1
|
Dai J, Chen H, Fang J, Wu S, Jia Z. Vascular Remodeling: The Multicellular Mechanisms of Pulmonary Hypertension. Int J Mol Sci 2025; 26:4265. [PMID: 40362501 PMCID: PMC12072204 DOI: 10.3390/ijms26094265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Pulmonary hypertension (PH) is a serious cardiovascular disease caused by a variety of pathogenic factors, which is characterized by increased pulmonary vascular resistance (PVR) and progressive elevation of mean pulmonary artery pressure (mPAP). This disease can lead to right ventricular hypertrophy and, in severe cases, right heart failure and even death. Vascular remodeling-a pathological modification involving aberrant vasoconstriction, cell proliferation, apoptosis resistance, and inflammation in the pulmonary vascular system-is a significant pathological hallmark of PH and a critical process in its progression. Recent studies have found that vascular remodeling involves the participation of a diversity of cellular pathological alterations, such as the dysfunction of pulmonary artery endothelial cells (PAECs), the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), the phenotypic differentiation of pulmonary artery fibroblasts, the inflammatory response of immune cells, and pericyte proliferation. This review focuses on the mechanisms and the intercellular crosstalk of these cells in the PH process, emphasizing recent advances in knowledge regarding cellular signaling pathways, inflammatory responses, apoptosis, and proliferation. To develop better treatments, a list of possible therapeutic approaches meant to slow down certain biological functions is provided, with the aim of providing new insights into the treatment of PH by simplifying the intricacies of these complex connections. In this review, comprehensive academic databases such as PubMed, Embase, Web of Science, and Google Scholar were systematically searched to discuss studies relevant to human and animal PH, with a focus on vascular remodeling in PH.
Collapse
Affiliation(s)
- Jinjin Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Hongyang Chen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Jindong Fang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Shiguo Wu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
2
|
Wang Y, Zhang X, Li X, Cheng M, Cui X. The vascular microenvironment and its stem cells regulate vascular homeostasis. Front Cell Dev Biol 2025; 13:1544129. [PMID: 40114970 PMCID: PMC11922910 DOI: 10.3389/fcell.2025.1544129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The vascular microenvironment comprises of anatomical structures, extracellular matrix components, and various cell populations, which play a crucial role in regulating vascular homeostasis and influencing vascular structure and function. Under physiological conditions, intrinsic regulation of the vascular microenvironment is required to sustain vascular homeostasis. In contrast, under pathological conditions, alterations to this microenvironment lead to vascular injury and pathological remodeling. According to the anatomy, the vascular microenvironment can be subdivided into three sections from the inside out. The vascular endothelial microenvironment, centered on vascular endothelial cells (VECs), includes the extracellular matrix and various vascular physicochemical factors. The VECs interact with vascular physicochemical factors to regulate the function of various parenchymal cells, including hepatocytes, neurons and tumor cells. The vascular wall microenvironment, comprising the vasa vasorum and their unique stem/progenitor cell niches, plays a pivotal role in vascular inflammation and pathological remodeling. Additionally, the perivascular microenvironment, which includes perivascular adipose tissue, consists of adipocytes and stem cells, which contribute to the pathological processes of atherosclerosis. It is anticipated that targeted regulation of the vascular microenvironment will emerge as a novel approach for the treatment of various diseases. Accordingly, this review will examine the structure of the vascular microenvironment, the regulation of vascular function by vascular cells and stem/progenitor cells, and the role of the vascular microenvironment in regulating cardiovascular diseases.
Collapse
Affiliation(s)
- Yanhui Wang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaoyun Zhang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xin Li
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Min Cheng
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaodong Cui
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Tasouli-Drakou V, Ogurek I, Shaikh T, Ringor M, DiCaro MV, Lei K. Atherosclerosis: A Comprehensive Review of Molecular Factors and Mechanisms. Int J Mol Sci 2025; 26:1364. [PMID: 39941130 PMCID: PMC11818631 DOI: 10.3390/ijms26031364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a condition characterized by the accumulation of lipids and a culprit behind cardiovascular events, has long been studied. However, in recent years, there has been an increase in interest in its initiation, with researchers shifting focus from traditional pathways involving the vascular infiltration of oxidized lipids and towards the novel presence of chronic inflammatory pathways. The accumulation of pro-inflammatory cytokines, in combination with the activation of transcription factors, creates a positive feedback loop that drives the creation and progression of atherosclerosis. From the upregulation of the nod-like receptor protein 3 (NLRP3) inflammasome and the Notch and Wnt pathways to the increased expression of VEGF-A and the downregulation of connexins Cx32, Cx37, and Cx40, these processes contribute further to endothelial dysfunction and plaque formation. Herein, we aim to provide insight into the molecular pathways and mechanisms implicated in the initiation and progression of atherosclerotic plaques, and to review the risk factors associated with their development.
Collapse
Affiliation(s)
- Vasiliki Tasouli-Drakou
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Ian Ogurek
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Taha Shaikh
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Marc Ringor
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Michael V. DiCaro
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - KaChon Lei
- Department of Cardiovascular Medicine, University of Nevada, Las Vegas, NV 89106, USA;
| |
Collapse
|
4
|
Sanchez-Garcia ADJ, Soule-Egea M, Fuentevilla-Alvarez G, Vargas-Alarcon G, Hernández-Mejia BI, Martínez-Hernández H, Mora-Canela SL, Santibanez-Escobar F, Ávila-Martinez V, Castrejón-Tellez V, Alvarez-León E, de la Mora-Cervantes R, Pérez-Torres I, Soto ME. Role of miRNAs in Regulating Ascending Aortic Dilation in Bicuspid Aortic Valve Patients Operated for Aortic Stenosis. Int J Mol Sci 2025; 26:779. [PMID: 39859493 PMCID: PMC11765635 DOI: 10.3390/ijms26020779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Deregulation of micro-RNAs (miRNAs) may contribute to mechanisms of injury in the bicuspid aortic valve (BAV). Our objective was to investigate the expression of miRNAs in aortic tissue from patients who underwent aortic valve replacement for aortic stenosis and its relationship with aortic dilatation. The study included 78 patients, 40 with bicuspid aortic valve (BAV) and 38 with tricuspid aortic valve (TAV). The expression of miRNA-17-5p, hsa-let-7e, and miRNA-196a-5p in human aortic tissue was evaluated by a reverse transcriptase polymerase chain reaction (RT-qPCR). Comparative analysis between patients with BAV and controls with TAV explored the association between the miRNAs and aortic dilatation (AD), calcification, valve dysfunction, and stenosis. The results showed that the expression levels of miRNA-Let-7e-5p and miRNA-196-5p were mostly increased in patients with BAV and aortic dilatation (p = 0.01 and p = 0.01), respectively. In contrast, the levels of miRNA-17a-5p (p < 0.20) were lower but without a statistically significant difference. The downregulation of miRNA-17a-5p and the upregulation of miR-Let-7e-5p and miR-196-5p were related to an increased risk of AD risk. Subjects with BAVs with or without double aortic lesions had higher expression levels of Let-7e-5p and miRNA-17a-5p vs. TAV. In all patients, we found an inverse correlation of MiRNA-196-5p with High-Density Lipoprotein-Cholesterol (HDL-C) and indexed valvular area. In subjects with a higher expression of miRNA196, lower levels of HDL-C correlation (r2) [r2 0.27 (p = 0.02)] and a lower indexed valvular area [r2 0.28 (p = 0.05)] were observed. In the specific analysis for each patient group, it was found that in control subjects with tricuspid aortic valve (TAV), miRNA-196-5p had a positive correlation with valvular calcification (r2 = 0.60, p = 0.02). Deregulation of miRNAs in the aortic tissue of a BAV may influence valvular stenosis, dysfunction, and concomitant aortic dilation. This information could help to define potential therapeutic target strategies to improve the prognosis and treatment of BAV.
Collapse
Affiliation(s)
- Antonio de Jesús Sanchez-Garcia
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico; (A.d.J.S.-G.); (M.S.-E.); (B.I.H.-M.); (H.M.-H.); (S.L.M.-C.); (F.S.-E.); (V.Á.-M.)
| | - Mauricio Soule-Egea
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico; (A.d.J.S.-G.); (M.S.-E.); (B.I.H.-M.); (H.M.-H.); (S.L.M.-C.); (F.S.-E.); (V.Á.-M.)
| | - Giovanny Fuentevilla-Alvarez
- Endocrinology Department, Instiuto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, México City 14080, Mexico;
| | - Gilberto Vargas-Alarcon
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Benjamín Iván Hernández-Mejia
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico; (A.d.J.S.-G.); (M.S.-E.); (B.I.H.-M.); (H.M.-H.); (S.L.M.-C.); (F.S.-E.); (V.Á.-M.)
| | - Humberto Martínez-Hernández
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico; (A.d.J.S.-G.); (M.S.-E.); (B.I.H.-M.); (H.M.-H.); (S.L.M.-C.); (F.S.-E.); (V.Á.-M.)
| | - Sergio Luis Mora-Canela
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico; (A.d.J.S.-G.); (M.S.-E.); (B.I.H.-M.); (H.M.-H.); (S.L.M.-C.); (F.S.-E.); (V.Á.-M.)
| | - Felipe Santibanez-Escobar
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico; (A.d.J.S.-G.); (M.S.-E.); (B.I.H.-M.); (H.M.-H.); (S.L.M.-C.); (F.S.-E.); (V.Á.-M.)
| | - Valeria Ávila-Martinez
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico; (A.d.J.S.-G.); (M.S.-E.); (B.I.H.-M.); (H.M.-H.); (S.L.M.-C.); (F.S.-E.); (V.Á.-M.)
| | - Vicente Castrejón-Tellez
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. 4 Sección XVI, México City 14080, Mexico;
| | - Edith Alvarez-León
- Sub-Directorate of Basic Research, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Regina de la Mora-Cervantes
- Computed Tomography Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Israel Pérez-Torres
- Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, México City 14080, Mexico;
| | - María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14080, Mexico;
- Cardiovascular Line in American British Cowdray (ABC) Medical Center, Sur 136 No. 116 Col, Las Américas, México City 01120, Mexico
| |
Collapse
|
5
|
Wang X, Zou Z, Li K, Ren C, Yu X, Zhang Y, Zhao P, Yan S, Li Q. Design and fabrication of dual-layer PCL nanofibrous scaffolds with inductive influence on vascular cell responses. Colloids Surf B Biointerfaces 2024; 240:113988. [PMID: 38810467 DOI: 10.1016/j.colsurfb.2024.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Confronted with the profound threat of cardiovascular diseases to health, vascular tissue engineering presents potential beyond the limitations of autologous and allogeneic grafts, offering a promising solution. This study undertakes an initial exploration into the impact of a natural active protein, elastin, on vascular cell behavior, by incorporating with polycaprolactone to prepare fibrous tissue engineering scaffold. The results reveal that elastin serves to foster endothelial cell adhesion and proliferation, suppress smooth muscle cell proliferation, and induce macrophage polarization. Furthermore, the incorporation of elastin contributes to heightened scaffold strength, compliance, and elongation, concomitantly lowering the elastic modulus. Subsequently, a bilayer oriented polycaprolactone (PCL) scaffold infused with elastin is proposed. This design draws inspiration from the cellular arrangement of native blood vessels, leveraging oriented fibers to guide cell orientation. The resulting fiber scaffold exhibits commendable mechanical properties and cell infiltration capacity, imparting valuable insights for the rapid endothelialization of vascular scaffolds.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Cuihong Ren
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaorong Yu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Yang Zhang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Saito J, Dave JM, Lau FD, Greif DM. Presenilin-1 in smooth muscle cells facilitates hypermuscularization in elastin aortopathy. iScience 2024; 27:108636. [PMID: 38226162 PMCID: PMC10788461 DOI: 10.1016/j.isci.2023.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024] Open
Abstract
Smooth muscle cell (SMC) accumulation is central to the pathogenesis of elastin-defective arterial diseases, including supravalvular aortic stenosis (SVAS). We previously demonstrated that elastin insufficiency activates Notch signaling in aortic SMCs. Activation of Notch is catalyzed by the enzyme gamma-secretase, but the role of catalytic subunits presenilin (PSEN)-1 or PSEN-2 in elastin aortopathy is not defined. Genetic approaches reveal that endothelial cell-specific Psen1 deletion does not improve elastin aortopathy whereas the deletion of either Psen1 in SMCs or Psen2 globally attenuates Notch pathway and SMC proliferation, mitigating aortic disease. With SMC-specific Psen1 deletion in elastin nulls, these rescue effects are more robust and in fact, survival is increased. SMC deletion of Psen1 also attenuates hypermuscularization in newborns heterozygous for the elastin null gene, which genetically mimics SVAS. Similarly, the pharmacological inhibition of PSEN-1 mitigates SMC accumulation in elastin aortopathy. These findings put forth SMC PSEN-1 as a potential therapeutic target in SVAS.
Collapse
Affiliation(s)
- Junichi Saito
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- Stem Cell Center, Yale University, New Haven, CT 06511, USA
| | - Jui M. Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- Stem Cell Center, Yale University, New Haven, CT 06511, USA
| | - Freddy Duarte Lau
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- Stem Cell Center, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
7
|
Sun X, Wang G, Luo W, Gu H, Ma W, Wei X, Liu D, Jia S, Cao S, Wang Y, Yuan Z. Small but strong: the emerging role of small nucleolar RNA in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1292925. [PMID: 38033868 PMCID: PMC10682241 DOI: 10.3389/fcell.2023.1292925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and disability worldwide. Numerous studies have demonstrated that non-coding RNAs (ncRNAs) play a primary role in CVD development. Therefore, studies on the mechanisms of ncRNAs are essential for further efforts to prevent and treat CVDs. Small nucleolar RNAs (snoRNAs) are a novel species of non-conventional ncRNAs that guide post-transcriptional modifications and the subsequent maturation of small nuclear RNA and ribosomal RNA. Evidently, snoRNAs are extensively expressed in human tissues and may regulate different illnesses. Particularly, as the next-generation sequencing techniques have progressed, snoRNAs have been shown to be differentially expressed in CVDs, suggesting that they may play a role in the occurrence and progression of cardiac illnesses. However, the molecular processes and signaling pathways underlying the function of snoRNAs remain unidentified. Therefore, it is of great value to comprehensively investigate the association between snoRNAs and CVDs. The aim of this review was to collate existing literature on the biogenesis, characteristics, and potential regulatory mechanisms of snoRNAs. In particular, we present a scientific update on these snoRNAs and their relevance to CVDs in an effort to cast new light on the functions of snoRNAs in the clinical diagnosis of CVDs.
Collapse
Affiliation(s)
- Xue Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gebang Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Quaye LNK, Dalzell CE, Deloukas P, Smith AJP. The Genetics of Coronary Artery Disease: A Vascular Perspective. Cells 2023; 12:2232. [PMID: 37759455 PMCID: PMC10527262 DOI: 10.3390/cells12182232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified a large number of genetic loci for coronary artery disease (CAD), with many located close to genes associated with traditional CAD risk pathways, such as lipid metabolism and inflammation. It is becoming evident with recent CAD GWAS meta-analyses that vascular pathways are also highly enriched and present an opportunity for novel therapeutics. This review examines GWAS-enriched vascular gene loci, the pathways involved and their potential role in CAD pathogenesis. The functionality of variants is explored from expression quantitative trait loci, massively parallel reporter assays and CRISPR-based gene-editing tools. We discuss how this research may lead to novel therapeutic tools to treat cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Panos Deloukas
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (L.N.K.Q.); (C.E.D.); (A.J.P.S.)
| | | |
Collapse
|
9
|
Troncoso MF, Díaz-Vesga MC, Sanhueza-Olivares F, Riquelme JA, Müller M, Garrido L, Gabrielli L, Chiong M, Corbalan R, Castro PF, Lavandero S. Targeting VCAM-1: a therapeutic opportunity for vascular damage. Expert Opin Ther Targets 2023; 27:207-223. [PMID: 36880349 DOI: 10.1080/14728222.2023.2187778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
INTRODUCTION The vascular cell adhesion molecule (VCAM-1) is a transmembrane sialoglycoprotein detected in activated endothelial and vascular smooth muscle cells involved in the adhesion and transmigration of inflammatory cells into damaged tissue. Widely used as a pro-inflammatory marker, its potential role as a targeting molecule has not been thoroughly explored. AREAS COVERED We discuss the current evidence supporting the potential targeting of VCAM-1 in atherosclerosis, diabetes, hypertension and ischemia/reperfusion injury. EXPERT OPINION There is emerging evidence that VCAM-1 is more than a biomarker and may be a promising therapeutic target for vascular diseases. While there are neutralizing antibodies that allow preclinical research, the development of pharmacological tools to activate or inhibit this protein are required to thoroughly assess its therapeutic potential.
Collapse
Affiliation(s)
- Mayarling F Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Magda C Díaz-Vesga
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Garrido
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramon Corbalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Volpini X, Natali L, Brugo MB, de la Cruz-Thea B, Baigorri RE, Cerbán FM, Fozzatti L, Motran CC, Musri MM. Trypanosoma cruzi Infection Promotes Vascular Remodeling and Coexpression of α-Smooth Muscle Actin and Macrophage Markers in Cells of the Aorta. ACS Infect Dis 2022; 8:2271-2290. [PMID: 36083791 DOI: 10.1021/acsinfecdis.2c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chagas disease is an emerging global health problem; however, it remains neglected. Increased aortic stiffness (IAS), a predictor of cardiovascular events, has recently been reported in asymptomatic chronic Chagas patients. After vascular injury, smooth muscle cells (SMCs) can undergo alterations associated with phenotypic switch and transdifferentiation, promoting vascular remodeling and IAS. By studying different mouse aortic segments, we tested the hypothesis that Trypanosoma cruzi infection promotes vascular remodeling. Interestingly, the thoracic aorta was the most affected by the infection. Decreased expression of SMC markers and increased expression of proliferative markers were observed in the arteries of acutely infected mice. In acutely and chronically infected mice, we observed cells coexpressing SMC and macrophage (Mo) markers in the media and adventitia layers of the aorta, indicating that T. cruzi might induce cellular processes associated with SMC transdifferentiation into Mo-like cells or vice versa. In the adventitia, the Mo cell functional polarization was associated with an M2-like CD206+arginase-1+ phenotype despite the T. cruzi presence in the tissue. Only Mo-like cells in inflammatory foci were CD206+iNOS+. In addition to the disorganization of elastic fibers, we found thickening of the aortic layers during the acute and chronic phases of the disease. Our findings indicate that T. cruzi infection induces a vascular remodeling with SMC dedifferentiation and increased cell populations coexpressing α-SMA and Mo markers that could be associated with IAS promotion. These data highlight the importance of studying large vessel homeostasis in Chagas disease.
Collapse
Affiliation(s)
- Ximena Volpini
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Lautaro Natali
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Maria Belén Brugo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Benjamin de la Cruz-Thea
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina
| | - Ruth Eliana Baigorri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Fabio Marcelo Cerbán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Laura Fozzatti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Claudia Cristina Motran
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Melina Mara Musri
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Departamento de Fisiología, Facultad de Ciencias Exactas Físicas y Naturales. Universidad Nacional de Córdoba (FCEFyN-UNC). Av. Velez Sarfield 299, Centro, Córdoba, PC X5000JJC, Argentina
| |
Collapse
|
11
|
Liu K, Shi R, Wang S, Liu Q, Zhang H, Chen X. Intermedin Inhibits the Ox-LDL-Induced Inflammation in RAW264.7 Cells by Affecting Fatty Acid-Binding Protein 4 Through the PKA Pathway. Front Pharmacol 2021; 12:724777. [PMID: 34925001 PMCID: PMC8671820 DOI: 10.3389/fphar.2021.724777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: Macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) play an important role in the occurrence and progression of atherosclerosis. Fatty acid-binding protein 4 (FABP4), mainly existing in macrophages and adipocytes, can influence lipid metabolism and inflammation regulated by macrophages. Herein, we first established the connection between intermedin (IMD: a new peptide that has versatile biological activities in the cardiovascular system) and FABP4 and then investigated the influence of IMD on ox-LDL-induced changes in RAW264.7 macrophages line. Methods: The bioinformatics analysis, such as gene ontology enrichment and protein-protein interactions, was performed. For ox-LDL-stimulated assays, RAW264.7 was first pretreated with IMD and then exposed to ox-LDL. To explore the cell signaling pathways of IMD on inflammatory inhibition, main signaling molecules were tested and then cells were co-incubated with relevant inhibitors, and then exposed/not exposed to IMD. Finally, cells were treated with ox-LDL. The protein and gene expression of FABP4, IL-6, and TNF-α were quantified by WB/ELISA and RT-qPCR. Results: In the ox-LDL-stimulated assays, exposure of the RAW264.7 macrophages line to ox-LDL reduced cell viability and increased the expression of FABP4, as well as induced the release of IL-6 and TNF-α (all p < 0.05). On the other hand, IMD prevented ox-LDL-induced cell toxicity, FABP4 expression, and the inflammatory level in RAW264.7 (all p < 0.05) in a dose-dependent manner. The inhibition of FABP4 and the anti-inflammatory effect of IMD were partially suppressed by the protein kinase A (PKA) inhibitor H-89. Conclusion: IMD can prevent ox-LDL-induced macrophage inflammation by inhibiting FABP4, whose signaling might partially occur via the PKA pathway.
Collapse
Affiliation(s)
- Kai Liu
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Rufeng Shi
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, The Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Si Wang
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Liu
- State Key Laboratory of Biotherapy, The Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyu Zhang
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoping Chen
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Jolly AJ, Lu S, Strand KA, Dubner AM, Mutryn MF, Nemenoff RA, Majesky MW, Moulton KS, Weiser-Evans MCM. Heterogeneous subpopulations of adventitial progenitor cells regulate vascular homeostasis and pathological vascular remodeling. Cardiovasc Res 2021; 118:1452-1465. [PMID: 33989378 DOI: 10.1093/cvr/cvab174] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are characterized by chronic vascular dysfunction and provoke pathological remodeling events such as neointima formation, atherosclerotic lesion development, and adventitial fibrosis. While lineage-tracing studies have shown that phenotypically modulated smooth muscle cells (SMCs) are the major cellular component of neointimal lesions, the cellular origins and microenvironmental signaling mechanisms that underlie remodeling along the adventitial vascular layer are not fully understood. However, a growing body of evidence supports a unique population of adventitial lineage-restricted progenitor cells expressing the stem cell marker, stem cell antigen-1 (Sca1; AdvSca1 cells) as important effectors of adventitial remodeling and suggests that they are at least partially responsible for subsequent pathological changes that occur in the media and intima. AdvSca1 cells are being studied in murine models of atherosclerosis, perivascular fibrosis, and neointima formation in response to acute vascular injury. Depending on the experimental conditions, AdvSca1 cells exhibit the capacity to differentiate into SMCs, endothelial cells, chondrocytes, adipocytes, and pro-remodeling cells such as myofibroblasts and macrophages. These data indicate that AdvSca1 cells may be a targetable cell population to influence the outcomes of pathologic vascular remodeling. Important questions remain regarding the origins of AdvSca1 cells and the essential signaling mechanisms and microenvironmental factors that regulate both maintenance of their stem-like, progenitor phenotype and their differentiation into lineage-specified cell types. Adding complexity to the story, recent data indicate that the collective population of adventitial progenitor cells is likely composed of several smaller, lineage-restricted subpopulations which are not fully defined by their transcriptomic profile and differentiation capabilities. The aim of this review is to outline the heterogeneity of Sca1+ adventitial progenitor cells, summarize their role in vascular homeostasis and remodeling, and comment on their translational relevance in humans.
Collapse
Affiliation(s)
- Austin J Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Keith A Strand
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Allison M Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Marie F Mutryn
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension.,School of Medicine,Consortium for Fibrosis Research and Translation
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101.,Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, 98195
| | | | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension.,School of Medicine,Consortium for Fibrosis Research and Translation.,Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
13
|
Ntokou A, Dave JM, Kauffman AC, Sauler M, Ryu C, Hwa J, Herzog EL, Singh I, Saltzman WM, Greif DM. Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension. JCI Insight 2021; 6:139067. [PMID: 33591958 PMCID: PMC8026182 DOI: 10.1172/jci.insight.139067] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Excess macrophages and smooth muscle cells (SMCs) characterize many cardiovascular diseases, but crosstalk between these cell types is poorly defined. Pulmonary hypertension (PH) is a lethal disease in which lung arteriole SMCs proliferate and migrate, coating the normally unmuscularized distal arteriole. We hypothesized that increased macrophage platelet-derived growth factor-B (PDGF-B) induces pathological SMC burden in PH. Our results indicate that clodronate attenuates hypoxia-induced macrophage accumulation, distal muscularization, PH, and right ventricle hypertrophy (RVH). With hypoxia exposure, macrophage Pdgfb mRNA was upregulated in mice, and LysM‑Cre mice carrying floxed alleles for hypoxia-inducible factor 1a, hypoxia-inducible factor 2a, or Pdgfb had reduced macrophage Pdgfb and were protected against distal muscularization and PH. Conversely, LysM‑Cre von-Hippel Lindaufl/fl mice had increased macrophage Hifa and Pdgfb and developed distal muscularization, PH, and RVH in normoxia. Similarly, Pdgfb was upregulated in macrophages from human idiopathic or systemic sclerosis-induced pulmonary arterial hypertension patients, and macrophage-conditioned medium from these patients increased SMC proliferation and migration via PDGF-B. Finally, in mice, orotracheal administration of nanoparticles loaded with Pdgfb siRNA specifically reduced lung macrophage Pdgfb and prevented hypoxia-induced distal muscularization, PH, and RVH. Thus, macrophage-derived PDGF-B is critical for pathological SMC expansion in PH, and nanoparticle-mediated inhibition of lung macrophage PDGF-B has profound implications as an interventional strategy for PH.
Collapse
Affiliation(s)
- Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine
- Department of Genetics
| | - Jui M. Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine
- Department of Genetics
| | | | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, and
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, and
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, and
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Inderjit Singh
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, and
| | | | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine
- Department of Genetics
| |
Collapse
|
14
|
de Alencar Silva A, Pereira-de-Morais L, Rodrigues da Silva RE, de Menezes Dantas D, Brito Milfont CG, Gomes MF, Araújo IM, Kerntopf MR, Alencar de Menezes IR, Barbosa R. Pharmacological screening of the phenolic compound caffeic acid using rat aorta, uterus and ileum smooth muscle. Chem Biol Interact 2020; 332:109269. [DOI: 10.1016/j.cbi.2020.109269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/02/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
|
15
|
Liu F, Shan S, Li H, Li Z. Treatment of Peroxidase Derived from Foxtail Millet Bran Attenuates Atherosclerosis by Inhibition of CD36 and STAT3 in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1276-1285. [PMID: 31965794 DOI: 10.1021/acs.jafc.9b06963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is one of the main causes of cardiovascular diseases. Our previous study indicated that a type of peroxidase derived from foxtail millet bran (FMBP) had prominent antitumor activities. In the present study, we found that FMBP had potential antiatherosclerosis effects. The results showed that FMBP treatment strongly suppressed lipid phagocytosis in both HASMCs and THP-1 cells by 52% and 49%, respectively. Further, FMBP significantly inhibited HASMCs migration by promoting transformation of HASMCs from synthetic to contractile, leading to the decrease of lipid phagocytosis. Simultaneously, FMBP repressed lipid uptake by reducing the expression of CD36 in THP-1 cells. In addition, FMBP reduced the secretion of inflammatory factor IL-1β by inhibiting the expression of STAT3 in THP-1 cells. Interestingly, FMBP also had the same effects in models of atherosclerosis constructed with ApoE-/- mice, including decreased aortic lesion area, repressed aortic sinus CD36 and STAT3 expression, and elevated serum HDL-C concentration. Collectively, these results indicate that FMBP has great potential in preventing the development of atherosclerosis.
Collapse
|
16
|
Hao YM, Yuan HQ, Ren Z, Qu SL, Liu LS, Dang-HengWei, Yin K, Fu M, Jiang ZS. Endothelial to mesenchymal transition in atherosclerotic vascular remodeling. Clin Chim Acta 2018; 490:34-38. [PMID: 30571947 DOI: 10.1016/j.cca.2018.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
Endothelial cells are the main components of the heart, blood vessels, and lymphatic vessels, which play an important role in regulating the physiological functions of the cardiovascular system. Endothelial dysfunction is involved in a variety of acute and chronic cardiovascular diseases. As a special type of epithelial-mesenchymal transition (EMT), endothelium to mesenchymal transition (EndMT) regulates the transformation of endothelial cells into mesenchymal cells accompanied by changes in the expression of various transcription factors and cytokines, which is closely related to vascular endothelial injury, vascular remodeling, myocardial fibrosis and valvar disease. Endothelial cells undergoing EndMT lose their endothelial characteristics and undergo a transition toward a more mesenchymal-like phenotype. However, the molecular mechanism of EndMT remains unclear. EndMT, as a type of endothelial dysfunction, can cause vascular remodeling which is a major determinant of atherosclerotic luminal area. Therefore, exploring the important signaling pathways in the process of EndMT may provide novel therapeutic strategies for treating atherosclerotic diseases.
Collapse
Affiliation(s)
- Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Dang-HengWei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Kai Yin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China; Research Lab of Translational Medicine, Medical School, University of South China, Hengyang 421001, PR China
| | - Mingui Fu
- Department of Biomedical Science, Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
17
|
Iyer D, Zhao Q, Wirka R, Naravane A, Nguyen T, Liu B, Nagao M, Cheng P, Miller CL, Kim JB, Pjanic M, Quertermous T. Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk. PLoS Genet 2018; 14:e1007681. [PMID: 30307970 PMCID: PMC6198989 DOI: 10.1371/journal.pgen.1007681] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/23/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Although numerous genetic loci have been associated with coronary artery disease (CAD) with genome wide association studies, efforts are needed to identify the causal genes in these loci and link them into fundamental signaling pathways. Recent studies have investigated the disease mechanism of CAD associated gene SMAD3, a central transcription factor (TF) in the TGFβ pathway, investigating its role in smooth muscle biology. In vitro studies in human coronary artery smooth muscle cells (HCASMC) revealed that SMAD3 modulates cellular phenotype, promoting expression of differentiation marker genes while inhibiting proliferation. RNA sequencing and chromatin immunoprecipitation sequencing studies in HCASMC identified downstream genes that reside in pathways which mediate vascular development and atherosclerosis processes in this cell type. HCASMC phenotype, and gene expression patterns promoted by SMAD3 were noted to have opposing direction of effect compared to another CAD associated TF, TCF21. At sites of SMAD3 and TCF21 colocalization on DNA, SMAD3 binding was inversely correlated with TCF21 binding, due in part to TCF21 locally blocking chromatin accessibility at the SMAD3 binding site. Further, TCF21 was able to directly inhibit SMAD3 activation of gene expression in transfection reporter gene studies. In contrast to TCF21 which is protective toward CAD, SMAD3 expression in HCASMC was shown to be directly correlated with disease risk. We propose that the pro-differentiation action of SMAD3 inhibits dedifferentiation that is required for HCASMC to expand and stabilize disease plaque as they respond to vascular stresses, counteracting the protective dedifferentiating activity of TCF21 and promoting disease risk.
Collapse
Affiliation(s)
- Dharini Iyer
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Quanyi Zhao
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Robert Wirka
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ameay Naravane
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Trieu Nguyen
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Boxiang Liu
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Manabu Nagao
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Paul Cheng
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Clint L. Miller
- Departments of Public Health Sciences, Biochemistry and Genetics, and Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Juyong Brian Kim
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Milos Pjanic
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Thomas Quertermous
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
18
|
García-Miguel M, Riquelme JA, Norambuena-Soto I, Morales PE, Sanhueza-Olivares F, Nuñez-Soto C, Mondaca-Ruff D, Cancino-Arenas N, San Martín A, Chiong M. Autophagy mediates tumor necrosis factor-α-induced phenotype switching in vascular smooth muscle A7r5 cell line. PLoS One 2018; 13:e0197210. [PMID: 29750813 PMCID: PMC5947899 DOI: 10.1371/journal.pone.0197210] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/27/2018] [Indexed: 12/26/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) dedifferentiation from a contractile to a synthetic phenotype contributes to atherosclerosis. Atherosclerotic tissue has a chronic inflammatory component with high levels of tumor necrosis factor-α (TNF-α). VSMC of atheromatous plaques have increased autophagy, a mechanism responsible for protein and intracellular organelle degradation. The aim of this study was to evaluate whether TNF-α induces phenotype switching of VSMCs and whether this effect depends on autophagy. Rat aortic Vascular smooth A7r5 cell line was used as a model to examine the phenotype switching and autophagy. These cells were stimulated with TNF-α 100 ng/mL. Autophagy was determined by measuring LC3-II and p62 protein levels. Autophagy was inhibited using chloroquine and siRNA Beclin1. Cell dedifferentiation was evaluated by measuring the expression of contractile proteins α-SMA and SM22, extracellular matrix protein osteopontin and type I collagen levels. Cell proliferation was measured by [3H]-thymidine incorporation and MTT assay, and migration was evaluated by wound healing and transwell assays. Expression of IL-1β, IL-6 and IL-10 was assessed by ELISA. TNF-α induced autophagy as determined by increased LC3-II (1.91±0.21, p<0.001) and decreased p62 (0.86±0.02, p<0.05) when compared to control. Additionally, TNF-α decreased α-SMA (0.74±0.12, p<0.05) and SM22 (0.54±0.01, p<0.01) protein levels. Consequently, TNF-α induced migration (1.25±0.05, p<0.05), proliferation (2.33±0.24, p<0.05), and the secretion of IL-6 (258±53, p<0.01), type I collagen (3.09±0.85, p<0.01) and osteopontin (2.32±0.46, p<0.01). Inhibition of autophagy prevented all the TNF-α-induced phenotypic changes. TNF-α induces phenotype switching in A7r5 cell line by a mechanism that required autophagy. Therefore, autophagy may be a potential therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Marina García-Miguel
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pablo E. Morales
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Constanza Nuñez-Soto
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Alejandra San Martín
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Mario Chiong
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
19
|
Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 2018; 75:1411-1433. [PMID: 29243171 PMCID: PMC5852192 DOI: 10.1007/s00018-017-2730-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.
Collapse
Affiliation(s)
- Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45122, Essen, Germany.
| |
Collapse
|
20
|
Kokkinopoulos I, Wong MM, Potter CMF, Xie Y, Yu B, Warren DT, Nowak WN, Le Bras A, Ni Z, Zhou C, Ruan X, Karamariti E, Hu Y, Zhang L, Xu Q. Adventitial SCA-1 + Progenitor Cell Gene Sequencing Reveals the Mechanisms of Cell Migration in Response to Hyperlipidemia. Stem Cell Reports 2017; 9:681-696. [PMID: 28757161 PMCID: PMC5549964 DOI: 10.1016/j.stemcr.2017.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Adventitial progenitor cells, including SCA-1+ and mesenchymal stem cells, are believed to be important in vascular remodeling. It has been shown that SCA-1+ progenitor cells are involved in neointimal hyperplasia of vein grafts, but little is known concerning their involvement in hyperlipidemia-induced atherosclerosis. We employed single-cell sequencing technology on primary adventitial mouse SCA-1+ cells from wild-type and atherosclerotic-prone (ApoE-deficient) mice and found that a group of genes controlling cell migration and matrix protein degradation was highly altered. Adventitial progenitors from ApoE-deficient mice displayed an augmented migratory potential both in vitro and in vivo. This increased migratory ability was mimicked by lipid loading to SCA-1+ cells. Furthermore, we show that lipid loading increased miRNA-29b expression and induced sirtuin-1 and matrix metalloproteinase-9 levels to promote cell migration. These results provide direct evidence that blood cholesterol levels influence vascular progenitor cell function, which could be a potential target cell for treatment of vascular disease.
Collapse
Affiliation(s)
- Ioannis Kokkinopoulos
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mei Mei Wong
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Claire M F Potter
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yao Xie
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Baoqi Yu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Derek T Warren
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Witold N Nowak
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Alexandra Le Bras
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Zhichao Ni
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Chao Zhou
- John Moorhead Research Laboratory, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Xiongzhong Ruan
- John Moorhead Research Laboratory, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Eirini Karamariti
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yanhua Hu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| |
Collapse
|
21
|
Tian H, Liu Q, Qin S, Zong C, Zhang Y, Yao S, Yang N, Guan T, Guo S. Synthesis and cardiovascular protective effects of quercetin 7-O-sialic acid. J Cell Mol Med 2017; 21:107-120. [PMID: 27511707 PMCID: PMC5192943 DOI: 10.1111/jcmm.12943] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and inflammation play important roles in the pathogenesis of cardiovascular disease (CVD). Oxidative stress-induced desialylation is considered to be a primary step in atherogenic modification, and therefore, the attenuation of oxidative stress and/or inflammatory reactions may ameliorate CVD. In this study, quercetin 7-O-sialic acid (QA) was synthesized aiming to put together the cardiovascular protective effect of quercetin and the recently reported anti-oxidant and anti-atherosclerosis functions of N-acetylneuraminic acid. The biological efficacy of QA was evaluated in vitro in various cellular models. The results demonstrated that 50 μM QA could effectively protect human umbilical vein endothelial cells (HUVEC, EA.hy926) against hydrogen peroxide- or oxidized low-density lipoprotein-induced oxidative damage by reducing the production of reactive oxygen species. QA attenuated hydrogen peroxide-induced desialylation of HUVEC and lipoproteins. QA decreased lipopolysaccharide-induced secretion of tumour necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1), and it significantly reduced the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, TNF-α and MCP-1. Furthermore, QA effectively promoted cholesterol efflux from Raw 264.7 macrophages to apolipoprotein A-1 and high-density lipoprotein by up-regulating ATP-binding cassette transporter A1 and G1, respectively. Results indicated that the novel compound QA exhibited a better capacity than quercetin for anti-oxidation, anti-inflammation, cholesterol efflux promotion and biomolecule protection against desialylation and therefore could be a candidate compound for the prevention or treatment of CVD.
Collapse
Affiliation(s)
- Hua Tian
- Key Laboratory of Atherosclerosis in Universities of Shandong ProvinceInstitute of AtherosclerosisTaishan Medical UniversityTaianChina
| | - Qingchao Liu
- Department of Pharmaceutical EngineeringNorthwest UniversityXi'anChina
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong ProvinceInstitute of AtherosclerosisTaishan Medical UniversityTaianChina
| | - Chuanlong Zong
- Key Laboratory of Atherosclerosis in Universities of Shandong ProvinceInstitute of AtherosclerosisTaishan Medical UniversityTaianChina
| | - Ying Zhang
- Key Laboratory of Atherosclerosis in Universities of Shandong ProvinceInstitute of AtherosclerosisTaishan Medical UniversityTaianChina
| | - Shutong Yao
- Key Laboratory of Atherosclerosis in Universities of Shandong ProvinceInstitute of AtherosclerosisTaishan Medical UniversityTaianChina
| | - Nana Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong ProvinceInstitute of AtherosclerosisTaishan Medical UniversityTaianChina
| | - Tao Guan
- Key Laboratory of Atherosclerosis in Universities of Shandong ProvinceInstitute of AtherosclerosisTaishan Medical UniversityTaianChina
| | - Shoudong Guo
- Key Laboratory of Atherosclerosis in Universities of Shandong ProvinceInstitute of AtherosclerosisTaishan Medical UniversityTaianChina
| |
Collapse
|
22
|
Abstract
BACKGROUND Metastasis is the main cause of mortality in cancer patients. Two major routes of cancer cell spread are currently being recognized: dissemination via blood vessels (hematogenous spread) and dissemination via the lymphatic system (lymphogenous spread). Here, our current knowledge on the role of both blood and lymphatic vessels in cancer cell metastasis is summarized. In addition, I will discuss why cancer cells select one or both of the two routes to disseminate and I will provide a short description of the passive and active models of intravasation. Finally, lymphatic vessel density (LVD), blood vessel density (BVD), interstitial fluid pressure (IFP) and tumor hypoxia, as well as regional lymph node metastasis and the recently discovered primo vascular system (PVS) will be highlighted as important factors influencing tumor cell motility and spread and, ultimately, clinical outcome. CONCLUSIONS Lymphangiogenesis and angiogenesis are important phenomena involved in the spread of cancer cells and they are associated with a poor prognosis. It is anticipated that new discoveries and advancing knowledge on these phenomena will allow an improvement in the treatment of cancer patients.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
23
|
Sheikh AQ, Misra A, Rosas IO, Adams RH, Greif DM. Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci Transl Med 2016; 7:308ra159. [PMID: 26446956 DOI: 10.1126/scitranslmed.aaa9712] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excess and ectopic smooth muscle cells (SMCs) are central to cardiovascular disease pathogenesis, but underlying mechanisms are poorly defined. For instance, pulmonary hypertension (PH) or elevated pulmonary artery blood pressure is a devastating disease with distal extension of smooth muscle to normally unmuscularized pulmonary arterioles. We identify novel SMC progenitors that are located at the pulmonary arteriole muscular-unmuscular border and express both SMC markers and the undifferentiated mesenchyme marker platelet-derived growth factor receptor-β (PDGFR-β). We term these cells "primed" because in hypoxia-induced PH, they express the pluripotency factor Kruppel-like factor 4 (KLF4), and in each arteriole, one of them migrates distally, dedifferentiates, and clonally expands, giving rise to the distal SMCs. Furthermore, hypoxia-induced expression of the ligand PDGF-B regulates primed cell KLF4 expression, and enhanced PDGF-B and KLF4 levels are required for distal arteriole muscularization and PH. Finally, in PH patients, KLF4 is markedly up-regulated in pulmonary arteriole smooth muscle, especially in proliferating SMCs. In sum, we have identified a pool of SMC progenitors that are critical for the pathogenesis of PH, and perhaps other vascular disorders, and therapeutic strategies targeting this cell type promise to have profound implications.
Collapse
Affiliation(s)
- Abdul Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA
| | - Ashish Misra
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Misra A, Sheikh AQ, Kumar A, Luo J, Zhang J, Hinton RB, Smoot L, Kaplan P, Urban Z, Qyang Y, Tellides G, Greif DM. Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. J Exp Med 2016; 213:451-63. [PMID: 26858344 PMCID: PMC4813675 DOI: 10.1084/jem.20150688] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/08/2016] [Indexed: 02/03/2023] Open
Abstract
Misra et al. elucidate the origin of smooth muscle cells involved in supravalvular aortic stenosis and identify the integrin β3 pathway as a therapeutic target in this disease. The aorta is the largest artery in the body, yet processes underlying aortic pathology are poorly understood. The arterial media consists of circumferential layers of elastic lamellae and smooth muscle cells (SMCs), and many arterial diseases are characterized by defective lamellae and excess SMCs; however, a mechanism linking these pathological features is lacking. In this study, we use lineage and genetic analysis, pharmacological inhibition, explant cultures, and induced pluripotent stem cells (iPSCs) to investigate supravalvular aortic stenosis (SVAS) patients and/or elastin mutant mice that model SVAS. These experiments demonstrate that multiple preexisting SMCs give rise to excess aortic SMCs in elastin mutants, and these SMCs are hyperproliferative and dedifferentiated. In addition, SVAS iPSC-derived SMCs and the aortic media of elastin mutant mice and SVAS patients have enhanced integrin β3 levels, activation, and downstream signaling, resulting in SMC misalignment and hyperproliferation. Reduced β3 gene dosage in elastin-null mice mitigates pathological aortic muscularization, SMC misorientation, and lumen loss and extends survival, which is unprecedented. Finally, pharmacological β3 inhibition in elastin mutant mice and explants attenuates aortic hypermuscularization and stenosis. Thus, integrin β3–mediated signaling in SMCs links elastin deficiency and pathological stenosis, and inhibiting this pathway is an attractive therapeutic strategy for SVAS.
Collapse
Affiliation(s)
- Ashish Misra
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Abdul Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Robert B Hinton
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Leslie Smoot
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
| | - Paige Kaplan
- Section of Metabolic Diseases, Children's Hospital of Pennsylvania, Philadelphia, PA 19104
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - George Tellides
- Department of Surgery, School of Medicine, Yale University, New Haven, CT 06511
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| |
Collapse
|
25
|
Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS, Riordan DP, Kofler N, Kitajewski J, Weissman I, Red-Horse K. Pericytes are progenitors for coronary artery smooth muscle. eLife 2015; 4. [PMID: 26479710 PMCID: PMC4728130 DOI: 10.7554/elife.10036] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
Epicardial cells on the heart's surface give rise to coronary artery smooth muscle cells (caSMCs) located deep in the myocardium. However, the differentiation steps between epicardial cells and caSMCs are unknown as are the final maturation signals at coronary arteries. Here, we use clonal analysis and lineage tracing to show that caSMCs derive from pericytes, mural cells associated with microvessels, and that these cells are present in adults. During development following the onset of blood flow, pericytes at arterial remodeling sites upregulate Notch3 while endothelial cells express Jagged-1. Deletion of Notch3 disrupts caSMC differentiation. Our data support a model wherein epicardial-derived pericytes populate the entire coronary microvasculature, but differentiate into caSMCs at arterial remodeling zones in response to Notch signaling. Our data are the first demonstration that pericytes are progenitors for smooth muscle, and their presence in adult hearts reveals a new potential cell type for targeting during cardiovascular disease.
Collapse
Affiliation(s)
- Katharina S Volz
- Stem Cell and Regenerative Medicine PhD Program, Stanford School of Medicine, Stanford, United States.,Department of Biological Sciences, Stanford University, Stanford, United States.,Institute for Stem Cell and Regenerative Medicine, Stanford School of Medicine, Ludwig Center, Stanford, United States
| | - Andrew H Jacobs
- Department of Biological Sciences, Stanford University, Stanford, United States
| | - Heidi I Chen
- Department of Biological Sciences, Stanford University, Stanford, United States
| | - Aruna Poduri
- Department of Biological Sciences, Stanford University, Stanford, United States
| | - Andrew S McKay
- Department of Biological Sciences, Stanford University, Stanford, United States
| | - Daniel P Riordan
- Department of Biochemistry, Stanford School of Medicine, Stanford, United States
| | - Natalie Kofler
- Columbia University Medical Center, New York, United States
| | - Jan Kitajewski
- Columbia University Medical Center, New York, United States
| | - Irving Weissman
- Institute for Stem Cell and Regenerative Medicine, Stanford School of Medicine, Ludwig Center, Stanford, United States.,Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford University, Stanford, United States
| | - Kristy Red-Horse
- Department of Biological Sciences, Stanford University, Stanford, United States
| |
Collapse
|
26
|
Adeva-Andany MM, Fernández-Fernández C, Sánchez-Bello R, Donapetry-García C, Martínez-Rodríguez J. The role of carbonic anhydrase in the pathogenesis of vascular calcification in humans. Atherosclerosis 2015; 241:183-91. [PMID: 26005791 DOI: 10.1016/j.atherosclerosis.2015.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 11/19/2022]
Abstract
Carbonic anhydrases are a group of isoenzymes that catalyze the reversible conversion of carbon dioxide into bicarbonate. They participate in a constellation of physiological processes in humans, including respiration, bone metabolism, and the formation of body fluids, including urine, bile, pancreatic juice, gastric secretion, saliva, aqueous humor, cerebrospinal fluid, and sweat. In addition, carbonic anhydrase may provide carbon dioxide/bicarbonate to carboxylation reactions that incorporate carbon dioxide to substrates. Several isoforms of carbonic anhydrase have been identified in humans, but their precise physiological role and the consequences of their dysfunction are mostly unknown. Carbonic anhydrase isoenzymes are involved in calcification processes in a number of biological systems, including the formation of calcareous spicules from sponges, the formation of shell in some animals, and the precipitation of calcium salts induced by several microorganisms, particularly urease-producing bacteria. In human tissues, carbonic anhydrase is implicated in calcification processes either directly by facilitating calcium carbonate deposition which in turn serves to facilitate calcium phosphate mineralization, or indirectly via its action upon γ-glutamyl-carboxylase, a carboxylase that enables the biological activation of proteins involved in calcification, such as matrix Gla protein, bone Gla protein, and Gla-rich protein. Carbonic anhydrase is implicated in calcification of human tissues, including bone and soft-tissue calcification in rheumatological disorders such as ankylosing spondylitis and dermatomyositis. Carbonic anhydrase may be also involved in bile and kidney stone formation and carcinoma-associated microcalcifications. The aim of this review is to evaluate the possible association between carbonic anhydrase isoenzymes and vascular calcification in humans.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain.
| | | | - Rocío Sánchez-Bello
- Nephrology Division, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | | |
Collapse
|
27
|
Kowalski WJ, Pekkan K, Tinney JP, Keller BB. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Front Physiol 2014; 5:408. [PMID: 25374544 PMCID: PMC4204442 DOI: 10.3389/fphys.2014.00408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022] Open
Abstract
Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling. These adaptive mechanisms allow the embryo to survive these biomechanical stresses (environmental, maternal) and to compensate for developmental errors (genetic). Recent work from numerous laboratories shows that a subset of these adaptive mechanisms is present in every developing multicellular organism with a “heart” equivalent structure. This chapter will provide the reader with an overview of some of the approaches used to quantify embryonic CV functional maturation and performance, provide several illustrations of experimental interventions that explore the role of biomechanics in the regulation of CV morphogenesis including the role of computational modeling, and identify several critical areas for future investigation as available experimental models and methods expand.
Collapse
Affiliation(s)
- William J Kowalski
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| | - Joseph P Tinney
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Bradley B Keller
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA ; Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
28
|
Sheikh AQ, Lighthouse JK, Greif DM. Recapitulation of developing artery muscularization in pulmonary hypertension. Cell Rep 2014; 6:809-17. [PMID: 24582963 DOI: 10.1016/j.celrep.2014.01.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022] Open
Abstract
Excess smooth muscle accumulation is a key component of many vascular disorders, including atherosclerosis, restenosis, and pulmonary artery hypertension, but the underlying cell biological processes are not well defined. In pulmonary artery hypertension, reduced pulmonary artery compliance is a strong independent predictor of mortality, and pathological distal arteriole muscularization contributes to this reduced compliance. We recently demonstrated that embryonic pulmonary artery wall morphogenesis consists of discrete developmentally regulated steps. In contrast, poor understanding of distal arteriole muscularization in pulmonary artery hypertension severely limits existing therapies that aim to dilate the pulmonary vasculature but have modest clinical benefit and do not prevent hypermuscularization. Here, we show that most pathological distal arteriole smooth muscle cells, but not alveolar myofibroblasts, derive from pre-existing smooth muscle. Furthermore, the program of distal arteriole muscularization encompasses smooth muscle cell dedifferentiation, distal migration, proliferation, and then redifferentiation, thereby recapitulating many facets of arterial wall development.
Collapse
Affiliation(s)
- Abdul Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA
| | - Janet K Lighthouse
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA.
| |
Collapse
|