1
|
Pant I, Potnis AA, Shashidhar R. Gene knockout studies of Dps protein reveals a novel role for DNA-binding protein in maintaining outer membrane permeability. World J Microbiol Biotechnol 2025; 41:70. [PMID: 39939516 PMCID: PMC11821673 DOI: 10.1007/s11274-025-04269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025]
Abstract
DNA-binding proteins like Dps are crucial for bacterial stress physiology. This study investigated the unexpected role of Dps protein in maintaining outer membrane integrity of Salmonella Typhimurium. We observed that a Δdps mutant displayed increased sensitivity to glycopeptide antibiotics (vancomycin, nisin), which are ineffective against Gram-negative bacteria due to their thick outer membrane (OM). Furthermore, the Δdps mutant exhibited susceptibility to membrane-disrupting agents like detergents (deoxycholate, SDS) and phages. The perforation was observed in OM after the treatment of vancomycin using atomic force microscopy. Notably, this sensitivity was rescued by supplementing the media with calcium and magnesium cations. These findings suggest a novel function for Dps in maintaining outer membrane permeability. We propose two potential mechanisms: 1) Dps might directly localize to the outer membrane 2) Dps might regulate genes responsible for lipopolysaccharide synthesis or outer membrane proteins, key components of outer membrane. This study highlights a previously unknown role for Dps beyond DNA binding and warrants further investigation into the precise mechanism by which it influences outer membrane integrity in Salmonella.
Collapse
Affiliation(s)
- Indu Pant
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India
| | - Akhilesh A Potnis
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India
| | - Ravindranath Shashidhar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India.
| |
Collapse
|
2
|
Amrita, Chakraborti S, Dey S. Physicochemical features of subunit interfaces and their role in self-assembly across the ferritin superfamily. Structure 2025; 33:401-415.e2. [PMID: 39740669 DOI: 10.1016/j.str.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Ferritins are ubiquitous and play a critical role in iron homeostasis. They are classified into four main subfamilies: classical, bacterial, bacterioferritin, and Dps. These are characterized by subunits with a four-helical bundle domain and interact through three distinct regions-one antiparallel interface (IntA) and two perpendicular interfaces (IntB and IntC), collectively forming a cage-like structure. Here, we attempt to characterize the variability of these interfaces across subfamilies. We found that IntA is essential for the dimeric unit assembly and is likely to assemble first, followed by the smaller interfaces of IntB and IntC (in any order), which are crucial for cage formation. These interfaces are unique in that they are less packed, although chemically stable, and their size lies between that of protein-protein complex and obligate homodimers. This study provides a detailed exploration of the ferritin interfaces, offering insights into their assembly and their importance as carrier proteins.
Collapse
Affiliation(s)
- Amrita
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Jodhpur, Rajasthan, India
| | - Soumyananda Chakraborti
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Dist.-Medchal, 500 078, Hyderabad, Telangana, India.
| | - Sucharita Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Jodhpur, Rajasthan, India.
| |
Collapse
|
3
|
Sultana F, Ghosh A. Exploring the evolutionary landscape and structural resonances of ferritin with insights into functional significance in plant. Biochimie 2024; 227:217-230. [PMID: 39047810 DOI: 10.1016/j.biochi.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The mineral iron plays a crucial role in facilitating the optimal functioning of numerous biological processes within the cellular environment. These processes involve the transportation of oxygen, energy production, immune system functioning, cognitive abilities, and muscle function. However, it is crucial to note that excessive levels of iron can result in oxidative damage within cells, primarily through Fenton reactions. Iron availability and toxicity present significant challenges that have been addressed through evolution. Ferritin is an essential protein that stores iron and is divided into different subfamilies, including DNA-binding proteins under starvation (Dps), bacterioferritin, and classical ferritin. Ferritin plays a critical role in maintaining cellular balance and protecting against oxidative damage. This study delves into ferritin's evolutionary dynamics across diverse taxa, emphasizing structural features and regulatory mechanisms. Insights into ferritin's evolution and functional diversity are gained through phylogenetic and structural analysis in bacterial Dps, bacterioferritin, and classical ferritin proteins. Additionally, the involvement of ferritin in plant stress responses and development is explored. Analysis of ferritin gene expression across various developmental stages and stress conditions provides insights into its regulatory roles. This comprehensive exploration enhances our understanding of ferritin's significance in plant biology, offering insights into its evolutionary history, structural diversity, and protective mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Fahmida Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
4
|
Garg P, Satheesh T, Ganji M, Dutta S. Cryo-EM Reveals the Mechanism of DNA Compaction by Mycobacterium smegmatis Dps2. J Mol Biol 2024; 436:168806. [PMID: 39349276 DOI: 10.1016/j.jmb.2024.168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
DNA binding protein from starved cells (Dps) is a miniature ferritin complex, which plays a vital role in protecting bacterial DNA during starvation to maintain the integrity of bacteria under hostile conditions. Several approaches, including cryo-electron tomography, have been previously implemented by other research groups to decipher the structure of the Dps protein bound to DNA. However, none of the structures of the Dps-DNA complex was resolved to high resolution to identify the DNA binding residues. Like other bacteria, Mycobacterium smegmatis also expresses Dps2 (called MsDps2), which binds DNA to protect it under oxidative stress conditions. In this study, we implemented various biochemical and biophysical studies to characterize the DNA protein interactions of Dps2 protein from Mycobacterium smegmatis. We employed single-particle cryo-EM-based structural analysis of MsDps2-DNA complexes and identified that the region close to the N-terminus confers the DNA binding property. Based on cryo-EM data, we also pinpointed several arginine residues, proximal to the DNA binding region, responsible for DNA binding. We also performed mutations of these residues, which dramatically reduced the MsDps2-DNA interaction. In addition, we proposed a model that elucidates the mechanism of DNA compaction, which adapts a lattice-like structure. We performed single-molecule imaging of MsDps2-DNA interactions that corroborate well with our structural studies. Taken together, our results delineate the specific MsDps2 residues that play an important role in DNA binding and compaction, providing new insights into Mycobacterial DNA compaction mechanisms under stress conditions.
Collapse
Affiliation(s)
- Priyanka Garg
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Thejas Satheesh
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Mahipal Ganji
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
5
|
Sheng Y, Chen Z, Cherrier MV, Martin L, Bui TTT, Li W, Lynham S, Nicolet Y, Ebrahimi KH. A Versatile Virus-Mimetic Engineering Approach for Concurrent Protein Nanocage Surface-Functionalization and Cargo Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310913. [PMID: 38726952 DOI: 10.1002/smll.202310913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Indexed: 08/02/2024]
Abstract
Naturally occurring protein nanocages like ferritin are self-assembled from multiple subunits. Because of their unique cage-like structure and biocompatibility, there is a growing interest in their biomedical use. A multipurpose and straightforward engineering approach does not exist for using nanocages to make drug-delivery systems by encapsulating hydrophilic or hydrophobic drugs and developing vaccines by surface functionalization with a protein like an antigen. Here, a versatile engineering approach is described by mimicking the HIV-1 Gap polyprotein precursor. Various PREcursors of nanoCages (PREC) are designed and created by linking two ferritin subunits via a flexible linker peptide containing a protease cleavage site. These precursors can have additional proteins at their N-terminus, and their protease cleavage generates ferritin-like nanocages named protease-induced nanocages (PINCs). It is demonstrated that PINC formation allows concurrent surface decoration with a protein and hydrophilic or hydrophobic drug encapsulation up to fourfold more than the amount achieved using other methods. The PINCs/Drug complex is stable and efficiently kills cancer cells. This work provides insight into the precursors' design rules and the mechanism of PINCs formation. The engineering approach and mechanistic insight described here will facilitate nanocages' applications in drug delivery or as a platform for making multifunctional therapeutics like mosaic vaccines.
Collapse
Affiliation(s)
- Yujie Sheng
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Zilong Chen
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Mickael V Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Tam T T Bui
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, SE11UL, UK
| | - Wei Li
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Steven Lynham
- Proteomics Core Facility, James Black Centre, King's College London, London, SE5 9NU, UK
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Kourosh H Ebrahimi
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| |
Collapse
|
6
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
7
|
Hendricks AR, Cohen RS, McEwen GA, Tien T, Guilliams BF, Alspach A, Snow CD, Ackerson CJ. Laboratory Evolution of Metalloid Reductase Substrate Recognition and Nanoparticle Product Size. ACS Chem Biol 2024; 19:289-299. [PMID: 38295274 DOI: 10.1021/acschembio.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Å of the enzyme active site. This mutation places a second H residue within 5 Å of an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.
Collapse
Affiliation(s)
- Alexander R Hendricks
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Rachel S Cohen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gavin A McEwen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Tony Tien
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bradley F Guilliams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Audrey Alspach
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher D Snow
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christopher J Ackerson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
8
|
Ładziak M, Prochwicz E, Gut K, Gomza P, Jaworska K, Ścibek K, Młyńska-Witek M, Kadej-Zajączkowska K, Lillebaek EMS, Kallipolitis BH, Krawczyk-Balska A. Inactivation of lmo0946 ( sif) induces the SOS response and MGEs mobilization and silences the general stress response and virulence program in Listeria monocytogenes. Front Microbiol 2024; 14:1324062. [PMID: 38239729 PMCID: PMC10794523 DOI: 10.3389/fmicb.2023.1324062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Bacteria have evolved numerous regulatory pathways to survive in changing environments. The SOS response is an inducible DNA damage repair system that plays an indispensable role in bacterial adaptation and pathogenesis. Here we report a discovery of the previously uncharacterized protein Lmo0946 as an SOS response interfering factor (Sif) in the human pathogen Listeria monocytogenes. Functional genetic studies demonstrated that sif is indispensable for normal growth of L. monocytogenes in stress-free as well as multi-stress conditions, and sif contributes to susceptibility to β-lactam antibiotics, biofilm formation and virulence. Absence of Sif promoted the SOS response and elevated expression of mobilome genes accompanied by mobilization of the A118 prophage and ICELm-1 mobile genetic elements (MGEs). These changes were found to be associated with decreased expression of general stress response genes from the σB regulon as well as virulence genes, including the PrfA regulon. Together, this study uncovers an unexpected role of a previously uncharacterized factor, Sif, as an inhibitor of the SOS response in L. monocytogenes.
Collapse
Affiliation(s)
- Magdalena Ładziak
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Emilia Prochwicz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karina Gut
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Patrycja Gomza
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Jaworska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Ścibek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Młyńska-Witek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Kadej-Zajączkowska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Eva M. S. Lillebaek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Agata Krawczyk-Balska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Colussi A, Bokhari SNH, Mijovilovich A, Koník P, Küpper H. Acclimation to medium-level non-lethal iron limitation: Adjustment of electron flow around the PSII and metalloprotein expression in Trichodesmium erythraeum IMS101. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149015. [PMID: 37742749 DOI: 10.1016/j.bbabio.2023.149015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The aim of this study was to investigate how acclimation to medium-level, long-term, non-lethal iron limitation changes the electron flux around the Photosystem II of the oceanic diazotroph Trichodesmium erythraeum IMS101. Fe availability of about 5× and 100× lower than a replete level, i.e. conditions common in the natural environment of this cyanobacterium, were applied in chemostats. The response of the cells was studied not only in terms of growth, but also mechanistically, measuring the chlorophyll fluorescence of dark-adapted filaments via imaging fluorescence kinetic microscopy (FKM) with 0.3 ms time resolution. Combining these measurements with those of metal binding to proteins via online coupling of metal-free HPLC (size exclusion chromatography SEC) to sector-field ICP-MS allowed to track the fate of the photosystems, together with other metalloproteins. General increase of fluorescence has been observed, with the consequent decrease in the quantum yields φ of the PSII, while the efficiency ψ of the electron flux between PSII and the PSI remained surprisingly unchanged. This indicates the ability of Trichodesmium to cope with a situation that makes assembling the many iron clusters in Photosystem I a particular challenge, as shown by decreasing ratios of Fe to Mg in these proteins. The negative effect of Fe limitation on PSII may also be due to its fast turnover. A broader view was obtained from metalloproteomics via HPLC-ICP-MS, revealing a differential protein expression pattern under iron limitation with a drastic down-regulation especially of iron-containing proteins and some increase in low MW metal-binding complexes.
Collapse
Affiliation(s)
- Antonio Colussi
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Sciences, Department of Experimental Plant Biology, České Budějovice, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Peter Koník
- University of South Bohemia, Faculty of Sciences, Department of Chemistry, České Budějovice, Czech Republic
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Sciences, Department of Experimental Plant Biology, České Budějovice, Czech Republic.
| |
Collapse
|
10
|
Rivera M. Mobilization of iron stored in bacterioferritin, a new target for perturbing iron homeostasis and developing antibacterial and antibiofilm molecules. J Inorg Biochem 2023; 247:112306. [PMID: 37451083 PMCID: PMC11642381 DOI: 10.1016/j.jinorgbio.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a global public health threat. The care of chronic infections is complicated by bacterial biofilms. Biofilm embedded cells can be up to 1000-fold more tolerant to antibiotic treatment than planktonic cells. Antibiotic tolerance is a condition which does not involve mutation and enables bacteria to survive in the presence of antibiotics. The antibiotic tolerance of biofilm-cells often renders antibiotics ineffective, even against strains that do not carry resistance-impairing mutations. This review discusses bacterial iron homeostasis and the strategies being developed to target this bacterial vulnerability, with emphasis on a recently proposed approach which aims at targeting the iron storage protein bacterioferritin (Bfr) and its physiological partner, the ferredoxin Bfd. Bfr regulates cytosolic iron concentrations by oxidizing Fe2+ and storing Fe3+ in its internal cavity, and by forming a complex with Bfd to reduce Fe3+ in the internal cavity and release Fe2+ to the cytosol. Blocking the Bfr-Bfd complex in P. aeruginosa cells causes an irreversible accumulation of Fe3+ in BfrB and simultaneous cytosolic iron depletion, which leads to impaired biofilm maintenance and biofilm cell death. Recently discovered small molecule inhibitors of the Bfr-Bfd complex, which bind Bfr at the Bfd binding site, inhibit iron mobilization, and elicit biofilm cell death.
Collapse
Affiliation(s)
- Mario Rivera
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
11
|
João J, Prazeres DMF. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications. Front Bioeng Biotechnol 2023; 11:1200729. [PMID: 37520292 PMCID: PMC10374429 DOI: 10.3389/fbioe.2023.1200729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Protein nanocages are highly ordered nanometer scale architectures, which are typically formed by homo- or hetero-self-assembly of multiple monomers into symmetric structures of different size and shape. The intrinsic characteristics of protein nanocages make them very attractive and promising as a biological nanomaterial. These include, among others, a high surface/volume ratio, multi-functionality, ease to modify or manipulate genetically or chemically, high stability, mono-dispersity, and biocompatibility. Since the beginning of the investigation into protein nanocages, several applications were conceived in a variety of areas such as drug delivery, vaccine development, bioimaging, biomineralization, nanomaterial synthesis and biocatalysis. The ability to generate large amounts of pure and well-folded protein assemblies is one of the keys to transform nanocages into clinically valuable products and move biomedical applications forward. This calls for the development of more efficient biomanufacturing processes and for the setting up of analytical techniques adequate for the quality control and characterization of the biological function and structure of nanocages. This review concisely covers and overviews the progress made since the emergence of protein nanocages as a new, next-generation class of biologics. A brief outline of non-viral protein nanocages is followed by a presentation of their main applications in the areas of bioengineering, biotechnology, and biomedicine. Afterwards, we focus on a description of the current processes used in the manufacturing of protein nanocages with particular emphasis on the most relevant aspects of production and purification. The state-of-the-art on current characterization techniques is then described and future alternative or complementary approaches in development are also discussed. Finally, a critical analysis of the limitations and drawbacks of the current manufacturing strategies is presented, alongside with the identification of the major challenges and bottlenecks.
Collapse
Affiliation(s)
- Jorge João
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Duarte Miguel F. Prazeres
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Loiko N, Tereshkina K, Kovalenko V, Moiseenko A, Tereshkin E, Sokolova OS, Krupyanskii Y. DNA-Binding Protein Dps Protects Escherichia coli Cells against Multiple Stresses during Desiccation. BIOLOGY 2023; 12:853. [PMID: 37372138 DOI: 10.3390/biology12060853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Gradual dehydration is one of the frequent lethal yet poorly understood stresses that bacterial cells constantly face in the environment when their micro ecotopes dry out, as well as in industrial processes. Bacteria successfully survive extreme desiccation through complex rearrangements at the structural, physiological, and molecular levels, in which proteins are involved. The DNA-binding protein Dps has previously been shown to protect bacterial cells from many adverse effects. In our work, using engineered genetic models of E. coli to produce bacterial cells with overproduction of Dps protein, the protective function of Dps protein under multiple desiccation stresses was demonstrated for the first time. It was shown that the titer of viable cells after rehydration in the experimental variants with Dps protein overexpression was 1.5-8.5 times higher. Scanning electron microscopy was used to show a change in cell morphology upon rehydration. It was also proved that immobilization in the extracellular matrix, which is greater when the Dps protein is overexpressed, helps the cells survive. Transmission electron microscopy revealed disruption of the crystal structure of DNA-Dps crystals in E. coli cells that underwent desiccation stress and subsequent watering. Coarse-grained molecular dynamics simulations showed the protective function of Dps in DNA-Dps co-crystals during desiccation. The data obtained are important for improving biotechnological processes in which bacterial cells undergo desiccation.
Collapse
Affiliation(s)
- Nataliya Loiko
- Winogradsky Institute of Microbiology, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Ksenia Tereshkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav Kovalenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Moiseenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Eduard Tereshkin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga S Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Yurii Krupyanskii
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
13
|
Park JH, Lee ES, Jung YJ. Functional characterization of the DNA-binding protein from starved cells (DPS) as a molecular chaperone under heat stress. Biochem Biophys Res Commun 2023; 667:180-185. [PMID: 37229826 DOI: 10.1016/j.bbrc.2023.05.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The DNA-binding protein from starved cells, known as DPS, has been characterized as a crucial factor in protecting E. coli from external stresses. The DPS functions in various cellular processes, including protein-DNA binding, ferroxidase activity, compaction of chromosome and regulation of stress resistance gene expression. DPS proteins exist as oligomeric complexes; however, the specific biochemical activity of oligomeric DPS in conferring heat shock tolerance has not been fully understood. Therefore, we investigated the novel functional role of DPS under heat shock. To elucidate the functional role of DPS under heat shock conditions, we purified recombinant GST-DPS protein and demonstrated its thermostability and existence in its highly oligomeric form. Furthermore, we discovered that the hydrophobic region of GST-DPS influenced the formation of oligomers, which exhibited molecular chaperone activity, thereby preventing the aggregation of substrate proteins. Collectively, our findings highlight the novel functional role of DPS, as a molecular chaperone and may confer thermotolerance to E. coli.
Collapse
Affiliation(s)
- Joung Hun Park
- Division of Ecological Safety, National Institute of Ecology, Seocheon, Republic of Korea
| | - Eun Seon Lee
- Division of Ecological Safety, National Institute of Ecology, Seocheon, Republic of Korea
| | - Young Jun Jung
- Division of Ecological Safety, National Institute of Ecology, Seocheon, Republic of Korea.
| |
Collapse
|
14
|
Rajapaksha N, Soldano A, Yao H, Donnarumma F, Kashipathy MM, Seibold S, Battaile KP, Lovell S, Rivera M. Pseudomonas aeruginosa Dps (PA0962) Functions in H 2O 2 Mediated Oxidative Stress Defense and Exhibits In Vitro DNA Cleaving Activity. Int J Mol Sci 2023; 24:4669. [PMID: 36902100 PMCID: PMC10002758 DOI: 10.3390/ijms24054669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
We report the structural, biochemical, and functional characterization of the product of gene PA0962 from Pseudomonas aeruginosa PAO1. The protein, termed Pa Dps, adopts the Dps subunit fold and oligomerizes into a nearly spherical 12-mer quaternary structure at pH 6.0 or in the presence of divalent cations at neutral pH and above. The 12-Mer Pa Dps contains two di-iron centers at the interface of each subunit dimer, coordinated by conserved His, Glu, and Asp residues. In vitro, the di-iron centers catalyze the oxidation of Fe2+ utilizing H2O2 (not O2) as an oxidant, suggesting Pa Dps functions to aid P. aeruginosa to survive H2O2-mediated oxidative stress. In agreement, a P. aeruginosa Δdps mutant is significantly more susceptible to H2O2 than the parent strain. The Pa Dps structure harbors a novel network of Tyr residues at the interface of each subunit dimer between the two di-iron centers, which captures radicals generated during Fe2+ oxidation at the ferroxidase centers and forms di-tyrosine linkages, thus effectively trapping the radicals within the Dps shell. Surprisingly, incubating Pa Dps and DNA revealed unprecedented DNA cleaving activity that is independent of H2O2 or O2 but requires divalent cations and 12-mer Pa Dps.
Collapse
Affiliation(s)
- Nimesha Rajapaksha
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Anabel Soldano
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Huili Yao
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | - Maithri M. Kashipathy
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047, USA
| | - Steve Seibold
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047, USA
| | | | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047, USA
| | - Mario Rivera
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| |
Collapse
|
15
|
Mangar M, Mishra A, Yang Z, Deivanayagam C, Fletcher HM. Characterization of FA1654: A putative DPS protein in Filifactor alocis. Mol Oral Microbiol 2023; 38:23-33. [PMID: 36412172 PMCID: PMC9905271 DOI: 10.1111/omi.12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
The survival/adaptation of Filifactor alocis, a fastidious Gram-positive asaccharolytic anaerobe, to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Moreover, its pathogenic characteristics are highlighted by its capacity to survive in the oxidative-stress microenvironment of the periodontal pocket and a likely ability to modulate the microbial community dynamics. There is still a significant gap in our understanding of its mechanism of oxidative stress resistance and its impact on the virulence and pathogenicity of the microbial biofilm. Coinfection of epithelial cells with F. alocis and Porphyromonas gingivalis resulted in the upregulation of several genes, including HMPREF0389_01654 (FA1654). Bioinformatics analysis indicates that FA1654 has a "di-iron binding domain" and could function as a DNA starvation and stationary phase protection (DPS) protein. We have further characterized the FA1654 protein to determine its role in oxidative stress resistance in F. alocis. In the presence of hydrogen peroxide-induced oxidative stress, there was an ∼1.3 fold upregulation of the FA1654 gene in F. alocis. Incubation of the purified FA1654 protein with DNA in the presence of hydrogen peroxide and iron resulted in the protection of the DNA from Fenton-mediated degradation. Circular dichroism and differential scanning fluorimetry studies have documented the intrinsic ability of rFA1654 protein to bind iron; however, the rFA1654 protein is missing the intrinsic ability to reduce hydrogen peroxide. Collectively, the data may suggest that FA1654 in F. alocis is involved in oxidative stress resistance via an ability to protect against Fenton-mediated oxidative stress-induced damage.
Collapse
Affiliation(s)
- Malissa Mangar
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Arunima Mishra
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Zhengrong Yang
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL USA
| | - Hansel M. Fletcher
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA,Corresponding author: Phone: (909) 558-8497, FAX: (909) 558-4035,
| |
Collapse
|
16
|
Complementary Roles of Two DNA Protection Proteins from Deinococcus geothermalis. Int J Mol Sci 2022; 24:ijms24010469. [PMID: 36613913 PMCID: PMC9820295 DOI: 10.3390/ijms24010469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The roles of two interrelated DNA protection protein in starved cells (Dps)-putative Dps Dgeo_0257 and Dgeo_0281-as orthologous proteins to DrDps1 for DNA binding, protection, and metal ion sensing were characterised in a Deinococcus geothermalis strain. Dgeo_0257 exhibited high DNA-binding affinity and formed a multimeric structure but lacked the conserved amino acid sequence for ferroxidase activity. In contrast, the Dgeo_0281 (DgDps1) protein was abundant in the early exponential phase, had a lower DNA-binding activity than Dgeo_0257, and was mainly observed in its monomeric or dimeric forms. Electrophoretic mobility shift assays demonstrated that both purified proteins bound nonspecifically to DNA, and their binding ability was affected by certain metal ions. For example, in the presence of ferrous and ferric ions, neither Dgeo_0257 nor Dgeo_0281 could readily bind to DNA. In contrast, both proteins exhibited more stable DNA binding in the presence of zinc and manganese ions. Mutants in which the dps gene was disrupted exhibited higher sensitivity to oxidative stress than the wild-type strain. Furthermore, the expression levels of each gene showed an opposite correlation under H2O2 treatment conditions. Collectively, these findings indicate that the putative Dps Dgeo_0257 and DgDps1 from D. geothermalis are involved in DNA binding and protection in complementary interplay ways compared to known Dps.
Collapse
|
17
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
18
|
Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL, Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN, Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin self-assembly, structure, function, and biotechnological applications. Int J Biol Macromol 2022; 224:319-343. [DOI: 10.1016/j.ijbiomac.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
19
|
Gupta NK, Okamoto N, Karuppannan SK, Pasula RR, Ziyu Z, Qi DC, Lim S, Nakamura M, Nijhuis CA. The Role of Structural Order in the Mechanism of Charge Transport across Tunnel Junctions with Various Iron-Storing Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203338. [PMID: 36103613 DOI: 10.1002/smll.202203338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In biomolecular electronics, the role of structural order in charge transport (CT) is poorly understood. It has been reported that the metal oxide cores of protein cages (e.g., iron oxide and ferrihydrite nanoparticles (NPs) present in ferritin and E2-LFtn, which is E2 protein engineered with an iron-binding sequence) play an important role in the mechanism of CT. At the same time, the NP core also plays a major role in the structural integrity of the proteins. This paper describes the role of structural order in CT across tunnel junctions by comparing three iron-storing proteins. They are (1) DNA binding protein from starved cells (Dps, diameter (∅) = 9 nm); (2) engineered archaeal ferritin (AfFtn-AA, ∅ = 12 nm); and (3) engineered E2 of pyruvate dehydrogenase enzyme complex (E2-LFtn, ∅ = 25 nm). Both holo-Dps and apo-Dps proteins undergo CT by coherent tunneling because their globular architecture and relative structural stability provide a coherent conduction pathway. In contrast, apo-AfFtn-AA forms a disordered structure across which charges have to tunnel incoherently, but holo-AfFtn-AA retains its globular structure and supports coherent tunneling. The large E2-LFtn always forms disordered structures across which charges incoherently tunnel regardless of the presence of the NP core. These findings highlight the importance of structural order in the mechanism of CT across biomolecular tunnel junctions.
Collapse
Affiliation(s)
- Nipun Kumar Gupta
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Naofumi Okamoto
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Senthil Kumar Karuppannan
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
- National Quantum Fabless Foundry (NQFF), Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis Building, Singapore, 138634, Singapore
| | - Rupali Reddy Pasula
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Zhang Ziyu
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Dong-Chen Qi
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 59 Nanyang Drive, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Masakazu Nakamura
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, and Center for Brain-Inspired Nano Systems (BRAINS), Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
20
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
21
|
Abstract
Over the last decade, the genomes of several Bifidobacterium strains have been sequenced, delivering valuable insights into their genetic makeup. However, bifidobacterial genomes have not yet been systematically mined for genes associated with stress response functions and their regulation. In this work, a list of 76 genes related to stress response in bifidobacteria was compiled from previous studies. The prevalence of the genes was evaluated among the genome sequences of 171 Bifidobacterium strains. Although genes of the protein quality control and DNA repair systems appeared to be highly conserved, genome-wide in silico screening for consensus sequences of putative regulators suggested that the regulation of these systems differs among phylogenetic groups. Homologs of multiple oxidative stress-associated genes are shared across species, albeit at low sequence similarity. Bee isolates were confirmed to harbor unique genetic features linked to oxygen tolerance. Moreover, most studied Bifidobacterium adolescentis and all Bifidobacterium angulatum strains lacked a set of reactive oxygen species-detoxifying enzymes, which might explain their high sensitivity to oxygen. Furthermore, the presence of some putative transcriptional regulators of stress responses was found to vary across species and strains, indicating that different regulation strategies of stress-associated gene transcription contribute to the diverse stress tolerance. The presented stress response gene profiles of Bifidobacterium strains provide a valuable knowledge base for guiding future studies by enabling hypothesis generation and the identification of key genes for further analyses. IMPORTANCE Bifidobacteria are Gram-positive bacteria that naturally inhabit diverse ecological niches, including the gastrointestinal tract of humans and animals. Strains of the genus Bifidobacterium are widely used as probiotics, since they have been associated with health benefits. In the course of their production and administration, probiotic bifidobacteria are exposed to several stressors that can challenge their survival. The stress tolerance of probiotic bifidobacteria is, therefore, an important selection criterion for their commercial application, since strains must maintain their viability to exert their beneficial health effects. As the ability to cope with stressors varies among Bifidobacterium strains, comprehensive understanding of the underlying stress physiology is required for enabling knowledge-driven strain selection and optimization of industrial-scale production processes.
Collapse
|
22
|
Kuruppu AI, Turyanska L, Bradshaw TD, Manickam S, Galhena BP, Paranagama P, De Silva R. Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochim Biophys Acta Gen Subj 2022; 1866:130067. [PMID: 34896255 DOI: 10.1016/j.bbagen.2021.130067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ideal nanoparticle should be able to encapsulate either pharmaceutical agents or imaging probes so that it could treat or image clinical tumours by targeting the cancer site efficiently. Further, it would be an added advantage if it demonstrates: small size, built in targeting, biocompatibility and biodegradability. Ferritin, which is an endogenous self-assembling protein, stores iron and plays a role in iron homeostasis. When iron atoms are removed apoferritin (AFt) is formed which consists of a hollow shell where it can be used to load guest molecules. Due to its unique architecture, AFt has been investigated as a versatile carrier for tumour theranostic applications. DNA-binding protein from starved cells (Dps), which also belongs to the ferritin family, is a protein found only in prokaryotes. It is used to store iron and protect chromosomes from oxidative damage; because of its architecture, Dps could also be used as a delivery vehicle. CONCLUSIONS Both these nano particles are promising in the field of oncology, especially due to their stability, solubility and biocompatibility features. Further their exterior surface can be modified for better tumour-targeting ability. More studies, are warranted to determine the immunogenicity, biodistribution, and clearance from the body. GENERAL PERSPECTIVE This review discusses a few selected examples of the remarkable in vitro and in vivo studies that have been carried out in the recent past with the use of AFt and Dps in targeting and delivery of various pharmaceutical agents, natural products and imaging probes in the field of oncology.
Collapse
Affiliation(s)
- Anchala I Kuruppu
- Institute for Combinatorial Advanced Research & Education, General Sir John Kotelawala Defence University, Sri Lanka.
| | | | | | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam
| | - Bandula Prasanna Galhena
- Department Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Priyani Paranagama
- Department of Chemistry, Faculty of Science, University of Kelaniya, Sri Lanka; Institute of Indigenous Medicine, University of Colombo, Sri Lanka
| | - Ranil De Silva
- Institute for Combinatorial Advanced Research & Education, General Sir John Kotelawala Defence University, Sri Lanka
| |
Collapse
|
23
|
Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:29-68. [DOI: 10.1007/978-3-031-08491-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
|
25
|
Identification of FtpA, a Dps-like protein involved in anti-oxidative stress and virulence in Actinobacillus pleuropneumoniae. J Bacteriol 2021; 204:e0032621. [PMID: 34807725 DOI: 10.1128/jb.00326-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria have evolved a variety of enzymes to eliminate endogenous or host-derived oxidative stress factors. The Dps protein, first identified in Escherichia coli, contains a ferroxidase center and protects bacteria from reactive oxygen species damage. There is a lack of knowledge of the role of Dps-like proteins in bacterial pathogenesis. Actinobacillus pleuropneumoniae causes pleuropneumonia, a respiratory disease of swine. The A. pleuropneumoniae ftpA gene is up-regulated during a shift to anaerobiosis, in biofilms and, as found in this study, also by H2O2. An A. pleuropneumoniae ftpA deletion mutant (△ftpA) had increased H2O2 sensitivity, less intracellular viability in macrophages, and decreased virulence in a mouse infection model. Expression of ftpA in an E. coli dps mutant restored wild-type resistance to H2O2. FtpA possesses a conserved ferritin domain containing a ferroxidase site. Recombinant rFtpA bound and oxidized Fe2+ reversibly. Under aerobic conditions, compared with the wild-type strain, the viability of an △ftpA mutant was reduced after extended culture, transition from anaerobic to aerobic conditions, and upon supplementation with Fenton reaction substrates. Under anaerobic conditions, additional H2O2 resulted in a more severe growth defect of △ftpA than under aerobic conditions. Therefore, by oxidizing and mineralizing Fe2+, FtpA alleviates oxidative damage mediated by intracellular Fenton reactions. Furthermore, by mutational analysis, two residues were confirmed to be critical for Fe2+ binding and oxidization, as well as for A. pleuropneumoniae H2O2 resistance. Taken together, this study demonstrates that A. pleuropneumoniae FtpA is a Dps-like protein, playing critical roles in oxidative stress resistance and virulence. IMPORTANCE As a ferroxidase, Dps of Escherichia coli can protect bacteria from reactive oxygen species damage, but its role in bacterial pathogenesis has received little attention. In this study, FtpA of the swine respiratory pathogen A. pleuropneumoniae was identified as a new Dps-like protein. It facilitated A. pleuropneumoniae resistance to H2O2, survival in macrophages, and infection in vivo. FtpA could bind and oxidize Fe2+ through two important residues in its ferroxidase site and protected the bacteria from oxidative damage mediated by the intracellular Fenton reaction. These findings provide new insights into the role of the FtpA-based antioxidant system in the pathogenesis of A. pleuropneumoniae, and the conserved Fe2+ binding ligands in Dps/FtpA provide novel drug target candidates for disease prevention.
Collapse
|
26
|
Investigating Extracellular DNA Release in Staphylococcus xylosus Biofilm In Vitro. Microorganisms 2021; 9:microorganisms9112192. [PMID: 34835318 PMCID: PMC8617998 DOI: 10.3390/microorganisms9112192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus xylosus forms biofilm embedded in an extracellular polymeric matrix. As extracellular DNA (eDNA) resulting from cell lysis has been found in several staphylococcal biofilms, we investigated S. xylosus biofilm in vitro by a microscopic approach and identified the mechanisms involved in cell lysis by a transcriptomic approach. Confocal laser scanning microscopy (CLSM) analyses of the biofilms, together with DNA staining and DNase treatment, revealed that eDNA constituted an important component of the matrix. This eDNA resulted from cell lysis by two mechanisms, overexpression of phage-related genes and of cidABC encoding a holin protein that is an effector of murein hydrolase activity. This lysis might furnish nutrients for the remaining cells as highlighted by genes overexpressed in nucleotide salvage, in amino sugar catabolism and in inorganic ion transports. Several genes involved in DNA/RNA repair and genes encoding proteases and chaperones involved in protein turnover were up-regulated. Furthermore, S. xylosus perceived osmotic and oxidative stresses and responded by up-regulating genes involved in osmoprotectant synthesis and in detoxification. This study provides new insight into the physiology of S. xylosus in biofilm.
Collapse
|
27
|
Lazzarin L, Pasini M, Menna E. Organic Functionalized Carbon Nanostructures for Solar Energy Conversion. Molecules 2021; 26:5286. [PMID: 34500718 PMCID: PMC8433975 DOI: 10.3390/molecules26175286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
This review presents an overview of the use of organic functionalized carbon nanostructures (CNSs) in solar energy conversion schemes. Our attention was focused in particular on the contribution of organic chemistry to the development of new hybrid materials that find application in dye-sensitized solar cells (DSSCs), organic photovoltaics (OPVs), and perovskite solar cells (PSCs), as well as in photocatalytic fuel production, focusing in particular on the most recent literature. The request for new materials able to accompany the green energy transition that are abundant, low-cost, low-toxicity, and made from renewable sources has further increased the interest in CNSs that meet all these requirements. The inclusion of an organic molecule, thanks to both covalent and non-covalent interactions, in a CNS leads to the development of a completely new hybrid material able of combining and improving the properties of both starting materials. In addition to the numerical data, which unequivocally state the positive effect of the new hybrid material, we hope that these examples can inspire further research in the field of photoactive materials from an organic point of view.
Collapse
Affiliation(s)
- Luca Lazzarin
- Department of Chemical Sciences & INSTM, University of Padua, Via Marzolo 1, 35131 Padova, Italy;
| | - Mariacecilia Pasini
- Institute of Chemical Sciences and Technologies “G. Natta”-SCITEC, National Research Council, CNR-SCITEC, Via Corti 12, 20133 Milan, Italy
| | - Enzo Menna
- Department of Chemical Sciences & INSTM, University of Padua, Via Marzolo 1, 35131 Padova, Italy;
- Interdepartmental Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, 35131 Padova, Italy
| |
Collapse
|
28
|
Caldas Nogueira ML, Pastore AJ, Davidson VL. Diversity of structures and functions of oxo-bridged non-heme diiron proteins. Arch Biochem Biophys 2021; 705:108917. [PMID: 33991497 PMCID: PMC8165033 DOI: 10.1016/j.abb.2021.108917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Oxo-bridged diiron proteins are a distinct class of non-heme iron proteins. Their active sites are composed of two irons that are coordinated by amino acid side chains, and a bridging oxygen that interacts with each iron. These proteins are members of the ferritin superfamily and share the structural feature of a four α-helix bundle that provides the residues that coordinate the irons. The different proteins also display a wide range of structures and functions. A prototype of this family is hemerythrin, which functions as an oxygen transporter. Several other hemerythrin-like proteins have been described with a diversity of functions including oxygen and iron sensing, and catalytic activities. Rubrerythrins react with hydrogen peroxide and rubrerythrin-like proteins possess a rubredoxin domain, in addition to the oxo-bridged diiron center. Other redox enzymes with oxo-bridged irons include flavodiiron proteins that act as O2 or NO reductases, ribonucleotide reductase and methane monooxygenase. Ferritins have an oxo-bridged diiron in the ferroxidase center of the protein, which plays a role in the iron storage function of these proteins. There are also bacterial ferritins that exhibit catalytic activities. The structures and functions of this broad class of oxo-bridged diiron proteins are described and compared in this review.
Collapse
Affiliation(s)
- Maria Luiza Caldas Nogueira
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Anthony J Pastore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States.
| |
Collapse
|
29
|
Davis MM, Brock AM, DeHart TG, Boribong BP, Lee K, McClune ME, Chang Y, Cramer N, Liu J, Jones CN, Jutras BL. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete. PLoS Pathog 2021; 17:e1009546. [PMID: 33984073 PMCID: PMC8118282 DOI: 10.1371/journal.ppat.1009546] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
The bacterial pathogen responsible for causing Lyme disease, Borrelia burgdorferi, is an atypical Gram-negative spirochete that is transmitted to humans via the bite of an infected Ixodes tick. In diderms, peptidoglycan (PG) is sandwiched between the inner and outer membrane of the cell envelope. In many other Gram-negative bacteria, PG is bound by protein(s), which provide both structural integrity and continuity between envelope layers. Here, we present evidence of a peptidoglycan-associated protein (PAP) in B. burgdorferi. Using an unbiased proteomics approach, we identified Neutrophil Attracting Protein A (NapA) as a PAP. Interestingly, NapA is a Dps homologue, which typically functions to bind and protect cellular DNA from damage during times of stress. While B. burgdorferi NapA is known to be involved in the oxidative stress response, it lacks the critical residues necessary for DNA binding. Biochemical and cellular studies demonstrate that NapA is localized to the B. burgdorferi periplasm and is indeed a PAP. Cryo-electron microscopy indicates that mutant bacteria, unable to produce NapA, have structural abnormalities. Defects in cell-wall integrity impact growth rate and cause the napA mutant to be more susceptible to osmotic and PG-specific stresses. NapA-linked PG is secreted in outer membrane vesicles and augments IL-17 production, relative to PG alone. Using microfluidics, we demonstrate that NapA acts as a molecular beacon-exacerbating the pathogenic properties of B. burgdorferi PG. These studies further our understanding of the B. burgdorferi cell envelope, provide critical information that underlies its pathogenesis, and highlight how a highly conserved bacterial protein can evolve mechanistically, while maintaining biological function.
Collapse
Affiliation(s)
- Marisela M. Davis
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aaron M. Brock
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tanner G. DeHart
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brittany P. Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Katherine Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mecaila E. McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Nicholas Cramer
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Caroline N. Jones
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
30
|
Dps-DNA interaction in Marinobacter hydrocarbonoclasticus protein: effect of a single-charge alteration. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:513-521. [PMID: 33900431 DOI: 10.1007/s00249-021-01538-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
DNA-binding proteins from starved cells (Dps) are members of the ferritin family of proteins found in prokaryotes, with hollow rounded cube-like structures, composed of 12 equal subunits. These protein nanocages are bifunctional enzymes that protect the cell from the harmful reaction of iron and peroxide (Fenton reaction), thus preventing DNA damage by oxidative stress. Ferrous ions are oxidized at specific iron-binding sites in the presence of the oxidant and stored in its cavity that can accommodate up to ca. 500 iron atoms. DNA-binding properties of Dps are associated with the N-terminal, positive charge rich, extensions that can promote DNA binding and condensation, apparently by a cooperative binding mechanism. Here, we describe the binding and protection activities of Marinobacter hydrocarbonoclasticus Dps using Electrophoretic Mobility Shift Essays (EMSA), and synchrotron radiation circular dichroism (SRCD) spectroscopy. While no DNA condensation was observed in the tested conditions, it was possible to determine a Dps-DNA complex formation with an apparent dissociation constant of 6.0 ± 1.0 µM and a Hill coefficient of 1.2 ± 0.1. This interaction is suppressed by the inclusion of a single negative charge in the N-terminal region by point mutation. In Dps proteins containing a ferric mineral core (above 96 Fe/protein), DNA binding was impaired. SRCD data clearly showed that no significant modification existed either in secondary structure or protein stability of WT, Q14E variant and core containing proteins. It was, however, interesting to note that, in our experimental conditions, thermal denaturation induced protein aggregation that caused artifacts in thermal denaturation curves, which were dependent on radiation flux and vertical arrangement of the CD cell.
Collapse
|
31
|
Pullin J, Wilson MT, Clémancey M, Blondin G, Bradley JM, Moore GR, Le Brun NE, Lučić M, Worrall JAR, Svistunenko DA. Iron Oxidation in Escherichia coli Bacterioferritin Ferroxidase Centre, a Site Designed to React Rapidly with H 2O 2 but Slowly with O 2. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:8442-8450. [PMID: 38529354 PMCID: PMC10962548 DOI: 10.1002/ange.202015964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Indexed: 11/09/2022]
Abstract
Both O2 and H2O2 can oxidize iron at the ferroxidase center (FC) of Escherichia coli bacterioferritin (EcBfr) but mechanistic details of the two reactions need clarification. UV/Vis, EPR, and Mössbauer spectroscopies have been used to follow the reactions when apo-EcBfr, pre-loaded anaerobically with Fe2+, was exposed to O2 or H2O2. We show that O2 binds di-Fe2+ FC reversibly, two Fe2+ ions are oxidized in concert and a H2O2 molecule is formed and released to the solution. This peroxide molecule further oxidizes another di-Fe2+ FC, at a rate circa 1000 faster than O2, ensuring an overall 1:4 stoichiometry of iron oxidation by O2. Initially formed Fe3+ can further react with H2O2 (producing protein bound radicals) but relaxes within seconds to an H2O2-unreactive di-Fe3+ form. The data obtained suggest that the primary role of EcBfr in vivo may be to detoxify H2O2 rather than sequester iron.
Collapse
Affiliation(s)
- Jacob Pullin
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Michael T. Wilson
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Martin Clémancey
- Université Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux, UMR 524917 rue des Martyrs38000GrenobleFrance
| | - Geneviève Blondin
- Université Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux, UMR 524917 rue des Martyrs38000GrenobleFrance
| | - Justin M. Bradley
- School of ChemistryUniversity of East AngliaNorwich Research Park NorwichNorfolkNR4 7TJUK
| | - Geoffrey R. Moore
- School of ChemistryUniversity of East AngliaNorwich Research Park NorwichNorfolkNR4 7TJUK
| | - Nick E. Le Brun
- School of ChemistryUniversity of East AngliaNorwich Research Park NorwichNorfolkNR4 7TJUK
| | - Marina Lučić
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | | | | |
Collapse
|
32
|
Pullin J, Wilson MT, Clémancey M, Blondin G, Bradley JM, Moore GR, Le Brun NE, Lučić M, Worrall JAR, Svistunenko DA. Iron Oxidation in Escherichia coli Bacterioferritin Ferroxidase Centre, a Site Designed to React Rapidly with H 2 O 2 but Slowly with O 2. Angew Chem Int Ed Engl 2021; 60:8361-8369. [PMID: 33482043 PMCID: PMC8049013 DOI: 10.1002/anie.202015964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Both O2 and H2O2 can oxidize iron at the ferroxidase center (FC) of Escherichia coli bacterioferritin (EcBfr) but mechanistic details of the two reactions need clarification. UV/Vis, EPR, and Mössbauer spectroscopies have been used to follow the reactions when apo‐EcBfr, pre‐loaded anaerobically with Fe2+, was exposed to O2 or H2O2. We show that O2 binds di‐Fe2+ FC reversibly, two Fe2+ ions are oxidized in concert and a H2O2 molecule is formed and released to the solution. This peroxide molecule further oxidizes another di‐Fe2+ FC, at a rate circa 1000 faster than O2, ensuring an overall 1:4 stoichiometry of iron oxidation by O2. Initially formed Fe3+ can further react with H2O2 (producing protein bound radicals) but relaxes within seconds to an H2O2‐unreactive di‐Fe3+ form. The data obtained suggest that the primary role of EcBfr in vivo may be to detoxify H2O2 rather than sequester iron.
Collapse
Affiliation(s)
- Jacob Pullin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Martin Clémancey
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, 38000, Grenoble, France
| | - Geneviève Blondin
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, 38000, Grenoble, France
| | - Justin M Bradley
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich, Norfolk, NR4 7TJ, UK
| | - Geoffrey R Moore
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich, Norfolk, NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich, Norfolk, NR4 7TJ, UK
| | - Marina Lučić
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
33
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
34
|
Lv C, Zhang X, Liu Y, Zhang T, Chen H, Zang J, Zheng B, Zhao G. Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Chem Soc Rev 2021; 50:3957-3989. [PMID: 33587075 DOI: 10.1039/d0cs01349h] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Compartmentalization is a hallmark of living systems. Through compartmentalization, ubiquitous protein nanocages such as viral capsids, ferritin, small heat shock proteins, and DNA-binding proteins from starved cells fulfill a variety of functions, while their shell-like structures hold great promise for various applications in the field of nanomedicine and nanotechnology. However, the number and structure of natural protein nanocages are limited, and these natural protein nanocages may not be suited for a given application, which might impede their further application as nanovehicles, biotemplates or building blocks. To overcome these shortcomings, different strategies have been developed by scientists to construct artificial protein nanocages, and 1D, 2D and 3D protein arrays with protein nanocages as building blocks through genetic and chemical modification to rival the size and functionality of natural protein nanocages. This review outlines the recent advances in the field of the design and construction of artificial protein nanocages and their assemblies with higher order, summarizes the strategies for creating the assembly of protein nanocages from zero-dimension to three dimensions, and introduces their corresponding applications in the preparation of nanomaterials, electrochemistry, and drug delivery. The review will highlight the roles of both the inter-subunit/intermolecular interactions at the key interface and the protein symmetry in constructing and controlling protein nanocage assemblies with different dimensions.
Collapse
Affiliation(s)
- Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tan Z, Lu P, Adewole D, Diarra M, Gong J, Yang C. Iron requirement in the infection of Salmonella and its relevance to poultry health. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
36
|
Kovalenko V, Popov A, Santoni G, Loiko N, Tereshkina K, Tereshkin E, Krupyanskii Y. Multi-crystal data collection using synchrotron radiation as exemplified with low-symmetry crystals of Dps. Acta Crystallogr F Struct Biol Commun 2020; 76:568-576. [PMID: 33135675 PMCID: PMC7605109 DOI: 10.1107/s2053230x20012571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
Multi-crystal data collection using synchrotron radiation was successfully applied to determine the three-dimensional structure of a triclinic crystal form of Dps from Escherichia coli at 2.0 Å resolution. The final data set was obtained by combining 261 partial diffraction data sets measured from crystals with an average size of approximately 5 µm. The most important features of diffraction data measurement and processing for low-symmetry crystals are discussed.
Collapse
Affiliation(s)
- Vladislav Kovalenko
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| | - Alexander Popov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Gianluca Santoni
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Natalia Loiko
- Survival of Microorganisms, FRC ‘Fundamentals of Biotechnology’, 33 Leninsky Prospect, Building 2, Moscow 119071, Russian Federation
| | - Ksenia Tereshkina
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| | - Eduard Tereshkin
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| | - Yurii Krupyanskii
- Structure of Matter, Semenov FRC for Chemical Physics, RAS, 4 Kosygina Street, Moscow 119991, Russian Federation
| |
Collapse
|
37
|
Pedone E, Fiorentino G, Bartolucci S, Limauro D. Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea. Antioxidants (Basel) 2020; 9:antiox9080703. [PMID: 32756530 PMCID: PMC7465337 DOI: 10.3390/antiox9080703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
To fight reactive oxygen species (ROS) produced by both the metabolism and strongly oxidative habitats, hyperthermophilic archaea are equipped with an array of antioxidant enzymes whose role is to protect the biological macromolecules from oxidative damage. The most common ROS, such as superoxide radical (O2-.) and hydrogen peroxide (H2O2), are scavenged by superoxide dismutase, peroxiredoxins, and catalase. These enzymes, together with thioredoxin, protein disulfide oxidoreductase, and thioredoxin reductase, which are involved in redox homeostasis, represent the core of the antioxidant system. In this review, we offer a panorama of progression of knowledge on the antioxidative system in aerobic or microaerobic (hyper)thermophilic archaea and possible industrial applications of these enzymes.
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
- Correspondence:
| |
Collapse
|
38
|
Minato T, Teramoto T, Kakuta Y, Ogo S, Yoon KS. Biochemical and structural characterization of a thermostable Dps protein with His-type ferroxidase centers and outer metal-binding sites. FEBS Open Bio 2020; 10:1219-1229. [PMID: 32170832 PMCID: PMC7327923 DOI: 10.1002/2211-5463.12837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
The DNA‐binding protein from starved cells (Dps) is found in a wide range of microorganisms, and it has been well characterized. However, little is known about Dps proteins from nonheterocystous filamentous cyanobacteria. In this study, a Dps protein from the thermophilic nonheterocystous filamentous cyanobacterium Thermoleptolyngbya sp. O‐77 (TlDps1) was purified and characterized. PAGE and CD analyses of TlDps1 demonstrated that it had higher thermostability than previously reported Dps proteins. X‐ray crystallographic analysis revealed that TlDps1 possessed His‐type ferroxidase centers within the cavity and unique metal‐binding sites located on the surface of the protein, which presumably contributed to its exceedingly high thermostability.
Collapse
Affiliation(s)
- Takuo Minato
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.,Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.,Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
de Alcântara NR, de Oliveira FM, Garcia W, Dos Santos OAL, Junqueira-Kipnis AP, Kipnis A. Dps protein is related to resistance of Mycobacterium abscessus subsp. massiliense against stressful conditions. Appl Microbiol Biotechnol 2020; 104:5065-5080. [PMID: 32253472 DOI: 10.1007/s00253-020-10586-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Mycobacterium abscessus subsp. massiliense (Mycma) belongs to the Mycobacterium abscessus complex and is a rapidly growing non-tuberculous mycobacterium. The chronic pulmonary, skin, and soft tissue infections that it causes may be difficult to treat due to its intrinsic resistance to the commonly used antimicrobial drugs, making it a serious world public health problem. Iron is an essential nutrient for the growth of microorganisms; nonetheless, it can be toxic when in excess. Thus, bacteria require an iron homeostasis mechanism to succeed in different environments. DNA-binding proteins from starved cells (Dps) are miniferritins with the property to act as additional iron storage proteins but also can bind to DNA, protecting it against hydroxyl radical. Annotation of the Mycma genome revealed the gene mycma_03135 with 79% sequential identity when compared to MSMEG_3242 gene from M. smegmatis mc2 155, which codifies for a known Dps. Recombinant Dps from M. abscessus (rMaDps) was produced in Escherichia coli, purified in soluble form and shown to form high mass oligomers in solution with ferroxidase activity, DNA binding, and protection against damage. The expression of the mycma_03135 gene was induced during Mycma growth in the presence of hydrogen peroxide (H2O2). Additionally, the expression of rMaDps by E. coli conferred greater resistance to H2O2. Thus, this study is the first to identify and characterize a Dps from M. abscessus. KEY POINTS: Mycobacterium abscessus subsp. massiliense express a miniferritin protein (Dps). Mycma Dps binds to DNA and protects against oxidative stress.
Collapse
Affiliation(s)
| | - Fábio Muniz de Oliveira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | | | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
40
|
Morikawa K, Ushijima Y, Ohniwa RL, Miyakoshi M, Takeyasu K. What Happens in the Staphylococcal Nucleoid under Oxidative Stress? Microorganisms 2019; 7:microorganisms7120631. [PMID: 31795457 PMCID: PMC6956076 DOI: 10.3390/microorganisms7120631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
The evolutionary success of Staphylococcus aureus as an opportunistic human pathogen is largely attributed to its prominent abilities to cope with a variety of stresses and host bactericidal factors. Reactive oxygen species are important weapons in the host arsenal that inactivate phagocytosed pathogens, but S. aureus can survive in phagosomes and escape from phagocytic cells to establish infections. Molecular genetic analyses combined with atomic force microscopy have revealed that the MrgA protein (part of the Dps family of proteins) is induced specifically in response to oxidative stress and converts the nucleoid from the fibrous to the clogged state. This review collates a series of evidences on the staphylococcal nucleoid dynamics under oxidative stress, which is functionally and physically distinct from compacted Escherichia coli nucleoid under stationary phase. In addition, potential new roles of nucleoid clogging in the staphylococcal life cycle will be proposed.
Collapse
Affiliation(s)
- Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Ryosuke L. Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Masatoshi Miyakoshi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| |
Collapse
|
41
|
Li X, Mustila H, Magnuson A, Stensjö K. Homologous overexpression of NpDps2 and NpDps5 increases the tolerance for oxidative stress in the multicellular cyanobacterium Nostoc punctiforme. FEMS Microbiol Lett 2019; 365:5071947. [PMID: 30107525 PMCID: PMC6116882 DOI: 10.1093/femsle/fny198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
The filamentous cyanobacterium Nostoc punctiforme has several oxidative stress-managing systems, including Dps proteins. Dps proteins belong to the ferritin superfamily and are involved in abiotic stress management in prokaryotes. Previously, we found that one of the five Dps proteins in N. punctiforme, NpDps2, was critical for H2O2 tolerance. Stress induced by high light intensities is aggravated in N. punctiforme strains deficient of either NpDps2, or the bacterioferritin-like NpDps5. Here, we have investigated the capacity of NpDps2 and NpDps5 to enhance stress tolerance by homologous overexpression of these two proteins in N. punctiforme. Both overexpression strains were found to tolerate twice as high concentrations of added H2O2 as the control strain, indicating that overexpression of either NpDps2 or NpDps5 will enhance the capacity for H2O2 tolerance. Under high light intensities, the overexpression of the two NpDps did not enhance the tolerance against general light-induced stress. However, overexpression of the heterocyst-specific NpDps5 in all cells of the filament led to a higher amount of chlorophyll-binding proteins per cell during diazotrophic growth. The OENpDps5 strain also showed an increased tolerance to ammonium-induced oxidative stress. Our results provide information of how Dps proteins may be utilised for engineering of cyanobacteria with enhanced stress tolerance.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 75120 Uppsala, Swedens
| | - Henna Mustila
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 75120 Uppsala, Swedens
| | - Ann Magnuson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 75120 Uppsala, Swedens
| | - Karin Stensjö
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 75120 Uppsala, Swedens
| |
Collapse
|
42
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
43
|
Structural diffusion properties of two atypical Dps from the cyanobacterium Nostoc punctiforme disclose interactions with ferredoxins and DNA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148063. [PMID: 31419396 DOI: 10.1016/j.bbabio.2019.148063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
Ferritin-like proteins, Dps (DNA-binding protein from starved cells), store iron and play a key role in the iron homeostasis in bacteria, yet their iron releasing machinery remains largely unexplored. The electron donor proteins that may interact with Dps and promote the mobilization of the stored iron have hitherto not been identified. Here, we investigate the binding capacity of the two atypical Dps proteins NpDps4 and NpDps5 from Nostoc punctiforme to isolated ferredoxins. We report NpDps-ferredoxin interactions by fluorescence correlation spectroscopy (FCS) and fluorescence resonance energy transfer (FRET) methods. Dynamic light scattering, size exclusion chromatography and native gel electrophoresis results show that NpDps4 forms a dodecamer at both pH 6.0 and pH 8.0, while NpDps5 forms a dodecamer only at pH 6.0. In addition, FCS data clearly reveal that the non-canonical NpDps5 interacts with DNA at pH 6.0. Our spectroscopic analysis shows that [FeS] centers of the three recombinantly expressed and isolated ferredoxins are properly incorporated and are consistent with their respective native states. The results support our hypothesis that ferredoxins could be involved in cellular iron homeostasis by interacting with Dps and assisting the release of stored iron.
Collapse
|
44
|
Howe C, Moparthi VK, Ho FM, Persson K, Stensjö K. The Dps4 from Nostoc punctiforme ATCC 29133 is a member of His-type FOC containing Dps protein class that can be broadly found among cyanobacteria. PLoS One 2019; 14:e0218300. [PMID: 31369577 PMCID: PMC6675082 DOI: 10.1371/journal.pone.0218300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022] Open
Abstract
Dps proteins (DNA-binding proteins from starved cells) have been found to detoxify H2O2. At their catalytic centers, the ferroxidase center (FOC), Dps proteins utilize Fe2+ to reduce H2O2 and therefore play an essential role in the protection against oxidative stress and maintaining iron homeostasis. Whereas most bacteria accommodate one or two Dps, there are five different Dps proteins in Nostoc punctiforme, a phototrophic and filamentous cyanobacterium. This uncommonly high number of Dps proteins implies a sophisticated machinery for maintaining complex iron homeostasis and for protection against oxidative stress. Functional analyses and structural information on cyanobacterial Dps proteins are rare, but essential for understanding the function of each of the NpDps proteins. In this study, we present the crystal structure of NpDps4 in its metal-free, iron- and zinc-bound forms. The FOC coordinates either two iron atoms or one zinc atom. Spectroscopic analyses revealed that NpDps4 could oxidize Fe2+ utilizing O2, but no evidence for its use of the oxidant H2O2 could be found. We identified Zn2+ to be an effective inhibitor of the O2-mediated Fe2+ oxidation in NpDps4. NpDps4 exhibits a FOC that is very different from canonical Dps, but structurally similar to the atypical one from DpsA of Thermosynechococcus elongatus. Sequence comparisons among Dps protein homologs to NpDps4 within the cyanobacterial phylum led us to classify a novel FOC class: the His-type FOC. The features of this special FOC have not been identified in Dps proteins from other bacterial phyla and it might be unique to cyanobacterial Dps proteins.
Collapse
Affiliation(s)
- Christoph Howe
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Vamsi K. Moparthi
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Felix M. Ho
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail: (KS); (KP)
| | - Karin Stensjö
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (KS); (KP)
| |
Collapse
|
45
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
46
|
Penas D, Pereira AS, Tavares P. Direct Evidence for Ferrous Ion Oxidation and Incorporation in the Absence of Oxidants by Dps from Marinobacter hydrocarbonoclasticus. Angew Chem Int Ed Engl 2019; 58:1013-1018. [PMID: 30481405 DOI: 10.1002/anie.201809584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/15/2018] [Indexed: 11/09/2022]
Abstract
Dps proteins (DNA-binding protein from starved cells) are hollow-sphere-shaped, dodecameric enzymes found in bacteria and archaeal species. They can oxidize ferrous iron in a controlled manner using hydrogen peroxide or molecular oxygen as co-substrate, and most of them confer physical protection through DNA binding. Oxidized iron is stored, as a mineral core, in a central cavity. Direct evidence is now provided that, furthermore, Dps proteins containing small mineral cores can oxidize and mineralize toxic ferrous ions in anaerobic conditions and in the absence of any additional aqueous oxidant co-substrate. Dps proteins containing cores of 24 irons per dodecamer can oxidize about 5 ferrous irons per dodecamer, with that number approximately doubling for protein particles containing in average 96 irons per protein. This additional activity carries importance as it can be a detoxification mechanism present during anaerobic or oxygen-limited growth conditions.
Collapse
Affiliation(s)
- Daniela Penas
- Molecular Biophysics Lab., UCIBIO/Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Alice S Pereira
- Molecular Biophysics Lab., UCIBIO/Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Pedro Tavares
- Molecular Biophysics Lab., UCIBIO/Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
47
|
Penas D, Pereira AS, Tavares P. Direct Evidence for Ferrous Ion Oxidation and Incorporation in the Absence of Oxidants by Dps from Marinobacter hydrocarbonoclasticus. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Penas
- Molecular Biophysics Lab.UCIBIO/RequimteDepartamento de QuímicaFaculdade de Ciências e TecnologiaUniversidade Nova de Lisboa 2829-516 Caparica Portugal
| | - Alice S. Pereira
- Molecular Biophysics Lab.UCIBIO/RequimteDepartamento de QuímicaFaculdade de Ciências e TecnologiaUniversidade Nova de Lisboa 2829-516 Caparica Portugal
| | - Pedro Tavares
- Molecular Biophysics Lab.UCIBIO/RequimteDepartamento de QuímicaFaculdade de Ciências e TecnologiaUniversidade Nova de Lisboa 2829-516 Caparica Portugal
| |
Collapse
|
48
|
Chen H, Zhou K, Wang Y, Zang J, Zhao G. Self-assembly of engineered protein nanocages into reversible ordered 3D superlattices mediated by zinc ions. Chem Commun (Camb) 2019; 55:11299-11302. [DOI: 10.1039/c9cc06262a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Zinc ion triggered self-assembly of re-engineered Dps nanocages into highly ordered architectures with a bcc structure.
Collapse
Affiliation(s)
- H. Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| | - K. Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| | - Y. Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| | - J. Zang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| | - G. Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| |
Collapse
|
49
|
Hashima Y, Ishikawa Y, Raifuku I, Inoue I, Okamoto N, Yamashita I, Minami T, Uraoka Y. Easy and green preparation of a graphene-TiO 2 nanohybrid using a supramolecular biomaterial consisting of artificially bifunctionalized proteins and its application for a perovskite solar cell. NANOSCALE 2018; 10:19249-19253. [PMID: 30141815 DOI: 10.1039/c8nr04441d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a novel preparation method for a graphene/TiO2 nanohybrid using a supramolecular biomaterial (CDT1). CDT1 can offer an increase in the dispersibility of graphene in water and subsequent complexation of graphene and TiO2. This nanohybrid was applied to a perovskite solar cell and success was achieved in improving its photoelectric conversion efficiency.
Collapse
Affiliation(s)
- Yuki Hashima
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Reductive Mobilization of Iron from Intact Ferritin: Mechanisms and Physiological Implication. Pharmaceuticals (Basel) 2018; 11:ph11040120. [PMID: 30400623 PMCID: PMC6315955 DOI: 10.3390/ph11040120] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023] Open
Abstract
Ferritins are highly conserved supramolecular protein nanostructures composed of two different subunit types, H (heavy) and L (light). The two subunits co-assemble into a 24-subunit heteropolymer, with tissue specific distributions, to form shell-like protein structures within which thousands of iron atoms are stored as a soluble inorganic ferric iron core. In-vitro (or in cell free systems), the mechanisms of iron(II) oxidation and formation of the mineral core have been extensively investigated, although it is still unclear how iron is loaded into the protein in-vivo. In contrast, there is a wide spread belief that the major pathway of iron mobilization from ferritin involves a lysosomal proteolytic degradation of ferritin, and the dissolution of the iron mineral core. However, it is still unclear whether other auxiliary iron mobilization mechanisms, involving physiological reducing agents and/or cellular reductases, contribute to the release of iron from ferritin. In vitro iron mobilization from ferritin can be achieved using different reducing agents, capable of easily reducing the ferritin iron core, to produce soluble ferrous ions that are subsequently chelated by strong iron(II)-chelating agents. Here, we review our current understanding of iron mobilization from ferritin by various reducing agents, and report on recent results from our laboratory, in support of a mechanism that involves a one-electron transfer through the protein shell to the iron mineral core. The physiological significance of the iron reductive mobilization from ferritin by the non-enzymatic FMN/NAD(P)H system is also discussed.
Collapse
|