1
|
Wollet M, Hernandez A, Nip K, Ginsburg B, Pugh JR, Kim JH. Impacts of perinatal nicotine exposure on nicotinic acetylcholine receptor expression and glutamatergic synaptic transmission in the mouse auditory brainstem. J Physiol 2025; 603:2857-2876. [PMID: 40320912 PMCID: PMC12072241 DOI: 10.1113/jp286971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
In utero nicotine exposure from maternal smoking is linked to increased risk of auditory processing deficits. This study investigated the impact of developmental nicotine exposure during the critical period on nicotinic acetylcholine receptor (nAChR) functional expression, glutamatergic synaptic transmission and auditory processing in the mouse auditory brainstem. We assessed nAChR function at a central synapse and the consequences of perinatal nicotine exposure (PNE) on synaptic currents and auditory brainstem responses (ABRs) in mice. Our results indicate developmentally regulated changes in nAChR expression in medial nucleus of the trapezoid body (MNTB) neurons and presynaptic calyx of Held terminals. PNE led to increased ACh-evoked postsynaptic currents and impaired glutamatergic neurotransmission, underscoring the importance of nAChR activity in early auditory synaptic development. PNE also increased ABR thresholds and reduced ABR peak amplitudes, indicating impaired central auditory processing without cochlear dysfunction. Our study provides new insights into the synaptic disruptions underlying auditory deficits from prenatal nicotine exposure. KEY POINTS: In utero nicotine exposure leads to increased risk of sensory processing deficits and elevated expression of nicotinic acetylcholine receptors (nAChRs). nAChRs are essential for auditory processing and are present in the auditory brainstem. Within the medial nucleus of the trapezoid body in the auditory brainstem, the patterning of nicotinic receptor expression during development and how nicotine exposure might affect this are unknown. Nicotinic receptors are expressed postsynaptically before hearing onset and switch to presynaptic expression after hearing onset. Perinatal nicotine exposure disrupts physiological nicotinic receptor patterning and impairs synaptic transmission at the calyx of Held.
Collapse
Affiliation(s)
- Mackenna Wollet
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Abram Hernandez
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Kaila Nip
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Brett Ginsburg
- Department of Psychiatry and Behavioral ScienceUT Health San AntonioSan AntonioTexasUSA
| | - Jason R. Pugh
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Jun Hee Kim
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
- Department of Otolaryngology and Cell and Developmental Biology, Kresge Hearing Research InstituteUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Wollet M, Hernandez A, Nip K, Pugh J, Kim JH. Impacts of Perinatal Nicotine Exposure on nAChR Expression and Glutamatergic Synaptic Transmission in the Mouse Auditory Brainstem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592930. [PMID: 38765998 PMCID: PMC11100749 DOI: 10.1101/2024.05.08.592930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Exposure to nicotine in utero, often due to maternal smoking, significantly elevates the risk of auditory processing deficits in offspring. This study investigated the effects of chronic nicotine exposure during a critical developmental period on the functional expression of nicotinic acetylcholine receptors (nAChRs), glutamatergic synaptic transmission, and auditory processing in the mouse auditory brainstem. We evaluated the functionality of nAChRs at a central synapse and explored the impact of perinatal nicotine exposure (PNE) on synaptic currents and auditory brainstem responses (ABR) in mice. Our findings revealed developmentally regulated changes in nAChR expression in the medial nucleus of the trapezoid body (MNTB) neurons and presynaptic Calyx of Held terminals. PNE was associated with enhanced acetylcholine-evoked postsynaptic currents and compromised glutamatergic neurotransmission, highlighting the critical role of nAChR activity in the early stages of auditory synaptic development. Additionally, PNE resulted in elevated ABR thresholds and diminished peak amplitudes, suggesting significant impairment in central auditory processing without cochlear dysfunction. This study provides novel insights into the synaptic disturbances that contribute to auditory deficits resulting from chronic prenatal nicotine exposure, underlining potential targets for therapeutic intervention.
Collapse
|
3
|
Pinky PD, Bloemer J, Smith WD, Du Y, Heslin RT, Setti SE, Pfitzer JC, Chowdhury K, Hong H, Bhattacharya S, Dhanasekaran M, Dityatev A, Reed MN, Suppiramaniam V. Prenatal Cannabinoid Exposure Elicits Memory Deficits Associated with Reduced PSA-NCAM Expression, Altered Glutamatergic Signaling, and Adaptations in Hippocampal Synaptic Plasticity. Cells 2023; 12:2525. [PMID: 37947603 PMCID: PMC10648717 DOI: 10.3390/cells12212525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Cannabis is now one of the most commonly used illicit substances among pregnant women. This is particularly concerning since developmental exposure to cannabinoids can elicit enduring neurofunctional and cognitive alterations. This study investigates the mechanisms of learning and memory deficits resulting from prenatal cannabinoid exposure (PCE) in adolescent offspring. The synthetic cannabinoid agonist WIN55,212-2 was administered to pregnant rats, and a series of behavioral, electrophysiological, and immunochemical studies were performed to identify potential mechanisms of memory deficits in the adolescent offspring. Hippocampal-dependent memory deficits in adolescent PCE animals were associated with decreased long-term potentiation (LTP) and enhanced long-term depression (LTD) at hippocampal Schaffer collateral-CA1 synapses, as well as an imbalance between GluN2A- and GluN2B-mediated signaling. Moreover, PCE reduced gene and protein expression of neural cell adhesion molecule (NCAM) and polysialylated-NCAM (PSA-NCAM), which are critical for GluN2A and GluN2B signaling balance. Administration of exogenous PSA abrogated the LTP deficits observed in PCE animals, suggesting PSA mediated alterations in GluN2A- and GluN2B- signaling pathways may be responsible for the impaired hippocampal synaptic plasticity resulting from PCE. These findings enhance our current understanding of how PCE affects memory and how this process can be manipulated for future therapeutic purposes.
Collapse
Affiliation(s)
- Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10036, USA
| | - Warren D. Smith
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Yifeng Du
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Ryan T. Heslin
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Sharay E. Setti
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Jeremiah C. Pfitzer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Kawsar Chowdhury
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Hao Hong
- Key Laboratory of Neuropsychiatric Diseases, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
- Keck Graduate Institute, School of Pharmacy and Health Sciences, Claremont Colleges, Claremont, CA 91711, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 37075 Magdeburg, Germany
| | - Alexander Dityatev
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 37075 Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Steinke I, Govindarajulu M, Pinky PD, Bloemer J, Yoo S, Ward T, Schaedig T, Young T, Wibowo FS, Suppiramaniam V, Amin RH. Selective PPAR-Delta/PPAR-Gamma Activation Improves Cognition in a Model of Alzheimer's Disease. Cells 2023; 12:1116. [PMID: 37190025 PMCID: PMC10136457 DOI: 10.3390/cells12081116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Background: The continuously increasing association of Alzheimer's disease (AD) with increased mortality rates indicates an unmet medical need and the critical need for establishing novel molecular targets for therapeutic potential. Agonists for peroxisomal proliferator activating receptors (PPAR) are known to regulate energy in the body and have shown positive effects against Alzheimer's disease. There are three members of this class (delta, gamma, and alpha), with PPAR-gamma being the most studied, as these pharmaceutical agonists offer promise for AD because they reduce amyloid beta and tau pathologies, display anti-inflammatory properties, and improve cognition. However, they display poor brain bioavailability and are associated with several adverse side effects on human health, thus limiting their clinical application. Methods: We have developed a novel series of PPAR-delta and PPAR-gamma agonists in silico with AU9 as our lead compound that displays selective amino acid interactions focused upon avoiding the Tyr-473 epitope in the PPAR-gamma AF2 ligand binding domain. Results: This design helps to avoid the unwanted side effects of current PPAR-gamma agonists and improve behavioral deficits and synaptic plasticity while reducing amyloid-beta levels and inflammation in 3xTgAD animals. Conclusions: Our innovative in silico design of PPAR-delta/gamma agonists may offer new perspectives for this class of agonists for AD.
Collapse
Affiliation(s)
- Ian Steinke
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Priyanka Das Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Jenna Bloemer
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Sieun Yoo
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Tracey Ward
- Department of Pharmaceutical Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Taylor Schaedig
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Taylor Young
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Fajar Setyo Wibowo
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
- College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 31044, USA
| | - Rajesh H. Amin
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| |
Collapse
|
5
|
McCarthy DM, Zhang L, Wilkes BJ, Vaillancourt DE, Biederman J, Bhide PG. Nicotine and the developing brain: Insights from preclinical models. Pharmacol Biochem Behav 2022; 214:173355. [PMID: 35176350 PMCID: PMC9063417 DOI: 10.1016/j.pbb.2022.173355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Use of tobacco products during pregnancy is associated with increased risk for neurodevelopmental disorders in the offspring. Preclinical models of developmental nicotine exposure have offered valuable insights into the neurobiology of nicotine's effects on the developing brain and demonstrated lasting effects of developmental nicotine exposure on brain structure, neurotransmitter signaling and behavior. These models have facilitated discovery of novel compounds as candidate treatments for attention deficit hyperactivity disorder, a neurodevelopmental disorder associated with prenatal nicotine exposure. Using these models the significance of heritability of behavioral phenotypes from the nicotine-exposed pregnant female or adult male to multiple generations of descendants has been demonstrated. Finally, research using the preclinical models has demonstrated synergistic interactions between developmental nicotine exposure and repetitive mild traumatic brain injury that contribute to "worse" outcomes from the injury in individuals with attention deficit hyperactivity disorder associated with developmental nicotine exposure.
Collapse
Affiliation(s)
- Deirdre M McCarthy
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Lin Zhang
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Bradley J Wilkes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - Joseph Biederman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America.
| |
Collapse
|
6
|
Polli FS, Kohlmeier KA. Prenatal nicotine alters development of the laterodorsal tegmentum: Possible role for attention-deficit/hyperactivity disorder and drug dependence. World J Psychiatry 2022; 12:212-235. [PMID: 35317337 PMCID: PMC8900586 DOI: 10.5498/wjp.v12.i2.212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
As we cycle between the states of wakefulness and sleep, a bilateral cholinergic nucleus in the pontine brain stem, the laterodorsal tegmentum (LDT), plays a critical role in controlling salience processing, attention, behavioral arousal, and electrophysiological signatures of the sub- and microstates of sleep. Disorders involving abnormal alterations in behavioral and motivated states, such as drug dependence, likely involve dysfunctions in LDT signaling. In addition, as the LDT exhibits connectivity with the thalamus and mesocortical circuits, as well as receives direct, excitatory input from the prefrontal cortex, a role for the LDT in cognitive symptoms characterizing attention-deficit/hyperactivity disorder (ADHD) including impulsivity, inflexibility, and dysfunctions of attention is suggested. Prenatal nicotine exposure (PNE) is associated with a higher risk for later life development of drug dependence and ADHD, suggesting alteration in development of brain regions involved in these behaviors. PNE has been shown to alter glutamate and cholinergic signaling within the LDT. As glutamate and acetylcholine are major excitatory mediators, these alterations would likely alter excitatory output to target regions in limbic motivational circuits and to thalamic and cortical networks mediating executive control. Further, PNE alters neuronal development and transmission within prefrontal cortex and limbic areas that send input to the LDT, which would compound effects of differential processing within the PNE LDT. When taken together, alterations in signaling in the LDT are likely to play a role in negative behavioral outcomes seen in PNE individuals, including a heightened risk of drug dependence and ADHD behaviors.
Collapse
Affiliation(s)
- Filip S Polli
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
7
|
Stojanovic T, Velarde Gamez D, Schuld GJ, Bormann D, Cabatic M, Uhrin P, Lubec G, Monje FJ. Age-Dependent and Pathway-Specific Bimodal Action of Nicotine on Synaptic Plasticity in the Hippocampus of Mice Lacking the miR-132/212 Genes. Cells 2022; 11:261. [PMID: 35053378 PMCID: PMC8774101 DOI: 10.3390/cells11020261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
Nicotine addiction develops predominantly during human adolescence through smoking. Self-administration experiments in rodents verify this biological preponderance to adolescence, suggesting evolutionary-conserved and age-defined mechanisms which influence the susceptibility to nicotine addiction. The hippocampus, a brain region linked to drug-related memory storage, undergoes major morpho-functional restructuring during adolescence and is strongly affected by nicotine stimulation. However, the signaling mechanisms shaping the effects of nicotine in young vs. adult brains remain unclear. MicroRNAs (miRNAs) emerged recently as modulators of brain neuroplasticity, learning and memory, and addiction. Nevertheless, the age-dependent interplay between miRNAs regulation and hippocampal nicotinergic signaling remains poorly explored. We here combined biophysical and pharmacological methods to examine the impact of miRNA-132/212 gene-deletion (miRNA-132/212-/-) and nicotine stimulation on synaptic functions in adolescent and mature adult mice at two hippocampal synaptic circuits: the medial perforant pathway (MPP) to dentate yrus (DG) synapses (MPP-DG) and CA3 Schaffer collaterals to CA1 synapses (CA3-CA1). Basal synaptic transmission and short-term (paired-pulse-induced) synaptic plasticity was unaltered in adolescent and adult miRNA-132/212-/- mice hippocampi, compared with wild-type controls. However, nicotine stimulation promoted CA3-CA1 synaptic potentiation in mature adult (not adolescent) wild-type and suppressed MPP-DG synaptic potentiation in miRNA-132/212-/- mice. Altered levels of CREB, Phospho-CREB, and acetylcholinesterase (AChE) expression were further detected in adult miRNA-132/212-/- mice hippocampi. These observations propose miRNAs as age-sensitive bimodal regulators of hippocampal nicotinergic signaling and, given the relevance of the hippocampus for drug-related memory storage, encourage further research on the influence of miRNAs 132 and 212 in nicotine addiction in the young and the adult brain.
Collapse
Affiliation(s)
- Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| | - David Velarde Gamez
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| | - Gabor Jorrid Schuld
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| | - Daniel Bormann
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
- Laboratory for Cardiac and Thoracic Diagnosis, Department of Surgery, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Maureen Cabatic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria; (D.V.G.); (G.J.S.); (D.B.); (M.C.)
| |
Collapse
|
8
|
Developmental nicotine exposure impairs memory and reduces acetylcholine levels in the hippocampus of mice. Brain Res Bull 2021; 176:1-7. [PMID: 34358612 DOI: 10.1016/j.brainresbull.2021.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022]
Abstract
Nicotine is a strong psychoactive and addictive compound found in tobacco. Use of nicotine in the form of smoking, vaping or other less common methods during pregnancy has been shown to be related to poor health conditions, including cognitive problems, in babies and children. However, mechanisms of such cognitive deficits are not fully understood. In this study we analyzed hippocampus dependent cognitive deficits using a mouse model of developmental nicotine exposure. Pregnant dams were exposed to nicotine and experiments were performed in one month old offspring. Our results show that nicotine exposure did not affect locomotor behavior in mice. Hippocampus dependent working memory and object location memory were diminished in nicotine exposed mice. Furthermore, acetylcholine levels in the hippocampus of nicotine exposed mice were reduced along with reduced activity of acetylcholinesterase enzyme. Analysis of transcripts for proteins that are known to regulate acetylcholine levels revealed a decline in mRNA levels of high affinity choline transporters in the hippocampus of nicotine exposed mice but those of vesicular acetylcholine transporter, choline acetyltransferase, and α7-nicotinic acetylcholine receptors were not altered. These results suggest that developmental nicotine exposure impairs hippocampus dependent memory forms and this effect is likely mediated by altered cholinergic function.
Collapse
|
9
|
Alhowail AH, Pinky PD, Eggert M, Bloemer J, Woodie LN, Buabeid MA, Bhattacharya S, Jasper SL, Bhattacharya D, Dhanasekaran M, Escobar M, Arnold RD, Suppiramaniam V. Doxorubicin induces dysregulation of AMPA receptor and impairs hippocampal synaptic plasticity leading to learning and memory deficits. Heliyon 2021; 7:e07456. [PMID: 34296005 PMCID: PMC8282984 DOI: 10.1016/j.heliyon.2021.e07456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent used widely to treat a variety of malignant cancers. However, Dox chemotherapy is associated with several adverse effects, including "chemobrain," the observation that cancer patients exhibit through learning and memory difficulties extending even beyond treatment. This study investigated the effect of Dox treatment on learning and memory as well as hippocampal synaptic plasticity. Dox-treated mice (5 mg/kg weekly x 5) demonstrated impaired performance in the Y-maze spatial memory task and a significant reduction in hippocampal long-term potentiation. The deficit in synaptic plasticity was mirrored by deficits in the functionality of synaptic `α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) channels, including reduced probability of opening, decreased dwell open time, and increased closed times. Furthermore, a reduction in the AMPAR subunit GluA1 level, its downstream signaling molecule Ca2+/calmodulin-dependent protein kinase (CaMKII), and brain-derived neurotrophic factor (BDNF) were observed. This was also accompanied by an increase in extracellular signal regulated kinase (ERK) and protein kinase B (AKT) activation. Together these data suggest that Dox-induced cognitive impairments are at least partially due to alterations in the expression and functionality of the glutamatergic AMPAR system.
Collapse
Affiliation(s)
- Ahmad H. Alhowail
- Department of Pharmacology and Toxicology, Qassim University, Buraydah, Saudi Arabia
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Matthew Eggert
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, USA
| | - Lauren N. Woodie
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, Alabama, USA
- Institute for Diabetes, Obesity and Metabolism, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manal A. Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Shanese L. Jasper
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | | | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Martha Escobar
- Department of Psychology, Oakland University, Rochester, MI, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| |
Collapse
|
10
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
11
|
Govindarajulu M, Pinky PD, Steinke I, Bloemer J, Ramesh S, Kariharan T, Rella RT, Bhattacharya S, Dhanasekaran M, Suppiramaniam V, Amin RH. Gut Metabolite TMAO Induces Synaptic Plasticity Deficits by Promoting Endoplasmic Reticulum Stress. Front Mol Neurosci 2020; 13:138. [PMID: 32903435 PMCID: PMC7437142 DOI: 10.3389/fnmol.2020.00138] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/09/2020] [Indexed: 01/26/2023] Open
Abstract
Dysbiosis of gut microbiota is strongly associated with metabolic diseases including diabetes mellitus, obesity, and cardiovascular disease. Recent studies indicate that Trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite is implicated in the development of age-related cognitive decline. However, the mechanisms of the impact of TMAO on neuronal function has not been elucidated. In the current study, we investigated the relationship between TMAO and deficits in synaptic plasticity in an Alzheimer’s model (3×Tg-AD) and insulin resistance (Leptin deficient db/db) mouse by measuring plasma and brain levels of TMAO. We observed increased TMAO levels in the plasma and brain of both db/db and 3×Tg-AD mice in comparison to wild-type mice. Besides, TMAO levels further increased as mice progressed in age. Deficits in synaptic plasticity, in the form of reduced long-term potentiation (LTP), were noted in both groups of mice in comparison to wild-type mice. To further explore the impact of TMAO on neuronal function, we utilized an ex-vivo model by incubating wild-type hippocampal brain slices with TMAO and found impaired synaptic transmission. We observed that TMAO induced the PERK-EIF2α-ER stress signaling axis in TMAO treated ex-vivo slices as well as in both db/db and 3×Tg-AD mice. Lastly, we also observed altered presynaptic and reduced postsynaptic receptor expression. Our findings suggest that TMAO may induce deficits in synaptic plasticity through the ER stress-mediated PERK signaling pathway. Our results offer novel insight into the mechanism by which TMAO may induce cognitive deficits by promoting ER stress and identifies potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Priyanka D Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Ian Steinke
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, United States
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Thiruchelvan Kariharan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Robert T Rella
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Rajesh H Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| |
Collapse
|
12
|
Eliasen JN, Krall J, Frølund B, Kohlmeier KA. Sex-specific alterations in GABA receptor-mediated responses in laterodorsal tegmentum are associated with prenatal exposure to nicotine. Dev Neurobiol 2020; 80:178-199. [PMID: 32628361 DOI: 10.1002/dneu.22772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Smoking during pregnancy is associated with deleterious physiological and cognitive effects on the offspring, which are likely due to nicotine-induced alteration in the development of neurotransmitter systems. Prenatal nicotine exposure (PNE) in rodents is associated with changes in behaviors controlled in part by the pontine laterodorsal tegmentum (LDT), and LDT excitatory signaling is altered in a sex and age-dependent manner by PNE. As effects on GABAergic LDT signaling are unknown, we used calcium imaging to evaluate GABAA receptor- (GABAA R as well as GABAA -ρ R) and GABAB receptor (GABAB R)-mediated calcium responses in LDT brain slices from female and male PNE mice in two different age groups. Overall, in older PNE females, changes in calcium induced by stimulation of GABAA R and GABAB R, including GABAA -ρ R were shifted toward calcium rises. In both young and old males, PNE was associated with alterations in calcium mediated by all three receptors; however, the GABAA R was the most affected. These results show for the first time that PNE is associated with alterations in GABAergic transmission in the LDT in a sex- and age-dependent manner, and these data are the first to show PNE-associated alterations in functionality of GABA receptors in any nucleus. PNE-associated alterations in LDT GABAergic transmission within the LDT would be expected to alter output to target regions and could play a role in LDT-implicated, negative behavioral outcomes following gestational exposure to smoking. Accordingly, our data provide further supportive evidence of the importance of eliminating the consumption of nicotine during pregnancy.
Collapse
Affiliation(s)
- Jannik Nicklas Eliasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Mamiya T, Tanase S, Takeuchi S, Kato S, Ito A, Hiramatsu M, Nabeshima T. Galantamine improves enhanced impulsivity, impairments of attention and long-term potentiation induced by prenatal nicotine exposure to mice. Biochem Pharmacol 2020; 180:114139. [PMID: 32652142 DOI: 10.1016/j.bcp.2020.114139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Prenatal nicotine exposure (PNE) causes behavioral abnormalities in offspring, such as an enhancement of impulsivity and decrease in attention at adolescence. Here we examined the effects of galantamine (GAL) on the behavioral and electrophysiological changes induced by PNE in mice. Pregnant C57BL/6J mice were exposed to nicotine (0.2 mg/mL) dissolved in sweetened (2% saccharin) drinking water during gestational day 14 and perinatal day 0 (P0). At the ages of postnatal days 42-49 (P42-P49), female offspring displayed impulsivity in the cliff avoidance test and impairment of visual attention in the object-based attention test. Decrease of long-term potentiation (LTP) and extracellular glutamate levels were observed in the prefrontal cortex of PNE mice. Systemic treatment with GAL (1 mg/kg, s.c.), an allosteric potentiating ligand for the nicotinic acetylcholine receptor (nAChR) and a weak cholinesterase inhibitor, attenuated the enhancement of impulsivity and impairment of attention induced by PNE in mice. Further, GAL reversed the impairment of LTP induced by PNE in the prefrontal cortex of mice, although it failed to attenuate the decrease of extracellular glutamate levels. The effects of GAL were blocked by an α 7 nAChR antagonist, methyllycaconitine (1 mg/kg, i.p.). These results suggest that PNE during cortex development affects nicotinic cholinergic-dependent plasticity and formation of impulsivity and attention. Furthermore, GAL could be a useful drug for cognitive impairments-related to attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan.
| | - Shota Tanase
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shino Takeuchi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shunsuke Kato
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Ai Ito
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| |
Collapse
|
14
|
Polli FS, Scharff MB, Ipsen TH, Aznar S, Kohlmeier KA, Andreasen JT. Prenatal nicotine exposure in mice induces sex-dependent anxiety-like behavior, cognitive deficits, hyperactivity, and changes in the expression of glutamate receptor associated-genes in the prefrontal cortex. Pharmacol Biochem Behav 2020; 195:172951. [PMID: 32439454 DOI: 10.1016/j.pbb.2020.172951] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
In rodents, prenatal nicotine exposure (PNE) has been associated with increased risk for development of cognitive and emotional disturbances, but the findings are somewhat conflicting. Lack of behavioral alterations following PNE could be due to the variety of methods available for nicotine delivery, exposure time and species used, with inbred strains being mostly employed. Such differences suggest the need to investigate the behavioral phenotype in each PNE model available if we are to find models with enhanced translational value. In this study, we assessed sex-dependent effects of PNE on ADHD-related behaviors and on the levels of mRNA coding for glutamate receptor subunits within the prefrontal cortex in the outbred NMRI mice exposed to nicotine via maternal drinking water during gestation. Cotinine levels were assessed in newborn pups. Behaviors related to anxiety, compulsivity, working memory, and locomotion were evaluated in both sexes of young adult offspring using the elevated zero maze, marble burying, spontaneous alternation behavior, and locomotor activity tests. Expression of mRNA coding for different glutamate receptors subunits within the prefrontal cortex (PFC) was measured using RT-qPCR. Cotinine levels in the serum of newborns confirmed fetal nicotine exposure. Both male and female offspring showed ADHD-like behaviors, such as deficit in the SAB test and hyperactivity. In addition, PNE male mice displayed anxiety- and compulsive-like behaviors, effects that were absent in female offspring. Finally, PNE reduced the mRNA expression of GluN1-, GluN2B-, and mGluR2-related genes within the PFC of male offspring, whereas it reduced the expression of mRNA coding for GluA2 subunit in female mice. PNE in NMRI mice induced sex-dependent behavioral changes, which parallels clinical findings following maternal cigarette smoke exposure. Alterations detected in PFC mRNA glutamate receptor proteins could contribute to the abnormal behavioral responses observed, but other signaling pathways or brain regions are likely involved in the behavioral susceptibility of PNE individuals.
Collapse
Affiliation(s)
- Filip S Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Malthe B Scharff
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Theis H Ipsen
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
15
|
Cellular and Molecular Changes in Hippocampal Glutamate Signaling and Alterations in Learning, Attention, and Impulsivity Following Prenatal Nicotine Exposure. Mol Neurobiol 2020; 57:2002-2020. [PMID: 31916029 DOI: 10.1007/s12035-019-01854-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Over 70 million European pregnant women are smokers during their child-bearing years. Consumption of tobacco-containing products during pregnancy is associated with several negative behavioral outcomes for the offspring, including a higher susceptibility for the development of attention-deficit/hyperactive disorder (ADHD). In efforts to minimize fetal exposure to tobacco smoke, many women around the world switch to nicotine replacement therapies (NRTs) during the gestational period; however, prenatal nicotine exposure (PNE) in any form has been associated with alterations in cognitive processes, including learning, memory, and attention. These processes are controlled by glutamatergic signaling of hippocampal pyramidal neurons within the CA1 region, suggesting actions of nicotine on glutamatergic transmission in this region if present prenatally. Accordingly, we aimed to investigate hippocampal glutamatergic function following PNE treatment in NMRI mice employing molecular, cellular electrophysiology, and pharmacological approaches, as well as to evaluate cognition in the rodent continuous performance task (rCPT), a recently developed mouse task allowing assessment of learning, attention, and impulsivity. PNE induced increases in the expression levels of mRNA coding for different glutamate receptors and subunits within the hippocampus. Functional alterations in AMPA and NMDA receptors on CA1 pyramidal neurons of PNE mice were suggestive of higher GluA2-lacking and lower GluN2A-containing receptors, respectively. Finally, PNE was associated with reduced learning, attention, and enhanced impulsivity in the rCPT. Alterations in glutamatergic functioning in CA1 neurons parallel changes seen in the spontaneously hypertensive rat ADHD model and likely contribute to the lower cognitive performance in the rCPT.
Collapse
|
16
|
Polli FS, Kohlmeier KA. Alterations in NMDAR-mediated signaling within the laterodorsal tegmental nucleus are associated with prenatal nicotine exposure. Neuropharmacology 2019; 158:107744. [DOI: 10.1016/j.neuropharm.2019.107744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022]
|
17
|
Polli FS, Kohlmeier KA. Prenatal Nicotine Exposure in Rodents: Why Are There So Many Variations in Behavioral Outcomes? Nicotine Tob Res 2019; 22:1694-1710. [DOI: 10.1093/ntr/ntz196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/05/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Introduction
The World Health Organization (WHO) reported that smoking cessation rates among women have stagnated in the past decade and estimates that hundreds of millions of women will be smokers in the next decade. Social, environmental, and biological conditions render women more susceptible to nicotine addiction, imposing additional challenges to quit smoking during gestation, which is likely why more than 8% of pregnancies in Europe are associated with smoking. In epidemiological investigations, individuals born from gestational exposure to smoking exhibit a higher risk of development of attention-deficit/hyperactive disorder (ADHD) and liability to drug dependence. Among other teratogenic compounds present in tobacco smoke, nicotine actions during neuronal development could contribute to the observed outcomes as nicotine misleads signaling among progenitor cells during brain development. Several experimental approaches have been developed to address the consequences of prenatal nicotine exposure (PNE) to the brain and behavior but, after four decades of studies, inconsistent data have been reported and the lack of consensus in the field has compromised the hypothesis that gestational nicotine exposure participates in cognitive and emotional behavioral deficits.
Aims
In this review, we discuss the most commonly used PNE models with focus on their advantages and disadvantages, their relative validity, and how the different technical approaches could play a role in the disparate outcomes.
Results
We propose methodological considerations, which could improve the translational significance of the PNE models.
Conclusions
Such alterations might be helpful in reconciling experimental findings, as well as leading to development of treatment targets for maladaptive behaviors in those prenatally exposed.
Implications
In this article, we have reviewed the advantages and disadvantages of different variables of the commonly used experimental models of PNE. We discuss how variations in the nicotine administration methods, the timing of nicotine exposure, nicotine doses, and species employed could contribute to the disparate findings in outcomes for PNE offspring, both in behavior and neuronal changes. In addition, recent findings suggest consideration of epigenetic effects extending across generations. Finally, we have suggested improvements in the available PNE models that could contribute to the enhancement of their validity, which could assist in the reconciliation of experimental findings.
Collapse
Affiliation(s)
- Filip Souza Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Yan X, Zhao F, Zhang S, Lei F, Wang W, Zheng Y. Hydrogen sulfide ameliorates disorders in the parafacial respiratory group region of neonatal rats caused by prenatal cigarette smoke exposure via an antioxidative effect. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:80-90. [PMID: 30878717 DOI: 10.1016/j.etap.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
We previously found that hydrogen sulfide (H2S) ameliorated the dysfunction of central chemoreception caused by prenatal cigarette smoke exposure (CSE). In the present study, we further explored whether the parafacial respiratory group (pFRG) is involved in the protection of central chemoreception by H2S against prenatal CSE-induced injury. We found that NaHS, a donor of H2S, restored the expression of Phox2b, which was downregulated by prenatal CSE, in the pFRG region of neonatal rats. NaHS also relieved the prenatal CSE-induced excitatory synapse disturbance in the pFRG region of neonatal rats. Additionally, NaHS prevented the increase in the malondialdehyde level and suppression of antioxidase activity in the pFRG region of neonatal rats induced by prenatal CSE. Furthermore, NaHS prevented the downregulation of the expression of antioxidases and Nrf2 in the pFRG region of neonatal rats with prenatal CSE. These results suggest that H2S can protect the pFRG of neonatal rats against prenatal CSE-induced injury via an antioxidative effect.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Fusheng Zhao
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, 157011 Heilongjiang, PR China
| | - Senfeng Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Fang Lei
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Wen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Yu Zheng
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China.
| |
Collapse
|
19
|
Torres LH, Garcia RCT, Blois AMM, Pacheco-Neto M, Camarini R, Britto LR, Marcourakis T. Early postnatal tobacco smoke exposure triggers anxiety-like behavior and decreases synaptic proteins even after a long exposure-free period in mice. Brain Res 2019; 1707:99-106. [DOI: 10.1016/j.brainres.2018.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/30/2018] [Accepted: 11/17/2018] [Indexed: 12/29/2022]
|
20
|
Bloemer J, Pinky PD, Smith WD, Bhattacharya D, Chauhan A, Govindarajulu M, Hong H, Dhanasekaran M, Judd R, Amin RH, Reed MN, Suppiramaniam V. Adiponectin Knockout Mice Display Cognitive and Synaptic Deficits. Front Endocrinol (Lausanne) 2019; 10:819. [PMID: 31824431 PMCID: PMC6886372 DOI: 10.3389/fendo.2019.00819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Adiponectin is an adipokine that has recently been under investigation for potential neuroprotective effects in various brain disorders including Alzheimer's disease, stroke, and depression. Adiponectin receptors (AdipoR1 and AdipoR2) are found throughout various brain regions, including the hippocampus. However, the role of these receptors in synaptic and cognitive function is not clear. Therefore, the goal of the current study was to evaluate synaptic and cognitive function in the absence of adiponectin. The current study utilized 12-month-old adiponectin knockout (APN-KO) mice and age-matched controls to study cognitive and hippocampal synaptic alterations. We determined that AdipoR1 and AdipoR2 are present in the synaptosome, with AdipoR2 displaying increased presynaptic vs. postsynaptic localization, whereas AdipoR1 was enriched in both the presynaptic and postsynaptic fractions. APN-KO mice displayed cognitive deficits in the novel object recognition (NOR) and Y-maze tests. This was mirrored by deficits in long-term potentiation (LTP) of the hippocampal Schaefer collateral pathway in APN-KO mice. APN-KO mice also displayed a reduction in basal synaptic transmission and an increase in presynaptic release probability. Deficits in LTP were rescued through hippocampal slice incubation with the adiponectin receptor agonist, AdipoRon, indicating that acute alterations in adiponectin receptor signaling influence synaptic function. Along with the deficits in LTP, altered levels of key presynaptic and postsynaptic proteins involved in glutamatergic neurotransmission were observed in APN-KO mice. Taken together, these results indicate that adiponectin is an important regulator of cognition and synaptic function in the hippocampus. Future studies should examine the role of specific adiponectin receptors in synaptic processes.
Collapse
Affiliation(s)
- Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Warren D. Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Dwipayan Bhattacharya
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Alisa Chauhan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Hao Hong
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Robert Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Rajesh H. Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- *Correspondence: Miranda N. Reed
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- Vishnu Suppiramaniam
| |
Collapse
|
21
|
Omotoso GO, Kadir RE, Sulaimon FA, Jaji-Sulaimon R, Gbadamosi IT. Prenatal Exposure to Gestational Nicotine before Neurulation is Detrimental to Neurodevelopment of Wistar Rats' Offspring. Malays J Med Sci 2018; 25:35-47. [PMID: 30914861 PMCID: PMC6419881 DOI: 10.21315/mjms2018.25.5.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background and aim This study aimed to determine the effect of gestational nicotine exposure before neurodevelopment on the morphology and histology of the prefrontal cortex (PFC) in rats. Methodology Adult female Wistar rats were time-mated and grouped into three categories: (a) control-given 0.1 mL of normal saline, (b) low-dose nicotine-given 6.88 mg/ kg/d/0.05 mL, and (c) high-dose nicotine-given 13.76 mg/kg/d/0.1 mL in two divided doses. Treatment was given intraperitoneally from gestational days 2 to 6. On postnatal day 15 (P15), the pups were separated from their mothers, anaesthetised and sacrificed, followed by intracardial perfusion with 4% paraformaldehyde. PFC was excised from the brain and processed for tissue histology, histochemistry, and morphology of brain cells. Results Gestational nicotine exposure during the first week of gestation in rats significantly reduced birth weights in nicotine-treated groups compared with control; it, however, accelerated body weights, altered neuronal morphology, and elevated astrocytic count significantly, while oligodendroglial count was slightly increased in the PFC of juvenile rats examined at P15. Conclusion These alterations revealed that gestational nicotine exposure before the commencement of the cellular processes involved in brain development negatively affects neurodevelopment, and this could result in neurological dysfunctions in later life.
Collapse
Affiliation(s)
- Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Risikat Eniola Kadir
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Fatima A Sulaimon
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Rukayat Jaji-Sulaimon
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ismail Temitayo Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
22
|
Ipsen TH, Polli FS, Kohlmeier KA. Calcium rises induced by AMPA and nicotine receptors in the ventral tegmental area show differences in mouse brain slices prenatally exposed to nicotine. Dev Neurobiol 2018; 78:828-848. [PMID: 29923678 DOI: 10.1002/dneu.22607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Nicotine exposure during gestation is associated with a higher risk of adverse behavioral outcomes including a heightened liability for dependency to drugs of abuse, which can exhibit drug-specificity influenced by gender. This enhanced liability suggests that nicotine use during pregnancy alters neural development in circuits involved in motivation and reward-based learning. The ventral tegmental area (VTA) is critical in motivated behaviors and we hypothesized that gestational exposure to nicotine alters the development of excitatory circuits in this nucleus. Accordingly, in VTA brain slices from male and female mice exposed to nicotine during the prenatal period (PNE) and controls, we compared cellular rises in calcium induced by AMPA receptor and nicotinic acetylcholine receptor (nAChR) stimulation by use of the ratiometric calcium binding dye, Fura-2AM. We found that AMPA induced smaller amplitude calcium rises in the PNE VTA, which was an effect only detected in males. Further, while the amplitude did not vary between treatment and control in females, a greater number of cells responded with rises in calcium in the PNE. Conversely, the proportions of cells responding with calcium rises induced by nAChR stimulation did not change in either gender according to treatment. However, larger rises in calcium in PNE females were detected. When taken together our data show that excitatory signaling in the VTA is altered in a gender-specific manner by PNE and suggest that alterations in signaling could play a role in drug-specific differences in maladaptive, motivated behaviors exhibited by males and females born to mothers exposed to nicotine during pregnancy. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 2018.
Collapse
Affiliation(s)
- Theis H Ipsen
- Faculty of Health Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Filip S Polli
- Faculty of Health Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Kristi A Kohlmeier
- Faculty of Health Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
23
|
Maternal Overnutrition Programs Central Inflammation and Addiction-Like Behavior in Offspring. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8061389. [PMID: 30027100 PMCID: PMC6031166 DOI: 10.1155/2018/8061389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 12/21/2022]
Abstract
Obesity or maternal overnutrition during pregnancy and lactation might have long-term consequences in offspring health. Fetal programming is characterized by adaptive responses to specific environmental conditions during early life stages. Programming alters gene expression through epigenetic modifications leading to a transgenerational effect of behavioral phenotypes in the offspring. Maternal intake of hypercaloric diets during fetal development programs aberrant behaviors resembling addiction in offspring. Programming by hypercaloric surplus sets a gene expression pattern modulating axonal pruning, synaptic signaling, and synaptic plasticity in selective regions of the reward system. Likewise, fetal programming can promote an inflammatory phenotype in peripheral and central sites through different cell types such as microglia and T and B cells, which contribute to disrupted energy sensing and behavioral pathways. The molecular mechanism that regulates the central and peripheral immune cross-talk during fetal programming and its relevance on offspring's addictive behavior susceptibility is still unclear. Here, we review the most relevant scientific reports about the impact of hypercaloric nutritional fetal programming on central and peripheral inflammation and its effects on addictive behavior of the offspring.
Collapse
|
24
|
Polli FS, Kohlmeier KA. Prenatal nicotine exposure alters postsynaptic AMPA receptors and glutamate neurotransmission within the laterodorsal tegmentum (LDT) of juvenile mice. Neuropharmacology 2018; 137:71-85. [PMID: 29751228 DOI: 10.1016/j.neuropharm.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023]
Abstract
Despite dissemination of information regarding the harm on fetal development of smoking while pregnant, the number of pregnancies associated with nicotine exposure appears to have stagnated. Presence of nicotine during neural formulation is associated with a higher susceptibility of drug dependence, suggesting an altered development of neurons in circuits involved in saliency and motivation. The laterodorsal tegmental nucleus (LDT) plays a role in coding stimuli valence via afferents to mesolimbic nuclei. Accordingly, alterations in development of neural mechanisms in the LDT could be involved in vulnerability to drug dependency. Therefore, we examined the effect of prenatal nicotine exposure (PNE) on glutamatergic functioning of LDT neurons in mouse brain slices using whole-cell, patch clamp concurrent with fluorescence-based calcium imaging. PNE was associated with larger amplitudes of AMPA-induced currents, and greater AMPA-mediated rises in intracellular calcium. AMPA/NMDA ratios and the AMPA-current rectification index were lower and higher, respectively, consistent with changes in the functionality of AMPA receptors in the PNE, which was substantiated by a greater inhibition of evoked and spontaneous glutamatergic synaptic events by a selective inhibitor of GluA2-lacking AMPA receptors. Paired pulse ratios showed a decreased probability of glutamate release from presynaptic inputs, and fluorescent imaging indicated a decreased action potential-dependent calcium increase associated with PNE. When taken together, our data suggest that PNE alters LDT glutamatergic functioning, which could alter output to mesolimbic targets. Such an alteration could play a role in altered coding of relevancy of drug stimuli that could enhance risk for development of drug dependency.
Collapse
Affiliation(s)
- Filip S Polli
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
25
|
Zhang M, Xu W, He G, Zhang D, Zhao X, Dai J, Wu J, Cao Y, Wang Z, Wang L, Qiao Z. Maternal nicotine exposure has severe cross-generational effects on offspring behavior. Behav Brain Res 2018; 348:263-266. [PMID: 29698694 DOI: 10.1016/j.bbr.2018.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/27/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
Our previous studies showed that paternal nicotine exposure can lead to hyperactivity in the offspring. Nevertheless, the cross-generational effects of maternal and biparental nicotine exposure remain unclear. In this study, female and male mice were exposed respectively by nicotine before pregnancy. The maternal pre-pregnancy nicotine exposure led to depression-like behaviors in the F1 offspring. However, after biparental pre-pregnancy nicotine exposure, seventy percentage of the offspring exhibited a depressive phenotype while 20% were hyperactive, and the remaining exhibited no obvious abnormal behavior. The cross-generational effects appeared to be mediated via disruption of the balance between GSK3 and p-GKS3 by nicotine. These results suggested that pre-pregnancy nicotine exposure can induce alterations in the behavior of the offspring, and the cross-generational effects of maternal nicotine exposure were particularly serious.
Collapse
Affiliation(s)
- Meixing Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Wangjie Xu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dong Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xianglong Zhao
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Jingbo Dai
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Jiajie Wu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yong Cao
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Zhaoxia Wang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Lianyun Wang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Zhongdong Qiao
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China; Shanghai Key Laboratory of reproductive medicine, School of medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
26
|
Zeid D, Kutlu MG, Gould TJ. Differential Effects of Nicotine Exposure on the Hippocampus Across Lifespan. Curr Neuropharmacol 2018; 16:388-402. [PMID: 28714396 PMCID: PMC6018186 DOI: 10.2174/1570159x15666170714092436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Nicotine exposure affects the hippocampus through activation of hippocampal nicotinic acetylcholine receptors (nAChRs), which are present throughout excitatory and inhibitory hippocampal circuitry. The role of cholinergic functioning in the hippocampus varies across developmental stages so that nicotine exposure differentially affects this region depending upon timing of exposure, producing developmentally distinct changes in structure, function, and behavior. METHODS We synthesize findings across literature in this area to comprehensively review current understanding of the unique effects of nicotine exposure on the hippocampus throughout the lifespan with a focus on hippocampal morphology, cholinergic functioning, and hippocampusdependent learning and memory. CONCLUSIONS Chronic and acute nicotine exposure differentially affect hippocampus structure, functioning, and related learning and memory in the perinatal period, adolescence, and aging. Age-related differences in sensitivity to nicotine exposure should be considered in the research of nicotine addiction and the development of nicotine addiction treatments.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J. Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| |
Collapse
|
27
|
Bhakta A, Gavini K, Yang E, Lyman-Henley L, Parameshwaran K. Chronic traumatic stress impairs memory in mice: Potential roles of acetylcholine, neuroinflammation and corticotropin releasing factor expression in the hippocampus. Behav Brain Res 2017; 335:32-40. [DOI: 10.1016/j.bbr.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022]
|
28
|
Hu F, Li T, Gong H, Chen Z, Jin Y, Xu G, Wang M. Bisphenol A Impairs Synaptic Plasticity by Both Pre- and Postsynaptic Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600493. [PMID: 28852612 PMCID: PMC5566242 DOI: 10.1002/advs.201600493] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/10/2017] [Indexed: 05/30/2023]
Abstract
Bisphenol A (BPA), an environmental xenoestrogen, has been reported to induce learning and memory impairments in rodent animals. However, effects of BPA exposure on synaptic plasticity and the underlying physiological mechanisms remain elusive. Our behavioral and electrophysiological analyses show that BPA obviously perturbs hippocampal spatial memory of juvenile Sprague-Dawley rats after four weeks exposure, with significantly impaired long-term potentiation (LTP) in the hippocampus. These effects involve decreased spine density of pyramidal neurons, especially the apical dendritic spine. Further presynaptic findings show an overt inhibition of pulse-paired facilitation during electrophysiological recording, which suggest the decrease of presynaptic transmitter release and is consistent with reduced production of presynaptic glutamate after BPA exposure. Meanwhile, LTP-related glutamate receptors, NMDA receptor 2A (NR2A) and AMPA receptor 1 (GluR1), are significantly downregulated in BPA-exposed rats. Excitatory postsynaptic currents (EPSCs) results also show that EPSCNMDA, but not EPSCAMPA, is declined by 40% compared to the baseline in BPA-perfused brain slices. Taken together, these findings reveal that juvenile BPA exposure has negative effects on synaptic plasticity, which result from decreases in dendritic spine density and excitatory synaptic transmission. Importantly, this study also provides new insights into the dynamics of BPA-induced memory deterioration during the whole life of rats.
Collapse
Affiliation(s)
- Fan Hu
- School of Food Science and EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Tingting Li
- School of Food Science and EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Huarui Gong
- CAS Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Zhi Chen
- School of Food Science and EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Yan Jin
- CAS Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Guangwei Xu
- CAS Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ming Wang
- CAS Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| |
Collapse
|
29
|
Cholanian M, Wealing J, Levine RB, Fregosi RF. Developmental nicotine exposure alters potassium currents in hypoglossal motoneurons of neonatal rat. J Neurophysiol 2017; 117:1544-1552. [PMID: 28148643 DOI: 10.1152/jn.00774.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 11/22/2022] Open
Abstract
We previously showed that nicotine exposure in utero and after birth via breast milk [developmental nicotine exposure (DNE)] is associated with many changes in the structure and function of hypoglossal motoneurons (XIIMNs), including a reduction in the size of the dendritic arbor and an increase in cell excitability. Interestingly, the elevated excitability was associated with a reduction in the expression of glutamate receptors on the cell body. Together, these observations are consistent with a homeostatic compensation aimed at restoring cell excitability. Compensation for increased cell excitability could also occur by changing potassium conductance, which plays a critical role in regulating resting potential, spike threshold, and repetitive spiking behavior. Here we test the hypothesis that the previously observed increase in the excitability of XIIMNs from DNE animals is associated with an increase in whole cell potassium currents. Potassium currents were measured in XIIMNs in brain stem slices derived from DNE and control rat pups ranging in age from 0 to 4 days by whole cell patch-clamp electrophysiology. All currents were measured after blockade of action potential-dependent synaptic transmission with tetrodotoxin. Compared with control cells, XIIMNs from DNE animals showed significantly larger transient and sustained potassium currents, but this was observed only under conditions of increased cell and network excitability, which we evoked by raising extracellular potassium from 3 to 9 mM. These observations suggest that the larger potassium currents in nicotine-exposed neurons are an important homeostatic compensation that prevents "runaway" excitability under stressful conditions, when neurons are receiving elevated excitatory synaptic input.NEW & NOTEWORTHY Developmental nicotine exposure is associated with increased cell excitability, which is often accompanied by compensatory changes aimed at normalizing excitability. Here we show that whole cell potassium currents are also increased in hypoglossal motoneurons from nicotine-exposed neonatal rats under conditions of increased cell and network excitability. This is consistent with a compensatory response aimed at preventing instability under conditions in which excitatory synaptic input is high and is compatible with the concept of homeostatic plasticity.
Collapse
Affiliation(s)
- Marina Cholanian
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Jesse Wealing
- Department of Physiology, The University of Arizona, Tucson, Arizona.,Department of Environmental and Evolutionary Biology, The University of Arizona, Tucson, Arizona; and
| | - Richard B Levine
- Department of Physiology, The University of Arizona, Tucson, Arizona.,Department of Neuroscience, The University of Arizona, Tucson, Arizona
| | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, Arizona; .,Department of Neuroscience, The University of Arizona, Tucson, Arizona
| |
Collapse
|
30
|
Lu Y, Li CJ, Chen C, Luo P, Zhou M, Li C, Xu XL, Lu Q, He Z, Guo LJ. Activation of GABAB2 subunits alleviates chronic cerebral hypoperfusion-induced anxiety-like behaviours: A role for BDNF signalling and Kir3 channels. Neuropharmacology 2016; 110:308-321. [PMID: 27515806 DOI: 10.1016/j.neuropharm.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 07/30/2016] [Accepted: 08/06/2016] [Indexed: 12/15/2022]
Abstract
Anxiety is an affective disorder that is commonly observed after irreversible brain damage induced by cerebral ischemia and can delay the physical and cognitive recovery, which affects the quality of life of both the patient and family members. However, anxiety after ischemia has received less attention, and mechanisms underlying anxiety-like behaviours induced by chronic cerebral ischemia are under-investigated. In the present study, the chronic cerebral hypoperfusion model was established by the permanent occlusion of the bilateral common carotid arteries (two-vessel occlusion, 2VO) in rats, and anxiety-related behaviours were evaluated. Results indicated that 2VO induced obvious anxiety-like behaviours; the surface expressions of GABAB2 subunits were down-regulated; Brain derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB) and neural cell adhesion molecule (NCAM) were reduced; Meanwhile, the surface expressions of G protein-activated inwardly rectifying potassium (GIRK, Kir3) channels were up-regulated in hippocampal CA1 in 2VO rats. Baclofen, a GABAB receptor agonist, significantly ameliorated the anxiety-like behaviours. It also improved the down-regulation of GABAB2 surface expressions, restored the levels of BDNF, TrkB and NCAM, and reversed the increased surface expressions of Kir3 in hippocampal CA1 in 2VO rats. However, the effects of baclofen were absent in shRNA-GABAB2 infected 2VO rats. These results suggested that activation of GABAB2 subunits could improve BDNF signalling and reverse Kir3 channel surface expressions in hippocampal CA1, which may alleviate the anxiety-like behaviours in rats with chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Yun Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang-Jun Li
- Neurology Department, Tongji Medical College, Huazhong University of Science and Technology, The Central Hospital of Wuhan, Wuhan 430030, China
| | - Cheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pan Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cai Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu-Lin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi He
- Department of Neuropsychopharmacology, Medical School of China Three Gorges University, Yichang 443002, China.
| | - Lian-Jun Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
31
|
Chung BYT, Bignell W, Jacklin DL, Winters BD, Bailey CDC. Postsynaptic nicotinic acetylcholine receptors facilitate excitation of developing CA1 pyramidal neurons. J Neurophysiol 2016; 116:2043-2055. [PMID: 27489367 DOI: 10.1152/jn.00370.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
The hippocampus plays a key role in learning and memory. The normal development and mature function of hippocampal networks supporting these cognitive functions depends on afferent cholinergic neurotransmission mediated by nicotinic acetylcholine receptors. Whereas it is well-established that nicotinic receptors are present on GABAergic interneurons and on glutamatergic presynaptic terminals within the hippocampus, the ability of these receptors to mediate postsynaptic signaling in pyramidal neurons is not well understood. We use whole cell electrophysiology to show that heteromeric nicotinic receptors mediate direct inward currents, depolarization from rest and enhanced excitability in hippocampus CA1 pyramidal neurons of male mice. Measurements made throughout postnatal development provide a thorough developmental profile for these heteromeric nicotinic responses, which are greatest during the first 2 wk of postnatal life and decrease to low adult levels shortly thereafter. Pharmacological experiments show that responses are blocked by a competitive antagonist of α4β2* nicotinic receptors and augmented by a positive allosteric modulator of α5 subunit-containing receptors, which is consistent with expression studies suggesting the presence of α4β2 and α4β2α5 nicotinic receptors within the developing CA1 pyramidal cell layer. These findings demonstrate that functional heteromeric nicotinic receptors are present on CA1 pyramidal neurons during a period of major hippocampal development, placing these receptors in a prime position to play an important role in the establishment of hippocampal cognitive networks.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; and
| | - Warren Bignell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; and
| | - Derek L Jacklin
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Boyer D Winters
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
32
|
Sano K, Isobe T, Yang J, Win-Shwe TT, Yoshikane M, Nakayama SF, Kawashima T, Suzuki G, Hashimoto S, Nohara K, Tohyama C, Maekawa F. In utero and Lactational Exposure to Acetamiprid Induces Abnormalities in Socio-Sexual and Anxiety-Related Behaviors of Male Mice. Front Neurosci 2016; 10:228. [PMID: 27375407 PMCID: PMC4891355 DOI: 10.3389/fnins.2016.00228] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023] Open
Abstract
Neonicotinoids, a widely used group of pesticides designed to selectively bind to insect nicotinic acetylcholine receptors, were considered relatively safe for mammalian species. However, they have been found to activate vertebrate nicotinic acetylcholine receptors and could be toxic to the mammalian brain. In the present study, we evaluated the developmental neurotoxicity of acetamiprid (ACE), one of the most widely used neonicotinoids, in C57BL/6J mice whose mothers were administered ACE via gavage at doses of either 0 mg/kg (control group), 1.0 mg/kg (low-dose group), or 10.0 mg/kg (high-dose group) from gestational day 6 to lactation day 21. The results of a battery of behavior tests for socio-sexual and anxiety-related behaviors, the numbers of vasopressin-immunoreactive cells in the paraventricular nucleus of the hypothalamus, and testosterone levels were used as endpoints. In addition, behavioral flexibility in mice was assessed in a group-housed environment using the IntelliCage, a fully automated mouse behavioral analysis system. In adult male mice exposed to ACE at both low and high doses, a significant reduction of anxiety level was found in the light-dark transition test. Males in the low-dose group also showed a significant increase in sexual and aggressive behaviors. In contrast, neither the anxiety levels nor the sexual behaviors of females were altered. No reductions in the testosterone level, the number of vasopressin-immunoreactive cells, or behavioral flexibility were detected in either sex. These results suggest the possibility that in utero and lactational ACE exposure interferes with the development of the neural circuits required for executing socio-sexual and anxiety-related behaviors in male mice specifically.
Collapse
Affiliation(s)
- Kazuhiro Sano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| | - Tomohiko Isobe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| | - Jiaxin Yang
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| | - Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| | - Mitsuha Yoshikane
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| | - Shoji F Nakayama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| | - Takaharu Kawashima
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies Tsukuba, Japan
| | - Go Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental StudiesTsukuba, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental StudiesTsukuba, Japan
| | - Shunji Hashimoto
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies Tsukuba, Japan
| | - Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| | | | - Fumihiko Maekawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Japan
| |
Collapse
|
33
|
Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016; 3:11. [PMID: 27148536 PMCID: PMC4837147 DOI: 10.3389/fnut.2016.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Correlative human observational studies on substances of abuse have been highly dependent on the use of rodent models to determine the neuronal and molecular mechanisms that control behavioral outcomes. This is particularly true for gestational exposure to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, which are commonly consumed in our society. Exposure to these substances during the prenatal period has been shown in offspring to increase their intake of these substances, induce other behavioral changes, and affect neurochemical systems in several brain areas that are known to control behavior. More importantly, emerging studies are linking the function of the immune system to these neurochemicals and ingestion of these abused substances. This review article will summarize the prenatal rodent models used to study developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, or nicotine. We will discuss the various techniques used for the administration of these substances into rodents and summarize the published outcomes induced by prenatal exposure to these substances. Finally, this review will cover some of the recent evidence for the role of immune factors in causing these behavioral and neuronal changes.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
34
|
Aoyama Y, Toriumi K, Mouri A, Hattori T, Ueda E, Shimato A, Sakakibara N, Soh Y, Mamiya T, Nagai T, Kim HC, Hiramatsu M, Nabeshima T, Yamada K. Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex. Neuropsychopharmacology 2016; 41:578-89. [PMID: 26105135 PMCID: PMC5130133 DOI: 10.1038/npp.2015.186] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/22/2015] [Accepted: 06/13/2015] [Indexed: 12/20/2022]
Abstract
Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2'-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring.
Collapse
Affiliation(s)
- Yuki Aoyama
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan,Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kazuya Toriumi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Akihiro Mouri
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Tomoya Hattori
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Eriko Ueda
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Akane Shimato
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Nami Sakakibara
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuka Soh
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hyoung-Chun Kim
- Department of Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Toshitaka Nabeshima
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan,Nabeshima Laboratory, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Nabeshima Laboratory, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan, Tel: +81 52 839 2756, Fax: +81 52 839 2756, E-mail:
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan,Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan, Tel: +81 52 744 2674, Fax: +81 52 744 2979, E-mail:
| |
Collapse
|
35
|
Xiao L, Kish VL, Benders KM, Wu ZX. Prenatal and Early Postnatal Exposure to Cigarette Smoke Decreases BDNF/TrkB Signaling and Increases Abnormal Behaviors Later in Life. Int J Neuropsychopharmacol 2015; 19:pyv117. [PMID: 26503133 PMCID: PMC4886663 DOI: 10.1093/ijnp/pyv117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cigarette smoke exposure during prenatal and early postnatal periods increases the incidence of a variety of abnormal behaviors later in life. The purpose of this study was to identify the possible critical period of susceptibility to cigarette smoke exposure and evaluate the possibe effects of cigarette smoke during early life on brain-derived neurotrophic factor/neurotrophic tyrosine kinase receptor B signaling in the brain. METHODS Three different age of imprinting control region mice were exposed to cigarette smoke or filtered air for 10 consecutive days beginning on either gestational day 7 by maternal exposure, or postnatal days 2 or 21 by direct inhalation. A series of behavioral profiles and neurotrophins in brain were measured 24 hours after mice received acute restraint stress for 1 hour on postnatal day 59. RESULTS Cigarette smoke exposure in gestational day 7 and postnatal day 2 produced depression-like behaviors as evidenced by significantly increased immobility in both tail suspension and forced-swim test. Increased entry latencies, but not ambulation in the open field test, were also observed in the gestational day 7 and postnatal day 2 cigarette smoke exposure groups. Genetic analysis showed that gestational day 7 cigarette smoke exposure significantly altered mRNA level of brain-derived neurotrophic factor/tyrosine kinase receptor B in the hippocampus. However, behavioral profiles and brain-derived neurotrophic factor/tyrosine kinase receptor B signaling were not significantly changed in PND21 cigarette smoke exposure group compared with FA group. CONCLUSIONS These results suggest that a critical period of susceptibility to cigarette smoke exposure exists in the prenatal and early postnatal period, which results a downregulation in brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in the hippocampus and enhances depression-like behaviors later in life.
Collapse
Affiliation(s)
| | | | | | - Zhong-Xin Wu
- Department of Neurobiology and Anatomy, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV
| |
Collapse
|
36
|
John D, Berg DK. Long-lasting changes in neural networks to compensate for altered nicotinic input. Biochem Pharmacol 2015; 97:418-424. [PMID: 26206188 PMCID: PMC4600434 DOI: 10.1016/j.bcp.2015.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
The nervous system must balance excitatory and inhibitory input to constrain network activity levels within a proper dynamic range. This is a demanding requirement during development, when networks form and throughout adulthood as networks respond to constantly changing environments. Defects in the ability to sustain a proper balance of excitatory and inhibitory activity are characteristic of numerous neurological disorders such as schizophrenia, Alzheimer's disease, and autism. A variety of homeostatic mechanisms appear to be critical for balancing excitatory and inhibitory activity in a network. These are operative at the level of individual neurons, regulating their excitability by adjusting the numbers and types of ion channels, and at the level of synaptic connections, determining the relative numbers of excitatory versus inhibitory connections a neuron receives. Nicotinic cholinergic signaling is well positioned to contribute at both levels because it appears early in development, extends across much of the nervous system, and modulates transmission at many kinds of synapses. Further, it is known to influence the ratio of excitatory-to-inhibitory synapses formed on neurons during development. GABAergic inhibitory neurons are likely to be key for maintaining network homeostasis (limiting excitatory output), and nicotinic signaling is known to prominently regulate the activity of several GABAergic neuronal subtypes. But how nicotinic signaling achieves this and how networks may compensate for the loss of such input are important questions remaining unanswered. These issues are reviewed.
Collapse
Affiliation(s)
- Danielle John
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357, United States; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093-0357, United States
| | - Darwin K Berg
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357, United States; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093-0357, United States.
| |
Collapse
|
37
|
Parameshwaran K, Irwin MH, Steliou K, Suppiramaniam V, Pinkert CA. Antioxidant-Mediated Reversal of Oxidative Damage in Mouse Modeling of Complex I Inhibition. Drug Dev Res 2015; 76:72-81. [DOI: 10.1002/ddr.21242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 12/17/2022]
Affiliation(s)
| | - Michael H. Irwin
- Department of Pathobiology, College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - Kosta Steliou
- PhenoMatriX, Inc., Boston, MA, and Cancer Research Center; Boston University School of Medicine; Boston MA USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy; Auburn University; Auburn AL USA
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine; Auburn University; Auburn AL USA
- Department of Biological Sciences; University of Alabama; Tuscaloosa AL USA
| |
Collapse
|
38
|
Viswaprakash N, Vaithianathan T, Viswaprakash A, Judd R, Parameshwaran K, Suppiramaniam V. Insulin treatment restores glutamate (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function in the hippocampus of diabetic rats. J Neurosci Res 2015; 93:1442-50. [PMID: 25807926 DOI: 10.1002/jnr.23589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 12/22/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
Type 1 diabetes is associated with cognitive dysfunction. Cognitive processing, particularly memory acquisition, depends on the regulated enhancement of expression and function of glutamate receptor subtypes in the hippocampus. Impairment of memory was been detected in rodent models of type 1 diabetes induced by streptozotocin (STZ). This study examines the functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the expression of synaptic molecules that regulate glutamatergic synaptic transmission in the hippocampus of STZ-diabetic rats. The AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) and single-channel properties of synaptosomal AMPA receptors were examined after 4 weeks of diabetes induction. Results show that amplitude and frequency of mEPSCs recorded from CA1 pyramidal neurons were decreased in diabetic rats. In addition, the single-channel properties of synaptic AMPA receptors from diabetic rat hippocampi were different from those of controls. These impairments in synaptic currents gated by AMPA receptors were accompanied by decreased protein levels of AMPA receptor subunit GluR1, the presynaptic protein synaptophysin, and the postsynaptic anchor protein postsynaptic density protein 95 in the hippocampus of diabetic rats. Neural cell adhesion molecule (NCAM), an extracellular matrix molecule abundantly expressed in the brain, and the polysialic acid (PSA) attached to NCAM were also downregulated in the hippocampus of diabetic rats. Insulin treatment, when initiated at the onset of diabetes induction, reduced these effects. These findings suggest that STZ-induced diabetes may result in functional deteriorations in glutamatergic synapses in the hippocampus of rats and that these effects may be reduced by insulin treatment.
Collapse
Affiliation(s)
- Nilmini Viswaprakash
- Department of Biomedical Sciences, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, Alabama
| | - Thirumalini Vaithianathan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Ajitan Viswaprakash
- Biology Department and Spine Rehabilitation Center, University of Alabama-Birmingham, Birmingham, Alabama
| | - Robert Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Kodeeswaran Parameshwaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama.,Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| |
Collapse
|
39
|
Sekio M, Seki K. Lipopolysaccharide-induced depressive-like behavior is associated with α₁-adrenoceptor dependent downregulation of the membrane GluR1 subunit in the mouse medial prefrontal cortex and ventral tegmental area. Int J Neuropsychopharmacol 2014; 18:pyu005. [PMID: 25539502 PMCID: PMC4368860 DOI: 10.1093/ijnp/pyu005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic stress-induced depressive-like behavior is relevant to inflammatory immune activation. However, the neurobiological alterations in the brain following the central inflammatory immune activation remain elusive. METHODS Therefore, we investigated the neurobiological alterations during depressive-like behavior induced in mice by systemic administration of lipopolysaccharide (LPS; 1.2 mg/kg administered twice at a 30-min interval via intraperitoneal injection). RESULTS At 24 h after the second administration of LPS, an increased immobility time in the tail suspension test and the forced swimming test were observed, as well as reduced sucrose preference. Protein levels of the AMPA receptor GluR1 were significantly decreased at the plasma membrane in the medial prefrontal cortex (mPFC) and ventral tegmental area (VTA), while levels of the GluR2 were increased at the plasma membrane in the nucleus accumbens (NAc) at 24h after LPS. However, total GluR1 and GluR2 protein levels in the mPFC, VTA, and NAc were not affected by LPS. Moreover, LPS facilitated release of noradrenaline in the mPFC and VTA, but not in the NAc. Consistently, systemic administration of prazosin, an α1-adrenoceptor antagonist, blocked the LPS-induced downregulation of the membrane GluR1 subunit in both the mPFC and VTA and also blocked the upregulation of the membrane GluR2 subunit in the NAc. Intracerebroventricular administration of prazosin 30 min before LPS injection abrogated the LPS-induced depressive-like behaviors. In opposition, administration of propranolol, a β-adrenoceptor antagonist, did not affect the LPS-induced downregulation of GluR1, the upregulation of GluR2, or the depressive-like behavior. CONCLUSIONS These results suggest that LPS-activated α1-adrenoceptor-induced downregulation of membrane GluR1 in the mPFC and VTA is associated with inflammation-induced depressive-like behavior.
Collapse
Affiliation(s)
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
40
|
Nicotine during pregnancy: changes induced in neurotransmission, which could heighten proclivity to addict and induce maladaptive control of attention. J Dev Orig Health Dis 2014; 6:169-81. [PMID: 25385318 DOI: 10.1017/s2040174414000531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prenatal exposure to nicotine, occurring either via maternal smoking or via use of transdermal nicotine patches to facilitate cigarette abstinence by pregnant women, is associated with ∼ 13% of pregnancies worldwide. Nicotine exposure during gestation has been correlated with several negative physiological and psychosocial outcomes, including heightened risk for aberrant behaviors involving alterations in processing of attention as well as an enhanced liability for development of drug dependency. Nicotine is a terotogen, altering neuronal development of various neurotransmitter systems, and it is likely these alterations participate in postnatal deficits in attention control and facilitate development of drug addiction. This review discusses the alterations in neuronal development within the brain's major neurotransmitter systems, with special emphasis placed on alterations within the laterodorsal tegmental nucleus, in light of the role this cholinergic nucleus plays in attention and addiction. Changes induced within this nucleus by gestational exposure to nicotine, in combination with changes induced in other brain regions, are likely to contribute to the transgenerational burden imposed by nicotine. Although neuroplastic changes induced by nicotine are not likely to act in isolation, and are expected to interact with epigenetic changes induced by preconception exposure to drugs of abuse, unraveling these changes within the developing brain will facilitate eventual development of targeted treatments for the unique vulnerability for arousal disorders and development of addiction within the population of individuals who have been prenatally exposed to nicotine.
Collapse
|
41
|
Prenatal nicotine is associated with reduced AMPA and NMDA receptor-mediated rises in calcium within the laterodorsal tegmentum: a pontine nucleus involved in addiction processes. J Dev Orig Health Dis 2014; 6:225-41. [DOI: 10.1017/s2040174414000439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite huge efforts from public sectors to educate society as to the deleterious physiological consequences of smoking while pregnant, 12–25% of all babies worldwide are born to mothers who smoked during their pregnancies. Chief among the negative legacies bestowed to the exposed individual is an enhanced proclivity postnatally to addict to drugs of abuse, which suggests that the drug exposure during gestation changed the developing brain in such a way that biased it towards addiction. Glutamate signalling has been shown to be altered by prenatal nicotine exposure (PNE) and glutamate is the major excitatory neurotransmitter within the laterodorsal tegmental nucleus (LDT), which is a brainstem region importantly involved in responding to motivational stimuli and critical in development of drug addiction-associated behaviours, however, it is unknown whether PNE alters glutamate signalling within this nucleus. Accordingly, we used calcium imaging, to evaluate AMPA and NMDA receptor-mediated calcium responses in LDT brain slices from control and PNE mice. We also investigated whether the positive AMPA receptor modulator cyclothiazide (CYZ) had differential actions on calcium in the LDT following PNE. Our data indicated that PNE significantly decreased AMPA receptor-mediated calcium responses, and altered the neuronal calcium response to consecutive NMDA applications within the LDT. Furthermore, CYZ strongly potentiated AMPA-induced responses, however, this action was significantly reduced in the LDT of PNE mice when compared with enhancements in responses in control LDT cells. Immunohistochemical processing confirmed that calcium imaging recordings were obtained from the LDT nucleus as determined by presence of cholinergic neurons. Our results contribute to the body of evidence suggesting that neurobiological changes are induced if gestation is accompanied by nicotine exposure. We conclude that in light of the role played by the LDT in motivated behaviour, the cellular changes in the LDT induced by exposures to nicotine prenatally, when combined with alterations in other reward-related regions, could contribute to the increased susceptibility to smoking observed in the offspring.
Collapse
|
42
|
De Long NE, Barra NG, Hardy DB, Holloway AC. Is it safe to use smoking cessation therapeutics during pregnancy? Expert Opin Drug Saf 2014; 13:1721-31. [PMID: 25330815 DOI: 10.1517/14740338.2014.973846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Worldwide, 10 to 35% of pregnant women smoke. It is clear that smoking cessation has positive impacts for both the mother and child, yet many women are still unable to quit due to the addictive properties of nicotine. There are limited data surrounding their safety and efficacy in pregnancy. AREAS COVERED This review highlights evidence from clinical studies and animal experiments regarding the effects of smoking cessation therapeutics on pregnancy, neonatal and long-term postnatal outcomes. EXPERT OPINION There are insufficient data at this time to recommend the use of varenicline and/or bupropion for smoking cessation during pregnancy. In addition, the efficacy and safety of nicotine replacement therapy use for smoking cessation in pregnant women has not been clearly demonstrated. Until further studies are completed, there will continue to be considerable uncertainty regarding the use of these drugs in pregnancy despite the well-documented benefits of smoking cessation.
Collapse
Affiliation(s)
- Nicole E De Long
- McMaster University, Department of Obstetrics and Gynecology , RM HSC-3N52, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 , Canada +1 905 525 9140 ext. 22130 ; +1 905 524 2911 ;
| | | | | | | |
Collapse
|
43
|
Damborsky JC, Griffith WH, Winzer-Serhan UH. Neonatal nicotine exposure increases excitatory synaptic transmission and attenuates nicotine-stimulated GABA release in the adult rat hippocampus. Neuropharmacology 2014; 88:187-98. [PMID: 24950455 DOI: 10.1016/j.neuropharm.2014.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 01/22/2023]
Abstract
Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1-7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking.
Collapse
Affiliation(s)
- Joanne C Damborsky
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Health Science Center, Texas A&M University, USA
| | - William H Griffith
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Health Science Center, Texas A&M University, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Health Science Center, Texas A&M University, USA.
| |
Collapse
|
44
|
Balsevich G, Poon A, Goldowitz D, Wilking JA. The effects of pre- and post-natal nicotine exposure and genetic background on the striatum and behavioral phenotypes in the mouse. Behav Brain Res 2014; 266:7-18. [PMID: 24607511 DOI: 10.1016/j.bbr.2014.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 02/03/2023]
Abstract
Maternal tobacco use increases the risk of complications in pregnancy and also the risk of adverse fetal outcomes. Studies have established nicotine as the principal component of tobacco smoke that leads to the majority of negative reproductive outcomes associated with maternal tobacco use. It appears the neuroteratogenicity of nicotine is mediated by complex gene-environment interactions. Genetic background contributes to individual differences in nicotine-related phenotypes. The aim of the current study was to investigate the interaction between pre- and post-natal nicotine exposure and genetic background on the histology of the striatum and behavioral measures using DBA/2J (D2) and C57BL/6J (B6) inbred mice. Alterations in neuronal cell populations, striatal brain volume, and behavior - open field (OF) activity, novel object recognition (NOR), elevated plus maze (EPM), and passive avoidance (PA) - were evaluated on post-natal day (PN) 24 and PN75. Histological data showed that pre- and post-natal nicotine exposure resulted in decreased striatal volume among preadolescent B6 and reduced neuronal number within the striatum of preadolescent B6 mice. Behavioral data showed that pre- and post-natal nicotine exposure promoted hyperactivity in D2 female mice and disrupted NOR and PA memory. Specifically, NOR deficits were significant amongst adult male mice whereas PA deficits were seen across genetic background and sex. These data suggest that nicotine treatment, genetic background, developmental stage, and sex effect striatal morphology can lead to neurobehavioral alterations.
Collapse
Affiliation(s)
- Georgia Balsevich
- Department of Neuroscience, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Centre for Molecular Medicine & Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Anna Poon
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Centre for Molecular Medicine & Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Dan Goldowitz
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Centre for Molecular Medicine & Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Jennifer A Wilking
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Centre for Molecular Medicine & Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4.
| |
Collapse
|
45
|
Zheng M, Ahuja M, Bhattacharya D, Clement TP, Hayworth JS, Dhanasekaran M. Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life Sci 2013; 95:108-17. [PMID: 24361361 DOI: 10.1016/j.lfs.2013.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 01/03/2023]
Abstract
AIMS The British Petroleum (BP) oil spill has raised several ecological and health concerns. As the first response, BP used a chemical dispersant, Corexit-9500, to disperse the crude oil in the Gulf of Mexico to limit shoreline contamination problems. Nevertheless, portions of this oil/Corexit mixture reached the shoreline and still remain in various Gulf shore environments. The use of Corexit itself has become a significant concern since its impacts on human health and environment is unclear. MAIN METHODS In this study, in vitro cytotoxic effects of Corexit were evaluated using different mammalian cells. KEY FINDINGS Under serum free conditions, the LC50 value for Corexit in BL16/BL6 cell was 16 ppm, in 1321N1 cell was 33 ppm, in H19-7 cell was 70 ppm, in HEK293 was 93 ppm, and in HK-2 cell was 95 ppm. With regard to the mechanisms of cytotoxicity, we hypothesize that Corexit can possibly induce cytotoxicity in mammalian cells by altering the intracellular oxidative balance and inhibiting mitochondrial functions. Corexit induced increased reactive oxygen species and lipid peroxide levels; also, it depleted glutathione content and altered catalase activity in H19-7 cells. In addition, there was mitochondrial complex-I inhibition and increase in the pro-apoptotic factors including caspase-3 and BAX expression. SIGNIFICANCE The experimental results show changes in intracellular oxidative radicals leading to mitochondrial dysfunctions and apoptosis in Corexit treatments, possibly contributing to cell death. Our findings raise concerns about using large volumes of Corexit, a potential environmental toxin, in sensitive ocean environments.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Manuj Ahuja
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Dwipayan Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - T Prabhakar Clement
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Joel S Hayworth
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
46
|
Parameshwaran K, Buabeid MA, Bhattacharya S, Uthayathas S, Kariharan T, Dhanasekaran M, Suppiramaniam V. Long term alterations in synaptic physiology, expression of β2 nicotinic receptors and ERK1/2 signaling in the hippocampus of rats with prenatal nicotine exposure. Neurobiol Learn Mem 2013; 106:102-11. [DOI: 10.1016/j.nlm.2013.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/29/2013] [Accepted: 07/09/2013] [Indexed: 01/22/2023]
|
47
|
Piao MH, Liu Y, Wang YS, Qiu JP, Feng CS. Volatile anesthetic isoflurane inhibits LTP induction of hippocampal CA1 neurons through α4β2 nAChR subtype-mediated mechanisms. ACTA ACUST UNITED AC 2013; 32:e135-41. [PMID: 24011619 DOI: 10.1016/j.annfar.2013.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 05/21/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Volatile anesthetic isoflurane contributes to postoperative cognitive dysfunction and inhibition of long-term potentiation (LTP), a synaptic model of learning and memory, but the mechanisms are uncertain. Central neuronal α4β2 subtype nicotinic acetylcholine receptors (nAChRs) are involved in the induction of LTP in the hippocampus. Isoflurane inhibits α4β2 nAChRs at concentrations lower than those used for anesthesia. Therefore, we hypothesized that isoflurane-inhibited LTP induction of hippocampal CA1 neurons via α4β2 nAChRs subtype inhibition. METHODS Transverse hippocampal slices (400μm thick) were obtained from male rats (6-8 weeks old). Population spikes were evoked using extracellular electrodes by electrical stimulation of the Schaffer collateral-commissural pathway of rat hippocampal slices. LTP was induced using high frequency stimulation (HFS; 100Hz, 1s). Clinically relevant concentrations (0.125-0.5mM) of isoflurane with or without nicotine (nAChRs agonist), mecamylamine (nAChRs antagonist), 3-[2(S)-2-azetidinylmethoxy] pyridine (A85380) and epibatidine (α4β2 nAChRs agonist), dihydro β erythroidine (DHβE) (α4β2 nAChRs antagonist) were added to the perfusion solution 20min before HFS to test their effects on LTP by HFS respectively. RESULTS A brief HFS induced stable LTP in rat hippocampal slices, but LTP was significantly inhibited in the presence of isoflurane at concentrations of 0.125-0.5mM. The inhibitive effect of isoflurane on LTP was not only reversible and could be prevented by nAChRs agonist nicotine and α4β2 nAChRs agonist A85380 and epibatidine, but also mimicked and potentiated by nAChRs antagonist mecamylamine and α4β2 nAChRs antagonist DHβE. CONCLUSIONS Inhibition of α4β2 nAChRs subtype of hippocampus participates in isoflurane-mediated LTP inhibition.
Collapse
Affiliation(s)
- M-H Piao
- Department of anesthesiology, the first hospital of Jilin university, n(o) 71, Xinmin St, 130021 Changchun, China; School of public health, Jilin university, Changchun 130021, China
| | | | | | | | | |
Collapse
|
48
|
The long-term effects of prenatal nicotine exposure on response inhibition: An fMRI study of young adults. Neurotoxicol Teratol 2013; 39:9-18. [DOI: 10.1016/j.ntt.2013.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 11/22/2022]
|
49
|
Wang H, Gondré-Lewis MC. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats. PLoS One 2013; 8:e65517. [PMID: 23785432 PMCID: PMC3681797 DOI: 10.1371/journal.pone.0065517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/29/2013] [Indexed: 12/13/2022] Open
Abstract
Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.
Collapse
Affiliation(s)
- Hong Wang
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, D.C., United States of America
| | - Marjorie C. Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
50
|
Uthayathas S, Parameshwaran K, Karuppagounder SS, Ahuja M, Dhanasekaran M, Suppiramaniam V. Selective inhibition of phosphodiesterase 5 enhances glutamatergic synaptic plasticity and memory in mice. Synapse 2013; 67:741-7. [PMID: 23620198 DOI: 10.1002/syn.21676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/11/2013] [Indexed: 01/06/2023]
Abstract
Phosphodiesterases (PDEs) belong to a family of proteins that control metabolism of cyclic nucleotides. Targeting PDE5, for enhancing cellular function, is one of the therapeutic strategies for male erectile dysfunction. We have investigated whether in vivo inhibition of PDE5, which is expressed in several brain regions, will enhance memory and synaptic transmission in the hippocampus of healthy mice. We have found that acute administration of sildenafil, a specific PDE5 inhibitor, enhanced hippocampus-dependent memory tasks. To elucidate the underlying mechanism in the memory enhancement, effects of sildenafil on long-term potentiation (LTP) were measured. The level of LTP was significantly elevated, with concomitant increases in basal synaptic transmission, in mice treated with sildenafil (1 mg/kg/day) for 15 days compared to control mice. These results suggest that moderate PDE5 inhibition enhances memory by increasing synaptic plasticity and transmission in the hippocampus.
Collapse
Affiliation(s)
- Subramaniam Uthayathas
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama; Department of Pharmacology, Howard University College of Medicine, Washington, DC
| | | | | | | | | | | |
Collapse
|