1
|
Rouhi L. Cardiac phenotypes in LMNA mutations. Curr Opin Cardiol 2025; 40:131-138. [PMID: 39998502 PMCID: PMC11968229 DOI: 10.1097/hco.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
PURPOSE OF REVIEW This review highlights the diverse cardiac manifestations of LMNA mutations, focusing on their underlying molecular mechanisms and clinical implications. As LMNA mutations are implicated in cardiomyopathies, such as dilated cardiomyopathy (DCM), arrhythmogenic cardiomyopathy (ARVC), and conduction system diseases, understanding these phenotypes is critical for advancing diagnosis and management strategies. RECENT FINDINGS Recent studies reveal that LMNA mutations disrupt nuclear envelope stability, activating the DNA damage response (DDR) and compromising chromatin organization and mechanotransduction. Mouse models have elucidated pathways linking LMNA dysfunction to fibrosis, arrhythmias, and myocardial remodeling. Emerging evidence demonstrates that fibroblasts play a crucial role in cardiac phenotypes. Advances in genetic screening have also underscored the importance of early identification and risk stratification, particularly for arrhythmias and sudden cardiac death. SUMMARY The diverse spectrum of LMNA-related cardiac phenotypes, from isolated conduction defects to severe DCM and ARVC, underscores the necessity of personalized care strategies. Bridging insights from molecular studies and clinical research paves the way for targeted therapies to slow disease progression and improve patient outcomes. Future efforts should prioritize translational research on molecular mechanisms with potential in mouse models, alongside a deeper exploration of genotype-phenotype correlations, to refine and implement effective therapeutic interventions.
Collapse
Affiliation(s)
- Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Dutta S, Kumar V, Barua A, Vasudevan M. Investigating the differential structural organization and gene expression regulatory networks of lamin A Ig fold domain mutants of muscular dystrophy. Biochem J 2024; 481:1803-1827. [PMID: 39509247 DOI: 10.1042/bcj20240474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Lamins form a proteinaceous meshwork as a major structural component of the nucleus. Lamins, along with their interactors, act as determinants for chromatin organization throughout the nucleus. The major dominant missense mutations responsible for autosomal dominant forms of muscular dystrophies reside in the Ig fold domain of lamin A. However, how lamin A contributes to the distribution of heterochromatin and balances euchromatin, and how it relocates epigenetic marks to shape chromatin states, remains poorly defined, making it difficult to draw conclusions about the prognosis of lamin A-mediated muscular dystrophies. In the first part of this report, we identified the in vitro organization of full-length lamin A proteins due to two well-documented Ig LMNA mutations, R453W and W514R. We further demonstrated that both lamin A/C mutant cells predominantly expressed nucleoplasmic aggregates. Labeling specific markers of epigenetics allowed correlation of lamin A mutations with epigenetic mechanisms. In addition to manipulating epigenetic mechanisms, our proteomic studies traced diverse expressions of transcription regulators, RNA synthesis and processing proteins, protein translation components, and posttranslational modifications. These data suggest severe perturbations in targeting other proteins to the nucleus.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| | - Vikas Kumar
- UMass Chan Medical School, Mass Spectrometry Facility, 222 Maple Avenue, Shrewsbury, MA 01545, U.S.A
| | - Arnab Barua
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Madavan Vasudevan
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| |
Collapse
|
3
|
Shores KL, Truskey GA. Mechanotransduction of the vasculature in Hutchinson-Gilford Progeria Syndrome. Front Physiol 2024; 15:1464678. [PMID: 39239311 PMCID: PMC11374724 DOI: 10.3389/fphys.2024.1464678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder that causes severe cardiovascular disease, resulting in the death of patients in their teenage years. The disease pathology is caused by the accumulation of progerin, a mutated form of the nuclear lamina protein, lamin A. Progerin binds to the inner nuclear membrane, disrupting nuclear integrity, and causes severe nuclear abnormalities and changes in gene expression. This results in increased cellular inflammation, senescence, and overall dysfunction. The molecular mechanisms by which progerin induces the disease pathology are not fully understood. Progerin's detrimental impact on nuclear mechanics and the role of the nucleus as a mechanosensor suggests dysfunctional mechanotransduction could play a role in HGPS. This is especially relevant in cells exposed to dynamic, continuous mechanical stimuli, like those of the vasculature. The endothelial (ECs) and smooth muscle cells (SMCs) within arteries rely on physical forces produced by blood flow to maintain function and homeostasis. Certain regions within arteries produce disturbed flow, leading to an impaired transduction of mechanical signals, and a reduction in cellular function, which also occurs in HGPS. In this review, we discuss the mechanics of nuclear mechanotransduction, how this is disrupted in HGPS, and what effect this has on cell health and function. We also address healthy responses of ECs and SMCs to physiological mechanical stimuli and how these responses are impaired by progerin accumulation.
Collapse
Affiliation(s)
- Kevin L Shores
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Saadi A, Navarro C, Ozalp O, Lourenco CM, Fayek R, Da Silva N, Chaouch A, Benahmed M, Kubisch C, Munnich A, Lévy N, Roll P, Pacha LA, Chaouch M, Lessel D, De Sandre-Giovannoli A. A recurrent homozygous LMNA missense variant p.Thr528Met causes atypical progeroid syndrome characterized by mandibuloacral dysostosis, severe muscular dystrophy, and skeletal deformities. Am J Med Genet A 2023; 191:2274-2289. [PMID: 37387251 DOI: 10.1002/ajmg.a.63335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Atypical progeroid syndromes (APS) are premature aging syndromes caused by pathogenic LMNA missense variants, associated with unaltered expression levels of lamins A and C, without accumulation of wild-type or deleted prelamin A isoforms, as observed in Hutchinson-Gilford progeria syndrome (HGPS) or HGPS-like syndromes. A specific LMNA missense variant, (p.Thr528Met), was previously identified in a compound heterozygous state in patients affected by APS and severe familial partial lipodystrophy, whereas heterozygosity was recently identified in patients affected by Type 2 familial partial lipodystrophy. Here, we report four unrelated boys harboring homozygosity for the p.Thr528Met, variant who presented with strikingly homogeneous APS clinical features, including osteolysis of mandibles, distal clavicles and phalanges, congenital muscular dystrophy with elevated creatine kinase levels, and major skeletal deformities. Immunofluorescence analyses of patient-derived primary fibroblasts showed a high percentage of dysmorphic nuclei with nuclear blebs and typical honeycomb patterns devoid of lamin B1. Interestingly, in some protrusions emerin or LAP2α formed aberrant aggregates, suggesting pathophysiology-associated clues. These four cases further confirm that a specific LMNA variant can lead to the development of strikingly homogeneous clinical phenotypes, in these particular cases a premature aging phenotype with major musculoskeletal involvement linked to the homozygous p.Thr528Met variant.
Collapse
Affiliation(s)
- Abdelkrim Saadi
- Service de neurologie, Etablissement Hospitalier Specialisé de Ben Aknoun, Université Benyoucef Benkhedda, Algiers, Algeria
- Laboratoire de Neurosciences, Service de neurologie, Centre Hospitalo Universitaire Mustapha Bacha, Université Benyoucef Benkhedda Alger, Algiers, Algeria
| | - Claire Navarro
- INSERM, MMG, Aix Marseille University, Marseille, France
- Neoflow Therapeutics, 61 boulevard des Dames, 13002, Marseille, France
| | - Ozge Ozalp
- Genetic Diagnosis Center, Adana City Training and Research Hospital University of Health Sciences, Adana, Turkey
| | - Charles Marques Lourenco
- Neurogenetics Unit-Inborn Errors of Metabolism Clinics, National Reference Center for Rare Diseases, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Department of Specialized Education, Personalized Medicine Area, DLE/Grupo Pardini, Rio de Janeiro, Brazil
| | - Racha Fayek
- INSERM, MMG, Aix Marseille University, Marseille, France
| | | | - Athmane Chaouch
- Service de neurophysiologie, Etablissement Hospitalier Specialisé, Algiers, Algeria
| | - Meryem Benahmed
- Service d'anatomo-pathologie, Centre Pierre Marie Curie, Algiers, Algeria
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arnold Munnich
- Department of Clinical Genetics, Institut de Recherche Necker Enfants Malades, Paris, France
| | - Nicolas Lévy
- INSERM, MMG, Aix Marseille University, Marseille, France
- Department of Medical Genetics, La Timone Hospital, APHM, Marseille, France
| | - Patrice Roll
- INSERM, MMG, Aix Marseille University, Marseille, France
- Cell Biology Laboratory, La Timone Hospital, APHM, Marseille, France
| | - Lamia Ali Pacha
- Laboratoire de Neurosciences, Service de neurologie, Centre Hospitalo Universitaire Mustapha Bacha, Université Benyoucef Benkhedda Alger, Algiers, Algeria
| | - Malika Chaouch
- Service de neurologie, Etablissement Hospitalier Specialisé de Ben Aknoun, Université Benyoucef Benkhedda, Algiers, Algeria
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Annachiara De Sandre-Giovannoli
- INSERM, MMG, Aix Marseille University, Marseille, France
- Department of Medical Genetics, La Timone Hospital, APHM, Marseille, France
- Biological Resource Center (CRB-TAC), La Timone Hospital, APHM, Marseille, France
| |
Collapse
|
5
|
Capanni C, Schena E, Di Giampietro ML, Montecucco A, Mattioli E, Lattanzi G. The role of prelamin A post-translational maturation in stress response and 53BP1 recruitment. Front Cell Dev Biol 2022; 10:1018102. [PMID: 36467410 PMCID: PMC9709412 DOI: 10.3389/fcell.2022.1018102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2023] Open
Abstract
Lamin A is a main constituent of the nuclear lamina and contributes to nuclear shaping, mechano-signaling transduction and gene regulation, thus affecting major cellular processes such as cell cycle progression and entry into senescence, cellular differentiation and stress response. The role of lamin A in stress response is particularly intriguing, yet not fully elucidated, and involves prelamin A post-translational processing. Here, we propose prelamin A as the tool that allows lamin A plasticity during oxidative stress response and permits timely 53BP1 recruitment to DNA damage foci. We show that while PCNA ubiquitination, p21 decrease and H2AX phosphorylation occur soon after stress induction in the absence of prelamin A, accumulation of non-farnesylated prelamin A follows and triggers recruitment of 53BP1 to lamin A/C complexes. Then, the following prelamin A processing steps causing transient accumulation of farnesylated prelamin A and maturation to lamin A reduce lamin A affinity for 53BP1 and favor its release and localization to DNA damage sites. Consistent with these observations, accumulation of prelamin A forms in cells under basal conditions impairs histone H2AX phosphorylation, PCNA ubiquitination and p21 degradation, thus affecting the early stages of stress response. As a whole, our results are consistent with a physiological function of prelamin A modulation during stress response aimed at timely recruitment/release of 53BP1 and other molecules required for DNA damage repair. In this context, it becomes more obvious how farnesylated prelamin A accumulation to toxic levels alters timing of DNA damage signaling and 53BP1 recruitment, thus contributing to cellular senescence and accelerated organismal aging as observed in progeroid laminopathies.
Collapse
Affiliation(s)
- Cristina Capanni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | | | | | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
6
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
7
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
8
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
9
|
Squarzoni S, Schena E, Sabatelli P, Mattioli E, Capanni C, Cenni V, D'Apice MR, Andrenacci D, Sarli G, Pellegrino V, Festa A, Baruffaldi F, Storci G, Bonafè M, Barboni C, Sanapo M, Zaghini A, Lattanzi G. Interleukin-6 neutralization ameliorates symptoms in prematurely aged mice. Aging Cell 2021; 20:e13285. [PMID: 33393189 PMCID: PMC7811841 DOI: 10.1111/acel.13285] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) causes premature aging in children, with adipose tissue, skin and bone deterioration, and cardiovascular impairment. In HGPS cells and mouse models, high levels of interleukin-6, an inflammatory cytokine linked to aging processes, have been detected. Here, we show that inhibition of interleukin-6 activity by tocilizumab, a neutralizing antibody raised against interleukin-6 receptors, counteracts progeroid features in both HGPS fibroblasts and LmnaG609G / G609G progeroid mice. Tocilizumab treatment limits the accumulation of progerin, the toxic protein produced in HGPS cells, rescues nuclear envelope and chromatin abnormalities, and attenuates the hyperactivated DNA damage response. In vivo administration of tocilizumab reduces aortic lesions and adipose tissue dystrophy, delays the onset of lipodystrophy and kyphosis, avoids motor impairment, and preserves a good quality of life in progeroid mice. This work identifies tocilizumab as a valuable tool in HGPS therapy and, speculatively, in the treatment of a variety of aging-related disorders.
Collapse
Affiliation(s)
- Stefano Squarzoni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza” Unit of Bologna Bologna Italy
- IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza” Unit of Bologna Bologna Italy
- IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Patrizia Sabatelli
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza” Unit of Bologna Bologna Italy
- IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza” Unit of Bologna Bologna Italy
- IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza” Unit of Bologna Bologna Italy
- IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza” Unit of Bologna Bologna Italy
- IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | | | - Davide Andrenacci
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza” Unit of Bologna Bologna Italy
- IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences University of Bologna Bologna Italy
| | - Valeria Pellegrino
- Department of Veterinary Medical Sciences University of Bologna Bologna Italy
| | - Anna Festa
- Laboratory of Medical Technology IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Fabio Baruffaldi
- Laboratory of Medical Technology IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Catia Barboni
- Department of Veterinary Medical Sciences University of Bologna Bologna Italy
| | - Mara Sanapo
- Department of Veterinary Medical Sciences University of Bologna Bologna Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences University of Bologna Bologna Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza” Unit of Bologna Bologna Italy
- IRCCS Istituto Ortopedico Rizzoli Bologna Italy
| |
Collapse
|
10
|
Aguado J, d’Adda di Fagagna F, Wolvetang E. Telomere transcription in ageing. Ageing Res Rev 2020; 62:101115. [PMID: 32565330 DOI: 10.1016/j.arr.2020.101115] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
Telomeres, the ends of eukaryotic chromosomes, play a central role in the control of cellular senescence and organismal ageing and need to be protected in order to avoid being recognised as damaged DNA and activate DNA damage response pathways. Dysfunctional telomeres arise from critically short telomeres or altered telomere structures, which ultimately lead to replicative cellular senescence and chromosome instability: both hallmarks of ageing. The observation that telomeres are transcribed led to the discovery that telomeric transcripts play important roles in chromosome end protection and genome stability maintenance. Recent evidence indicates that particular long non-coding (nc)RNAs transcribed at telomeres, namely TElomeric Repeat-containing RNA (TERRA) and telomeric damage-induced long ncRNAs (tdilncRNA), play key roles in age-related pathways by actively orchestrating the mechanisms known to regulate telomere length, chromosome end protection and DNA damage signalling. Here, we provide a comprehensive overview of the telomere transcriptome, outlining how it functions as a regulatory platform with essential functions in safeguarding telomere integrity and stability. We next review emerging antisense oligonucleotides therapeutic strategies that target telomeric ncRNAs and discuss their potential for ameliorating ageing and age-related diseases. Altogether, this review provides insights on the biological relevance of telomere transcription mechanisms in human ageing physiology and pathology.
Collapse
|
11
|
Cenni V, Capanni C, Mattioli E, Schena E, Squarzoni S, Bacalini MG, Garagnani P, Salvioli S, Franceschi C, Lattanzi G. Lamin A involvement in ageing processes. Ageing Res Rev 2020; 62:101073. [PMID: 32446955 DOI: 10.1016/j.arr.2020.101073] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/05/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Lamin A, a main constituent of the nuclear lamina, is the major splicing product of the LMNA gene, which also encodes lamin C, lamin A delta 10 and lamin C2. Involvement of lamin A in the ageing process became clear after the discovery that a group of progeroid syndromes, currently referred to as progeroid laminopathies, are caused by mutations in LMNA gene. Progeroid laminopathies include Hutchinson-Gilford Progeria, Mandibuloacral Dysplasia, Atypical Progeria and atypical-Werner syndrome, disabling and life-threatening diseases with accelerated ageing, bone resorption, lipodystrophy, skin abnormalities and cardiovascular disorders. Defects in lamin A post-translational maturation occur in progeroid syndromes and accumulated prelamin A affects ageing-related processes, such as mTOR signaling, epigenetic modifications, stress response, inflammation, microRNA activation and mechanosignaling. In this review, we briefly describe the role of these pathways in physiological ageing and go in deep into lamin A-dependent mechanisms that accelerate the ageing process. Finally, we propose that lamin A acts as a sensor of cell intrinsic and environmental stress through transient prelamin A accumulation, which triggers stress response mechanisms. Exacerbation of lamin A sensor activity due to stably elevated prelamin A levels contributes to the onset of a permanent stress response condition, which triggers accelerated ageing.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge, University Hospital, Stockholm, Sweden
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Center Alma Mater Research Institute on Global Challenges and Climate Changes, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
12
|
Wang M, Wang L, Qian M, Tang X, Liu Z, Lai Y, Ao Y, Huang Y, Meng Y, Shi L, Peng L, Cao X, Wang Z, Qin B, Liu B. PML2-mediated thread-like nuclear bodies mark late senescence in Hutchinson-Gilford progeria syndrome. Aging Cell 2020; 19:e13147. [PMID: 32351002 PMCID: PMC7294779 DOI: 10.1111/acel.13147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/20/2020] [Accepted: 02/23/2020] [Indexed: 01/10/2023] Open
Abstract
Progerin accumulation disrupts nuclear lamina integrity and causes nuclear structure abnormalities, leading to premature aging, that is, Hutchinson–Gilford progeria syndrome (HGPS). The roles of nuclear subcompartments, such as PML nuclear bodies (PML NBs), in HGPS pathogenesis, are unclear. Here, we show that classical dot‐like PML NBs are reorganized into thread‐like structures in HGPS patient fibroblasts and their presence is associated with late stage of senescence. By co‐immunoprecipitation analysis, we show that farnesylated Progerin interacts with human PML2, which accounts for the formation of thread‐like PML NBs. Specifically, human PML2 but not PML1 overexpression in HGPS cells promotes PML thread development and accelerates senescence. Further immunofluorescence microscopy, immuno‐TRAP, and deep sequencing data suggest that these irregular PML NBs might promote senescence by perturbing NB‐associated DNA repair and gene expression in HGPS cells. These data identify irregular structures of PML NBs in senescent HGPS cells and support that the thread‐like PML NBs might be a novel, morphological, and functional biomarker of late senescence.
Collapse
Affiliation(s)
- Ming Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Lulu Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Minxian Qian
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Zuojun Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Yiwei Lai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Ying Ao
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Yinghua Huang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Yuan Meng
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Lei Shi
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Linyuan Peng
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Xinyue Cao
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| | - Zimei Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
- Carson International Cancer Center Shenzhen University Health Science Center Shenzhen China
| | - Baoming Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI) National Engineering Research Center for Biotechnology (Shenzhen) Medical Research Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention Department of Biochemistry & Molecular Biology School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
- Carson International Cancer Center Shenzhen University Health Science Center Shenzhen China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases School of Basic Medical Sciences Shenzhen University Health Science Center Shenzhen China
| |
Collapse
|
13
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
14
|
Gil L, Niño SA, Chi-Ahumada E, Rodríguez-Leyva I, Guerrero C, Rebolledo AB, Arias JA, Jiménez-Capdeville ME. Perinuclear Lamin A and Nucleoplasmic Lamin B2 Characterize Two Types of Hippocampal Neurons through Alzheimer's Disease Progression. Int J Mol Sci 2020; 21:E1841. [PMID: 32155994 PMCID: PMC7084765 DOI: 10.3390/ijms21051841] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent reports point to a nuclear origin of Alzheimer's disease (AD). Aged postmitotic neurons try to repair their damaged DNA by entering the cell cycle. This aberrant cell cycle re-entry involves chromatin modifications where nuclear Tau and the nuclear lamin are involved. The purpose of this work was to elucidate their participation in the nuclear pathological transformation of neurons at early AD. METHODOLOGY The study was performed in hippocampal paraffin embedded sections of adult, senile, and AD brains at I-VI Braak stages. We analyzed phospho-Tau, lamins A, B1, B2, and C, nucleophosmin (B23) and the epigenetic marker H4K20me3 by immunohistochemistry. RESULTS Two neuronal populations were found across AD stages, one is characterized by a significant increase of Lamin A expression, reinforced perinuclear Lamin B2, elevated expression of H4K20me3 and nuclear Tau loss, while neurons with nucleoplasmic Lamin B2 constitute a second population. CONCLUSIONS The abnormal cell cycle reentry in early AD implies a fundamental neuronal transformation. This implies the reorganization of the nucleo-cytoskeleton through the expression of the highly regulated Lamin A, heterochromatin repression and building of toxic neuronal tangles. This work demonstrates that nuclear Tau and lamin modifications in hippocampal neurons are crucial events in age-related neurodegeneration.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain; (L.G.)
| | - Sandra A. Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Erika Chi-Ahumada
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Carmen Guerrero
- Banco de cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - Ana Belén Rebolledo
- Banco de cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - José A. Arias
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain; (L.G.)
| | - María E. Jiménez-Capdeville
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
15
|
The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Res Rev 2020; 57:100995. [PMID: 31786372 DOI: 10.1016/j.arr.2019.100995] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023]
Abstract
Eukaryotic genomes contain a large number of transposable elements, part of which are still active and able to transpose in the host genome. Mobile element activation is repressed to avoid deleterious effects, such as gene mutations or chromosome rearrangements. Control of transposable elements includes a variety of mechanisms comprising silencing pathways, which are based on the production of small non-coding RNAs. Silencing can occur either through transposable element RNA degradation or through the targeting of DNA sequences by heterochromatin formation and consequent transcriptional inhibition. Since the important role of the heterochromatin silencing, the gradual loss of heterochromatin marks in constitutive heterochromatin regions during the aging process promotes derepression of transposable elements, which is considered a cause of the progressive increase in genomic instability and of the activation of inflammatory responses. This review provides an overview of the effects of heterochromatin loss on the activity of transposable elements during the aging process and the possible impact on genome function. In this context, we discuss the possible role of the nuclear lamina, a major player in heterochromatin dynamics, in the regulation of transposable element activity and potential implications in laminopathic diseases.
Collapse
|
16
|
Rahhal R, Seto E. Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res 2019; 47:4911-4926. [PMID: 31162605 PMCID: PMC6547430 DOI: 10.1093/nar/gkz292] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Histone modifications and RNA splicing, two seemingly unrelated gene regulatory processes, greatly increase proteome diversity and profoundly influence normal as well as pathological eukaryotic cellular functions. Like many histone modifying enzymes, histone deacetylases (HDACs) play critical roles in governing cellular behaviors and are indispensable in numerous biological processes. While the association between RNA splicing and histone modifications is beginning to be recognized, a lack of knowledge exists regarding the role of HDACs in splicing. Recent studies however, reveal that HDACs interact with spliceosomal and ribonucleoprotein complexes, actively control the acetylation states of splicing-associated histone marks and splicing factors, and thereby unexpectedly could modulate splicing. Here, we review the role of histone/protein modifications and HDACs in RNA splicing and discuss the convergence of two parallel fields, which supports the argument that HDACs, and perhaps most histone modifying enzymes, are much more versatile and far more complicated than their initially proposed functions. Analogously, an HDAC-RNA splicing connection suggests that splicing is regulated by additional upstream factors and pathways yet to be defined or not fully characterized. Some human diseases share common underlying causes of aberrant HDACs and dysregulated RNA splicing and, thus, further support the potential link between HDACs and RNA splicing.
Collapse
Affiliation(s)
- Raneen Rahhal
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
17
|
Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Lévy N. An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus 2019; 9:246-257. [PMID: 29619863 PMCID: PMC5973194 DOI: 10.1080/19491034.2018.1460045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a sporadic, autosomal dominant disorder characterized by premature and accelerated aging symptoms leading to death at the mean age of 14.6 years usually due to cardiovascular complications. HGPS is caused by a de novo point mutation in the LMNA gene encoding the intermediate filament proteins lamins A and C which are structural components of the nuclear lamina. This mutation leads to the production of a truncated toxic form of lamin A, issued from aberrant splicing and called progerin. Progerin accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. HGPS cells and animal preclinical models have provided insights into the molecular and cellular pathways that underlie the disease and have also highlighted possible mechanisms involved in normal aging. This review reports recent medical advances and treatment approaches for patients affected with HGPS.
Collapse
Affiliation(s)
- Karim Harhouri
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France
| | - Diane Frankel
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,b APHM, Hôpital la Timone, Service de Biologie Cellulaire , Marseille , France
| | | | - Patrice Roll
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,b APHM, Hôpital la Timone, Service de Biologie Cellulaire , Marseille , France
| | - Annachiara De Sandre-Giovannoli
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,c APHM, Hôpital la Timone , Département de Génétique Médicale , Marseille , France
| | - Nicolas Lévy
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,c APHM, Hôpital la Timone , Département de Génétique Médicale , Marseille , France
| |
Collapse
|
18
|
McIntyre RL, Daniels EG, Molenaars M, Houtkooper RH, Janssens GE. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol Med 2019; 11:e9854. [PMID: 31368626 PMCID: PMC6728603 DOI: 10.15252/emmm.201809854] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Reversing or slowing the aging process brings great promise to treat or prevent age‐related disease, and targeting the hallmarks of aging is a strategy to achieve this. Epigenetics affects several if not all of the hallmarks of aging and has therefore emerged as a central target for intervention. One component of epigenetic regulation involves histone deacetylases (HDAC), which include the “classical” histone deacetylases (of class I, II, and IV) and sirtuin deacetylases (of class III). While targeting sirtuins for healthy aging has been extensively reviewed elsewhere, this review focuses on pharmacologically inhibiting the classical HDACs to promote health and longevity. We describe the theories of how classical HDAC inhibitors may operate to increase lifespan, supported by studies in model organisms. Furthermore, we explore potential mechanisms of how HDAC inhibitors may have such a strong grasp on health and longevity, summarizing their links to other hallmarks of aging. Finally, we show the wide range of age‐related preclinical disease models, ranging from neurodegeneration to heart disease, diabetes to sarcopenia, which show improvement upon HDAC inhibition.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Samson C, Petitalot A, Celli F, Herrada I, Ropars V, Le Du MH, Nhiri N, Jacquet E, Arteni AA, Buendia B, Zinn-Justin S. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res 2019; 46:10460-10473. [PMID: 30137533 PMCID: PMC6212729 DOI: 10.1093/nar/gky736] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF’s ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.
Collapse
Affiliation(s)
- Camille Samson
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ambre Petitalot
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Celli
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isaline Herrada
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Ropars
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Hélène Le Du
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naïma Nhiri
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Ana-Andrea Arteni
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Buendia
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sophie Zinn-Justin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- To whom correspondence should be addressed. Tel: +33 169083026;
| |
Collapse
|
20
|
Romero-Bueno R, de la Cruz Ruiz P, Artal-Sanz M, Askjaer P, Dobrzynska A. Nuclear Organization in Stress and Aging. Cells 2019; 8:cells8070664. [PMID: 31266244 PMCID: PMC6678840 DOI: 10.3390/cells8070664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic nucleus controls most cellular processes. It is isolated from the cytoplasm by the nuclear envelope, which plays a prominent role in the structural organization of the cell, including nucleocytoplasmic communication, chromatin positioning, and gene expression. Alterations in nuclear composition and function are eminently pronounced upon stress and during premature and physiological aging. These alterations are often accompanied by epigenetic changes in histone modifications. We review, here, the role of nuclear envelope proteins and histone modifiers in the 3-dimensional organization of the genome and the implications for gene expression. In particular, we focus on the nuclear lamins and the chromatin-associated protein BAF, which are linked to Hutchinson–Gilford and Nestor–Guillermo progeria syndromes, respectively. We also discuss alterations in nuclear organization and the epigenetic landscapes during normal aging and various stress conditions, ranging from yeast to humans.
Collapse
Affiliation(s)
- Raquel Romero-Bueno
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Patricia de la Cruz Ruiz
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Agnieszka Dobrzynska
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
21
|
Moskalev AA, Shaposhnikov MV, Zemskaya NV, Koval LА, Schegoleva EV, Guvatova ZG, Krasnov GS, Solovev IA, Sheptyakov MA, Zhavoronkov A, Kudryavtseva AV. Transcriptome Analysis of Long-lived Drosophila melanogaster E(z) Mutants Sheds Light on the Molecular Mechanisms of Longevity. Sci Rep 2019; 9:9151. [PMID: 31235842 PMCID: PMC6591219 DOI: 10.1038/s41598-019-45714-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The E(z) histone methyltransferase heterozygous mutation in Drosophila is known to increase lifespan and stress resistance. However, the longevity mechanisms of E(z) mutants have not been revealed. Using genome-wide transcriptome analysis, we demonstrated that lifespan extension, increase of resistance to hyperthermia, oxidative stress and endoplasmic reticulum stress, and fecundity enhancement in E(z) heterozygous mutants are accompanied by changes in the expression level of 239 genes (p < 0.05). Our results demonstrated sex-specific effects of E(z) mutation on gene expression, which, however, did not lead to differences in lifespan extension in both sexes. We observed that a mutation in an E(z) gene leads to perturbations in gene expression, most of which participates in metabolism, such as Carbohydrate metabolism, Lipid metabolism, Drug metabolism, Nucleotide metabolism. Age-dependent changes in the expression of genes involved in pathways related to immune response, cell cycle, and ribosome biogenesis were found.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | | | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Liubov А Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Eugenia V Schegoleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Solovev
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | | | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Kreienkamp R, Gonzalo S. Hutchinson-Gilford Progeria Syndrome: Challenges at Bench and Bedside. Subcell Biochem 2019; 91:435-451. [PMID: 30888661 DOI: 10.1007/978-981-13-3681-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural nuclear proteins known as "lamins" (A-type and B-type) provide a scaffold for the compartmentalization of genome function that is important to maintain genome stability. Mutations in the LMNA gene -encoding for A-type lamins- are associated with over a dozen of degenerative disorders termed laminopathies, which include muscular dystrophies, lipodystrophies, neuropathies, and premature ageing diseases such as Hutchinson Gilford Progeria Syndrome (HGPS). This devastating disease is caused by the expression of a truncated lamin A protein named "progerin". To date, there is no effective treatment for HGPS patients, who die in their teens from cardiovascular disease. At a cellular level, progerin expression impacts nuclear architecture, chromatin organization, response to mechanical stress, and DNA transactions such as transcription, replication and repair. However, the current view is that key mechanisms behind progerin toxicity still remain to be discovered. Here, we discuss new findings about pathological mechanisms in HGPS, especially the contribution of replication stress to cellular decline, and therapeutic strategies to ameliorate progerin toxicity. In particular, we present evidence for retinoids and calcitriol (hormonal vitamin D metabolite) being among the most potent compounds to ameliorate HGPS cellular phenotypes in vitro, providing the rationale for testing these compounds in preclinical models of the disease in the near term, and in patients in the future.
Collapse
Affiliation(s)
- Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
23
|
Clements CS, Bikkul MU, Ofosu W, Eskiw C, Tree D, Makarov E, Kill IR, Bridger JM. Presence and distribution of progerin in HGPS cells is ameliorated by drugs that impact on the mevalonate and mTOR pathways. Biogerontology 2019; 20:337-358. [PMID: 31041622 PMCID: PMC6535420 DOI: 10.1007/s10522-019-09807-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, premature ageing syndrome in children. HGPS is normally caused by a mutation in the LMNA gene, encoding nuclear lamin A. The classical mutation in HGPS leads to the production of a toxic truncated version of lamin A, progerin, which retains a farnesyl group. Farnesyltransferase inhibitors (FTI), pravastatin and zoledronic acid have been used in clinical trials to target the mevalonate pathway in HGPS patients to inhibit farnesylation of progerin, in order to reduce its toxicity. Some other compounds that have been suggested as treatments include rapamycin, IGF1 and N-acetyl cysteine (NAC). We have analysed the distribution of prelamin A, lamin A, lamin A/C, progerin, lamin B1 and B2 in nuclei of HGPS cells before and after treatments with these drugs, an FTI and a geranylgeranyltransferase inhibitor (GGTI) and FTI with pravastatin and zoledronic acid in combination. Confirming other studies prelamin A, lamin A, progerin and lamin B2 staining was different between control and HGPS fibroblasts. The drugs that reduced progerin staining were FTI, pravastatin, zoledronic acid and rapamycin. However, drugs affecting the mevalonate pathway increased prelamin A, with only FTI reducing internal prelamin A foci. The distribution of lamin A in HGPS cells was improved with treatments of FTI, pravastatin and FTI + GGTI. All treatments reduced the number of cells displaying internal speckles of lamin A/C and lamin B2. Drugs targeting the mevalonate pathway worked best for progerin reduction, with zoledronic acid removing internal progerin speckles. Rapamycin and NAC, which impact on the MTOR pathway, both reduced both pools of progerin without increasing prelamin A in HGPS cell nuclei.
Collapse
Affiliation(s)
- Craig S Clements
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Mehmet U Bikkul
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Wendy Ofosu
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.,Department of Biomedical Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Christopher Eskiw
- Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7B 5A8, Canada
| | - David Tree
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Evgeny Makarov
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Ian R Kill
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Joanna M Bridger
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK. .,Genome Engineering and Maintenance Network, Ageing Studies Theme, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
24
|
Cakouros D, Gronthos S. Epigenetic Regulation of Bone Marrow Stem Cell Aging: Revealing Epigenetic Signatures associated with Hematopoietic and Mesenchymal Stem Cell Aging. Aging Dis 2019; 10:174-189. [PMID: 30705777 PMCID: PMC6345334 DOI: 10.14336/ad.2017.1213] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
In this review we explore the importance of epigenetics as a contributing factor for aging adult stem cells. We summarize the latest findings of epigenetic factors deregulated as adult stem cells age and the consequence on stem cell self-renewal and differentiation, with a focus on adult stem cells in the bone marrow. With the latest whole genome bisulphite sequencing and chromatin immunoprecipitations we are able to decipher an emerging pattern common for adult stem cells in the bone marrow niche and how this might correlate to epigenetic enzymes deregulated during aging. We begin by briefly discussing the initial observations in yeast, drosophila and Caenorhabditis elegans (C. elegans) that led to the breakthrough research that identified the role of epigenetic changes associated with lifespan and aging. We then focus on adult stem cells, specifically in the bone marrow, which lends strong support for the deregulation of DNA methyltransferases, histone deacetylases, acetylates, methyltransferases and demethylases in aging stem cells, and how their corresponding epigenetic modifications influence gene expression and the aging phenotype. Given the reversible nature of epigenetic modifications we envisage “epi” targeted therapy as a means to reprogram aged stem cells into their younger counterparts.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- 1Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,2South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- 1Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,2South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
25
|
Mattioli E, Andrenacci D, Mai A, Valente S, Robijns J, De Vos WH, Capanni C, Lattanzi G. Statins and Histone Deacetylase Inhibitors Affect Lamin A/C - Histone Deacetylase 2 Interaction in Human Cells. Front Cell Dev Biol 2019; 7:6. [PMID: 30766871 PMCID: PMC6365888 DOI: 10.3389/fcell.2019.00006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
We recently identified lamin A/C as a docking molecule for human histone deacetylase 2 (HDAC2) and showed involvement of HDAC2-lamin A/C complexes in the DNA damage response. We further showed that lamin A/C-HDAC2 interaction is altered in Hutchinson-Gilford Progeria syndrome and other progeroid laminopathies. Here, we show that both inhibitors of lamin A maturation and small molecules inhibiting HDAC activity affect lamin A/C interaction with HDAC2. While statins, which inhibit prelamin A processing, reduce protein interaction, HDAC inhibitors strengthen protein binding. Moreover, treatment with HDAC inhibitors restored the enfeebled lamin A/C-HDAC2 interaction observed in HGPS cells. Based on these results, we propose that prelamin A levels as well as HDAC2 activation status might influence the extent of HDAC2 recruitment to the lamin A/C-containing platform and contribute to modulate HDAC2 activity. Our study links prelamin A processing to HDAC2 regulation and provides new insights into the effect of statins and histone deacetylase inhibitors on lamin A/C functionality in normal and progeroid cells.
Collapse
Affiliation(s)
- Elisabetta Mattioli
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Pasteur Institute Italy, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Pasteur Institute Italy, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Joke Robijns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Cristina Capanni
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
26
|
Hutchinson-Gilford Progeria Syndrome-Current Status and Prospects for Gene Therapy Treatment. Cells 2019; 8:cells8020088. [PMID: 30691039 PMCID: PMC6406247 DOI: 10.3390/cells8020088] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/13/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is one of the most severe disorders among laminopathies—a heterogeneous group of genetic diseases with a molecular background based on mutations in the LMNA gene and genes coding for interacting proteins. HGPS is characterized by the presence of aging-associated symptoms, including lack of subcutaneous fat, alopecia, swollen veins, growth retardation, age spots, joint contractures, osteoporosis, cardiovascular pathology, and death due to heart attacks and strokes in childhood. LMNA codes for two major, alternatively spliced transcripts, give rise to lamin A and lamin C proteins. Mutations in the LMNA gene alone, depending on the nature and location, may result in the expression of abnormal protein or loss of protein expression and cause at least 11 disease phenotypes, differing in severity and affected tissue. LMNA gene-related HGPS is caused by a single mutation in the LMNA gene in exon 11. The mutation c.1824C > T results in activation of the cryptic donor splice site, which leads to the synthesis of progerin protein lacking 50 amino acids. The accumulation of progerin is the reason for appearance of the phenotype. In this review, we discuss current knowledge on the molecular mechanisms underlying the development of HGPS and provide a critical analysis of current research trends in this field. We also discuss the mouse models available so far, the current status of treatment of the disease, and future prospects for the development of efficient therapies, including gene therapy for HGPS.
Collapse
|
27
|
Jiang Y, Ji JY. Understanding lamin proteins and their roles in aging and cardiovascular diseases. Life Sci 2018; 212:20-29. [DOI: 10.1016/j.lfs.2018.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
|
28
|
Mattioli E, Andrenacci D, Garofalo C, Prencipe S, Scotlandi K, Remondini D, Gentilini D, Di Blasio AM, Valente S, Scarano E, Cicchilitti L, Piaggio G, Mai A, Lattanzi G. Altered modulation of lamin A/C-HDAC2 interaction and p21 expression during oxidative stress response in HGPS. Aging Cell 2018; 17:e12824. [PMID: 30109767 PMCID: PMC6156291 DOI: 10.1111/acel.12824] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/22/2018] [Accepted: 06/26/2018] [Indexed: 02/01/2023] Open
Abstract
Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson-Gilford progeria, a severe LMNA-linked syndrome associated with bone resorption, cardiovascular disorders, and premature aging, we found altered modulation of CDKN1A, encoding p21, upon oxidative stress induction, and accumulation of senescence markers during stress recovery. In this context, we unraveled a dynamic interaction of lamin A/C with HDAC2, an histone deacetylase that regulates CDKN1A expression. In control skin fibroblasts, lamin A/C is part of a protein complex including HDAC2 and its histone substrates; protein interaction is reduced at the onset of DNA damage response and recovered after completion of DNA repair. This interplay parallels modulation of p21 expression and global histone acetylation, and it is disrupted by LMNAmutations leading to progeroid phenotypes. In fact, HGPS cells show impaired lamin A/C-HDAC2 interplay and accumulation of p21 upon stress recovery. Collectively, these results link altered physical interaction between lamin A/C and HDAC2 to cellular and organism aging. The lamin A/C-HDAC2 complex may be a novel therapeutic target to slow down progression of progeria symptoms.
Collapse
Affiliation(s)
- Elisabetta Mattioli
- CNR Institute of Molecular Genetics, Unit of Bologna; Bologna Italy
- Rizzoli Orthopedic Institute; IRCCS; Bologna Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics, Unit of Bologna; Bologna Italy
- Rizzoli Orthopedic Institute; IRCCS; Bologna Italy
| | - Cecilia Garofalo
- Rizzoli Orthopedic Institute; IRCCS; Bologna Italy
- CRS Development of Biomolecular Therapies, Experimental Oncology Lab; Rizzoli Institute; Bologna Italy
| | - Sabino Prencipe
- CNR Institute of Molecular Genetics, Unit of Bologna; Bologna Italy
- Rizzoli Orthopedic Institute; IRCCS; Bologna Italy
| | - Katia Scotlandi
- Rizzoli Orthopedic Institute; IRCCS; Bologna Italy
- CRS Development of Biomolecular Therapies, Experimental Oncology Lab; Rizzoli Institute; Bologna Italy
| | - Daniel Remondini
- Department of Physics and Astronomy; University of Bologna; Bologna Italy
| | - Davide Gentilini
- Centre for Biomedical Research and Technologies; Italian Auxologic Institute, IRCCS; Milan Italy
| | - Anna Maria Di Blasio
- Centre for Biomedical Research and Technologies; Italian Auxologic Institute, IRCCS; Milan Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies; Pasteur Institute Italy; Cenci-Bolognetti Foundation; Sapienza University of Rome; Rome Italy
| | - Emanuela Scarano
- Pediatric Endocrinology and Rare Diseases Unit; University of Bologna; Bologna Italy
| | - Lucia Cicchilitti
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies; IRCCS - Regina Elena National Cancer Institute; Rome Italy
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies; IRCCS - Regina Elena National Cancer Institute; Rome Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies; Pasteur Institute Italy; Cenci-Bolognetti Foundation; Sapienza University of Rome; Rome Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, Unit of Bologna; Bologna Italy
- Rizzoli Orthopedic Institute; IRCCS; Bologna Italy
| |
Collapse
|
29
|
Finley J. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Med Hypotheses 2018; 118:151-162. [PMID: 30037605 DOI: 10.1016/j.mehy.2018.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by an accelerated aging phenotype that typically leads to death via stroke or myocardial infarction at approximately 14.6 years of age. Most cases of HGPS have been linked to the extensive use of a cryptic splice donor site located in the LMNA gene due to a de novo mutation, generating a truncated and toxic protein known as progerin. Progerin accumulation in the nuclear membrane and within the nucleus distorts the nuclear architecture and negatively effects nuclear processes including DNA replication and repair, leading to accelerated cellular aging and premature senescence. The serine-arginine rich splicing factor SRSF1 (also known as ASF/SF2) has recently been shown to modulate alternative splicing of the LMNA gene, with SRSF1 inhibition significantly reducing progerin at both the mRNA and protein levels. In 2014, we hypothesized for the first time that compounds including metformin that induce activation of AMP-activated protein kinase (AMPK), a master metabolic regulator activated by cellular stress (e.g. increases in intracellular calcium, reactive oxygen species, and/or an AMP(ADP)/ATP ratio increase, etc.), will beneficially alter gene splicing in progeria cells by inhibiting SRSF1, thus lowering progerin levels and altering the LMNA pre-mRNA splicing ratio. Recent evidence has substantiated this hypothesis, with metformin significantly reducing the mRNA and protein levels of both SRSF1 and progerin, activating AMPK, and alleviating pathological defects in HGPS cells. Metformin has also recently been shown to beneficially alter gene splicing in normal humans. Interestingly, several chemically distinct compounds, including rapamycin, methylene blue, all-trans retinoic acid, MG132, 1α,25-dihydroxyvitamin D3, sulforaphane, and oltipraz have each been shown to alleviate accelerated aging defects in patient-derived HGPS cells. Each of these compounds has also been independently shown to induce AMPK activation. Because these compounds improve accelerated aging defects in HGPS cells either by enhancing mitochondrial functionality, increasing Nrf2 activity, inducing autophagy, or by altering gene splicing and because AMPK activation beneficially modulates each of the aforementioned processes, it is our hypothesis that cellular stress-induced AMPK activation represents an indirect yet common mechanism of action linking such chemically diverse compounds with the beneficial effects of those compounds observed in HGPS cells. As normal humans also produce progerin at much lower levels through a similar mechanism, compounds that safely induce AMPK activation may have wide-ranging implications for both normal and pathological aging.
Collapse
|
30
|
Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing. Ageing Res Rev 2018; 42:1-13. [PMID: 29208544 DOI: 10.1016/j.arr.2017.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/09/2017] [Accepted: 12/01/2017] [Indexed: 01/12/2023]
Abstract
Mandibuloacral dysplasia (MAD) is a rare genetic condition characterized by bone abnormalities including localized osteolysis and generalized osteoporosis, skin pigmentation, lipodystrophic signs and mildly accelerated ageing. The molecular defects associated with MAD are mutations in LMNA or ZMPSTE24 (FACE1) gene, causing type A or type B MAD, respectively. Downstream of LMNA or ZMPSTE24 mutations, the lamin A precursor, prelamin A, is accumulated in cells and affects chromatin dynamics and stress response. A new form of mandibuloacral dysplasia has been recently associated with mutations in POLD1 gene, encoding DNA polymerase delta, a major player in DNA replication. Of note, involvement of prelamin A in chromatin dynamics and recruitment of DNA repair factors has been also determined under physiological conditions, at the border between stress response and cellular senescence. Here, we review current knowledge on MAD clinical and pathogenetic aspects and highlight aspects typical of physiological ageing.
Collapse
|
31
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
32
|
Chen Z, Chang WY, Etheridge A, Strickfaden H, Jin Z, Palidwor G, Cho JH, Wang K, Kwon SY, Doré C, Raymond A, Hotta A, Ellis J, Kandel RA, Dilworth FJ, Perkins TJ, Hendzel MJ, Galas DJ, Stanford WL. Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape. Aging Cell 2017; 16:870-887. [PMID: 28597562 PMCID: PMC5506428 DOI: 10.1111/acel.12621] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
Ideally, disease modeling using patient‐derived induced pluripotent stem cells (iPSCs) enables analysis of disease initiation and progression. This requires any pathological features of the patient cells used for reprogramming to be eliminated during iPSC generation. Hutchinson–Gilford progeria syndrome (HGPS) is a segmental premature aging disorder caused by the accumulation of the truncated form of Lamin A known as Progerin within the nuclear lamina. Cellular hallmarks of HGPS include nuclear blebbing, loss of peripheral heterochromatin, defective epigenetic inheritance, altered gene expression, and senescence. To model HGPS using iPSCs, detailed genome‐wide and structural analysis of the epigenetic landscape is required to assess the initiation and progression of the disease. We generated a library of iPSC lines from fibroblasts of patients with HGPS and controls, including one family trio. HGPS patient‐derived iPSCs are nearly indistinguishable from controls in terms of pluripotency, nuclear membrane integrity, as well as transcriptional and epigenetic profiles, and can differentiate into affected cell lineages recapitulating disease progression, despite the nuclear aberrations, altered gene expression, and epigenetic landscape inherent to the donor fibroblasts. These analyses demonstrate the power of iPSC reprogramming to reset the epigenetic landscape to a revitalized pluripotent state in the face of widespread epigenetic defects, validating their use to model the initiation and progression of disease in affected cell lineages.
Collapse
Affiliation(s)
- Zhaoyi Chen
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Wing Y. Chang
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - Hilmar Strickfaden
- Cross Cancer Institute and the Department of Experimental Oncology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada T6G 1Z2
| | - Zhigang Jin
- Cross Cancer Institute and the Department of Experimental Oncology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada T6G 1Z2
| | - Gareth Palidwor
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Ottawa Bioinformatics Core Facility; The Sprott Centre for Stem Cell Research; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Ji-Hoon Cho
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - Kai Wang
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - Sarah Y. Kwon
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Chemical Engineering; University of Toronto; Toronto Ontario Canada
| | - Carole Doré
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Angela Raymond
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA); Kyoto University; Kyoto Japan
| | - James Ellis
- Program in Developmental and Stem Cell Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Rita A. Kandel
- Pathology and Experimental Medicine; Mount Sinai Hospital; Toronto Ontario Canada
| | - F. Jeffrey Dilworth
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
- Ottawa Institute of Systems Biology; Ottawa Ontario Canada
| | - Theodore J. Perkins
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Ottawa Bioinformatics Core Facility; The Sprott Centre for Stem Cell Research; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Ottawa Institute of Systems Biology; Ottawa Ontario Canada
| | - Michael J. Hendzel
- Cross Cancer Institute and the Department of Experimental Oncology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada T6G 1Z2
| | - David J. Galas
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
- Department of Chemical Engineering; University of Toronto; Toronto Ontario Canada
- Department of Biochemistry, Microbiology and Immunology; University of Ottawa; Ottawa Ontario Canada
- Ottawa Institute of Systems Biology; Ottawa Ontario Canada
| |
Collapse
|
33
|
A Novel Lamin A Mutant Responsible for Congenital Muscular Dystrophy Causes Distinct Abnormalities of the Cell Nucleus. PLoS One 2017; 12:e0169189. [PMID: 28125586 PMCID: PMC5268432 DOI: 10.1371/journal.pone.0169189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 11/26/2022] Open
Abstract
A-type lamins, the intermediate filament proteins participating in nuclear structure and function, are encoded by LMNA. LMNA mutations can lead to laminopathies such as lipodystrophies, premature aging syndromes (progeria) and muscular dystrophies. Here, we identified a novel heterozygous LMNA p.R388P de novo mutation in a patient with a non-previously described severe phenotype comprising congenital muscular dystrophy (L-CMD) and lipodystrophy. In culture, the patient’s skin fibroblasts entered prematurely into senescence, and some nuclei showed a lamina honeycomb pattern. C2C12 myoblasts were transfected with a construct carrying the patient’s mutation; R388P-lamin A (LA) predominantly accumulated within the nucleoplasm and was depleted at the nuclear periphery, altering the anchorage of the inner nuclear membrane protein emerin and the nucleoplasmic protein LAP2-alpha. The mutant LA triggered a frequent and severe nuclear dysmorphy that occurred independently of prelamin A processing, as well as increased histone H3K9 acetylation. Nuclear dysmorphy was not significantly improved when transfected cells were treated with drugs disrupting microtubules or actin filaments or modifying the global histone acetylation pattern. Therefore, releasing any force exerted at the nuclear envelope by the cytoskeleton or chromatin did not rescue nuclear shape, in contrast to what was previously shown in Hutchinson-Gilford progeria due to other LMNA mutations. Our results point to the specific cytotoxic effect of the R388P-lamin A mutant, which is clinically related to a rare and severe multisystemic laminopathy phenotype.
Collapse
|
34
|
Mária J, Ingrid Ž. Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food Funct 2017; 8:2394-2418. [DOI: 10.1039/c7fo00161d] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Senescence is a permanent cell cycle arrest that is accompanied by changes in cell morphology and physiology occurringin vitroandin vivo.
Collapse
Affiliation(s)
- Janubová Mária
- Institute of Medical Chemistry
- Biochemistry and Clinical Biochemistry
- Medical Faculty
- Comenius University
- 813 72 Bratislava
| | - Žitňanová Ingrid
- Institute of Medical Chemistry
- Biochemistry and Clinical Biochemistry
- Medical Faculty
- Comenius University
- 813 72 Bratislava
| |
Collapse
|
35
|
Abstract
Lamins are major components of the nuclear lamina, a network of proteins that supports the nuclear envelope in metazoan cells. Over the past decade, biochemical studies have provided support for the view that lamins are not passive bystanders providing mechanical stability to the nucleus but play an active role in the organization of the genome and the function of fundamental nuclear processes. It has also become apparent that lamins are critical for human health, as a large number of mutations identified in the gene that encodes for A-type lamins are associated with tissue-specific and systemic genetic diseases, including the accelerated aging disorder known as Hutchinson-Gilford progeria syndrome. Recent years have witnessed great advances in our understanding of the role of lamins in the nucleus and the functional consequences of disease-associated A-type lamin mutations. Many of these findings have been presented in comprehensive reviews. In this mini-review, we discuss recent breakthroughs in the role of lamins in health and disease and what lies ahead in lamin research.
Collapse
Affiliation(s)
- Sita Reddy
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lucio Comai
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
36
|
All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget 2016; 6:29914-28. [PMID: 26359359 PMCID: PMC4745772 DOI: 10.18632/oncotarget.4939] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Hutchinson Gilford progeria syndrome is a fatal disorder characterized by accelerated aging, bone resorption and atherosclerosis, caused by a LMNA mutation which produces progerin, a mutant lamin A precursor. Progeria cells display progerin and prelamin A nuclear accumulation, altered histone methylation pattern, heterochromatin loss, increased DNA damage and cell cycle alterations. Since the LMNA promoter contains a retinoic acid responsive element, we investigated if all-trans retinoic acid administration could lower progerin levels in cultured fibroblasts. We also evaluated the effect of associating rapamycin, which induces autophagic degradation of progerin and prelamin A. We demonstrate that all-trans retinoic acid acts synergistically with low-dosage rapamycin reducing progerin and prelamin A, via transcriptional downregulation associated with protein degradation, and increasing the lamin A to progerin ratio. These effects rescue cell dynamics and cellular proliferation through recovery of DNA damage response factor PARP1 and chromatin-associated nuclear envelope proteins LAP2α and BAF. The combined all-trans retinoic acid-rapamycin treatment is dramatically efficient, highly reproducible, represents a promising new approach in Hutchinson-Gilford Progeria therapy and deserves investigation in ageing-associated disorders.
Collapse
|
37
|
Evangelisti C, Cenni V, Lattanzi G. Potential therapeutic effects of the MTOR inhibitors for preventing ageing and progeria-related disorders. Br J Clin Pharmacol 2016; 82:1229-1244. [PMID: 26952863 PMCID: PMC5061804 DOI: 10.1111/bcp.12928] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is an highly conserved signal transduction axis involved in many cellular processes, such as cell growth, survival, transcription, translation, apoptosis, metabolism, motility and autophagy. Recently, this signalling pathway has come to the attention of the scientific community owing to the unexpected finding that inhibition of mTOR by rapamycin, an antibiotic with immunosuppressant and chemotherapeutic properties, extends lifespan in diverse animal models. Moreover, rapamycin has been reported to rescue the cellular phenotype in a progeroid syndrome [Hutchinson–Gilford Progeria syndrome (HGPS)] that recapitulates most of the traits of physiological ageing. The promising perspectives raised by these results warrant a better understanding of mTOR signalling and the potential applications of mTOR inhibitors to counteract ageing‐associated diseases and increase longevity. This review is focused on these issues.
Collapse
Affiliation(s)
- Camilla Evangelisti
- CNR Institute for Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Vittoria Cenni
- CNR Institute for Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute for Molecular Genetics, Unit of Bologna, Bologna, Italy. .,Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy.
| |
Collapse
|
38
|
Abstract
The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a “nucleoplasmic reticulum,” into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination.
Collapse
Affiliation(s)
- Bess Frost
- a Barshop Institute for Longevity and Aging Studies , Department of Cellular and Structural Biology , University of Texas Health Science Center San Antonio , San Antonio , Texas , USA
| |
Collapse
|
39
|
Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins. Oncotarget 2016; 6:7424-37. [PMID: 25823658 PMCID: PMC4480690 DOI: 10.18632/oncotarget.3232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor beta (TGFbeta) plays an essential role in bone homeostasis and deregulation of TGFbeta occurs in bone pathologies. Patients affected by Mandibuloacral Dysplasia (MADA), a progeroid disease linked to LMNA mutations, suffer from an osteolytic process. Our previous work showed that MADA osteoblasts secrete excess amount of TGFbeta 2, which in turn elicits differentiation of human blood precursors into osteoclasts. Here, we sought to determine how altered lamin A affects TGFbeta signaling. Our results show that wild-type lamin A negatively modulates TGFbeta 2 levels in osteoblast-like U2-OS cells, while the R527H mutated prelamin A as well as farnesylated prelamin A do not, ultimately leading to increased secretion of TGFbeta 2. TGFbeta 2 in turn, triggers the Akt/mTOR pathway and upregulates osteoprotegerin and cathepsin K. TGFbeta 2 neutralization rescues Akt/mTOR activation and the downstream transcriptional effects, an effect also obtained by statins or RAD001 treatment. Our results unravel an unexpected role of lamin A in TGFbeta 2 regulation and indicate rapamycin analogs and neutralizing antibodies to TGFbeta 2 as new potential therapeutic tools for MADA.
Collapse
|
40
|
Xiong Z, Choi JY, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K. Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell 2016; 15:279-90. [PMID: 26663466 PMCID: PMC4783354 DOI: 10.1111/acel.12434] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS), a fatal premature aging disease, is caused by a single‐nucleotide mutation in the LMNA gene. Previous reports have focused on nuclear phenotypes in HGPS cells, yet the potential contribution of the mitochondria, a key player in normal aging, remains unclear. Using high‐resolution microscopy analysis, we demonstrated a significantly increased fraction of swollen and fragmented mitochondria and a marked reduction in mitochondrial mobility in HGPS fibroblast cells. Notably, the expression of PGC‐1α, a central regulator of mitochondrial biogenesis, was inhibited by progerin. To rescue mitochondrial defects, we treated HGPS cells with a mitochondrial‐targeting antioxidant methylene blue (MB). Our analysis indicated that MB treatment not only alleviated the mitochondrial defects but also rescued the hallmark nuclear abnormalities in HGPS cells. Additional analysis suggested that MB treatment released progerin from the nuclear membrane, rescued perinuclear heterochromatin loss and corrected misregulated gene expression in HGPS cells. Together, these results demonstrate a role of mitochondrial dysfunction in developing the premature aging phenotypes in HGPS cells and suggest MB as a promising therapeutic approach for HGPS.
Collapse
Affiliation(s)
- Zheng‐Mei Xiong
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Ji Young Choi
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Kun Wang
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
- Center for Bioinformatics and Computational Biology University of Maryland College Park MD 20742 USA
| | - Haoyue Zhang
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Zeshan Tariq
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Di Wu
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Eunae Ko
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Christina LaDana
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Hiromi Sesaki
- Department of Cell Biology Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| |
Collapse
|
41
|
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare premature aging disease presenting many features resembling the normal aging process. HGPS patients die before the age of 20 years due to cardiovascular problems and heart failure. HGPS is linked to mutations in the LMNA gene encoding the intermediate filament protein lamin A. Lamin A is a major component of the nuclear lamina, a scaffold structure at the nuclear envelope that defines mechanochemical properties of the nucleus and is involved in chromatin organization and epigenetic regulation. Lamin A is also present in the nuclear interior where it fulfills lamina-independent functions in cell signaling and gene regulation. The most common LMNA mutation linked to HGPS leads to mis-splicing of the LMNA mRNA and produces a mutant lamin A protein called progerin that tightly associates with the inner nuclear membrane and affects the dynamic properties of lamins. Progerin expression impairs many important cellular processes providing insight into potential disease mechanisms. These include changes in mechanosignaling, altered chromatin organization and impaired genome stability, and changes in signaling pathways, leading to impaired regulation of adult stem cells, defective extracellular matrix production and premature cell senescence. In this review, we discuss these pathways and their potential contribution to the disease pathologies as well as therapeutic approaches used in preclinical and clinical tests.
Collapse
Affiliation(s)
- Sandra Vidak
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Vienna Biocenter (VBC), Medical University Vienna, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Vienna Biocenter (VBC), Medical University Vienna, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
42
|
Casasola A, Scalzo D, Nandakumar V, Halow J, Recillas-Targa F, Groudine M, Rincón-Arano H. Prelamin A processing, accumulation and distribution in normal cells and laminopathy disorders. Nucleus 2016; 7:84-102. [PMID: 26900797 PMCID: PMC4916894 DOI: 10.1080/19491034.2016.1150397] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 12/21/2022] Open
Abstract
Lamin A is part of a complex structural meshwork located beneath the nuclear envelope and is involved in both structural support and the regulation of gene expression. Lamin A is initially expressed as prelamin A, which contains an extended carboxyl terminus that undergoes a series of post-translational modifications and subsequent cleavage by the endopeptidase ZMPSTE24 to generate lamin A. To facilitate investigations of the role of this cleavage in normal and disease states, we developed a monoclonal antibody (PL-1C7) that specifically recognizes prelamin A at the intact ZMPSTE24 cleavage site, ensuring prelamin A detection exclusively. Importantly, PL-1C7 can be used to determine prelamin A localization and accumulation in cells where lamin A is highly expressed without the use of exogenous fusion proteins. Our results show that unlike mature lamin A, prelamin A accumulates as discrete and localized foci at the nuclear periphery. Furthermore, whereas treatment with farnesylation inhibitors of cells overexpressing a GFP-prelamin A fusion protein results in the formation of large nucleoplasmic clumps, these aggregates are not observed upon similar treatment of cells expressing endogenous prelamin A or in cells lacking ZMPSTE24 expression and/or activity. Finally, we show that specific laminopathy-associated mutations exhibit both positive and negative effects on prelamin A accumulation, indicating that these mutations affect prelamin A processing efficiency in different manners.
Collapse
Affiliation(s)
- Andrea Casasola
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Instituto Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David Scalzo
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Vivek Nandakumar
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jessica Halow
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Félix Recillas-Targa
- Instituto Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mark Groudine
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Radiation Oncology, University Washington School of Medicine, Seattle, WA, USA
| | - Héctor Rincón-Arano
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
43
|
Hollar D. Epigenetic Significance of Chromatin Organization During Cellular Aging and Organismal Lifespan. EPIGENETICS, THE ENVIRONMENT, AND CHILDREN’S HEALTH ACROSS LIFESPANS 2016. [PMCID: PMC7153164 DOI: 10.1007/978-3-319-25325-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Hollar
- Pfeiffer University, Morrisville, North Carolina USA
| |
Collapse
|
44
|
Lattanzi G. Chromatin dynamics and in vitro biomarkers in laminopathies: an overview. Orphanet J Rare Dis 2015. [PMCID: PMC4652542 DOI: 10.1186/1750-1172-10-s2-o12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Finley J. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson–Gilford progeria syndrome. Med Hypotheses 2015; 85:320-32. [DOI: 10.1016/j.mehy.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
|
46
|
Booth EA, Spagnol ST, Alcoser TA, Dahl KN. Nuclear stiffening and chromatin softening with progerin expression leads to an attenuated nuclear response to force. SOFT MATTER 2015; 11:6412-6418. [PMID: 26171741 DOI: 10.1039/c5sm00521c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Progerin is a mutant form of the nucleoskeletal protein lamin A, and its expression results in the rare premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). Patients with HGPS demonstrate several characteristic signs of aging including cardiovascular and skeletal dysfunction. Cells from HGPS patients show several nuclear abnormalities including aberrant morphology, nuclear stiffening and loss of epigenetic modifications including heterochromatin territories. However, it is unclear why these changes disproportionately impact mechanically-responsive tissues. Using micropipette aspiration, we show that nuclei in progerin-expressing cells are stiffer than control cells. Conversely, our particle tracking reveals the nuclear interior becomes more compliant in cells from HGPS patients or with progerin expression, as consistent with decreased chromatin condensation as shown previously. Additionally, we find the nuclear interior is less responsive to external mechanical force from shear or compression likely resulting from damped force propagation due to nucleoskeletal stiffening. Collectively our findings suggest that force is similarly transduced into the nuclear interior in normal cells. In HGPS cells a combination of a stiffened nucleoskeleton and softened nuclear interior leads to mechanical irregularities and dysfunction of mechanoresponsive tissues in HGPS patients.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Department of Chemical Engineering, Carnegie Mellon University, USA.
| | | | | | | |
Collapse
|
47
|
Camozzi D, Capanni C, Cenni V, Mattioli E, Columbaro M, Squarzoni S, Lattanzi G. Diverse lamin-dependent mechanisms interact to control chromatin dynamics. Focus on laminopathies. Nucleus 2015; 5:427-40. [PMID: 25482195 PMCID: PMC4164485 DOI: 10.4161/nucl.36289] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interconnected functional strategies govern chromatin dynamics in eukaryotic cells. In this context, A and B type lamins, the nuclear intermediate filaments, act on diverse platforms involved in tissue homeostasis. On the nuclear side, lamins elicit large scale or fine chromatin conformational changes, affect DNA damage response factors and transcription factor shuttling. On the cytoplasmic side, bridging-molecules, the LINC complex, associate with lamins to coordinate chromatin dynamics with cytoskeleton and extra-cellular signals.
Consistent with such a fine tuning, lamin mutations and/or defects in their expression or post-translational processing, as well as mutations in lamin partner genes, cause a heterogeneous group of diseases known as laminopathies. They include muscular dystrophies, cardiomyopathy, lipodystrophies, neuropathies, and progeroid syndromes. The study of chromatin dynamics under pathological conditions, which is summarized in this review, is shedding light on the complex and fascinating role of the nuclear lamina in chromatin regulation.
Collapse
Affiliation(s)
- Daria Camozzi
- a CNR Institute for Molecular Genetics; Unit of Bologna and SC Laboratory of Musculoskeletal Cell Biology; Rizzoli Orthopedic Institute; Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Cenni V, Capanni C, Mattioli E, Columbaro M, Wehnert M, Ortolani M, Fini M, Novelli G, Bertacchini J, Maraldi NM, Marmiroli S, D'Apice MR, Prencipe S, Squarzoni S, Lattanzi G. Rapamycin treatment of Mandibuloacral dysplasia cells rescues localization of chromatin-associated proteins and cell cycle dynamics. Aging (Albany NY) 2015; 6:755-70. [PMID: 25324471 PMCID: PMC4233654 DOI: 10.18632/aging.100680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lamin A is a key component of the nuclear lamina produced through post-translational processing of its precursor known as prelamin A. LMNA mutations leading to farnesylated prelamin A accumulation are known to cause lipodystrophy, progeroid and developmental diseases, including Mandibuloacral dysplasia, a mild progeroid syndrome with partial lipodystrophy and altered bone turnover. Thus, degradation of prelamin A is expected to improve the disease phenotype. Here, we show different susceptibilities of prelamin A forms to proteolysis and further demonstrate that treatment with rapamycin efficiently and selectively triggers lysosomal degradation of farnesylated prelamin A, the most toxic processing intermediate. Importantly, rapamycin treatment of Mandibuloacral dysplasia cells, which feature very low levels of the NAD-dependent sirtuin SIRT-1 in the nuclear matrix, restores SIRT-1 localization and distribution of chromatin markers, elicits release of the transcription factor Oct-1 and determines shortening of the prolonged S-phase. These findings indicate the drug as a possible treatment for Mandibuloacral dysplasia.
Collapse
Affiliation(s)
- Vittoria Cenni
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Cristina Capanni
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Elisabetta Mattioli
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Marta Columbaro
- Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Manfred Wehnert
- Institute of Human Genetics, University of Greifswald, Germany
| | - Michela Ortolani
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy
| | - Milena Fini
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies and BITTA, RIT, Bologna, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Jessika Bertacchini
- Department of Laboratory, CEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Nadir M Maraldi
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy
| | - Sandra Marmiroli
- Department of Laboratory, CEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Rosaria D'Apice
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy. Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Sabino Prencipe
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Stefano Squarzoni
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Giovanna Lattanzi
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| |
Collapse
|
49
|
Malashicheva A, Bogdanova M, Zabirnyk A, Smolina N, Ignatieva E, Freilikhman O, Fedorov A, Dmitrieva R, Sjöberg G, Sejersen T, Kostareva A. Various lamin A/C mutations alter expression profile of mesenchymal stem cells in mutation specific manner. Mol Genet Metab 2015; 115:118-27. [PMID: 25982065 DOI: 10.1016/j.ymgme.2015.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
Various mutations in LMNA gene, encoding for nuclear lamin A/C protein, lead to laminopathies and contribute to over ten human disorders, mostly affecting tissues of mesenchymal origin such as fat tissue, muscle tissue, and bones. Recently it was demonstrated that lamins not only play a structural role providing communication between extra-nuclear structures and components of cell nucleus but also control cell fate and differentiation. In our study we assessed the effect of various LMNA mutations on the expression profile of mesenchymal multipotent stem cells (MMSC) during adipogenic and osteogenic differentiation. We used lentiviral approach to modify human MMSC with LMNA-constructs bearing mutations associated with different laminopathies--G465D, R482L, G232E, R527C, and R471C. The impact of various mutations on MMSC differentiation properties and expression profile was assessed by colony-forming unit analysis, histological staining, expression of the key differentiation markers promoting adipogenesis and osteogenesis followed by the analysis of the whole set of genes involved in lineage-specific differentiation using PCR expression arrays. We demonstrate that various LMNA mutations influence the differentiation efficacy of MMSC in mutation-specific manner. Each LMNA mutation promotes a unique expression pattern of genes involved in a lineage-specific differentiation and this pattern is shared by the phenotype-specific mutations.
Collapse
Affiliation(s)
- Anna Malashicheva
- Almazov Federal Medical Research Centre, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia; ITMO University, Institute of translational Medicine, St. Petersburg, Russia
| | - Maria Bogdanova
- Almazov Federal Medical Research Centre, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia
| | | | - Natalia Smolina
- Almazov Federal Medical Research Centre, St. Petersburg, Russia; Department of Woman and Child Health, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elena Ignatieva
- Almazov Federal Medical Research Centre, St. Petersburg, Russia
| | | | - Anton Fedorov
- Almazov Federal Medical Research Centre, St. Petersburg, Russia
| | | | - Gunnar Sjöberg
- Department of Woman and Child Health, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Thomas Sejersen
- Department of Woman and Child Health, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anna Kostareva
- Almazov Federal Medical Research Centre, St. Petersburg, Russia; Department of Woman and Child Health, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; ITMO University, Institute of translational Medicine, St. Petersburg, Russia.
| |
Collapse
|
50
|
Camps J, Erdos MR, Ried T. The role of lamin B1 for the maintenance of nuclear structure and function. Nucleus 2015; 6:8-14. [PMID: 25602590 PMCID: PMC4615282 DOI: 10.1080/19491034.2014.1003510] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022] Open
Abstract
Lamins constitute an integral structural component of the nuclear lamina. However, their impact on the structure and stability of chromosome territories, and on the regulation of gene expression is explored to a lesser extent. By 3D-FISH, Camps and colleagues showed that lamin B1 (LMNB1) is required for proper chromosome condensation in interphase nuclei, and deficiency of LMNB1 triggers the relocation of the epigenetic mark of facultative heterochromatin, H3K27me3, toward the interior of the nucleus. Additionally, LMNB1 repression slowed cellular growth due to S-phase delays and increased genomic instability. Finally, silencing of LMNB1 resulted in enlarged nuclear speckles and in extensive changes in alternative splicing of multiple genes. Altogether, the data suggest a central role of LMNB1 for the condensation of chromosome territories, for the distribution of heterochromatin, and for the regulation of gene expression and splicing.
Collapse
Affiliation(s)
- Jordi Camps
- Laboratory of Gastrointestinal and Pancreatic Oncology; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Hospital Clínic of Barcelona, CIBERehd; Barcelona, Spain
| | - Michael R Erdos
- Genome Technology Branch; National Human Genome Research Institute; National Institutes of Health; Bethesda, MD USA
| | - Thomas Ried
- Section of Cancer Genomics, Genetics Branch; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|