1
|
Alcalá-Santiago Á, Rodriguez-Barranco M, Sánchez MJ, Gil Á, García-Villanova B, Molina-Montes E. Micronutrients, Vitamin D, and Inflammatory Biomarkers in COVID-19: A Systematic Review and Meta-analysis of Causal Inference Studies. Nutr Rev 2025; 83:e1383-e1405. [PMID: 39449666 PMCID: PMC12166185 DOI: 10.1093/nutrit/nuae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
CONTEXT Experimental and observational studies suggest that circulating micronutrients, including vitamin D (VD), may increase COVID-19 risk and its associated outcomes. Mendelian randomization (MR) studies provide valuable insight into the causal relationship between an exposure and disease outcomes. OBJECTIVES The aim was to conduct a systematic review and meta-analysis of causal inference studies that apply MR approaches to assess the role of these micronutrients, particularly VD, in COVID-19 risk, infection severity, and related inflammatory markers. DATA SOURCES Searches (up to July 2023) were conducted in 4 databases. DATA EXTRACTION AND ANALYSIS The quality of the studies was evaluated based on the MR-STROBE guidelines. Random-effects meta-analyses were conducted where possible. RESULTS There were 28 studies (2 overlapped) including 12 on micronutrients (8 on VD) and COVID-19, 4 on micronutrients (all on VD) and inflammation, and 12 on inflammatory markers and COVID-19. Some of these studies reported significant causal associations between VD or other micronutrients (vitamin C, vitamin B6, iron, zinc, copper, selenium, and magnesium) and COVID-19 outcomes. Associations in terms of causality were also nonsignificant with regard to inflammation-related markers, except for VD levels below 25 nmol/L and C-reactive protein (CRP). Some studies reported causal associations between cytokines, angiotensin-converting enzyme 2 (ACE2), and other inflammatory markers and COVID-19. Pooled MR estimates showed that VD was not significantly associated with COVID-19 outcomes, whereas ACE2 increased COVID-19 risk (MR odds ratio = 1.10; 95% CI: 1.01-1.19) but did not affect hospitalization or severity of the disease. The methodological quality of the studies was high in 13 studies, despite the majority (n = 24) utilizing 2-sample MR and evaluated pleiotropy. CONCLUSION MR studies exhibited diversity in their approaches but do not support a causal link between VD/micronutrients and COVID-19 outcomes. Whether inflammation mediates the VD-COVID-19 relationship remains uncertain, and highlights the need to address this aspect in future MR studies exploring micronutrient associations with COVID-19 outcomes. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022328224.
Collapse
Affiliation(s)
- Ángela Alcalá-Santiago
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) “José Mataix”, Biomedical Research Centre, University of Granada, 18071 Granada, Spain
| | - Miguel Rodriguez-Barranco
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Andalusian School of Public Health, 18012 Granada, Spain
| | - María-José Sánchez
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Andalusian School of Public Health, 18012 Granada, Spain
| | - Ángel Gil
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) “José Mataix”, Biomedical Research Centre, University of Granada, 18071 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- CIBER de Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Belén García-Villanova
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Esther Molina-Montes
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) “José Mataix”, Biomedical Research Centre, University of Granada, 18071 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
2
|
Aksoyalp ZŞ, Erdoğan BR, Aksun S, Sözmen MK, Aksun M, Buharalıoğlu CK, Altıncı-Karahan N, Turgut NH, Kaya-Temiz T. Trimethylamine N-oxide as a potential prognostic biomarker for mortality in patients with COVID-19 disease. Adv Med Sci 2025; 70:174-183. [PMID: 39920994 DOI: 10.1016/j.advms.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
PURPOSE Trimethylamine N-oxide (TMAO) is suggested as a biomarker for inflammatory and cardiovascular diseases which are identified as risk factors for severe cases of coronavirus disease 2019 (COVID-19). Our primary aim was to assess prognostic potential of serum TMAO levels in predicting COVID-19-related mortality. The secondary aim was to examine the potential of various biochemical parameters, particularly those associated with inflammation or thrombosis, as predictors of mortality. PATIENTS AND METHODS In this prospective and single-centre study, COVID-19 patients were categorized as death (group 1) or discharged (group 2) based on their in-hospital mortality status. The characteristics of participants were documented, and clinical data, including TMAO, angiotensin-converting enzyme-2 (ACE2), and neutrophil to lymphocyte ratio (NLR), were determined. The association of these independent variables with the COVID-19-related mortality, was assessed by calculation of crude odds ratios (OR) in bivariate and logistic regression analysis. Receiver operation characteristic (ROC) analysis was used for cut-off values. RESULTS The serum levels of TMAO, ACE2 and NLR were markedly higher in group 1 on the days of hospital admission (p < 0.05, p < 0.05, and p < 0.01, respectively). Serum TMAO levels (OR 1.422; 95 % CI [1.067-1.894]; p = 0.016) and NLR (OR 1.166; 95 % CI [1.012-1.343]; p = 0.033) were determined as independent predictors for COVID-19-related mortality with after multivariate logistic regression analysis. The optimal cut-off values were detected as 7.9 ng/ml for TMAO (71 % sensitivity, 68 % specificity, AUC = 0.701). CONCLUSIONS The findings of this initial study indicate that serum TMAO levels and NLR may be useful in predicting mortality in the early stages of COVID-19.
Collapse
Affiliation(s)
| | - Betül Rabia Erdoğan
- Department of Pharmacology, Izmir Katip Celebi University, Izmir, Turkey; Turkish Medicines and Medical Devices Agency, Ankara, Turkey
| | - Saliha Aksun
- Department of Medical Biochemistry, Izmir Katip Celebi University, Izmir, Turkey
| | - Melih Kaan Sözmen
- Department of Public Health, Izmir Katip Celebi University, Izmir, Turkey; Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Murat Aksun
- Department of Anesthesiology and Reanimation, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Nagihan Altıncı-Karahan
- Department of Anesthesiology and Reanimation, Izmir Atatürk Training and Research Hospital, Izmir, Turkey
| | | | - Tijen Kaya-Temiz
- Department of Medical Pharmacology, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
3
|
Iqbal NT, Khan H, Khalid A, Mahmood SF, Nasir N, Khanum I, de Siqueira I, Van Voorhis W. Chronic inflammation in post-acute sequelae of COVID-19 modulates gut microbiome: a review of literature on COVID-19 sequelae and gut dysbiosis. Mol Med 2025; 31:22. [PMID: 39849406 PMCID: PMC11756069 DOI: 10.1186/s10020-024-00986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Long COVID or Post-acute sequelae of COVID-19 is an emerging syndrome, recognized in COVID-19 patients who suffer from mild to severe illness and do not recover completely. Most studies define Long COVID, through symptoms like fatigue, brain fog, joint pain, and headache prevailing four or more weeks post-initial infection. Global variations in Long COVID presentation and symptoms make it challenging to standardize features of Long COVID. Long COVID appears to be accompanied by an auto-immune multi-faceted syndrome where the virus or viral antigen persistence causes continuous stimulation of the immune response, resulting in multi-organ immune dysregulation. MAIN TEXT This review is focused on understanding the risk factors of Long COVID with a special emphasis on the dysregulation of the gut-brain axis. Two proposed mechanisms are discussed here. The first mechanism is related to the dysfunction of angiotensin-converting enzyme 2 receptor due to Severe Acute Respiratory Syndrome Corona Virus 2 infection, leading to impaired mTOR pathway activation, reduced AMP secretion, and causing dysbiotic changes in the gut. Secondly, gut-brain axis dysregulation accompanied by decreased production of short-chain fatty acids, impaired enteroendocrine cell function, and increased leakiness of the gut, which favors translocation of pathogens or lipopolysaccharide in circulation causing the release of pro-inflammatory cytokines. The altered Hypothalamic-Pituitary-Adrenal axis is accompanied by the reduced level of neurotransmitter, and decreased stimulation of the vagus nerve, which may cause neuroinflammation and dysregulation of serum cortisol levels. The dysbiotic microbiome in Long COVID patients is characterized by a decrease in beneficial short chain fatty acid-producing bacteria (Faecalibacterium, Ruminococcus, Dorea, and Bifidobacterium) and an increase in opportunistic bacteria (Corynebacterium, Streptococcus, Enterococcus). This dysbiosis is transient and may be impacted by interventions including probiotics, and dietary supplements. CONCLUSIONS Further studies are required to understand the geographic variation, racial and ethnic differences in phenotypes of Long COVID, the influence of viral strains on existing and emerging phenotypes, to explore long-term effects of gut dysbiosis, and gut-brain axis dysregulation, as well as the potential role of diet and probiotics in alleviating those symptoms.
Collapse
Affiliation(s)
- Najeeha Talat Iqbal
- Department of Biological and Biomedical Sciences, Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, P. O Box 3500, Karachi, 74800, Pakistan.
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan.
| | - Hana Khan
- Undergraduate Medical Education (UGME), Year II, Aga Khan University, Karachi, Pakistan
| | - Aqsa Khalid
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Nosheen Nasir
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Iffat Khanum
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Wes Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, USA
| |
Collapse
|
4
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Peramaiyan R, Anthony J, Varalakshmi S, Sekar AK, Ali EM, A AHS, Abdallah BM. Comparison of the role of vitamin D in normal organs and those affected by COVID-19. Int J Med Sci 2025; 22:240-251. [PMID: 39781525 PMCID: PMC11704692 DOI: 10.7150/ijms.103260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/23/2024] [Indexed: 01/12/2025] Open
Abstract
The outbreak of COVID-19 has opened up new avenues for exploring the importance of vitamin D in immunity, in addition to its role in calcium absorption. Recently, vitamin D supplementation has been found to enhance T regulatory lymphocytes, which are reduced in individuals with COVID-19. Increased risk of pneumonia and increases in inflammatory cytokines have been reported to be major threats associated with vitamin-D deficiency. Although vaccination reduces the threat of COVID-19 to a certain extent, herd immunity is the long-term solution to overcoming such diseases. Co-administration of vitamin D with certain inactivated vaccines has been reported to enhance the systemic immune response through stimulation of the production of antigen-specific mucosal immunity. COVID-19 was found to induce multiple organ damage, and vitamin D has a beneficial role in various organs, such as the intestines, pancreas, prostate, kidneys, liver, heart, brain, and immune cells. The consequences that occur after COVID-19 infection known as long COVID-19 are also a concern as they accumulate and target multiple organs, leading to immune dysregulation. The present review covers the overall role and impact of vitamin D and its deficiency for various organs in normal conditions and after COVID-19 infection, which is still a serious issue.
Collapse
Affiliation(s)
- Rajendran Peramaiyan
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Josephine Anthony
- Department of Research, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai - 600 078, Tamil Nadu, India
| | - Sureka Varalakshmi
- Department of Research, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai - 600 078, Tamil Nadu, India
| | - Ashok Kumar Sekar
- Centre for Biotechnology, Anna University, Chennai-600 025, Tamil Nadu, India
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Al Hashedi Sallah A
- Central Laboratories, Department of microbiology, King Faisal University, 31982, Al-Ahsa, Kingdom of Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Liu Y, Zhou J, Yang Y, Chen X, Chen L, Wu Y. Intestinal Microbiota and Its Effect on Vaccine-Induced Immune Amplification and Tolerance. Vaccines (Basel) 2024; 12:868. [PMID: 39203994 PMCID: PMC11359036 DOI: 10.3390/vaccines12080868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
This review provides the potential of intestinal microbiota in vaccine design and application, exploring the current insights into the interplay between the intestinal microbiota and the immune system, with a focus on its intermediary function in vaccine efficacy. It summarizes families and genera of bacteria that are part of the intestinal microbiota that may enhance or diminish vaccine efficacy and discusses the foundational principles of vaccine sequence design and the application of gut microbial characteristics in vaccine development. Future research should further investigate the use of multi-omics technologies to elucidate the interactive mechanisms between intestinal microbiota and vaccine-induced immune responses, aiming to optimize and improve vaccine design.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yangping Wu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, China
| |
Collapse
|
7
|
Lu KYF, Alqaderi H, Bin Hasan S, Alhazmi H, Alghounaim M, Devarajan S, Freire M, Altabtbaei K. Sputum production and salivary microbiome in COVID-19 patients reveals oral-lung axis. PLoS One 2024; 19:e0300408. [PMID: 39052548 PMCID: PMC11271936 DOI: 10.1371/journal.pone.0300408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
SARS-CoV-2, a severe respiratory disease primarily targeting the lungs, was the leading cause of death worldwide during the pandemic. Understanding the interplay between the oral microbiome and inflammatory cytokines during acute infection is crucial for elucidating host immune responses. This study aimed to explore the relationship between the oral microbiome and cytokines in COVID-19 patients, particularly those with and without sputum production. Saliva and blood samples from 50 COVID-19 patients were subjected to 16S ribosomal RNA gene sequencing for oral microbiome analysis, and 65 saliva and serum cytokines were assessed using Luminex multiplex analysis. The Mann-Whitney test was used to compare cytokine levels between individuals with and without sputum production. Logistic regression machine learning models were employed to evaluate the predictive capability of oral microbiome, salivary, and blood biomarkers for sputum production. Significant differences were observed in the membership (Jaccard dissimilarity: p = 0.016) and abundance (PhILR dissimilarity: p = 0.048; metagenomeSeq) of salivary microbial communities between patients with and without sputum production. Seven bacterial genera, including Prevotella, Streptococcus, Actinomyces, Atopobium, Filifactor, Leptotrichia, and Selenomonas, were more prevalent in patients with sputum production (p<0.05, Fisher's exact test). Nine genera, including Prevotella, Megasphaera, Stomatobaculum, Selenomonas, Leptotrichia, Veillonella, Actinomyces, Atopobium, and Corynebacteria, were significantly more abundant in the sputum-producing group, while Lachnoanaerobaculum was more prevalent in the non-sputum-producing group (p<0.05, ANCOM-BC). Positive correlations were found between salivary IFN-gamma and Eotaxin2/CCL24 with sputum production, while negative correlations were noted with serum MCP3/CCL7, MIG/CXCL9, IL1 beta, and SCF (p<0.05, Mann-Whitney test). The machine learning model using only oral bacteria input outperformed the model that included all data: blood and saliva biomarkers, as well as clinical and demographic variables, in predicting sputum production in COVID-19 subjects. The performance metrics were as follows, comparing the model with only bacteria input versus the model with all input variables: precision (95% vs. 75%), recall (100% vs. 50%), F1-score (98% vs. 60%), and accuracy (82% vs. 66%).
Collapse
Affiliation(s)
- Korina Yun-Fan Lu
- Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Hend Alqaderi
- Tufts University School of Dental Medicine, Boston, Massachusetts, United States of America
- Dasman Diabetes Institute, Dasman, Kuwait
| | | | - Hesham Alhazmi
- Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- Department of Preventive Dentistry, Division of Pediatric Dentistry, Umm Al-Qura University, Mekkah, Saudi Arabia
| | | | | | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, California, United States of America
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, United States of America
| | | |
Collapse
|
8
|
Sanz RL, García F, Gutierrez A, García Menendez S, Inserra F, Ferder L, Manucha W. Vitamin D3 supplementation in COVID-19 patients with cardiovascular disease and gut dysbiosis. HIPERTENSION Y RIESGO VASCULAR 2024; 41:145-153. [PMID: 38871574 DOI: 10.1016/j.hipert.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The COVID-19 pandemic has highlighted the vulnerability of particular patient groups to SARS-CoV-2 infection, including those with cardiovascular diseases, hypertension, and intestinal dysbiosis. COVID-19 affects the gut, suggesting diet and vitamin D3 supplementation may affect disease progression. AIMS To evaluate levels of Ang II and Ang-(1-7), cytokine profile, and gut microbiota status in patients hospitalized for mild COVID-19 with a history of cardiovascular disease and treated with daily doses of vitamin D3. METHODS We recruited 50 adult patients. We screened 50 adult patients and accessed pathophysiology study 22, randomized to daily oral doses of 10,000IU vitamin D3 (n=11) or placebo (n=11). Plasma levels of Ang II and Ang-(1-7) were determined by radioimmunoassay, TMA and TMAO were measured by liquid chromatography and interleukins (ILs) 6, 8, 10 and TNF-α by ELISA. RESULTS The Ang-(1-7)/Ang II ratio, as an indirect measure of ACE2 enzymatic activity, increased in the vitamin D3 group (24±5pg/mL vs. 4.66±2pg/mL, p<0.01). Also, in the vitamin D3-treated, there was a significant decline in inflammatory ILs and an increase in protective markers, such as a substantial reduction in TMAO (5±2μmoles/dL vs. 60±10μmoles/dL, p<0.01). In addition, treated patients experienced less severity of infection, required less intensive care, had fewer days of hospitalization, and a reduced mortality rate. Additionally, improvements in markers of cardiovascular function were seen in the vitamin D3 group, including a tendency for reductions in blood pressure in hypertensive patients. CONCLUSIONS Vitamin D3 supplementation in patients with COVID-19 and specific conditions is associated with a more favourable prognosis, suggesting therapeutic potential in patients with comorbidities such as cardiovascular disease and gut dysbiosis.
Collapse
Affiliation(s)
- R L Sanz
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo e IMBECU-CONICET, Mendoza, Argentina
| | - F García
- Clínica Sanatorio Mitre, Mendoza, Argentina
| | | | - S García Menendez
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo e IMBECU-CONICET, Mendoza, Argentina
| | - F Inserra
- Universidad Maimónides, CABA, Buenos Aires, Argentina
| | - L Ferder
- Universidad Maimónides, CABA, Buenos Aires, Argentina
| | - W Manucha
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo e IMBECU-CONICET, Mendoza, Argentina.
| |
Collapse
|
9
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
10
|
Santa K, Kumazawa Y, Watanabe K, Nagaoka I. The Potential Use of Vitamin D3 and Phytochemicals for Their Anti-Ageing Effects. Int J Mol Sci 2024; 25:2125. [PMID: 38396804 PMCID: PMC10889119 DOI: 10.3390/ijms25042125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Unlike other vitamins, vitamin D3 is synthesised in skin cells in the body. Vitamin D3 has been known as a bone-related hormone. Recently, however, it has been considered as an immune vitamin. Vitamin D3 deficiency influences the onset of a variety of diseases. Vitamin D3 regulates the production of proinflammatory cytokines such as tumour necrosis factor-α (TNF-α) through binding to vitamin D receptors (VDRs) in immune cells. Since blood levels of vitamin D3 (25-OH-D3) were low in coronavirus disease 2019 (COVID-19) patients, there has been growing interest in the importance of vitamin D3 to maintaining a healthy condition. On the other hand, phytochemicals are compounds derived from plants with over 7000 varieties and have various biological activities. They mainly have health-promoting effects and are classified as terpenoids, carotenoids, flavonoids, etc. Flavonoids are known as the anti-inflammatory compounds that control TNF-α production. Chronic inflammation is induced by the continuous production of TNF-α and is the fundamental cause of diseases like obesity, dyslipidaemia, diabetes, heart and brain diseases, autoimmune diseases, Alzheimer's disease, and cancer. In addition, the ageing process is induced by chronic inflammation. This review explains the cooperative effects of vitamin D3 and phytochemicals in the suppression of inflammatory responses, how it balances the natural immune response, and its link to anti-ageing effects. In addition, vitamin D3 and phytochemicals synergistically contribute to anti-ageing by working with ageing-related genes. Furthermore, prevention of ageing processes induced by the chronic inflammation requires the maintenance of healthy gut microbiota, which is related to daily dietary habits. In this regard, supplementation of vitamin D3 and phytochemicals plays an important role. Recently, the association of the prevention of the non-disease condition called "ME-BYO" with the maintenance of a healthy condition has been an attractive regimen, and the anti-ageing effect discussed here is important for a healthy and long life.
Collapse
Affiliation(s)
- Kazuki Santa
- Department of Biotechnology, Tokyo College of Biotechnology, Ota-ku, Tokyo 114-0032, Japan;
| | - Yoshio Kumazawa
- Vino Science Japan Inc., Kawasaki 210-0855, Kanagawa, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
- Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of Medical Science, Juntendo University, Urayasu 279-0013, Chiba, Japan
| |
Collapse
|
11
|
Saito H, Yoshimura H, Yoshida M, Tani Y, Kawashima M, Uchiyama T, Zhao T, Yamamoto C, Kobashi Y, Sawano T, Imoto S, Park H, Nakamura N, Iwami S, Kaneko Y, Nakayama A, Kodama T, Wakui M, Kawamura T, Tsubokura M. Antibody Profiling of Microbial Antigens in the Blood of COVID-19 mRNA Vaccine Recipients Using Microbial Protein Microarrays. Vaccines (Basel) 2023; 11:1694. [PMID: 38006026 PMCID: PMC10674746 DOI: 10.3390/vaccines11111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Although studies have demonstrated that infections with various viruses, bacteria, and parasites can modulate the immune system, no study has investigated changes in antibodies against microbial antigens after the COVID-19 mRNA vaccination. IgG antibodies against microbial antigens in the blood of vaccinees were comprehensively analyzed using microbial protein microarrays that carried approximately 5000 microbe-derived proteins. Changes in antibodies against microbial antigens were scrutinized in healthy participants enrolled in the Fukushima Vaccination Community Survey conducted in Fukushima Prefecture, Japan, after their second and third COVID-19 mRNA vaccinations. Antibody profiling of six groups stratified by antibody titer and the remaining neutralizing antibodies was also performed to study the dynamics of neutralizing antibodies against SARS-CoV-2 and the changes in antibodies against microbial antigens. The results showed that changes in antibodies against microbial antigens other than SARS-CoV-2 antigens were extremely limited after COVID-19 vaccination. In addition, antibodies against a staphylococcal complement inhibitor have been identified as microbial antigens that are associated with increased levels of neutralizing antibodies against SARS-CoV-2. These antibodies may be a predictor of the maintenance of neutralizing antibodies following the administration of a COVID-19 mRNA vaccine.
Collapse
Affiliation(s)
- Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- Department of Internal Medicine, Soma Central Hospital, Soma, Fukushima 976-0016, Japan
| | - Hiroki Yoshimura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- School of Medicine, Hiroshima University, Hiroshima, Hiroshima 739-8511, Japan
| | - Makoto Yoshida
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- Faculty of Medicine, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yuta Tani
- Medical Governance Research Institute, Minato-ku, Tokyo 108-0074, Japan
- Department of Laboratory Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Taiga Uchiyama
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- Department of Internal Medicine, Serireikai Group Hirata Central Hospital, Ishikawa County, Fukushima 963-8202, Japan
| | - Toyoaki Sawano
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hyeongki Park
- Interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan (S.I.)
| | - Naotoshi Nakamura
- Interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan (S.I.)
| | - Shingo Iwami
- Interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan (S.I.)
| | - Yudai Kaneko
- Medical & Biological Laboratories Co., Ltd., Minato-ku, Tokyo 105-0012, Japan
- Laboratory for Systems Biology and Medicine, Research Centre for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Aya Nakayama
- Isotope Science Centre, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Centre for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Kawamura
- Laboratory for Systems Biology and Medicine, Research Centre for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
- Isotope Science Centre, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- Department of Internal Medicine, Soma Central Hospital, Soma, Fukushima 976-0016, Japan
- Department of Internal Medicine, Serireikai Group Hirata Central Hospital, Ishikawa County, Fukushima 963-8202, Japan
- Minamisoma Municipal General Hospital, Minamisoma, Fukushima 975-0033, Japan
| |
Collapse
|
12
|
Rust C, Malan-Muller S, van den Heuvel LL, Tonge D, Seedat S, Pretorius E, Hemmings SMJ. Platelets bridging the gap between gut dysbiosis and neuroinflammation in stress-linked disorders: A narrative review. J Neuroimmunol 2023; 382:578155. [PMID: 37523892 DOI: 10.1016/j.jneuroim.2023.578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
In this narrative review, we examine the association between gut dysbiosis, neuroinflammation, and stress-linked disorders, including depression, anxiety, and post-traumatic stress disorder (PTSD), and investigate whether tryptophan (TRP) metabolism and platelets play a role in this association. The mechanisms underlying the aetiology of stress-linked disorders are complex and not yet completely understood. However, a potential link between chronic inflammation and these disorders may potentially be found in TRP metabolism and platelets. By critically analysing existing literature on platelets, the gut microbiome, and stress-linked disorders, we hope to elicit the role of platelets in mediating the effects on serotonin (5-HT) levels and neuroinflammation. We have included studies specifically investigating platelets and TRP metabolism in relation to inflammation, neuroinflammation and neuropsychiatric disorders. Alteration in microbial composition due to stress could contribute to increased intestinal permeability, facilitating the translocation of microbial products, and triggering the release of pro-inflammatory cytokines. This causes platelets to become hyperactive and secrete 5-HT into the plasma. Increased levels of pro-inflammatory cytokines may also lead to increased permeability of the blood-brain barrier (BBB), allowing inflammatory mediators entry into the brain, affecting the balance of TRP metabolism products, such as 5-HT, kynurenic acid (KYNA), and quinolinic acid (QUIN). These alterations may contribute to neuroinflammation and possible neurological damage. Furthermore, platelets can cross the compromised BBB and interact with astrocytes and neurons, leading to the secretion of 5-HT and pro-inflammatory factors, exacerbating inflammatory conditions in the brain. The mechanisms underlying neuroinflammation resulting from peripheral inflammation are still unclear, but the connection between the brain and gut through the bloodstream could be significant. Identifying peripheral biomarkers and mechanisms in the plasma that reflect neuroinflammation may be important. This review serves as a foundation for further research on the association between the gut microbiome, blood microbiome, and neuropsychiatric disorders. The integration of these findings with protein and metabolite markers in the blood may expand our understanding of the subject.
Collapse
Affiliation(s)
- Carlien Rust
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa.
| | - Stefanie Malan-Muller
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Neurochemistry Research Institute UCM, Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Daniel Tonge
- School of Life Sciences, Faculty of Natural Sciences, Keele University, ST5 5BG Newcastle, England, UK
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology Biosciences Building, University of Liverpool, Liverpool, United Kingdom.
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| |
Collapse
|
13
|
Fatima I, Gamage I, De Almeida RJR, Cabandugama P, Kamath G. Current Understanding of Dietary Fiber and Its Role in Chronic Diseases. MISSOURI MEDICINE 2023; 120:381-388. [PMID: 37841565 PMCID: PMC10569388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Dietary fiber (DF) is an essential, albeit under-consumed, component in the North American diet. DF is thought to have anti-inflammatory disease-modifying effects via DF-related gut microbiota degradation products called short chain fatty acids. Thus far studies have shown the greatest associations between DF intake and risk reduction in obesity, improved weight loss outcomes, and risk reduction of cardiovascular disease (CVD). There is weak evidence associating DF intake and inflammatory bowel disease (IBD) risk, IBD remission, reduced risk of Crohn's disease (CD flares, and no evidence showing any benefit towards ulcerative colitis (UC) specifically. Evidence on DF intake and the risk reduction of colorectal cancer (CRC) has been equivocal. Studies were limited by a lack of randomization or in controlling fiber types and sources. Based on the current beneficial associations of DF on obesity management and CVD, counseling patients to increase DF intake may be a cost-effective measure to decrease the burden of chronic disease.
Collapse
Affiliation(s)
- Ifrah Fatima
- Internal Medicine Resident, University of Missouri-Kansas City, Kansas City, Missouri (UMKC-KCMO)
| | - Imali Gamage
- Medical Student, Saba University School of Medicine, Caribbean Netherlands
| | | | | | - Geetha Kamath
- Assistant Professor, Department of Internal Medicine, University Health Weight Management Clinic, UMKC-KCMO
| |
Collapse
|
14
|
Creus-Cuadros A, Tabusi MM, Carpio-Arias V, Finlay BB. Gut microbiota, malnutrition, and immunity: COVID-19's confounding triad. Cell Host Microbe 2023; 31:851-855. [PMID: 37321169 PMCID: PMC10265770 DOI: 10.1016/j.chom.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
The coronavirus disease has swept the world, bringing scientists from multiple disciplines together to work on a focused cause. In this forum, we discuss different roles that microbiota, malnutrition, and immunity have on severity of coronavirus disease and the importance of studying them from a gut-systemic perspective using multi-omics approaches.
Collapse
Affiliation(s)
- Anna Creus-Cuadros
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - M Mahebali Tabusi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Valeria Carpio-Arias
- Research Group on Human Food and Nutrition (GIANH), Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Lauretani F, Salvi M, Zucchini I, Testa C, Cattabiani C, Arisi A, Maggio M. Relationship between Vitamin D and Immunity in Older People with COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085432. [PMID: 37107714 PMCID: PMC10138672 DOI: 10.3390/ijerph20085432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/11/2023]
Abstract
Vitamin D is a group of lipophilic hormones with pleiotropic actions. It has been traditionally related to bone metabolism, although several studies in the last decade have suggested its role in sarcopenia, cardiovascular and neurological diseases, insulin-resistance and diabetes, malignancies, and autoimmune diseases and infections. In the pandemic era, by considering the response of the different branches of the immune system to SARS-CoV-2 infection, our aims are both to analyse, among the pleiotropic effects of vitamin D, how its strong multimodal modulatory effect on the immune system is able to affect the pathophysiology of COVID-19 disease and to emphasise a possible relationship between the well-known circannual fluctuations in blood levels of this hormone and the epidemiological trend of this infection, particularly in the elderly population. The biologically active form of vitamin D, or calcitriol, can influence both the innate and the adaptive arm of the immune response. Calcifediol levels have been found to be inversely correlated with upper respiratory tract infections in several studies, and this activity seems to be related to its role in the innate immunity. Cathelicidin is one of the main underlying mechanisms since this peptide increases the phagocytic and germicidal activity acting as chemoattractant for neutrophils and monocytes, and representing the first barrier in the respiratory epithelium to pathogenic invasion. Furthermore, vitamin D exerts a predominantly inhibitory action on the adaptive immune response, and it influences either cell-mediated or humoral immunity through suppression of B cells proliferation, immunoglobulins production or plasma cells differentiation. This role is played by promoting the shift from a type 1 to a type 2 immune response. In particular, the suppression of Th1 response is due to the inhibition of T cells proliferation, pro-inflammatory cytokines production (e.g., INF-γ, TNF-α, IL-2, IL-17) and macrophage activation. Finally, T cells also play a fundamental role in viral infectious diseases. CD4 T cells provide support to B cells antibodies production and coordinate the activity of the other immunological cells; moreover, CD8 T lymphocytes remove infected cells and reduce viral load. For all these reasons, calcifediol could have a protective role in the lung damage produced by COVID-19 by both modulating the sensitivity of tissue to angiotensin II and promoting overexpression of ACE-2. Promising results for the potential effectiveness of vitamin D supplementation in reducing the severity of COVID-19 disease was demonstrated in a pilot clinical trial of 76 hospitalised patients with SARS-CoV-2 infection where oral calcifediol administration reduced the need for ICU treatment. These interesting results need to be confirmed in larger studies with available information on vitamin D serum levels.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703325
| | - Marco Salvi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Irene Zucchini
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Crescenzo Testa
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Chiara Cattabiani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Arianna Arisi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
16
|
Mungmunpuntipantip R, Wiwanitkit V. Antibody responses to second doses of COVID-19 vaccination in lung cancer patients: comment. Respir Investig 2023; 61:332. [PMID: 36907110 PMCID: PMC9974361 DOI: 10.1016/j.resinv.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 04/14/2023]
|
17
|
Shahini E, Pesce F, Argentiero A, Solimando AG. Can vitamin D status influence seroconversion to SARS-COV2 vaccines? Front Immunol 2022; 13:1038316. [PMID: 36601112 PMCID: PMC9806423 DOI: 10.3389/fimmu.2022.1038316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Existing data indicate an association between vitamin D deficiency and increased severity of respiratory distress due to COVID-19 infection, especially in high-risk populations. To date, the effect of vitamin D on immunogenicity to SARS-CoV-2 vaccines has been investigated solely in young healthcare workers in a few studies, yielding conflicting findings, yet highlighting that the response to immunization is inversely related to age. Vitamin D status can potentially influence the antibody titers in people with a previous (or naïve) SARS-CoV-2 infection and vaccination, given its role in immune regulatory functions. From this standpoint, vitamin D supplementation can help reduce the risk of SARS-CoV-2 infection, COVID-19 severity/mortality and rebalance immunological function, particularly in subjects with vigorous T lymphocyte responses to COVID-19. However, more research is needed to establish a correlation between vitamin D status and the generation of protective serological responses to SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology S. De Bellis Research Hospital (IRCCS), Castellana Grotte, Italy
| | - Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), University of Bari “A. Moro”, Bari, Italy
| | - Antonella Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
18
|
Kazemifard N, Dehkohneh A, Baradaran Ghavami S. Probiotics and probiotic-based vaccines: A novel approach for improving vaccine efficacy. Front Med (Lausanne) 2022; 9:940454. [PMID: 36313997 PMCID: PMC9606607 DOI: 10.3389/fmed.2022.940454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination is defined as the stimulation and development of the adaptive immune system by administering specific antigens. Vaccines' efficacy, in inducing immunity, varies in different societies due to economic, social, and biological conditions. One of the influential biological factors is gut microbiota. Cross-talks between gut bacteria and the host immune system are initiated at birth during microbial colonization and directly control the immune responses and protection against pathogen colonization. Imbalances in the gut microbiota composition, termed dysbiosis, can trigger several immune disorders through the activity of the adaptive immune system and impair the adequate response to the vaccination. The bacteria used in probiotics are often members of the gut microbiota, which have health benefits for the host. Probiotics are generally consumed as a component of fermented foods, affect both innate and acquired immune systems, and decrease infections. This review aimed to discuss the gut microbiota's role in regulating immune responses to vaccination and how probiotics can help induce immune responses against pathogens. Finally, probiotic-based oral vaccines and their efficacy have been discussed.
Collapse
Affiliation(s)
- Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Dehkohneh
- Department for Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany,Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Shaghayegh Baradaran Ghavami
| |
Collapse
|
19
|
Clerbaux LA, Fillipovska J, Muñoz A, Petrillo M, Coecke S, Amorim MJ, Grenga L. Mechanisms Leading to Gut Dysbiosis in COVID-19: Current Evidence and Uncertainties Based on Adverse Outcome Pathways. J Clin Med 2022; 11:5400. [PMID: 36143044 PMCID: PMC9505288 DOI: 10.3390/jcm11185400] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Alteration in gut microbiota has been associated with COVID-19. However, the underlying mechanisms remain poorly understood. Here, we outlined three potential interconnected mechanistic pathways leading to gut dysbiosis as an adverse outcome following SARS-CoV-2 presence in the gastrointestinal tract. Evidence from the literature and current uncertainties are reported for each step of the different pathways. One pathway investigates evidence that intestinal infection by SARS-CoV-2 inducing intestinal inflammation alters the gut microbiota. Another pathway links the binding of viral S protein to angiotensin-converting enzyme 2 (ACE2) to the dysregulation of this receptor, essential in intestinal homeostasis-notably for amino acid metabolism-leading to gut dysbiosis. Additionally, SARS-CoV-2 could induce gut dysbiosis by infecting intestinal bacteria. Assessing current evidence within the Adverse Outcome Pathway framework justifies confidence in the proposed mechanisms to support disease management and permits the identification of inconsistencies and knowledge gaps to orient further research.
Collapse
Affiliation(s)
| | | | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Maria-Joao Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oerias, Portugal
- Católica Medical School, Católica Biomedical Research Centre, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé, Commissariat à l’Énergie Atomique et Aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris-Saclay, 30200 Bagnols-sur-Cèze, France
| |
Collapse
|