1
|
Shen M, Chen L, Jiang J, Wang Z, Gong Q, Zhang X, Ke X, Qu Y. Curcumin modulates β-catenin stabilization via targeting proteasomal deubiquitinating enzyme USP14 ☆. Pharmacol Res 2025; 216:107745. [PMID: 40294856 DOI: 10.1016/j.phrs.2025.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Loss of β-catenin homeostasis is tightly associated with human malignancies, modulation of β-catenin stabilization could be an attractive strategy for cancer therapy. In the present study, we demonstrated that an ancient drug curcumin was associated with selective accumulation of phosphorylated β-catenin (PBC) tagged with both ubiquitin (Ub) and Ub-like (Ubl) protein NEDD8. We further identified USP14, a deubiquitinating enzyme (DUB) in 19S proteasome, as a functional target of curcumin in modulating β-catenin. Curcumin enhances USP14-mediated PBC trapping and modulates proteasome associations, loss of USP14 significantly attenuated curcumin-increased PBC. Additionally, we found that USP14 deficiency suppressed mitotic entry and cell proliferation, targeting USP14 and PBC was essential for curcumin inhibition of cancer. Taken together, our study not only revealed the association of USP14 with PBC degradation within the proteasome, but also provided a unique small molecule curcumin targeting USP14 to modulate β-catenin for cancer therapy.
Collapse
Affiliation(s)
- Mengzhen Shen
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lizhe Chen
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jie Jiang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Ziye Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Qing Gong
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Major RM, Mills CA, Xing L, Krantz JL, Wolter JM, Zylka MJ. Exploring the Cytoplasmic Retention of CRISPR-Cas9 in Eukaryotic Cells: The Role of Nuclear Localization Signals and Ribosomal Interactions. CRISPR J 2025; 8:120-136. [PMID: 40019800 DOI: 10.1089/crispr.2024.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Cas9 must be localized to the nucleus to access the genome of mammalian cells. For most proteins, adding a single nuclear localization signal (NLS) is sufficient to promote nuclear entry. However, Cas9 nuclear entry appears to be inefficient as multiple NLSs are typically added to Cas9. Here, we found that three different Cas9 variants interact with the ribosome in HEK293T cells, and that this interaction is RNA mediated. Following immunoprecipitation-mass spectrometry of cytoplasmic-localized Cas9-0NLS and nuclear-localized Cas9-4NLS constructs, we identified novel Cas9 interactors in postmitotic neurons, including KEAP1 and additional ribosomal subunits, the latter were enriched in Cas9-0NLS samples. Collectively, our results suggest that Cas9 is sequestered in the cytoplasm of mammalian cells, in part, via interaction with the ribosome. Increasing the number of NLSs on Cas9 and/or increasing the amount of cytoplasmic guide RNA has the potential to outcompete ribosomal RNA binding and promote efficient nuclear localization of CRISPR-Cas9 variants.
Collapse
Affiliation(s)
- Rami M Major
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christine A Mills
- Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James L Krantz
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Enenkel C, Ernst OP. Proteasome dynamics in response to metabolic changes. Front Cell Dev Biol 2025; 13:1523382. [PMID: 40099196 PMCID: PMC11911490 DOI: 10.3389/fcell.2025.1523382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Proteasomes, essential protease complexes in protein homeostasis, adapt to metabolic changes through intracellular movements. As the executive arm of the ubiquitin-proteasome system, they selectively degrade poly-ubiquitinated proteins in an ATP-dependent process. The primary proteasome configuration involved in this degradation is the 26S proteasome, which is composed of a proteolytically active core particle flanked by two regulatory particles. In metabolically active cells, such as proliferating yeast and mammalian cancer cells, 26S proteasomes are predominantly nuclear and actively engaged in protein degradation. However, during nutrient deprivation or stress-induced quiescence, proteasome localization changes. In quiescent yeast, proteasomes initially accumulate at the nuclear envelope. During prolonged quiescence with decreased ATP levels, proteasomes exit the nucleus and are sequestered into cytoplasmic membraneless organelles, so-called proteasome storage granules (PSGs). In mammalian cells, starvation and stress trigger formation of membraneless organelles containing proteasomes and poly-ubiquitinated substrates. The proteasome condensates are motile, reversible, and contribute to stress resistance and improved fitness during aging. Proteasome condensation may involve liquid-liquid phase separation, a mechanism underlying the assembly of membraneless organelles.
Collapse
Affiliation(s)
- Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Oliver P. Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Modestov A, Zolotovskaia M, Suntsova M, Zakharova G, Seryakov A, Jovcevska I, Mlakar J, Poddubskaya E, Moisseev A, Vykhodtsev G, Roumiantsev S, Sorokin M, Tkachev V, Simonov A, Buzdin A. Bioinformatic and clinical experimental assay uncovers resistance and susceptibility mechanisms of human glioblastomas to temozolomide and identifies new combined and individual survival biomarkers outperforming MGMT promoter methylation. Ther Adv Med Oncol 2024; 16:17588359241292269. [PMID: 39525666 PMCID: PMC11544758 DOI: 10.1177/17588359241292269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive and lethal central nervous system (CNS) tumor. The treatment strategy is mainly surgery and/or radiation therapy, both combined with adjuvant temozolomide (TMZ) chemotherapy. Historically, methylation of MGMT gene promoter is used as the major biomarker predicting individual tumor response to TMZ. Objectives This research aimed to analyze genes and molecular pathways of DNA repair as biomarkers for sensitivity to TMZ treatment in GBM using updated The Cancer Genome Atlas (TCGA) data and validate the results on experimental datasets. Methods Survival analysis of GBM patients under TMZ therapy and hazard ratio (HR) calculation were used to assess all putative biomarkers on World Health Organization CNS5 reclassified TCGA project collection of molecular profiles and experimental multicenter GBM patient cohort. Pathway activation levels were calculated for 38 DNA repair pathways. TMZ sensitivity pathway was reconstructed using a human interactome model built using pairwise interactions extracted from 51,672 human molecular pathways. Results We found that expression/activation levels of seven and six emerging gene/pathway biomarkers served as high-quality positive (HR < 0.61) and negative (HR > 1.63), respectively, patient survival biomarkers performing better than MGMT methylation. Positive survival biomarkers were enriched in the processes of ATM-dependent checkpoint activation and cell cycle arrest whereas negative-in excision DNA repair. We also built and characterized gene pathways which were informative for GBM patient survival following TMZ administration (HR 0.18-0.44, p < 0.0009; area under the curve 0.68-0.9). Conclusion In this study, a comprehensive analysis of the expression of 361 DNA repair genes and activation levels of 38 DNA repair pathways revealed 13 potential survival biomarkers with increased prognostic potential compared to MGMT methylation. We algorithmically reconstructed the TMZ sensitivity pathway with strong predictive capacity in GBM.
Collapse
Affiliation(s)
| | - Marianna Zolotovskaia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Endocrinology Research Center, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Maria Suntsova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Endocrinology Research Center, Moscow, Russia
| | - Galina Zakharova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Ivana Jovcevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Aleksey Moisseev
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Endocrinology Research Center, Moscow, Russia
| | | | | | | | | | | | - Anton Buzdin
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Endocrinology Research Center, Dmitriya Ulyanova Str. 11, Moscow 117036, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow, Russia
- Oncobox LLC, Moscow 119991, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| |
Collapse
|
5
|
Li Z, Wu Y, Yang W, Wang W, Li J, Huang X, Yang Y, Zhang X, Ye X. Characterization of polyamine metabolism predicts prognosis, immune profile, and therapeutic efficacy in lung adenocarcinoma patients. Front Cell Dev Biol 2024; 12:1331759. [PMID: 38650895 PMCID: PMC11033315 DOI: 10.3389/fcell.2024.1331759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Background Polyamine modification patterns in lung adenocarcinoma (LUAD) and their impact on prognosis, immune infiltration, and anti-tumor efficacy have not been systematically explored. Methods Patients from The Cancer Genome Atlas (TCGA) were classified into subtypes according to polyamine metabolism-related genes using the consensus clustering method, and the survival outcomes and immune profile were compared. Meanwhile, the geneCluster was constructed according to the differentially expressed genes (DEGs) of the subtypes. Subsequently, the polyamine metabolism-related score (PMRS) system was established using the least absolute shrinkage and selection operator (LASSO) multivariate regression analysis in the TCGA training cohort (n = 245), which can be applied to characterize the prognosis. To verify the predictive performance of the PMRS, the internal cohort (n = 245) and the external cohort (n = 244) were recruited. The relationship between the PMRS and immune infiltration and antitumor responses was investigated. Results Two distinct patterns (C1 and C2) were identified, in which the C1 subtype presented an adverse prognosis, high CD8+ T cell infiltration, tumor mutational burden (TMB), immune checkpoint, and low tumor immune dysfunction and exclusion (TIDE). Furthermore, two geneClusters were established, and similar findings were observed. The PMRS, including three genes (SMS, SMOX, and PSMC6), was then constructed to characterize the polyamine metabolic patterns, and the patients were divided into high- and low-PMRS groups. As confirmed by the validation cohort, the high-PMRS group possessed a poor prognosis. Moreover, external samples and immunohistochemistry confirmed that the three genes were highly expressed in tumor samples. Finally, immunotherapy and chemotherapy may be beneficial to the high-PMRS group based on the immunotherapy cohorts and low half-maximal inhibitory concentration (IC50) values. Conclusion We identified distinct polyamine modification patterns and established a PMRS to provide new insights into the mechanism of polyamine action and improve the current anti-tumor strategy of LUAD.
Collapse
Affiliation(s)
- Zhouhua Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Wu
- Health Team, Jiangsu Marine Police Bureau, Nanjing, China
| | - Weichang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jinbo Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqiang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Steinberger S, Adler J, Shaul Y. Method of Monitoring 26S Proteasome in Cells Revealed the Crucial Role of PSMA3 C-Terminus in 26S Integrity. Biomolecules 2023; 13:992. [PMID: 37371572 DOI: 10.3390/biom13060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Proteasomes critically regulate proteostasis via protein degradation. Proteasomes are multi-subunit complexes composed of the 20S proteolytic core particle (20S CP) that, in association with one or two 19S regulatory particles (19S RPs), generates the 26S proteasome, which is the major proteasomal complex in cells. Native gel protocols are used to investigate the 26S/20S ratio. However, a simple method for detecting these proteasome complexes in cells is missing. To this end, using CRISPR technology, we YFP-tagged the endogenous PSMB6 (β1) gene, a 20S CP subunit, and co-tagged endogenous PSMD6 (Rpn7), a 19S RP subunit, with the mScarlet fluorescent protein. We observed the colocalization of the YFP and mScarlet fluorescent proteins in the cells, with higher nuclear accumulation. Nuclear proteasomal granules are formed under osmotic stress, and all were positive for YFP and mScarlet. Previously, we have reported that PSMD1 knockdown, one of the 19 RP subunits, gives rise to a high level of "free" 20S CPs. Intriguingly, under this condition, the 20S-YFP remained nuclear, whereas the PSMD6-mScarlet was mostly in cytoplasm, demonstrating the distinct subcellular distribution of uncapped 20S CPs. Lately, we have shown that the PSMA3 (α7) C-terminus, a 20S CP subunit, binds multiple intrinsically disordered proteins (IDPs). Remarkably, the truncation of the PSMA3 C-terminus is phenotypically reminiscent of PSMD1 knockdown. These data suggest that the PSMA3 C-terminal region is critical for 26S proteasome integrity.
Collapse
Affiliation(s)
- Shirel Steinberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Luo H, Feng Y, Wang F, Lin Z, Huang J, Li Q, Wang X, Liu X, Zhai X, Gao Q, Li L, Zhang Y, Wen J, Zhang L, Niu T, Zheng Y. Combinations of ivermectin with proteasome inhibitors induce synergistic lethality in multiple myeloma. Cancer Lett 2023; 565:216218. [PMID: 37149018 DOI: 10.1016/j.canlet.2023.216218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells. Ivermectin is a US Food and Drug Administration-approved drug for antiparasitic use. Here, we showed that ivermectin exerted anti-MM effects and significantly synergized with proteasome inhibitors in vitro and in vivo. Ivermectin alone exhibited mild anti-MM activity in vitro. Further investigation suggested that ivermectin inhibited proteasome activity in the nucleus by repressing the nuclear import of proteasome subunits, such as PSMB5-7 and PSMA3-4. Therefore, ivermectin treatment caused the accumulation of ubiquitylated proteins and the activation of the UPR pathway in MM cells. Furthermore, ivermectin treatment caused DNA damage and DNA damage response (DDR) signaling pathway activation in MM cells. Ivermectin and bortezomib exhibited synergized anti-MM activity in vitro. The dual-drug treatment resulted in synergistic inhibition of proteasome activity and increased DNA damage. An in vivo study using a human MM cell line xenograft mouse model showed that ivermectin and bortezomib efficiently repressed MM tumor growth in vivo, while the dual-drug treatment was well tolerated by experimental animals. Overall, our results demonstrated that ivermectin alone or cotreated with bortezomib might be promising in MM treatment.
Collapse
Affiliation(s)
- Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, The Affiliated Hospital of Chengdu University, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qianwen Gao
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Lingfeng Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, Mian-yang Central Hospital, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, China.
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, China.
| |
Collapse
|
8
|
Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nat Commun 2022; 13:6962. [PMID: 36379934 PMCID: PMC9666519 DOI: 10.1038/s41467-022-34691-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Proteasomes play an essential role in the life cycle of intracellular pathogens with extracellular stages by ensuring proteostasis in environments with limited resources. In microsporidia, divergent parasites with extraordinarily streamlined genomes, the proteasome complexity and structure are unknown, which limits our understanding of how these unique pathogens adapt and compact essential eukaryotic complexes. We present cryo-electron microscopy structures of the microsporidian 20S and 26S proteasome isolated from dormant or germinated Vairimorpha necatrix spores. The discovery of PI31-like peptides, known to inhibit proteasome activity, bound simultaneously to all six active sites within the central cavity of the dormant spore proteasome, suggests reduced activity in the environmental stage. In contrast, the absence of the PI31-like peptides and the existence of 26S particles post-germination in the presence of ATP indicates that proteasomes are reactivated in nutrient-rich conditions. Structural and phylogenetic analyses reveal that microsporidian proteasomes have undergone extensive reductive evolution, lost at least two regulatory proteins, and compacted nearly every subunit. The highly derived structure of the microsporidian proteasome, and the minimized version of PI31 presented here, reinforce the feasibility of the development of specific inhibitors and provide insight into the unique evolution and biology of these medically and economically important pathogens.
Collapse
|
9
|
Liu H, Yu J, Li M, Kang S, Zhao X, Yin G, Liu B, Ji C, Wang Y, Gao W, Chang Z, Zhao F. Proteomic analysis of donkey sperm reveals changes in acrosome enzymes and redox regulation during cryopreservation. J Proteomics 2022; 267:104698. [PMID: 35998806 DOI: 10.1016/j.jprot.2022.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Sperm cryoinjuries caused by cryopreservation restrict the application of donkey frozen semen in artificial insemination (AI). Identification of differentially represented proteins in fresh and frozen-thawed spermatozoa is of great significance to optimize the cryopreservation process and modify the component of cryopreservation extender. In this study, protein samples prepared from fresh (F) and frozen-thawed (FT) donkey spermatozoa were compared. 2682 proteins were quantitatively identified by tandem mass spectrometry (TMT) polypeptide labeling technique and LC-MS/MS method, of which 28 were more abundant in thawed samples and 147 in fresh spermatozoa. The differential abundant proteins (DAPs) were analyzed by bioinformatics. Most of the DAPs in intensive bioinformatic analysis were involved in the process of regulation of biological process and metabolism. Functional protein analysis showed that DAPs process mainly protein hydrolase activity and oxidoreductase activity. Cellular Component analysis showed that DAPs were related to vesicle transport and membrane system. This is the first analysis and study on differential proteomics of donkey sperm proteins before and after cryopreservation, which has a certain guiding significance for studying the mechanism of sperm damage caused by cryopreservation and improving the freezing and thawing procedure. SIGNIFICANCE: In recent years, the commercial value of donkey products has been discovered. Improving the breeding efficiency of donkeys can save the stock of donkeys which is decreasing rapidly, and allow people to continuously benefit from the nutritional value brought by donkey milk. Sperm cryopreservation technology has laid the foundation for encouraging the spread of artificial insemination in donkey reproduction, but the freezing and thawing process causes damage to sperm, which dramatically reducing the viability of frozen sperm and leading to low fertility. At present, the mechanism of damage to donkey sperm caused by cryopreservation is still unclear, and studying this mechanism can provide a direction for improving the quality of frozen semen. Protein is a potential key factor affecting sperm cryopreservation activity. Studying changes in the sperm proteome during cryopreservation can provide promising evidence for revealing sperm cryopreservation damage, which is of great significance for optimizing the cryopreservation process, improving the composition of cryopreservation extender, and seeking directions for improving the quality of frozen semen.
Collapse
Affiliation(s)
- Haibing Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Min Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Shouting Kang
- College of Pharmacy, Heze University, 2269 Daxue Road, Heze 274015, China
| | - Xianlin Zhao
- College of Pharmacy, Heze University, 2269 Daxue Road, Heze 274015, China
| | - Guijun Yin
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Bing Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Yantao Wang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Weiping Gao
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No.78, E-jiao Street, Done-E Country, Shandong Province 252201, China
| | - Zhongle Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, 2269 Daxue Road, Heze 274015, China.
| |
Collapse
|
10
|
Vasilopoulou MA, Gioran A, Theodoropoulou M, Koutsaviti A, Roussis V, Ioannou E, Chondrogianni N. Healthspan improvement and anti-aggregation effects induced by a marine-derived structural proteasome activator. Redox Biol 2022; 56:102462. [PMID: 36095970 PMCID: PMC9482115 DOI: 10.1016/j.redox.2022.102462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022] Open
Abstract
Proteasome activation has been shown to promote cellular and organismal healthspan and to protect against aggregation-related conditions, such as Alzheimer's disease (AD). Various natural compounds have been described for their proteasome activating properties but scarce data exist on marine metabolites that often possess unique chemical structures, exhibiting pronounced bioactivities with novel mechanisms of action. In this study, we have identified for the first time a marine structural proteasome activator, namely (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO). DBTO activates the 20S proteasome complex in cell-free assays but also in cellulo. Continuous supplementation of human primary fibroblasts with DBTO throughout their cellular lifespan confers an improved healthspan while ameliorated health status is also observed in wild type (wt) Caenorhabditis elegans (C. elegans) nematodes supplemented with DBTO. Furthermore, treatment of various AD nematode models, as well as of human cells of neuronal origin challenged with exogenously added Aβ peptide, with DBTO results in enhanced protection against Aβ-induced proteotoxicity. In total, our results reveal the first structural proteasome activator derived from the marine ecosystem and highlight its potential as a compound that might be used for healthspan maintenance and preventive strategies against proteinopathies, such as AD. (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO) is a structural proteasome activator. DBTO is the first identified marine structural proteasome activator. DBTO positively modulates cellular healthspan and organismal health status. DBTO confers protection against Aβ-induced proteotoxicity.
Collapse
|
11
|
Ullah MA, Islam NN, Moin AT, Park SH, Kim B. Evaluating the Prognostic and Therapeutic Potentials of the Proteasome 26S Subunit, ATPase ( PSMC) Family of Genes in Lung Adenocarcinoma: A Database Mining Approach. Front Genet 2022; 13:935286. [PMID: 35938038 PMCID: PMC9353525 DOI: 10.3389/fgene.2022.935286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
This study explored the prognostic and therapeutic potentials of multiple Proteasome 26S Subunit, ATPase (PSMC) family of genes (PSMC1-5) in lung adenocarcinoma (LUAD) diagnosis and treatment. All the PSMCs were found to be differentially expressed (upregulated) at the mRNA and protein levels in LUAD tissues. The promoter and multiple coding regions of PSMCs were reported to be differentially and distinctly methylated, which may serve in the methylation-sensitive diagnosis of LUAD patients. Multiple somatic mutations (alteration frequency: 0.6-2%) were observed along the PSMC coding regions in LUAD tissues that could assist in the high-throughput screening of LUAD patients. A significant association between the PSMC overexpression and LUAD patients' poor overall and relapse-free survival (p < 0.05; HR: >1.3) and individual cancer stages (p < 0.001) was discovered, which justifies PSMCs as the ideal targets for LUAD diagnosis. Multiple immune cells and modulators (i.e., CD274 and IDO1) were found to be associated with the expression levels of PSMCs in LUAD tissues that could aid in formulating PSMC-based diagnostic measures and therapeutic interventions for LUAD. Functional enrichment analysis of neighbor genes of PSMCs in LUAD tissues revealed different genes (i.e., SLIRP, PSMA2, and NUDSF3) previously known to be involved in oncogenic processes and metastasis are co-expressed with PSMCs, which could also be investigated further. Overall, this study recommends that PSMCs and their transcriptional and translational products are potential candidates for LUAD diagnostic and therapeutic measure discovery.
Collapse
Affiliation(s)
- Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Su Hyun Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
12
|
Watanabe A, Yashiroda H, Ishihara S, Lo M, Murata S. The Molecular Mechanisms Governing the Assembly of the Immuno- and Thymoproteasomes in the Presence of Constitutive Proteasomes. Cells 2022; 11:cells11091580. [PMID: 35563886 PMCID: PMC9105311 DOI: 10.3390/cells11091580] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
The proteasome is a large protein complex responsible for proteolysis in cells. Though the proteasome is widely conserved in all eukaryotes, vertebrates additionally possess tissue-specific proteasomes, termed immunoproteasomes and thymoproteasomes. These specialized proteasomes diverge from constitutive proteasomes in the makeup of their catalytic 20S core particle (CP), whereby the constitutive β1, β2, and β5 catalytic subunits are replaced by β1i, β2i, and β5i in immunoproteasomes, or β1i, β2i, and β5t in thymoproteasomes. However, as constitutive β1, β2, and β5 are also present in tissues and cells expressing immuno- and thymoproteasomes, the specialized proteasomes must be able to selectively incorporate their specific subunits. Here, we review the mechanisms governing the assembly of constitutive and specialized proteasomes elucidated thus far. Studies have revealed that β1i and β2i are added onto the α-ring of the CP prior to the other β subunits. Furthermore, β5i and β5t can be incorporated independent of β4, whereas constitutive β5 incorporation is dependent on β4. These mechanisms allow the immuno- and thymoproteasomes to integrate tissue-specific β-subunits without contamination from constitutive β1, β2, and β5. We end the review with a brief discussion on the diseases caused by mutations to the immunoproteasome and the proteins involved with its assembly.
Collapse
|
13
|
Luu AK, Cadieux M, Wong M, Macdonald R, Jones R, Choi D, Oblak M, Brisson B, Sauer S, Chafitz J, Warshawsky D, Wood GA, Viloria-Petit AM. Proteomic Assessment of Extracellular Vesicles from Canine Tissue Explants as a Pipeline to Identify Molecular Targets in Osteosarcoma: PSMD14/Rpn11 as a Proof of Principle. Int J Mol Sci 2022; 23:ijms23063256. [PMID: 35328679 PMCID: PMC8953151 DOI: 10.3390/ijms23063256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is a highly malignant bone tumour that has seen little improvement in treatment modalities in the past 30 years. Understanding what molecules contribute to OS biology could aid in the discovery of novel therapies. Extracellular vesicles (EVs) serve as a mode of cell-to-cell communication and have the potential to uncover novel protein signatures. In our research, we developed a novel pipeline to isolate, characterize, and profile EVs from normal bone and osteosarcoma tissue explants from canine OS patients. Proteomic analysis of vesicle preparations revealed a protein signature related to protein metabolism. One molecule of interest, PSMD14/Rpn11, was explored further given its prognostic potential in human and canine OS, and its targetability with the drug capzimin. In vitro experiments demonstrated that capzimin induces apoptosis and reduces clonogenic survival, proliferation, and migration in two metastatic canine OS cell lines. Capzimin also reduces the viability of metastatic human OS cells cultured under 3D conditions that mimic the growth of OS cells at secondary sites. This unique pipeline can improve our understanding of OS biology and identify new prognostic markers and molecular targets for both canine and human OS patients.
Collapse
Affiliation(s)
- Anita K. Luu
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.K.L.); (M.C.); (M.W.); (R.M.)
| | - Mia Cadieux
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.K.L.); (M.C.); (M.W.); (R.M.)
| | - Mackenzie Wong
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.K.L.); (M.C.); (M.W.); (R.M.)
| | - Rachel Macdonald
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.K.L.); (M.C.); (M.W.); (R.M.)
| | - Robert Jones
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea;
| | - Michelle Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.O.); (B.B.)
| | - Brigitte Brisson
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.O.); (B.B.)
| | - Scott Sauer
- Vuja De Sciences, Inc., Natick, MA 01760, USA; (S.S.); (D.W.)
| | | | | | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Alicia M. Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.K.L.); (M.C.); (M.W.); (R.M.)
- Correspondence:
| |
Collapse
|
14
|
Wang Z, Xiong H, Zuo Y, Hu S, Zhu C, Min A. PSMC2 knockdown inhibits the progression of oral squamous cell carcinoma by promoting apoptosis via PI3K/Akt pathway. Cell Cycle 2022; 21:477-488. [PMID: 34979867 PMCID: PMC8942557 DOI: 10.1080/15384101.2021.2021722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proteasome 26S subunit, ATPase 2 (PSMC2) is a recently identified gene which is potentially associated with human carcinogenesis. However, the effects of PSMC2 on oral squamous cell carcinoma (OSCC) is still unclear. Here, we investigated PSMC2 expression in OSCC tissues and explored its effects on the biological behaviors of OSCC cells. PSMC2 expression was evaluated by immunohistochemistry in a tissue microarray containing 60 OSCC tissues and 9 normal tissues. PSMC2 was knocked down through lentivirus infection in OSCC cell lines. MTT, colony formation, flow cytometry, transwell, and scratch assays were performed to detect effects of PSMC2 knockdown on phenotypes of OSCC cells. Human apoptosis antibody array was used to screen potential downstream of PSMC2 in OSCC. Finally, the effects of PSMC2 knockdown on tumor growth were assessed in a tumor xenograft model using BALB/c nude mice. PSMC2 expression was significantly upregulated in OSCC tissues compared with normal tissues and correlated with poor prognosis. PSMC2 knockdown significantly suppressed cell proliferation, migration, but promoted apoptosis of OSCC cells. Additionally, we confirmed that PSMC2 knockdown can increase the expression of pro-apoptotic proteins. Furthermore, we found that PSMC2 knockdown downregulated expression of p100, p-Akt, CDK6, and upregulated of MAPK9. Xenograft experiments revealed that PSMC2 knockdown can suppress OSCC tumor growth and promote apoptosis. This study demonstrated that PSMC2 plays a critical role in OSCC progression through affecting pro-apoptotic protein expression and apoptosis pathways. It indicated that targeting PSMC2 might be a promising strategy for OSCC treatment.
Collapse
Affiliation(s)
- Zijia Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Haofeng Xiong
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yijie Zuo
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shujun Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zhu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Anjie Min
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China,Institute of Oral Precancerous Lesions, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,CONTACT Anjie Min Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha410005, China
| |
Collapse
|
15
|
Li C, Li J, Tao H, Shan J, Liu F, Deng X, Lin Y, Lin X, Fu L, Wang B, Bi Y. Differential hippocampal protein expression between normal mice and mice with the perioperative neurocognitive disorder: a proteomic analysis. Eur J Med Res 2021; 26:130. [PMID: 34732255 PMCID: PMC8565051 DOI: 10.1186/s40001-021-00599-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To compare differential expression protein in hippocampal tissues from mice of perioperative neurocognitive disorder (PND) and normal control mice and to explore the possible mechanism of PND. METHODS Mice were randomly divided into a PND group (n = 9) and a control group (n = 9).The mice in the PND group were treated with open tibial fracture with intramedullary fixation under isoflurane anesthesia, while the mice in the control group received pure oxygen without surgery. The cognitive functions of the two groups were examined using Morris water maze experiment, Open field test and Fear conditioning test. The protein expression of the hippocampus of mice was analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to explore the principal functions of dysregulated proteins. RESULTS A total of 21 proteins were differentially expressed between PND and control mice on days 1, 3, and 7 after the operation. These proteins were involved in many pathological processes, such as neuroinflammatory responses, mitochondrial oxidative stress, impaired synaptic plasticity, and neuronal cell apoptosis. Also, the dysregulated proteins were involved in MAPK, AMPK, and ErbB signaling pathways. CONCLUSION The occurrence of PND could be attributed to multiple mechanisms.
Collapse
Affiliation(s)
- Chuan Li
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Jingzhu Li
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - He Tao
- Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China
| | - Jinghua Shan
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Fanghao Liu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Xiyuan Deng
- Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China
| | - Yanan Lin
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Li Fu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China.
| |
Collapse
|
16
|
Bonea D, Noureddine J, Gazzarrini S, Zhao R. Oxidative and salt stresses alter the 26S proteasome holoenzyme and associated protein profiles in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:486. [PMID: 34696730 PMCID: PMC8543921 DOI: 10.1186/s12870-021-03234-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/29/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND The 26S proteasome, canonically composed of multi-subunit 19S regulatory (RP) and 20S core (CP) particles, is crucial for cellular proteostasis. Proteasomes are re-modeled, activated, or re-localized and this regulation is critical for plants in response to environmental stresses. The proteasome holoenzyme assembly and dissociation are therefore highly dynamic in vivo. However, the stoichiometric changes of the plant proteasomes and how proteasome associated chaperones vary under common abiotic stresses have not been systematically studied. RESULTS Here, we studied the impact of abiotic stresses on proteasome structure, activity, and interacting partners in Arabidopsis thaliana. We analyzed available RNA expression data and observed that expressions of proteasome coding genes varied substantially under stresses; however, the protein levels of a few key subunits did not change significantly within 24 h. Instead, a switch in the predominant proteasome complex, from 26S to 20S, occurs under oxidative or salt stress. Oxidative stress also reduced the cellular ATP content and the association of HSP70-family proteins to the 20S proteasome, but enhanced the activity of cellular free form CP. Salt stress, on the other hand, did not affect cellular ATP level, but caused subtle changes in proteasome subunit composition and impacted bindings of assembly chaperones. Analyses of an array of T-DNA insertional mutant lines highlighted important roles for several putative assembly chaperones in seedling establishment and stress sensitivity. We also observed that knockout of PBAC1, one of the α-ring assembly chaperones, resulted in reduced germination and tearing of the seed coat following sterilization. CONCLUSIONS Our study revealed an evolutionarily conserved mechanism of proteasome regulation during oxidative stress, involving dynamic regulation of the holoenzyme formation and associated regulatory proteins, and we also identified a novel role of the PBAC1 proteasome assembly chaperone in seed coat development.
Collapse
Affiliation(s)
- Diana Bonea
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| | - Jenan Noureddine
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| |
Collapse
|
17
|
Colberg L, Cammann C, Wesche J, Topfstedt E, Seifert U, Greinacher A. The platelet proteasome and immunoproteasome are stable in buffy-coat derived platelet concentrates for up to 7 days. Transfusion 2021; 61:2746-2755. [PMID: 34331776 DOI: 10.1111/trf.16605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Characterization of the proteasome and its stability in buffy-coat derived platelet concentrates (PCs) during storage. BACKGROUND The proteasome plays a key role in cell homeostasis by processing misfolded or abnormal proteins and regulating the levels and activities of a high number of proteins contributing to cell cycle, survival, and proliferation. Controversial data exist, whether inhibition of the proteasome affects platelet function. Little is known about function, expression, and stability of the proteasome in PCs during storage, and the potential role of the platelet proteasome in storage lesions. STUDY DESIGN AND METHODS PCs were produced by the buffy-coat method in additive solution and stored at room temperature under agitation. Platelet aggregation was monitored by light transmission aggregometry. Proteasome complexes were assessed by immunoprecipitation and immunoblotting, and proteasome activity was measured using fluorogenic substrates specific for the three different proteolytic activities over 7 days of storage. RESULTS Proteasome inhibition led to a decreased platelet aggregation response after activation with collagen, ADP, TRAP-6, and thrombin. There were no changes in the expression of the catalytic active subunits as well as the proteasome activity during storage of PCs, comparing baseline and day 7. DISCUSSION Platelet proteasome function is relevant for platelet aggregation in response to various agonists. The constitutive and stable expression of the active standard- and immunoproteasome in platelets makes it unlikely that loss of proteasome function is a relevant cause of storage lesions.
Collapse
Affiliation(s)
- Lisa Colberg
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.,Friedrich Loeffler-Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jan Wesche
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Bludau I, Frank M, Dörig C, Cai Y, Heusel M, Rosenberger G, Picotti P, Collins BC, Röst H, Aebersold R. Systematic detection of functional proteoform groups from bottom-up proteomic datasets. Nat Commun 2021; 12:3810. [PMID: 34155216 PMCID: PMC8217233 DOI: 10.1038/s41467-021-24030-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
To a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene - so-called proteoforms - that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets, where peptides instead of intact proteoforms are measured, has remained difficult. Here we present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up proteomics data. It leverages the concept of peptide correlation analysis to systematically assign peptides to co-varying proteoform groups. We show applications of COPF to protein complex co-fractionation data as well as to more typical protein abundance vs. sample data matrices, demonstrating the systematic detection of assembly- and tissue-specific proteoform groups, respectively, in either dataset. We envision that the presented approach lays the foundation for a systematic assessment of proteoforms and their functional implications directly from bottom-up proteomic datasets.
Collapse
Affiliation(s)
- Isabell Bludau
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Max Frank
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Christian Dörig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yujia Cai
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Moritz Heusel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Division of Infection Medicine (BMC), Department of Clinical Sciences, Lund University, Lund, Sweden
| | - George Rosenberger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Columbia University, New York, NY, USA
| | - Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Vasilopoulou MΑ, Ioannou E, Roussis V, Chondrogianni N. Modulation of the ubiquitin-proteasome system by marine natural products. Redox Biol 2021; 41:101897. [PMID: 33640701 PMCID: PMC7921624 DOI: 10.1016/j.redox.2021.101897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a key player in the maintenance of cellular protein homeostasis (proteostasis). Since proteasome function declines upon aging leading to the acceleration of its progression and the manifestation of age-related pathologies, many attempts have been performed towards proteasome activation as a strategy to promote healthspan and longevity. The marine environment hosts a plethora of organisms that produce a vast array of primary and secondary metabolites, the majority of which are unique, exhibiting a wide spectrum of biological activities. The fact that these biologically important compounds are also present in edible marine organisms has sparked the interest for elucidating their potential health-related applications. In this review, we focus on the antioxidant, anti-aging, anti-aggregation and anti-photoaging properties of various marine constituents. We further discuss representatives of marine compounds classes with regard to their potential (direct or indirect) action on UPS components that could serve as UPS modulators and exert beneficial effects on conditions such as oxidative stress, aging and age-related diseases.
Collapse
Affiliation(s)
- Mary Α Vasilopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larisa, Greece.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
20
|
Jing C, Li X, Zhou M, Zhang S, Lai Q, Liu D, Ye B, Li L, Wu Y, Li H, Yue K, Chen P, Yao X, Wu Y, Duan Y, Wang X. The PSMD14 inhibitor Thiolutin as a novel therapeutic approach for esophageal squamous cell carcinoma through facilitating SNAIL degradation. Theranostics 2021; 11:5847-5862. [PMID: 33897885 PMCID: PMC8058732 DOI: 10.7150/thno.46109] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Metastasis and chemoresistance are major causes of poor prognosis in patients with esophageal squamous cell carcinoma (ESCC), manipulated by multiple factors including deubiquitinating enzyme (DUB). DUB PSMD14 is reported to be a promising therapeutic target in various cancers. Here, we explored the antitumor activity of Thiolutin (THL), the PSMD14 inhibitor, as a new therapy strategy in ESCC. Methods: Through 4-NQO-induced murine ESCC model, we investigated the expression of PSMD14 in esophageal tumorigenesis. Ubiquitin-AMC assay was performed to evaluate DUB activity of PSMD14 with THL treatment. The effect of THL on epithelial-to-mesenchymal transition (EMT), invasion, stemness and chemosensitivity was detected by using in vitro and in vivo experiments. Immunoprecipitation and in vivo ubiquitination assay were conducted to examine whether THL could impair the deubiquitination and stability of SNAIL regulated by PSMD14. Results: Compared with normal esophageal epithelium, PSMD14 was upregulated in 4-NQO-induced murine esophageal epithelium dysplasia and ESCC tissues. THL could significantly weaken DUB activity of PSMD14. Furthermore, the results of in vitro and in vivo assays showed that THL efficiently suppressed motility and stemness and increased sensitivity to cisplatin in ESCC. Mechanically, THL impaired the interaction between PSMD14 and SNAIL, then promoted the ubiquitination and degradation of SNAIL to inhibit EMT which plays a crucial role in ESCC metastasis, stemness and chemosensitivity. TCGA database analysis revealed that high concomitant PSMD14/SNAIL expression predicted shorter overall survival in esophageal cancer. Conclusion: Our findings demonstrate for the first time that suppression of PSMD14/SNAIL axis by THL could be a novel and promising therapeutic approach for ESCC clinical therapy.
Collapse
|
21
|
Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 2021; 11:biom11020148. [PMID: 33498876 PMCID: PMC7910952 DOI: 10.3390/biom11020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Four decades of proteasome research have yielded extensive information on ubiquitin-dependent proteolysis. The archetype of proteasomes is a 20S barrel-shaped complex that does not rely on ubiquitin as a degradation signal but can degrade substrates with a considerable unstructured stretch. Since roughly half of all proteasomes in most eukaryotic cells are free 20S complexes, ubiquitin-independent protein degradation may coexist with ubiquitin-dependent degradation by the highly regulated 26S proteasome. This article reviews recent advances in our understanding of the biochemical and structural features that underlie the proteolytic mechanism of 20S proteasomes. The two outer α-rings of 20S proteasomes provide a number of potential docking sites for loosely folded polypeptides. The binding of a substrate can induce asymmetric conformational changes, trigger gate opening, and initiate its own degradation through a protease-driven translocation mechanism. Consequently, the substrate translocates through two additional narrow apertures augmented by the β-catalytic active sites. The overall pulling force through the two annuli results in a protease-like unfolding of the substrate and subsequent proteolysis in the catalytic chamber. Although both proteasomes contain identical β-catalytic active sites, the differential translocation mechanisms yield distinct peptide products. Nonoverlapping substrate repertoires and product outcomes rationalize cohabitation of both proteasome complexes in cells.
Collapse
|
22
|
Yang Y, Liu W, Hu D, Su R, Ji M, Huang Y, Shereen MA, Xu X, Luo Z, Zhang Q, Liu F, Wu K, Liu Y, Wu J. HIV-1 Nef Interacts with LMP7 To Attenuate Immunoproteasome Formation and Major Histocompatibility Complex Class I Antigen Presentation. mBio 2020; 11:e02221-19. [PMID: 33109760 PMCID: PMC7593969 DOI: 10.1128/mbio.02221-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
The proteasome is a major protein degradation machinery with essential and diverse biological functions. Upon induction by cytokines, proteasome subunits β1, β2, and β5 are replaced by β1i/LMP2, β2i/MECL-1, and β5i/LMP7, resulting in the formation of an immunoproteasome (iProteasome). iProteasome-degraded products are loaded onto the major histocompatibility complex class I (MHC-I), regulating immune responses and inducing cytotoxic T lymphocytes (CTLs). Human immunodeficiency virus type 1 (HIV-1) is the causal agent of AIDS. HIV-1-specific CTLs represent a critical immune mechanism limiting viral replication. HIV-1 negative regulatory factor (Nef) counteracts host immunity, particularly the response involving MHC-I/CTL. This study identifies a distinct mechanism by which Nef facilitates immune evasion via suppressing the function of iProteasome and MHC-I. Nef interacts with LMP7 on the endoplasmic reticulum (ER), downregulating the incorporation of LMP7 into iProteasome and thereby attenuating its formation. Moreover, Nef represses the iProteasome function of protein degradation, MHC-I trafficking, and antigen presentation.IMPORTANCE The ubiquitin-proteasome system (UPS) is essential for the degradation of damaged proteins, which takes place in the proteasome. Upon activation by cytokines, the catalytic subunits of the proteasome are replaced by distinct isoforms resulting in the formation of an immunoproteasome (iProteasome). iProteasome generates peptides used by major histocompatibility complex class I (MHC-I) for antigen presentation and is essential for immune responses. HIV-1 is the causative agent of AIDS, and HIV-1-specific cytotoxic T lymphocytes (CTLs) provide immune responses limiting viral replication. This study identifies a distinct mechanism by which HIV-1 promotes immune evasion. The viral protein negative regulatory factor (Nef) interacts with a component of iProteasome, LMP7, attenuating iProteasome formation and protein degradation function, and thus repressing the MHC-I antigen presentation activity of MHC-I. Therefore, HIV-1 targets LMP7 to inhibit iProteasome activation, and LMP7 may be used as the target for the development of anti-HIV-1/AIDS therapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Man Ji
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaodi Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Xu Z, Wu C, Liu Y, Wang N, Gao S, Qiu S, Wang Z, Ding J, Zhang L, Wang H, Wu W, Wan B, Yu J, Fang J, Yang P, Shao Q. Identifying key genes and drug screening for preeclampsia based on gene expression profiles. Oncol Lett 2020; 20:1585-1596. [PMID: 32724400 PMCID: PMC7377100 DOI: 10.3892/ol.2020.11721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/16/2020] [Indexed: 01/09/2023] Open
Abstract
Preeclampsia (PE) is characterized by gestational hypertension and proteinuria, and is a leading cause of maternal death and perinatal morbidity globally. Although the exact cause of PE remains unclear, several studies have suggested a role for abnormal expression of multiple genes. The aim of the present study was to identify key genes and related pathways, and to screen for drugs that regulate these genes for potential PE therapy. The GSE60438 dataset was acquired from the Gene Expression Omnibus database to analyze differentially expressed genes (DEGs). By constructing a protein-protein interaction network and performing reverse transcription-quantitative PCR verification, proteasome 26S subunit, non-ATPase 14, prostaglandin E synthase 3 and ubiquinol-cytochrome c reductase core protein 2 were identified as key genes in PE. In addition, PE was found to be associated with ‘circadian rhythm’, ‘fatty acid metabolism’, ‘DNA damage response detection of DNA damage’, ‘regulation of DNA repair’ and ‘endothelial cell development’. Through connectivity map analysis of DEGs, furosemide and droperidol were suggested to be therapeutic drugs that may target the hub genes for PE treatment. Results analysis of GSEA were included in the discussion section of this article. In conclusion, the current study identified novel key genes associated with the onset of PE and potential drugs for PE treatment.
Collapse
Affiliation(s)
- Zhengfang Xu
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chengjiang Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yanqiu Liu
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Nian Wang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shujun Gao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Shali Qiu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhutao Wang
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jing Ding
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Lubin Zhang
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Weijiang Wu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Jun Yu
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jie Fang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Peifang Yang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
24
|
Wu H, Sun H, He Z, Chen X, Li Y, Zhao X, Kong W, Kong W. The effect and mechanism of 19S proteasome PSMD11/Rpn6 subunit in D-Galactose induced mimetic aging models. Exp Cell Res 2020; 394:112093. [PMID: 32450067 DOI: 10.1016/j.yexcr.2020.112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
Abstract
Regulating proteasome activity is a potent therapeutic aspect of age-related hearing loss, which has been proven to protect neurons from age-related damaging. PSMD11, subunit of the 19S proteasome regulatory particle, is known to mainly up-regulate proteasome activity and prolong aging. However, the mechanism of PSMD11 in age-related hearing loss has not been deeply explored. In the present study, we explore the function and mechanism of PSMD11 protecting neurons in d-Galactose (D-Gal) mimetic aging models. Age-related pathologies were detected by Taq-PCR, ABR, Transmission electron microscopy, toluidine blue and β-galactosidase staining. The relative expressions of the proteins were explored by Western blotting, oxyblot, immunoprecipitation and immunofluorescence. Flow cytometry was used to manifest the oxidative state. We discovered that proteasome activity was impaired with aging, and that ROS and toxic protein accumulated in D-Gal induced aging models. PSMD11 changed with aging, and was associated with the metabolism of proteasome activity in the D-Gal treated models. Moreover, the knockdown or overexpression of PSMD11 was sufficient to change the oxidative state caused by D-Gal. Our results also demonstrated that PSMD11 could bond to AMPKα1/2 in the auditory cortex and PC12 cells, and AMPKα2 but not AMPKα1 was efficient to regulate the function of PSMD11. Deeper insights into the mechanisms of regulating PSMD11 for the anti-aging process are needed, and may offer novel therapeutic methods for central presbycusis.
Collapse
Affiliation(s)
- Han Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xi Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yongqin Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xueyan Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wen Kong
- Departments of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Colberg L, Cammann C, Greinacher A, Seifert U. Structure and function of the ubiquitin-proteasome system in platelets. J Thromb Haemost 2020; 18:771-780. [PMID: 31898400 DOI: 10.1111/jth.14730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Platelets are small anucleate blood cells with a life span of 7 to 10 days. They are main regulators of hemostasis. Balanced platelet activity is crucial to prevent bleeding or occlusive thrombus formation. Growing evidence supports that platelets also participate in immune reactions, and interaction between platelets and leukocytes contributes to both thrombosis and inflammation. The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis by its ability to degrade non-functional self-, foreign, or short-lived regulatory proteins. Platelets express standard and immunoproteasomes. Inhibition of the proteasome impairs platelet production and platelet function. Platelets also express major histocompatibility complex (MHC) class I molecules. Peptide fragments released by proteasomes can bind to MHC class I, which makes it also likely that platelets can activate epitope specific cytotoxic T lymphocytes (CTLs). In this review, we focus on current knowledge on the significance of the proteasome for the functions of platelets as critical regulators of hemostasis as well as modulators of the immune response.
Collapse
Affiliation(s)
- Lisa Colberg
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Proteomic mapping of Drosophila transgenic elav.L-GAL4/+ brain as a tool to illuminate neuropathology mechanisms. Sci Rep 2020; 10:5430. [PMID: 32214222 PMCID: PMC7096425 DOI: 10.1038/s41598-020-62510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Drosophila brain has emerged as a powerful model system for the investigation of genes being related to neurological pathologies. To map the proteomic landscape of fly brain, in a high-resolution scale, we herein employed a nano liquid chromatography-tandem mass spectrometry technology, and high-content catalogues of 7,663 unique peptides and 2,335 single proteins were generated. Protein-data processing, through UniProt, DAVID, KEGG and PANTHER bioinformatics subroutines, led to fly brain-protein classification, according to sub-cellular topology, molecular function, implication in signaling and contribution to neuronal diseases. Given the importance of Ubiquitin Proteasome System (UPS) in neuropathologies and by using the almost completely reassembled UPS, we genetically targeted genes encoding components of the ubiquitination-dependent protein-degradation machinery. This analysis showed that driving RNAi toward proteasome components and regulators, using the GAL4-elav.L driver, resulted in changes to longevity and climbing-activity patterns during aging. Our proteomic map is expected to advance the existing knowledge regarding brain biology in animal species of major translational-research value and economical interest.
Collapse
|
27
|
Mariano DO, Prezotto-Neto JP, Spencer PJ, Sciani JM, Pimenta DC. Proteomic analysis of soluble proteins retrieved from Duttaphrynus melanostictus skin secretion by IEx-batch sample preparation. J Proteomics 2019; 209:103525. [DOI: 10.1016/j.jprot.2019.103525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/15/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
|
28
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Harisa GI, Faris TM. Direct Drug Targeting into Intracellular Compartments: Issues, Limitations, and Future Outlook. J Membr Biol 2019; 252:527-539. [PMID: 31375855 DOI: 10.1007/s00232-019-00082-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Intracellular compartment drug delivery is a promising strategy for the treatment of diseases. By this way, medicines can delivered to particular intracellular compartments. This maximizes the therapeutic efficacy and safety of medicines, particularly of anticancer and antiviral drugs. Intracellular compartment drug delivery is either indirectly by targeting of cell nucleus as central compartment of the cell or directly through the targeting of compartments itself. Drugs or nanoshuttles labeled with compartment's localization signal represent a smart tactic for subcellular compartment targeting. There are several boundaries prevent the arrival of shuttles to the specified intracellular compartments. These boundaries include selective permeability of biomembranes, efflux transporters, and lysosomes. The utilization of specific ligands during design of drug delivery nanoshuttles permits the targeting of specified intracellular compartment. Therefore drugs targeting could correct the diseases associated organelles. This review highlights the direct targeting of the medicines into subcellular compartment as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
30
|
Pilla SP, R B, Bahadur RP. Dissecting protein‐protein interactions in proteasome assembly: Implication to its self‐assembly. J Mol Recognit 2019; 32:e2784. [DOI: 10.1002/jmr.2784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Smita P. Pilla
- Computational Structural Biology Laboratory, Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur India
| | - Babu R
- Computational Structural Biology Laboratory, Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur India
| | - Ranjit P. Bahadur
- Computational Structural Biology Laboratory, Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
31
|
Sun C, Mo M, Wang Y, Yu W, Song C, Wang X, Chen S, Liu Y. Activation of the immunoproteasome protects SH-SY5Y cells from the toxicity of rotenone. Neurotoxicology 2019; 73:112-119. [PMID: 30904435 DOI: 10.1016/j.neuro.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
This study investigated the expression and role of immunoproteasome (i-proteasome) in a cell model of Parkinson's disease (PD). The cytotoxicity of rotenone was measured by CCK-8 assay. The i-proteasome β1i subunit PSMB9 was suppressed by a specific shRNA or transfected with an overexpression plasmid in the SH-SY5Y cells. Under the exposure to rotenone or not, the expression of constitutive proteasome β subunits, i-proteasome βi subunits, antigen presentation related proteins, α-syn and TH were detected by Western blot in PSMB9-silenced or -overexpressed cells, and the proteasomal activities were detected by fluorogenic peptide substrates. The location of i-proteasome βi subunits and α-syn were detected by immunofluorescence staining. The levels of ROS, GSH and MDA were measured by commercial kits. Cell apoptosis was detected by flow cytometry. Besides impairing the constitutive proteasomes, rotenone induced the expression of βi subunits of i-proteasome and antigen presentation related proteins such as TAP1, TAP2 and MHC-I. Silencing or overexpressing PSMB9 had no obvious effect on the levels of other subunits, but could regulate the chymotrypsin-like activity of 20S proteasome and the expression of TAP1, TAP2 and MHC-I. Three βi subunits (PSMB9, PSMB10, PSMB8) of i-proteasome were all co-localized with α-syn. PSMB9 knockdown aggravated accumulation of α-syn, degradation of TH, release of ROS, increased level of MDA, decreased level of GSH and eventually promoted apoptosis in SH-SY5Y cells after rotenone treatment, while over-expression of PSMB9 could attenuate these toxic effects of rotenone. I-proteasome is activated in SH-SY5Y cells treated with rotenone and may play a neuroprotective role.
Collapse
Affiliation(s)
- Congcong Sun
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Mingshu Mo
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Wenfei Yu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xingbang Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Si Chen
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China; Brain Science Research Institute, Shandong University, Jinan, 250012, China.
| |
Collapse
|
32
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is an extremely aggressive lung disease that develops almost exclusively in older individuals, carries a very poor prognosis, and lacks any truly effective therapies. The current conceptual model is that IPF develops because of an age-related decline in the ability of the lung epithelium to regenerate after injury, largely due to death or senescence of epithelial progenitor cells in the distal airways. This loss of regenerative capacity is thought to initiate a chronic and ineffective wound-healing response, characterized by persistent, low-grade lung inflammation and sustained production of collagen and other extracellular matrix materials. Despite recent advances in our understanding of IPF pathobiology, there remains a pressing need to further delineate underlying mechanisms to develop more effective therapies for this disease. In this review, we build the case that many of the manifestations of IPF result from a failure of cells to effectively manage their proteome. We propose that epithelial progenitor cells, as well as immune cells and fibroblasts, become functionally impaired, at least in part, because of an accumulation or a loss in the expression of various crucial proteins. Further, we propose that central to this defect is the dysregulation of the ubiquitin-proteasome system (UPS), which is the major protein-degradation system in eukaryotic cells. Lastly, borrowing concepts from other fields, we discuss how targeting the UPS system could be employed as a novel treatment for IPF and perhaps for other fibrotic lung diseases as well.
Collapse
Affiliation(s)
- Willy Roque
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Freddy Romero
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
33
|
Corneal keratin aggresome (CKAGG) formation and clearance by proteasome activation. Heliyon 2018; 4:e01012. [PMID: 30619956 PMCID: PMC6313837 DOI: 10.1016/j.heliyon.2018.e01012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
Purpose To understand the mechanism of corneal keratin expression and clearance in corneal epithelium with Limbal Stem Cell Deficiency (LSCD). The hypothesis is that LSCD-induced proteasome dysfunction is a contributing factor to keratin aggregation, causing corneal keratin aggresome (CKAGG) formation. Method LSCD was surgically induced in rabbit corneas. LSCD corneal epithelial cells (D-CEC) were collected to investigate keratin K4 and K13 expression and CKAGG formation. Oral mucosal epithelial cells (OMECS) were isolated and cultured to study K4 and K13 expression. Cultured cells were treated with proteasome inhibitor to induce CKAGG formation. Results K4 and K13 were strongly expressed in D-CEC, with additional higher molecular weight bands of K4 and K13, suggesting CKAGG formation. Double staining of K4/K13 and ubiquitin showed co-localization of these keratins with ubiquitin in D-CEC. Proteasome inhibition also showed K4/K13 modification and accumulation in cultured OMECS, similar to D-CEC. Proteasome activation was then performed in cultured OMEC. There was no accumulation of keratins, and levels of unmodified keratins were found significantly reduced. Conclusion Results showed an abnormal expression of K4 and K13 after LSCD-induced proteasome dysfunction, which coalesce to form CKAGG in Corneal Epithelial Cells (CEC). We propose that CKAGG formation may be one of the causative factors of morphological alterations in the injured corneal epithelium, and that CKAGG could potentially be cleared by enhancing proteasome activity.
Collapse
|
34
|
Pinto TS, Fernandes CJDC, da Silva RA, Gomes AM, Vieira JCS, Padilha PDM, Zambuzzi WF. c‐Src kinase contributes on endothelial cells mechanotransduction in a heat shock protein 70‐dependent turnover manner. J Cell Physiol 2018; 234:11287-11303. [DOI: 10.1002/jcp.27787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Thaís Silva Pinto
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | | | - Rodrigo Augusto da Silva
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - Anderson Moreira Gomes
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - José Cavalcante Souza Vieira
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - Pedro de M. Padilha
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - Willian F. Zambuzzi
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
- Electron Microscopy Center São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| |
Collapse
|
35
|
Horzmann KA, Reidenbach LS, Thanki DH, Winchester AE, Qualizza BA, Ryan GA, Egan KE, Hedrick VE, Sobreira TJP, Peterson SM, Weber GJ, Wirbisky-Hershberger SE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure elicits proteomic, behavioral, and brain abnormalities with developmental time specific gene expression signatures. J Proteomics 2018; 186:71-82. [PMID: 30012420 PMCID: PMC6193558 DOI: 10.1016/j.jprot.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine disrupting chemical linked to cancer and a common drinking water contaminant. This study further investigates ATZ-related developmental toxicity by testing the following hypotheses in zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic ATZ exposure alters brain development and function; and embryonic ATZ exposure changes protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple embryonic time points to determine normal expression and if ATZ exposure altered expression. Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression changes before 72 h. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results indicate embryonic ATZ toxicity involves interactions of multiple pathways. SIGNIFICANCE This is the first report of proteomic alterations following embryonic exposure to atrazine, an environmentally persistent pesticide and common water contaminant. Although the transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been reported, neither the time at which gene expression changes occur nor the resulting proteomic changes have been investigated. This study seeks to address these knowledge gaps by evaluating atrazine's effect on gene expression through multiple time points during embryogenesis, and correlating changes in gene expression to pathological alterations in brain length and functional changes in behavior. Finally, pathway analysis of the proteomic alterations identifies connections between the molecular changes and functional outcomes associated with embryonic atrazine exposure.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Leeah S Reidenbach
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Devang H Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Anna E Winchester
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Brad A Qualizza
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Geoffrey A Ryan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kaitlyn E Egan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Victoria E Hedrick
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Samuel M Peterson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | | | - Maria S Sepúlveda
- Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
36
|
Salgado-Mendialdúa V, Aguirre-Plans J, Guney E, Reig-Viader R, Maldonado R, Bayés À, Oliva B, Ozaita A. Δ9-tetrahydrocannabinol modulates the proteasome system in the brain. Biochem Pharmacol 2018; 157:159-168. [PMID: 30134192 DOI: 10.1016/j.bcp.2018.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Abstract
Cannabis is the most consumed illicit drug worldwide. Its principal psychoactive component, Δ9-tetrahydrocannabinol (THC), affects multiple brain functions, including cognitive performance, by modulating cannabinoid type-1 (CB1) receptors. These receptors are strongly enriched in presynaptic terminals, where they modulate neurotransmitter release. We analyzed, through a proteomic screening of hippocampal synaptosomal fractions, those proteins and pathways modulated 3 h after a single administration of an amnesic dose of THC (10 mg/kg, i.p.). Using an isobaric labeling approach, we identified 2040 proteins, 1911 of them previously reported in synaptic proteomes, confirming the synaptic content enrichment of the samples. Initial analysis revealed a significant alteration of 122 proteins, where 42 increased and 80 decreased their expression. Gene set enrichment analysis indicated an over-representation of mitochondrial associated functions and cellular metabolic processes. A second analysis focusing on extreme changes revealed 28 proteins with altered expression after THC treatment, 15 of them up-regulated and 13 down-regulated. Using a network topology-based scoring algorithm we identified those proteins in the mouse proteome with the greatest association to the 28 modulated proteins. This analysis pinpointed a significant alteration of the proteasome function, since top scoring proteins were related to the proteasome system (PS), a protein complex involved in ATP-dependent protein degradation. In this regard, we observed that THC decreases 20S proteasome chymotrypsin-like protease activity in the hippocampus. Our data describe for the first time the modulation of the PS in the hippocampus following THC administration under amnesic conditions that may contribute to an aberrant plasticity at synapses.
Collapse
Affiliation(s)
- V Salgado-Mendialdúa
- Laboratory of Neuropharmacology, Dept. Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - J Aguirre-Plans
- Structural Bioinformatics Laboratory, Biomedical Informatics Research Unit, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - E Guney
- Structural Bioinformatics Laboratory, Biomedical Informatics Research Unit, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - R Reig-Viader
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Bellaterra, Spain
| | - R Maldonado
- Laboratory of Neuropharmacology, Dept. Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - À Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Bellaterra, Spain
| | - B Oliva
- Structural Bioinformatics Laboratory, Biomedical Informatics Research Unit, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - A Ozaita
- Laboratory of Neuropharmacology, Dept. Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain.
| |
Collapse
|
37
|
Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat Commun 2018; 9:1738. [PMID: 29712894 PMCID: PMC5928105 DOI: 10.1038/s41467-018-04117-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Inherited retinal degenerations, affecting more than 2 million people worldwide, are caused by mutations in over 200 genes. This suggests that the most efficient therapeutic strategies would be mutation independent, i.e., targeting common pathological conditions arising from many disease-causing mutations. Previous studies revealed that one such condition is an insufficiency of the ubiquitin–proteasome system to process misfolded or mistargeted proteins in affected photoreceptor cells. We now report that retinal degeneration in mice can be significantly delayed by increasing photoreceptor proteasomal activity. The largest effect is observed upon overexpression of the 11S proteasome cap subunit, PA28α, which enhanced ubiquitin-independent protein degradation in photoreceptors. Applying this strategy to mice bearing one copy of the P23H rhodopsin mutant, a mutation frequently encountered in human patients, quadruples the number of surviving photoreceptors in the inferior retina of 6-month-old mice. This striking therapeutic effect demonstrates that proteasomes are an attractive target for fighting inherited blindness. Proteasomal overload can be found in a broad spectrum of mouse models of retinal degeneration. Here the authors find that overexpressing the PA28α subunit of the 11S proteasome cap increased the number of surviving functional photoreceptor cells in a mouse model of retinal degeneration bearing the P23H mutation in rhodopsin.
Collapse
|
38
|
Cui Y, Zhu Y, Lin Y, Chen L, Feng Q, Wang W, Xiang H. New insight into the mechanism underlying the silk gland biological process by knocking out fibroin heavy chain in the silkworm. BMC Genomics 2018; 19:215. [PMID: 29580211 PMCID: PMC5870212 DOI: 10.1186/s12864-018-4602-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/13/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Exploring whether and how mutation of silk protein contributes to subsequent re-allocation of nitrogen, and impacts on the timing of silk gland degradation, is important to understand silk gland biology. Rapid development and wide application of genome editing approach in the silkworm provide us an opportunity to address these issues. RESULTS Using CRISPR/Cas9 system, we successfully performed genome editing of Bmfib-H. The loss-of-function mutations caused naked pupa and thin cocoon mutant phenotypes. Compared with the wild type, the posterior silk gland of mutant showed obviously degraded into fragments in advance of programmed cell death of silk gland cells. Comparative transcriptomic analyses of silk gland at the fourth day of the fifth instar larval stage(L5D4)identified 1456 differential expressed genes (DEGs) between posterior silk gland (PSG) and mid silk gland (MSG) and 1388 DEGs between the mutant and the wild type. Hierarchical clustering of all the DEGs indicated a remarkable down-regulated and an up-regulated gene clade in the mutant silk glands, respectively. Down-regulated genes were overrepresented in the pathways involved in cancer, DNA replication and cell proliferation. Intriguingly, up-regulated DEGs are significantly enriched in the proteasome. By further comparison on the transcriptome of MSG and PSG between the wild type and the mutant, we consistently observed that up-regulated DEGs in the mutant PSG were enriched in protein degrading activity and proteasome. Meantime, we observed a series of up-regulated genes involved in autophagy. Since these protein degradation processes would be normally occur after the spinning time, the results suggesting that these progresses were activated remarkably ahead of schedule in the mutant. CONCLUSIONS Accumulation of abnormal fib-H protein might arouse the activation of proteasomes as well as autophagy process, to promote the rapid degradation of such abnormal proteins and the silk gland cells. Our study therefore proposes a subsequent process of protein and partial cellular degradation caused by mutation of silk protein, which might be helpful for understanding its impact of the silk gland biological process, and further exploration the re-allocation of nitrogen in the silkworm.
Collapse
Affiliation(s)
- Yong Cui
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yanan Zhu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yongjian Lin
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
39
|
Chiu RS, Pan S, Zhao R, Gazzarrini S. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:749-761. [PMID: 27496613 DOI: 10.1111/tpj.13293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/07/2016] [Accepted: 07/29/2016] [Indexed: 05/09/2023]
Abstract
During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS.
Collapse
Affiliation(s)
- Rex Shun Chiu
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Shiyue Pan
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
40
|
Yedidi RS, Fatehi AK, Enenkel C. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 2016; 51:497-512. [PMID: 27677933 DOI: 10.1080/10409238.2016.1230087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].
Collapse
Affiliation(s)
| | | | - Cordula Enenkel
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
41
|
Mayor T, Sharon M, Glickman MH. Tuning the proteasome to brighten the end of the journey. Am J Physiol Cell Physiol 2016; 311:C793-C804. [PMID: 27605452 DOI: 10.1152/ajpcell.00198.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023]
Abstract
Degradation by the proteasome is the fate for a large portion of cellular proteins, and it plays a major role in maintaining protein homeostasis, as well as in regulating many cellular processes like cell cycle progression. A decrease in proteasome activity has been linked to aging and several age-related neurodegenerative pathologies and highlights the importance of the ubiquitin proteasome system regulation. While the proteasome has been traditionally viewed as a constitutive element of proteolysis, major studies have highlighted how different regulatory mechanisms can impact its activity. Importantly, alterations of proteasomal activity may have major impacts for its function and in therapeutics. On one hand, increasing proteasome activity could be beneficial to prevent the age-related downfall of protein homeostasis, whereas inhibiting or reducing its activity can prevent the proliferation of cancer cells.
Collapse
Affiliation(s)
- Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada;
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; and
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
42
|
Song H, Xiong H, Che J, Xi QS, Huang L, Xiong HH, Zhang P. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer. ACTA ACUST UNITED AC 2016; 36:564-570. [PMID: 27465334 DOI: 10.1007/s11596-016-1626-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022]
Abstract
The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy.
Collapse
Affiliation(s)
- Hai Song
- Department of Scientific Research and Teaching, Tangshan People's Hospital, Tangshan, 063001, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Che
- National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qing-Song Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
43
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
44
|
Johnston-Carey HK, Pomatto LCD, Davies KJA. The Immunoproteasome in oxidative stress, aging, and disease. Crit Rev Biochem Mol Biol 2016; 51:268-81. [PMID: 27098648 DOI: 10.3109/10409238.2016.1172554] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Immunoproteasome has traditionally been viewed primarily for its role in peptide production for antigen presentation by the major histocompatibility complex, which is critical for immunity. However, recent research has shown that the Immunoproteasome is also very important for the clearance of oxidatively damaged proteins in homeostasis, and especially during stress and disease. The importance of the Immunoproteasome in protein degradation has become more evident as diseases characterized by protein aggregates have also been linked to deficiencies of the Immunoproteasome. Additionally, there are now diseases defined by mutations or polymorphisms within Immunoproteasome-specific subunit genes, further suggesting its crucial role in cytokine signaling and protein homeostasis (or "proteostasis"). The purpose of this review is to highlight our growing understanding of the importance of the Immunoproteasome in the management of protein quality control, and the detrimental impact of its dysregulation during disease and aging.
Collapse
Affiliation(s)
- Helen K Johnston-Carey
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA
| | - Laura C D Pomatto
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA
| | - Kelvin J A Davies
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA ;,b Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences , Los Angeles , CA , USA
| |
Collapse
|
45
|
Paci A, Liu PXH, Zhang L, Zhao R. The Proteasome Subunit Rpn8 Interacts with the Small Nucleolar RNA Protein (snoRNP) Assembly Protein Pih1 and Mediates Its Ubiquitin-independent Degradation in Saccharomyces cerevisiae. J Biol Chem 2016; 291:11761-75. [PMID: 27053109 DOI: 10.1074/jbc.m115.702043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/06/2022] Open
Abstract
Pih1 is a scaffold protein of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) protein complex, which is conserved in fungi and animals. The chaperone-like activity of the R2TP complex has been implicated in the assembly of multiple protein complexes, such as the small nucleolar RNA protein complex. However, the mechanism of the R2TP complex activity in vivo and the assembly of the complex itself are still largely unknown. Pih1 is an unstable protein and tends to aggregate when expressed alone. The C-terminal fragment of Pih1 contains multiple destabilization factors and acts as a degron when fused to other proteins. In this study, we investigated Pih1 interactors and identified a specific interaction between Pih1 and the proteasome subunit Rpn8 in yeast Saccharomyces cerevisiae when HSP90 co-chaperone Tah1 is depleted. By analyzing truncation mutants, we identified that the C-terminal 30 amino acids of Rpn8 are sufficient for the binding to Pih1 C terminus. With in vitro and in vivo degradation assays, we showed that the Pih1 C-terminal fragment Pih1(282-344) is able to induce a ubiquitin-independent degradation of GFP. Additionally, we demonstrated that truncation of the Rpn8 C-terminal disordered region does not affect proteasome assembly but specifically inhibits the degradation of the GFP-Pih1(282-344) fusion protein in vivo and Pih1 in vitro We propose that Pih1 is a ubiquitin-independent proteasome substrate, and the direct interaction with Rpn8 C terminus mediates its proteasomal degradation.
Collapse
Affiliation(s)
- Alexandr Paci
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Peter X H Liu
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Lingjie Zhang
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Rongmin Zhao
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
46
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
47
|
Moarefi I. Protein Complex Production from the Drug Discovery Standpoint. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:3-13. [DOI: 10.1007/978-3-319-27216-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Li X, Li Y, Arendt CS, Hochstrasser M. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly. J Biol Chem 2015; 291:1991-2003. [PMID: 26627836 DOI: 10.1074/jbc.m115.677047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Indexed: 01/02/2023] Open
Abstract
Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining.
Collapse
Affiliation(s)
- Xia Li
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Yanjie Li
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Cassandra S Arendt
- the Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Mark Hochstrasser
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and.
| |
Collapse
|
49
|
Cai ZL, Xu J, Xue SR, Liu YY, Zhang YJ, Zhang XZ, Wang X, Wu FP, Li XM. The E3 ubiquitin ligase seven in absentia homolog 1 may be a potential new therapeutic target for Parkinson's disease. Neural Regen Res 2015; 10:1286-91. [PMID: 26487857 PMCID: PMC4590242 DOI: 10.4103/1673-5374.162763] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we investigated the effect of an antibody against E3 ubiquitin ligase seven in absentia homolog 1 (SIAH-1) in PC12 cells. 1-Methyl-4-phenylpyridinium (MPP+) treatment increased α-synuclein, E1 and SIAH-1 protein levels in PC12 cells, and it reduced cell viability; however, there was no significant change in light chain 3 expression. Treatment with an SIAH-1 antibody decreased mRNA expression levels of α-synuclein, light chain 3 and SIAH-1, but increased E1 mRNA expression. It also increased cell viability. Combined treatment with MPP+ and rapamycin reduced SIAH-1 and α-synuclein levels. Treatment with SIAH-1 antibody alone diminished α-synuclein immunoreactivity in PC12 cells, and reduced the colocalization of α-synuclein and light chain 3. These findings suggest that the SIAH-1 antibody reduces the monoubiquitination and aggregation of α-synuclein, promoting its degradation by the ubiquitin-proteasome pathway. Consequently, SIAH-1 may be a potential new therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zeng-Lin Cai
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Jing Xu
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Shou-Ru Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yuan-Yuan Liu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yong-Jin Zhang
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Xin-Zhi Zhang
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Xuan Wang
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Fang-Ping Wu
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Xiao-Min Li
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| |
Collapse
|
50
|
Burcoglu J, Zhao L, Enenkel C. Nuclear Import of Yeast Proteasomes. Cells 2015; 4:387-405. [PMID: 26262643 PMCID: PMC4588042 DOI: 10.3390/cells4030387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/28/2015] [Indexed: 01/16/2023] Open
Abstract
Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin αβ. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence.
Collapse
Affiliation(s)
- Julianne Burcoglu
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Liang Zhao
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Cordula Enenkel
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|