin at the doses of 20 and 40 mg kg−1significantly reduced malondialdehyde and xanthine oxidase formation in a dose-dependent manner; however, it replenished catalase, glutathione (GSH), and GSH-dependent enzymes, that is, glutathione peroxidase, glutathione reductase, and glutathione- S-transferase significantly against TP-induced BPH. Further, immunohistochemical study showed that diosmin alleviated inflammatory markers (nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, and interleukin-6). It was also found that diosmin downregulated the expression of androgen receptor and decreased the prostate-specific antigen concentration dose-dependently, significantly against TP-induced BPH. Diosmin also restored histoarchitecture of the prostate in a dose-dependent manner. Findings from the present study revealed the protective role of diosmin against TP-induced BPH in Wistar rats.
Collapse
Affiliation(s)
- A Vafa
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - SM Afzal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - P Barnwal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - S Rashid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
- Department of Pharmacology and Toxicology, College of Pharmacy, Girls Section, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - A Shahid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Alpashree
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - J Islam
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - S Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| |
Collapse
|
19
|
The anti-inflammation, anti-oxidative and anti-fibrosis properties of swertiamarin in cigarette smoke exposure-induced prostate dysfunction in rats. Aging (Albany NY) 2019; 11:10409-10421. [PMID: 31739286 PMCID: PMC6914396 DOI: 10.18632/aging.102467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Chronic cigarette smoke (CS) exposure induces prostate deficits. We previously found that swertiamarin had prostatic protective potential. This study was to investigate the possible protective effect of swertiamarin against CS-induced prostate dysfunction on human prostate epithelial cells, stromal cells and rats. Rat prostate collagen deposition and fibrosis were assessed by sirius red staining and measuring hydroxyproline content, as well as by qPCR and western blot analysis for fibrotic extracellular matrix components. Prostatic levels of oxidative stress and inflammatory-related factors were also analyzed. In order to explore its underling mechanisms, the activities of Hedgehog signaling pathway and epithelial-mesenchymal transition of human prostate cells and rat prostate tissue were estimated. It was found that swertiamarin ameliorated CS-induced prostatic collagen deposition, relieved oxidative stress and local inflammation, inhibited the activation of Hedgehog signaling pathway and attenuated epithelial-mesenchymal transition. It indicated that swertiamarin could ameliorate CS-induced prostatic fibrosis by inhibiting epithelial-mesenchymal transition and Hedgehog pathway.
Collapse
|