1
|
Abida, Alhuthali HM, Alshehri JM, Alkathiri A, Almaghrabi ROM, Alsaeed SS, Albebi SAH, Almethn RM, Alfuraydi BA, Alharbi SB, Kamal M, Imran M. Exosomes in infectious diseases: insights into leishmaniasis pathogenesis, immune modulation, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4913-4931. [PMID: 39702600 DOI: 10.1007/s00210-024-03702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Leishmaniasis continues to be a critical international health issue due to the scarcity of efficient treatment and the development of drug tolerance. New developments in the research of extracellular vesicles (EVs), especially exosomes, have revealed novel disease management approaches. Exosomes are small vesicles that transport lipids, nucleic acids, and proteins in cell signalling. Its biogenesis depends on several cellular processes, and their functions in immune response, encompassing innate and adaptive immunity, underline their function in the pathogen-host interface. Exosomes play a significant role in the pathogenesis of some parasitic infections, especially Leishmaniasis, by helping parasites escape host immunity and promote disease progression. This article explains that in the framework of parasitic diseases, exosomes can act as master regulators that define the pathogenesis of the disease, as illustrated by the engagement of exosomes in the Leishmaniasis parasite and immune escape processes. Based on many published articles on Leishmaniasis, this review aims to summarize the biogenesis of exosomes, the properties of the cargo in exosomes, and the modulation of immune responses. We delve deeper into the prospect of using exosomes for the therapy of Leishmaniasis based on the possibility of using these extracellular vesicles for drug delivery and as diagnostic and prognostic biomarkers. Lastly, we focus on the recent research perspectives and future developments, underlining the necessity to continue the investigation of exosome-mediated approaches in Leishmaniasis treatment. Thus, this review intends to draw attention to exosomes as a bright new perspective in the battle against this disabling affliction.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Jawaher Mohammad Alshehri
- Optometry Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Afnan Alkathiri
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Ruba Omar M Almaghrabi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | | | | | | | | | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
2
|
Mondal SK, Hong CS, Han J, Diergaarde B, Zandberg DP, Whiteside TL. Amlodipine, an L-type Ca2+ channel inhibitor, regulates release of extracellular vesicles from tumor cells. Carcinogenesis 2025; 46:bgaf016. [PMID: 40121518 DOI: 10.1093/carcin/bgaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Tumor cells produce/release tumor-derived exosomes (TEX) which promote tumor growth, drive immune suppression, and interfere with immune therapies. Amlodipine, a calcium flux inhibitor, may block TEX release by tumor cells. Amlodipine's potential as a drug blocking TEX release was evaluated. We measured tumor growth, TEX numbers, phenotype, and molecular content in murine SCCVII and human cancer cell lines. Cell lysates and TEX were tested for expression of autophagy-related proteins by western blots (WBs). Tumor growth in mice, histopathology, T-cell infiltrations, and TEX production by SCCVII treated with amlodipine were measured. Numbers and protein content of TEX eluted from tumor explants were studied by flow cytometry and WBs. Amlodipine used in vitro at 0.5-5 µM was nontoxic, did not impair tumor cell viability, reduced cell proliferation, and decreased TEX production. It reduced PD-L1 and Rab11 content of TEX, altered tumor cell size/shape, induced vesicle accumulations in the cytosol, and upregulated expression levels of autophagy-related proteins, ATG7, Beclin-1, and LC3. In vivo, daily treatment of established SCCVII with amlodipine (10 mg/kg) inhibited tumor growth (P < 0.001), increased CD8+ T-cell infiltration into tumor, decreased TEX production, and altered PD-L1, Rab11, and FasL content of TEX. Amlodipine delivered in vitro to tumor cells or in vivo to tumor-bearing mice interferes with tumor growth and TEX production, induces tumor autophagy, reduces circulating TEX numbers, and alters the TEX immunosuppressive signature. Amlodipine emerges as a potentially promising drug for removing immunosuppressive TEX in cancer subjects who are candidates for immune therapies.
Collapse
Affiliation(s)
- Sujan K Mondal
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
| | - Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
| | - Jie Han
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
| | - Brenda Diergaarde
- Department of Human Genetics, School of Public Health, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Ave, Pittsburgh, PA 15213, United States
| | - Dan P Zandberg
- Department of Medicine, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Pittsburgh, PA 15213, United States
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
| |
Collapse
|
3
|
Zhang Z, Zhang L, Huang Y, Wang Z, Ren Z. A Planar-Gate Graphene Field-Effect Transistor Integrated Portable Platform for Rapid Detection of Colon Cancer-Derived Exosomes. BIOSENSORS 2025; 15:207. [PMID: 40277521 PMCID: PMC12025066 DOI: 10.3390/bios15040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Early diagnosis of diseases would significantly increase the survival rate of cancer patients. However, current screening methods are complex and costly, making them unsuitable for rapid health diagnosis in daily life. Here, we develop a portable platform based on a planar-gate graphene field-effect transistor functionalized with polydopamine self-assembled film (PDA-GFET), capable of identifying colon cancer through the detection of EpCAM protein, which is expressed on colon cancer-derived exosomes, in clinical samples within 10 min. The PDA self-assembled film on the graphene and gate surface enhances the biosensor's functionalization area while suppressing non-specific adsorption, thereby achieving detection limits as low as 112 particles/mL. In addition, the PDA-GFET-based detection platform was used to identify EpCAM protein in real clinical samples from healthy individuals and colon cancer patients within 10 min, and the two showed significant differences (p < 0.001). Results indicate that the proposed PDA-GFET-based detection platform is expected to be a potential tool for the early diagnosis of colon cancer.
Collapse
Affiliation(s)
- Zaiyu Zhang
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Department of Mechanical Engineering, Shandong University, Jinan 250100, China; (Z.Z.)
| | - Luyang Zhang
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Department of Mechanical Engineering, Shandong University, Jinan 250100, China; (Z.Z.)
| | - Yuting Huang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Ziran Wang
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Department of Mechanical Engineering, Shandong University, Jinan 250100, China; (Z.Z.)
| | - Zhongjing Ren
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Department of Mechanical Engineering, Shandong University, Jinan 250100, China; (Z.Z.)
| |
Collapse
|
4
|
Shakerian N, Tafazoli A, Razavinia A, Sadrzadeh Aghajani Z, Bana N, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of Therapeutic and Diagnostic Applications of Exosomes in Pancreatic Cancer. Pancreas 2025; 54:e255-e267. [PMID: 39661050 DOI: 10.1097/mpa.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Unusual symptoms, rapid progression, lack of reliable early diagnostic biomarkers, and lack of efficient treatment choices are the ongoing challenges of pancreatic cancer. Numerous research studies have demonstrated the correlation between exosomes and various aspects of pancreatic cancer. In light of these facts, exosomes possess the potential to play functional roles in the treatment, prognosis, and diagnosis of the pancreatic cancer. In the present study, we reviewed the most recent developments in approaches for exosome separation, modification, monitoring, and communication. Moreover, we discussed the clinical uses of exosomes as less invasive liquid biopsies and drug carriers and their contribution to the control of angiogenic activity of pancreatic cancer. Better investigation of exosome biology would help to effectively engineer therapeutic exosomes with certain nucleic acids, proteins, and even exogenous drugs as their cargo. Circulating exosomes have shown promise as reliable candidates for pancreatic cancer early diagnosis and monitoring in high-risk people without clinical cancer manifestation. Although we have tried to reflect the status of exosome applications in the treatment and detection of pancreatic cancer, it is evident that further studies and clinical trials are required before exosomes may be employed as a routine therapeutic and diagnostic tools for pancreatic cancer.
Collapse
Affiliation(s)
- Neda Shakerian
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Aida Tafazoli
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz
| | - Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, IR
| | | | - Nikoo Bana
- Kish International Campus, University of Teheran
| | - Maysam Mard-Soltani
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
5
|
Li H, Liu G, Wang B, Momeni MR. Exosomes and microRNAs as mediators of the exercise. Eur J Med Res 2025; 30:38. [PMID: 39828711 PMCID: PMC11742998 DOI: 10.1186/s40001-025-02273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
MicroRNAs (miRNAs), also known as microribonucleic acids, are small molecules found in specific tissues that are essential for maintaining proper control of genes and cellular processes. Environmental factors, such as physical exercise, can modulate miRNA expression and induce targeted changes in gene transcription. This article presents an overview of the present knowledge on the principal miRNAs influenced by physical activity in different tissues and bodily fluids. Numerous research projects have emphasized the significant impact of miRNAs on controlling biological changes brought about by physical activity. These molecules play main roles in important processes such as the growth of skeletal muscle and heart muscle cells, the creation of mitochondria, the development of the vascular system, and the regulation of metabolism. Studies have shown that physical exertion utilizes the contributions of miR-1, miR-133, miR-206, miR-208, and miR-486 to revitalize and restore skeletal muscle tissue. Moreover, detecting alterations in miRNA levels and connecting them to the specific outcomes of various exercise routines and intensities can act as indicators for physical adaptation and the reaction to physical activity in long-term diseases. Numerous studies have confirmed that extracellular vesicles (EVs) which composed of different members such as exosomes have the ability to reduce inflammation through the activation of the nuclear factor kappa B (NF-κB pathway. Furthermore, physical activity greatly affects the levels of specific miRNAs present in exosomes derived from skeletal muscle. Therefore, exosomal miRNAs target some pathways that are related to growth and development, such asWnt/β-catenin, PI3K/AKT, and insulin-like growth factor 1 (IGF1). Exercise-induced exosomes have also been identified as important mediators in promoting beneficial effects throughout the body. The aim of this review is to summarize the effect of exercise on the function of miRNAs and exosomes.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Sport Leisure, Sungshin Women's University, Seoul, 02844, Korea
| | - Guifang Liu
- Department of Physical Education, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China.
| | - Bing Wang
- School of Physical Education, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China
| | | |
Collapse
|
6
|
Ismail M, Fadul MM, Taha R, Siddig O, Elhafiz M, Yousef BA, Jiang Z, Zhang L, Sun L. Dynamic role of exosomal long non-coding RNA in liver diseases: pathogenesis and diagnostic aspects. Hepatol Int 2024; 18:1715-1730. [PMID: 39306594 DOI: 10.1007/s12072-024-10722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Liver disease has emerged as a significant health concern, characterized by high rates of morbidity and mortality. Circulating exosomes have garnered attention as important mediators of intercellular communication, harboring protein and stable mRNAs, microRNAs, and long non-coding RNAs (lncRNA). This review highlights the involvement of exosomal lncRNA in the pathogenesis and diagnosis of various liver diseases. Notably, exosomal lncRNAs exhibit therapeutic potential as targets for conditions including hepatic carcinoma, hepatic fibrosis, and hepatic viral infections. METHOD An online screening process was employed to identify studies investigating the association between exosomal lncRNA and various liver diseases. RESULT Our study revealed a diverse array of lncRNAs carried by exosomes, including H19, Linc-ROR, VLDLR, MALAT1, DANCR, HEIH, ENSG00000248932.1, ENST00000457302.2, ZSCAN16-AS1, and others, exhibiting varied levels across different liver diseases compared to normal liver tissue. These exosomal-derived lncRNAs are increasingly recognized as pivotal biomarkers for diagnosing and prognosticating liver diseases, supported by emerging evidence. However, the precise mechanisms underlying the involvement of certain exosomal lncRNAs remain incompletely understood. Furthermore, the combined analysis of serum exosomes using ENSG00000258332.1, LINC00635, and serum AFP may serve as novel and valuable biomarker for HCC. Clinically, exosomal ATB expression is upregulated in HCC, while exosomal HEIH and RP11-513I15.6 have shown potential for distinguishing HCC related to HCV infection. CONCLUSION The lack of reliable biomarkers for liver diseases, coupled with the high specificity and sensitivity of exosomal lncRNA and its non-invasive detection, promotes exploring their role in pathogenesis and biomarker for diagnosis, prognosis, and response to treatment liver diseases.
Collapse
Affiliation(s)
- Mohammed Ismail
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Missaa M Fadul
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Reham Taha
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Muhanad Elhafiz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Zhenzhou Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Lixin Sun
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Whiteside TL. Tumor-derived Exosomes and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:923-931. [PMID: 39284119 PMCID: PMC11951267 DOI: 10.4049/jimmunol.2400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/01/2024] [Indexed: 11/13/2024]
Abstract
Cancer immunotherapy, including immune checkpoint blockade, has been approved for treatment of patients with many cancer types. However, some patients fail to respond to immunotherapy, and emerging evidence indicates that tumor-derived exosomes (TEX) play a major role in reprogramming the host immune cells by inducing their dysfunction. Focusing on effector T cells, this review illustrates mechanisms of suppression that TEX use, thus promoting tumor escape from the host immune system. TEX carry multiple suppressive signals that drive T cell dysfunction and convert the tumor microenvironment into "an immune desert" in which activated T cells either die or are reprogrammed to mediate protumor functions. The reprogrammed T cells produce a new crop of CD3+ immunoinhibitory exosomes that further amplify suppression mediated by TEX. The result is a profound depletion of antitumor immune effector cells that reflects the defective immune competence of the cancer patient and partly explains why TEX are a significant barrier for cancer immunotherapy.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA; and UPMC Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|
8
|
Rizk NI, Kassem DH, Abulsoud AI, AbdelHalim S, Yasser MB, Kamal MM, Hamdy NM. Revealing the role of serum exosomal novel long non-coding RNA NAMPT-AS as a promising diagnostic/prognostic biomarker in colorectal cancer patients. Life Sci 2024; 352:122850. [PMID: 38901687 DOI: 10.1016/j.lfs.2024.122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
AIMS Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Nicotinamide phosphoribosyl-transferase (NAMPT) was found to be over-expressed in several cancers including CRC. NAMPT-Antisense (NAMPT-AS) is a novel long non-coding RNA (lncRNA) recently reported to be associated with triple negative breast cancer. However, its role in CRC has not been investigated. This study was designed to explore the role of lncRNA NAMPT-AS in CRC, and to investigate its circulating serum exosomal levels in subjects with/without CRC. MAIN METHODS We analyzed CRC patients' data in The Cancer Genome Atlas (TCGA). LncRNA NAMPT-AS and NAMPT mRNA levels were measured in serum exosomes isolated from CRC patients and healthy control subjects and were also measured in CRC-tissues using qRT-PCR. Serum NAMPT protein levels were measured by ELISA, and immunohistochemical analyses were done for NAMPT and Ki67 in CRC tissues. KEY FINDINGS Serum exosomal NAMPT-AS levels were found to be significantly higher in CRC patients compared to control subjects and significantly positively correlated with serum exosomal NAMPT mRNA and circulating NAMPT protein. Tissue NAMPT-AS was found to be significantly positively associated with tissue and serum exosomal NAMPT levels. Higher serum exosomal NAMPT-AS levels were found to be associated with higher susceptibility for CRC. Gene-ontology results and survival analysis of TCGA-data showed a potential classification of CRC samples based on NAMPT-AS levels and association of NAMPT-AS upregulation with poor CRC prognosis and survival. SIGNIFICANCE These results portray NAMPT-AS as a novel potential diagnostic/prognostic biomarker and key molecular mediator in CRC.
Collapse
Affiliation(s)
- Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys Branch), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sherif AbdelHalim
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Health Research Centre of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
9
|
Marabitti V, Vulpis E, Nazio F, Campello S. Mitochondrial Transfer as a Strategy for Enhancing Cancer Cell Fitness:Current Insights and Future Directions. Pharmacol Res 2024; 208:107382. [PMID: 39218420 DOI: 10.1016/j.phrs.2024.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
It is now recognized that tumors are not merely masses of transformed cells but are intricately interconnected with healthy cells in the tumor microenvironment (TME), forming complex and heterogeneous structures. Recent studies discovered that cancer cells can steal mitochondria from healthy cells to empower themselves, while reducing the functions of their target organ. Mitochondrial transfer, i.e. the intercellular movement of mitochondria, is recently emerging as a novel process in cancer biology, contributing to tumor growth, metastasis, and resistance to therapy by shaping the metabolic landscape of the tumor microenvironment. This review highlights the influence of transferred mitochondria on cancer bioenergetics, redox balance and apoptotic resistance, which collectively foster aggressive cancer phenotype. Furthermore, the therapeutic implications of mitochondrial transfer are discussed, emphasizing the potential of targeting these pathways to overcome drug resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Veronica Marabitti
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Elisabetta Vulpis
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesca Nazio
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
10
|
Gonçalves MO, Di Iorio JF, Marin GV, Meneghetti P, Negreiros NGS, Torrecilhas AC. Extracellular vesicles. CURRENT TOPICS IN MEMBRANES 2024; 94:1-31. [PMID: 39370203 DOI: 10.1016/bs.ctm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cells, pathogens, and other systems release extracellular vesicles (EVs). The particles promote intercellular communication and contain proteins, lipids, RNA and DNA. Initially considered to be cellular waste in the twentieth century, EVs were becoming recognized for their function in biological communication and control. EVs are divided into many subtypes: exosomes, microvesicles, and apoptotic bodies. Exosomes form in the late endosome/multivesicular body and are released when the compartments fuse with the plasma membrane. Microvesicles are generated by direct budding of the plasma membrane, whereas apoptotic bodies are formed after cellular apoptosis. The new guideline for EVs that describes alternate nomenclature for EVs. The particles modulate the immune response by affecting both innate and adaptive immunity, and their specific the structure allows them to be used as biomarkers to diagnose a variety of diseases. EVs have a wide range of applications, for example, delivery systems for medications and genetic therapies because of their ability to convey specific cellular material. In anti-tumor therapy, EVs deliver therapeutic chemicals to tumor cells. The EVs promote transplant compatibility and reduce organ rejection. Host-parasite interactions, therapeutic and diagnostic for cancer, cardiovascular disease, cardiac tissue regeneration, and the treatment of neurological diseases such as Alzheimer's and Parkinson's. The study of EVs keeps on expanding, revealing new functions and beneficial options. EVs have the potential to change drug delivery, diagnostics, and specific therapeutics, creating a new frontier in biomedical.
Collapse
Affiliation(s)
- Mariana Ottaiano Gonçalves
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Fortes Di Iorio
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gabriela Villa Marin
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paula Meneghetti
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Náthani Gabrielly Silva Negreiros
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
11
|
Kumar P, Lakhera R, Aggarwal S, Gupta S. Unlocking the Therapeutic Potential of Oral Cancer Stem Cell-Derived Exosomes. Biomedicines 2024; 12:1809. [PMID: 39200273 PMCID: PMC11351673 DOI: 10.3390/biomedicines12081809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Oral cancer (OC) presents a significant global health burden with rising incidence rates. Despite advancements in diagnosis and treatments, the survival rate for OC patients, particularly those with advanced or recurrent disease, remains low at approximately 20%. This poor prognosis is often due to a small population of cancer stem cells (CSCs) that are capable of self-renewal and immune evasion, playing pivotal roles in proliferation, tumor initiation, progression, metastasis, and therapy resistance. Exosomes, which are nano-sized extracellular vesicles (EVs), have emerged as crucial mediators of cell-to-cell communication within the tumor microenvironment (TME). These vesicles carry diverse molecules such as DNA, RNA, proteins, lipids, and metabolites, influencing various cellular processes. Emerging evidence suggests that CSC-derived EVs significantly promote tumor progression and metastasis and maintain the balance between CSCs and non-CSCs, which is vital for intracellular communication within the TME of oral cancer. Recent reports indicate that oral cancer stem cell-derived EVs (OCSC-EVs) influence stemness, immune evasion, metastasis, angiogenesis, tumor reoccurrence, and drug resistance. Understanding OCSC-EVs could significantly improve oral cancer diagnosis, prognosis, and therapy. In this mini-review, we explore OCSC-derived exosomes in oral cancer, examining their potential as diagnostic and prognostic biomarkers that reflect CSC characteristics, and delve into their therapeutic implications, emphasizing their roles in tumor progression and therapy resistance. However, despite their promising potential, several challenges remain, including the need to standardize isolation and characterization methods and to elucidate exosome-mediated mechanisms. Thus, a comprehensive understanding of OCSC-EVs could pave the way for innovative therapeutic strategies that have the potential to improve clinical outcomes for OC patients.
Collapse
Affiliation(s)
- Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Rishabh Lakhera
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Sadhna Aggarwal
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| |
Collapse
|
12
|
Komatsu S, Kato N, Kitai H, Funahashi Y, Noda Y, Tsubota S, Tanaka A, Sato Y, Maeda K, Saito S, Furuhashi K, Ishimoto T, Kosugi T, Maruyama S, Kadomatsu K. Detecting and exploring kidney-derived extracellular vesicles in plasma. Clin Exp Nephrol 2024; 28:617-628. [PMID: 38436899 PMCID: PMC11190017 DOI: 10.1007/s10157-024-02464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/13/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) have received considerable attention as ideal biomarkers for kidney diseases. Most reports have focused on urinary EVs, that are mainly derived from the cells in the urinary tract. However, the detection and the application of kidney-derived EVs in plasma remains uncertain. METHODS We examined the kidney-derived small EVs (sEVs) in plasma that were supposedly released from renal mesangial and glomerular endothelial cells, using clinical samples from healthy controls and patients with kidney transplants. Plasma from healthy controls underwent ultracentrifugation, followed by on-bead flow cytometry, targeting α8 integrin, an antigen-specific to mesangial cells. To confirm the presence of kidney-derived sEVs in peripheral blood, plasma from ABO-incompatible kidney transplant recipients was ultracentrifuged, followed by western blotting for donor blood type antigens. RESULTS Immunohistochemistry and immunoelectron microscopy confirmed α8 integrin expression in kidney mesangial cells and their sEVs. The CD9-α8 integrin double-positive sEVs were successfully detected using on-bead flow cytometry. Western blot analysis further revealed transplanted kidney-derived sEVs containing blood type B antigens in non-blood type B recipients, who had received kidneys from blood type B donors. Notably, a patient experiencing graft kidney loss exhibited diminished signals of sEVs containing donor blood type antigens. CONCLUSION Our findings demonstrate the potential usefulness of kidney-derived sEVs in plasma in future research for kidney diseases.
Collapse
Affiliation(s)
- Shintaro Komatsu
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Noritoshi Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Hiroki Kitai
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshio Funahashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuhei Noda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akihito Tanaka
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuka Sato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kayaho Maeda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shoji Saito
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
13
|
Tiwari P, Yadav K, Shukla RP, Bakshi AK, Panwar D, Das S, Mishra PR. Extracellular vesicles-powered immunotherapy: Unleashing the potential for safer and more effective cancer treatment. Arch Biochem Biophys 2024; 756:110022. [PMID: 38697343 DOI: 10.1016/j.abb.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Cancer treatment has seen significant advancements with the introduction of Onco-immunotherapies (OIMTs). Although some of these therapies have received approval for use, others are either undergoing testing or are still in the early stages of development. Challenges persist in making immunotherapy widely applicable to cancer treatment. To maximize the benefits of immunotherapy and minimize potential side effects, it's essential to improve response rates across different immunotherapy methods. A promising development in this area is the use of extracellular vesicles (EVs) as novel delivery systems. These small vesicles can effectively deliver immunotherapies, enhancing their effectiveness and reducing harmful side effects. This article discusses the importance of integrating nanomedicines into OIMTs, highlighting the challenges with current anti-OIMT methods. It also explores key considerations for designing nanomedicines tailored for OIMTs, aiming to improve upon existing immunotherapy techniques. Additionally, the article looks into innovative approaches like biomimicry and the use of natural biomaterial-based nanocarriers (NCs). These advancements have the potential to transform the delivery of immunotherapy. Lastly, the article addresses the challenges of moving OIMTs from theory to clinical practice, providing insights into the future of using advanced nanotechnology in cancer treatment.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Jawaharlal Nehru University, New Delhi, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Sweety Das
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
14
|
Shojaeian A, Naeimi Torshizi SR, Parsapasand MS, Amjad ZS, Khezrian A, Alibakhshi A, Yun F, Baghaei K, Amini R, Pecic S. Harnessing exosomes in theranostic applications: advancements and insights in gastrointestinal cancer research. Discov Oncol 2024; 15:162. [PMID: 38743146 PMCID: PMC11093943 DOI: 10.1007/s12672-024-01024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Exosomes are small extracellular vesicles (30-150 nm) that are formed by endocytosis containing complex RNA as well as protein structures and are vital in intercellular communication and can be used in gene therapy and drug delivery. According to the cell sources of origin and the environmental conditions they are exposed to, these nanovesicles are very heterogeneous and dynamic in terms of content (cargo), size and membrane composition. Exosomes are released under physiological and pathological conditions and influence the pathogenesis of cancers through various mechanisms, including angiogenesis, metastasis, immune dysregulation, drug resistance, and tumor growth/development. Gastrointestinal cancer is one of the deadliest types of cancer in humans and can involve organs e.g., the esophagus and stomach, or others such as the liver, pancreas, small intestine, and colon. Early diagnosis is very important in this field because the overall survival of patients is low due to diagnosis in late stages and recurrence. Also, various therapeutic strategies have failed and there is an unmet need for the new therapeutic agents. Exosomes can become promising candidates in gastrointestinal cancers as biomarkers and therapeutic agents due to their lower immunity and passing the main physiological barriers. In this work, we provide a general overview of exosomes, their biogenesis and biological functions. In addition, we discuss the potential of exosomes to serve as biomarkers, agents in cancer treatment, drug delivery systems, and effective vaccines in immunotherapy, with an emphasis on gastrointestinal cancers.
Collapse
Affiliation(s)
- Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - S R Naeimi Torshizi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Sadat Parsapasand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Khezrian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Alibakhshi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faye Yun
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA
| | - Kaveh Baghaei
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA.
| |
Collapse
|
15
|
Pagani A, Duscher D, Geis S, Klein S, Knoedler L, Panayi AC, Oliinyk D, Felthaus O, Prantl L. The Triple Adipose-Derived Stem Cell Exosome Technology as a Potential Tool for Treating Triple-Negative Breast Cancer. Cells 2024; 13:614. [PMID: 38607053 PMCID: PMC11011929 DOI: 10.3390/cells13070614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Extracellular vesicles are pivotal mediators in intercellular communication, facilitating the exchange of biological information among healthy, pathological and tumor cells. Between the diverse subtypes of extracellular vesicles, exosomes have unique properties and clinical and therapeutical applications. Breast cancer ranks as one of the most prevalent malignancies across the globe. Both the tumor core and its surrounding microenvironment engage in a complex, orchestrated interaction that facilitates cancer's growth and spread. METHODS The most significant PubMed literature about extracellular vesicles and Adipose-Derived Stem Cell Exosomes and breast cancer was selected in order to report their biological properties and potential applications, in particular in treating triple-negative breast cancer. RESULTS Adipose-Derived Stem Cell Exosomes represent a potential tool in targeting triple-negative breast cancer cells at three main levels: the tumor core, the tumor microenvironment and surrounding tissues, including metastases. CONCLUSIONS The possibility of impacting triple-negative breast cancer cells with engineered Adipose-Derived Stem Cell Exosomes is real. The opportunity to translate our current in vitro analyses into a future in vivo scenario is even more challenging.
Collapse
Affiliation(s)
- Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Dominik Duscher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Sebastian Geis
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Adriana C. Panayi
- Department of Plastic, Hand and Reconstructive Surgery, BG Klinik Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Straße 13, 67071 Ludwigshafen, Germany
| | - Dmytro Oliinyk
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| |
Collapse
|
16
|
Salehi M, Kamali MJ, Arab D, Safaeian N, Ashuori Z, Maddahi M, Latifi N, Jahromi AM. Exosomal microRNAs in regulation of tumor cells resistance to apoptosis. Biochem Biophys Rep 2024; 37:101644. [PMID: 38298209 PMCID: PMC10827597 DOI: 10.1016/j.bbrep.2024.101644] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Exosomes are a type of extracellular vesicle that contains bioactive molecules that can be secreted by most cells. Nevertheless, the content of these cells differs depending on the cell from which they originate. The exosome plays a crucial role in modulating intercellular communication by conveying molecular messages to neighboring or distant cells. Cancer-derived exosomes can transfer several types of molecules into the tumor microenvironment, including high levels of microRNA (miRNA). These miRNAs significantly affect cell proliferation, angiogenesis, apoptosis resistance, metastasis, and immune evasion. Increasing evidence indicates that exosomal miRNAs (exomiRs) are crucial to regulating cancer resistance to apoptosis. In cancer cells, exomiRs orchestrate communication channels between them and their surrounding microenvironment, modulating gene expression and controlling apoptosis signaling pathways. This review presents an outline of present-day knowledge of the mechanisms that affect target cells and drive cancer resistance to apoptosis. Also, our study looks at the regulatory role of exomiRs in mediating intercellular communication between tumor cells and surrounding microenvironmental cells, specifically stromal and immune cells, to evade therapy-induced apoptosis.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Daniyal Arab
- Department of Human Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naghme Safaeian
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Ashuori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Maddahi
- Faculty of Dentistry, Yeditepe University, Istanbul, Turkey
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Amir Moein Jahromi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Hasoglu I, Karatug Kacar A. The therapeutic effects of exosomes the first time isolated from pancreatic islet-derived progenitor cells in the treatment of pancreatic cancer. PROTOPLASMA 2024; 261:281-291. [PMID: 37798610 DOI: 10.1007/s00709-023-01896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Insulinoma is an excessive insulin-released beta cell tumor. Pancreas cancer is one of the deadliest malignant neoplasms. Exosomes are secreted cell membrane vesicles containing a large number of proteins, lipids, and nucleic acids. The aim of this study is to investigate the effects of exosomes on two cell lines of benign and malignant character. For the first time, exosomes were isolated from pancreatic island-derived progenitor cells (PID-PCs) and applied to INS-1 and MiaPaCa-2 cells. In addition, exosomes isolated from PID-PC, MiaPaca-2, and INS-1 cells were characterized in order to compare their sizes with other previously isolated exosomes. Alix, TSG101, CD9, and CD81 were analyzed. The size and concentration of exosomes and the cell viability were detected. The cells were marked with HSP90, HSF-1, Kaspaz-8, Active-Kaspaz-3, Beclin, and p-Bcl-2. The cell cytotoxicity and insulin levels kit were measured. Alix in all exosomes, and PID-PC, MiaPaca-2 cell lysates; TSG101 in PID-PC and MiaPaca-2 cell lysates; CD9 in INS-1 exosomes were detected. The dimensions of isolated exosomes were 103.6 ± 28.6 nm, 100.7 ± 10 nm, and 147.2 ± 12.3 nm for PID-PCs, MiaPaca-2, and INS-1 cells. The cell viability decreased and HSP90 increased in the MiaPaca-2 cells. The HSF-1 was higher in the control MiaPaca-2 cell compared to the control INS-1 cell, and the exosome-treated MiaPaca-2 cell compared to the exosome-treated INS-1 cell. Beclin and p-Bcl-2 were decreased in the exosome-treated MiaPaca-2 cells. The insulin level in the cell lysates increased compared to cell secretion in INS-1 cells. In conclusion, exosomes isolated from the PID-PC caused cell death in the MiaPaca-2 cells in a time- and dose-dependent manner. The IC50 value determined for MiaPaca-2 cells has no effect on cell viability in INS-1 cells, which best mimics pancreatic beta cells and can be used instead of healthy pancreatic beta cells. Isolated exosomes can kill cancer cells without damaging healthy cells.
Collapse
Affiliation(s)
- Imren Hasoglu
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Ayse Karatug Kacar
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
18
|
Kzar Al-Shukri HH, Abdul-Jabbar Ali S, Al-Akkam KA, Hjazi A, Rasulova I, Mustafa YF, Al-Saidi DN, Alasheqi MQ, Alawadi A, Alsaalamy A. The role of exo-miRNA in diagnosis and treatment of cancers, focusing on effective miRNAs in colorectal cancer. Cell Biol Int 2024; 48:280-289. [PMID: 38225535 DOI: 10.1002/cbin.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/26/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Small extracellular (EV) particles known as exosomes are released by a variety of cell types, including immune system cells, stem cells, and tumor cells. They are regarded as a subgroup of EVs and have a diameter that ranges from 30 to 150 nm. Proteins, lipids, nucleic acids (including RNA and DNA), and different bioactive compounds are among the wide range of biomolecules that make up the cargo of exosomes. Exosomes are crucial for intercellular communication because they let cells share information and signaling chemicals. They are involved in various physiological and pathological processes, including immune responses, tissue regeneration, cancer progression, and neurodegenerative diseases. In conclusion, it is essential to continue research into exosome-based cancer medicines to advance understanding, improve treatment plans, create personalized tactics, ensure safety, and speed up clinical translation.
Collapse
Affiliation(s)
- Hamzah H Kzar Al-Shukri
- Department of Biochemistry, College of Veterinary Medicine, Al-Qasim Green University, Babylon, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Dahlia N Al-Saidi
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Kirkuk, Iraq
| |
Collapse
|
19
|
Moshrefiravasjani R, Kamrani A, Nazari N, Jafari F, Nasiri H, Jahanban-Esfahlan R, Akbari M. Exosome-mediated tumor metastasis: Biology, molecular targets and immuno-therapeutic options. Pathol Res Pract 2024; 254:155083. [PMID: 38277749 DOI: 10.1016/j.prp.2023.155083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
Small extracellular vesicles called exosomes play a crucial part in promoting intercellular communication. They act as intermediaries for the exchange of bioactive chemicals between cells, released into the extracellular milieu by a variety of cell types. Within the context of cancer progression, metastasis is a complex process that plays a significant role in the spread of malignant cells from their main site of origin to distant anatomical locations. This complex process plays a key role in the domain of cancer-related deaths. In summary, the trajectory of current research in the field of exosome-mediated metastasis is characterized by its unrelenting quest for more profound understanding of the molecular nuances, the development of innovative diagnostic tools and therapeutic approaches, and the unwavering dedication to transforming these discoveries into revolutionary clinical applications. This unrelenting pursuit represents a shared desire to improve the prognosis for individuals suffering from metastatic cancer and to nudge the treatment paradigm in the direction of more effective and customized interventions.
Collapse
Affiliation(s)
| | - Amin Kamrani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Nazanin Nazari
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Jafari
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Veliz L, Cooper TT, Grenier-Pleau I, Abraham SA, Gomes J, Pasternak SH, Dauber B, Postovit LM, Lajoie GA, Lagugné-Labarthet F. Tandem SERS and MS/MS Profiling of Plasma Extracellular Vesicles for Early Ovarian Cancer Biomarker Discovery. ACS Sens 2024; 9:272-282. [PMID: 38214491 DOI: 10.1021/acssensors.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Extracellular vesicles (EVs) are vectors of biomolecular cargo that play essential roles in intercellular communication across a range of cells. Protein, lipid, and nucleic acid cargo harbored within EVs may serve as biomarkers at all stages of disease; however, the choice of methodology may challenge the specificity and reproducibility of discovery. To address these challenges, the integration of rigorous EV purification methods, cutting-edge spectroscopic technologies, and data analysis are critical to uncover diagnostic signatures of disease. Herein, we demonstrate an EV isolation and analysis pipeline using surface-enhanced Raman spectroscopy (SERS) and mass spectrometry (MS) techniques on plasma samples obtained from umbilical cord blood, healthy donor (HD) plasma, and plasma from women with early stage high-grade serous carcinoma (HGSC). Plasma EVs were purified by size exclusion chromatography and analyzed by surface-enhanced Raman spectroscopy (SERS), mass spectrometry (MS), and atomic force microscopy. After determining the fraction of highest EV purity, SERS and MS were used to characterize EVs from HDs, pooled donors with noncancerous gynecological ailments (n = 6), and donors with early stage [FIGO (I/II)] with HGSC. SERS spectra were subjected to different machine learning algorithms such as PCA, logistic regression, support vector machine, naïve Bayes, random forest, neural network, and k nearest neighbors to differentiate healthy, benign, and HGSC EVs. Collectively, we demonstrate a reproducible workflow with the potential to serve as a diagnostic platform for HGSC.
Collapse
Affiliation(s)
- Lorena Veliz
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Tyler T Cooper
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Isabelle Grenier-Pleau
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Sheela A Abraham
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Janice Gomes
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K5, Canada
| | - Stephen H Pasternak
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K5, Canada
| | - Bianca Dauber
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Lynne M Postovit
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
21
|
Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41:62. [PMID: 38253748 DOI: 10.1007/s12032-023-02286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Acute myeloid leukemia (AML) is a fast-growing blood cancer that interferes with the normal growth of blood cells in the bone marrow and blood. It is characterized by its unpredictable outlook and high death rate. The main treatment for AML is chemotherapy, but this often results in drug resistance and the possibility of the disease returning. For this reason, new biomarkers are necessary to diagnose, predict, and treat this disease. Research has demonstrated that cells responsible for AML release exosomes that interact with the disease's microenvironment. These exosomes have significant roles in promoting leukemia growth, suppressing normal hematopoiesis, facilitating angiogenesis, and contributing to drug resistance in AML. Further investigations have shown that these exosomes contain miRNAs, which are transferred to target cells and have functional roles. Biomarkers are utilized to assess various aspects of tumor cell behavior, including proliferation, apoptosis, angiogenesis, changes in the microenvironment, transfer of drug resistance, and stability in serum and blood plasma. In this research, we showed that exosomal miRNAs and exosomes have the potential to be used as indicators for detecting various phases of AML and can aid in its medical treatment. Furthermore, they can be specifically targeted for therapeutic purposes in addressing this condition.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Cellular and Molecular Biology, Faculty of New Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
22
|
Desai N, Katare P, Makwana V, Salave S, Vora LK, Giri J. Tumor-derived systems as novel biomedical tools-turning the enemy into an ally. Biomater Res 2023; 27:113. [PMID: 37946275 PMCID: PMC10633998 DOI: 10.1186/s40824-023-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Cancer is a complex illness that presents significant challenges in its understanding and treatment. The classic definition, "a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body," fails to convey the intricate interaction between the many entities involved in cancer. Recent advancements in the field of cancer research have shed light on the role played by individual cancer cells and the tumor microenvironment as a whole in tumor development and progression. This breakthrough enables the utilization of the tumor and its components as biological tools, opening new possibilities. This article delves deeply into the concept of "tumor-derived systems", an umbrella term for tools sourced from the tumor that aid in combatting it. It includes cancer cell membrane-coated nanoparticles (for tumor theranostics), extracellular vesicles (for tumor diagnosis/therapy), tumor cell lysates (for cancer vaccine development), and engineered cancer cells/organoids (for cancer research). This review seeks to offer a complete overview of the tumor-derived materials that are utilized in cancer research, as well as their current stages of development and implementation. It is aimed primarily at researchers working at the interface of cancer biology and biomedical engineering, and it provides vital insights into this fast-growing topic.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Pratik Katare
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vaishali Makwana
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
23
|
Yeo J. Food-Derived Extracellular Vesicles as Multi-Bioactive Complex and Their Versatile Health Effects. Antioxidants (Basel) 2023; 12:1862. [PMID: 37891941 PMCID: PMC10604675 DOI: 10.3390/antiox12101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound organelles that are generally released by eukaryotic cells and enclose various cellular metabolic information, such as RNA, meta-proteins, and versatile metabolites. The physiological properties and diverse functions of food-derived EVs have been extensively elucidated, along with a recent explosive upsurge in EV research. Therefore, a concise review of the health effects of food-derived EVs is necessary. This review summarizes the structural stability and uptake pathways of food-derived EVs to target cells and their health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic effects, gut microbiome modulation, and intestinal barrier enhancement.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
24
|
Kumar S, Dhar R, Kumar LBSS, Shivji GG, Jayaraj R, Devi A. Theranostic signature of tumor-derived exosomes in cancer. Med Oncol 2023; 40:321. [PMID: 37798480 DOI: 10.1007/s12032-023-02176-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
Cancer is the most challenging global health crisis. In the recent times, studies on extracellular vesicles (EVs) are adding a new chapter to cancer research and reports on EVs explores cancer in a new dimension. Exosomes are a group of subpopulations of EVs. It originates from the endosomes and carries biologically active molecules to the neighboring cells which in turn transforms the recipient cell activity. In general, it plays a role in cellular communication. The correlation between exosomes and cancer is fascinating. Tumor-derived exosomes (TEXs) play a dynamic role in cancer progression and are associated with uncontrolled cell growth, angiogenesis, immune suppression, and metastasis. Its molecular cargo is an excellent source of cancer biomarkers. Several advanced molecular profiling approaches assist in exploring the TEXs in depth. This paves the way for a strong foundation for identifying and detecting more specific and efficient biomarkers. TEXs are also gaining importance in scientific society for its role in cancer therapy and several clinical trials based on TEXs is a proof of its significance. In this review, we have highlighted the role of TEXs in mediating immune cell reprogramming, cancer development, metastasis, EMT, organ-specific metastasis, and its clinical significance in cancer theranostics. TEXs profiling is an effective method to understand the complications associated with cancer leading to good health and well-being of the individual and society as a whole.
Collapse
Affiliation(s)
- Samruti Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Lokesh Babu Sirkali Suresh Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Gauresh Gurudas Shivji
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat, 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT, 0909, Australia
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
25
|
Dou X, Ji W, Dai M, Sun S, Chen R, Yang J, Long J, Ge Y, Lin Y. Spatial and temporal mapping of neuron-microglia interaction modes in acute ischemic stroke. Biochem Pharmacol 2023; 216:115772. [PMID: 37659736 DOI: 10.1016/j.bcp.2023.115772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Ischemic stroke (IS) is a major cause of morbidity and mortality worldwide, accounting for 75-80% of all strokes. Under conditions of ischemia and hypoxia, neurons suffer damage or death, leading to a series of secondary immune reactions. Microglia, the earliest activated immune cells, can exert neurotoxic or neuroprotective effects on neurons through secretion of factors. There exists a complex interaction between neurons and microglia during this process. Moreover, the interaction between them becomes even more complex due to differences in the infarct area and reperfusion time. This review first elaborates on the differences in neuronal death modes between the ischemic core and penumbra, and then introduces the differences in microglial markers across different infarct areas with varying reperfusion time, indicating distinct functions. Finally, we focus on exploring the interaction modes between neurons and microglia in order to precisely target beneficial interactions and inhibit harmful ones, thus providing new therapeutic strategies for the treatment of IS.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Wei Ji
- Department of Anesthesiology, Yantai Affiliated Hospital of BinZhou Medical College, Yantai 264000, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
26
|
Temilola DO, Wium M, Paccez J, Salukazana AS, Otu HH, Carbone GM, Kaestner L, Cacciatore S, Zerbini LF. Potential of miRNAs in Plasma Extracellular Vesicle for the Stratification of Prostate Cancer in a South African Population. Cancers (Basel) 2023; 15:3968. [PMID: 37568783 PMCID: PMC10417259 DOI: 10.3390/cancers15153968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is the most common cause of cancer death among African men. The analysis of microRNAs (miRNAs) in plasma extracellular vesicles (EVs) can be utilized as a non-invasive tool for the diagnosis of PCa. In this study, we used small RNA sequencing to profile miRNAs cargo in plasma EVs from South African PCa patients. We evaluated the differential expression of miRNAs between low and high Gleason scores in the plasma EVs of South African patients and in the prostatic tissue from data available in the Cancer Genome Atlas (TCGA) Data Portal. We identified 7 miRNAs differently expressed in both EVs and prostatic tissues. We evaluated their expression using qPCR in a larger cohort of 10 patients with benign prostatic hyperplasia (BPH) and 24 patients with PCa. Here, we reported that the ratio between two of these miRNAs (i.e., miR-194-5p/miR-16-5p) showed a higher concentration in PCa compared to BPH and in metastatic PCa compared to localized PCa. We explored for the first time the profiling of miRNAs cargo in plasma EVs as a tool for the identification of putative markers in the South African population. Our finding indicated the ratio miR-194-5p/miR-16-5p as a non-invasive marker for the evaluation of PCa aggressiveness in this population.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Juliano Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Azola Samkele Salukazana
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana, 6900 Bellinzona, Switzerland
| | - Lisa Kaestner
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| |
Collapse
|
27
|
Ning X, Fu Z, Zhang J, Gao S, Cui Z, Cong M, Guo Q, Sun X, Li J, Zhang M, Wang S. The role of alternative splicing in lung cancer. Cancer Chemother Pharmacol 2023; 92:83-95. [PMID: 37335335 DOI: 10.1007/s00280-023-04553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Aberrant alternative splicing (AS) events are frequently observed in lung cancer, which can be attributed to aberrant gene AS, alterations in splicing regulatory factors, or changes in splicing regulatory mechanisms. Consequently, the dysregulation of alternative RNA splicing is the fundamental cause of lung cancer. In this review, we have summarized the pivotal role of AS in the development, progression, invasion, metastasis, angiogenesis, and drug resistance of lung cancer. Ultimately, this review emphasizes the potential of AS as biomarkers in lung cancer prognosis and diagnosis, and introduces some applications of AS isoform in the treatment of lung cancer. The comprehension of the AS may provide a glimmer of hope for the eradication of lung cancer.
Collapse
Affiliation(s)
- Xuelian Ning
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Zitong Fu
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Jing Zhang
- Department of Oncology, Chifeng Municipal Hospital, No.1 Zhaowuda Road, Chifeng, 024000, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Qingyu Guo
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xixi Sun
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Jing Li
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Minghui Zhang
- Department of Oncology, Chifeng Municipal Hospital, No.1 Zhaowuda Road, Chifeng, 024000, China.
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
28
|
Singha A, K T M, Mahalingam R, M SK, R A, A S. Therapeutic Signature of Stem Cell Derivative Exosomes in Oral Cancer: A Scoping Review. Cureus 2023; 15:e39957. [PMID: 37416015 PMCID: PMC10320225 DOI: 10.7759/cureus.39957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
Oral cancer poses a serious health challenge to the nations worldwide. India, among all the nations reported, has the largest number of oral cancer cases, which accounts for one-third of the entire population of oral cancer globally. As oral cancer is well-known for delayed diagnosis until an advanced stage, poor outcomes, and a lack of specific biomarkers for the disease and high-budget therapeutic alternatives. Stem cell derivative exosomes gained significant attention as therapeutic agents and diagnostic biomarkers in cancer biology. It's a type of extracellular vesicle, which are lipid-bilayer-enclosed vesicles of endosomal origin. They are nanosized membrane vesicles that are capable of self-renewal, unlimited proliferation, and multi-directional differential potential. Thus, they act salient in the occurrence and development of tumors. Exosomal micro-RNAs (miRNAs) are functionally related to the advancement of cancer, metastasis, and the aggressive nature of tumors with high recurrence rates. It has also been highlighted that exosomes have the potential to serve as diagnostic markers. A quick, easy, high-clarity, and confined rehabilitation method is the basic specification for large-scale usage of exosomes. The constitution of the composite transporters of exosomes is easily available by sampling biological fluids (liquid biopsies) from samples such as saliva. A liquid biopsy based on exosomes focuses on their probable usage in cancer patients' diagnosis and the determination of the outcome or course of the disease. This review explores the therapeutic prospect of stem cell-derived exosomes as intending to offer new ideas for clinical management and institute a new era of therapeutic agents for oral cancer.
Collapse
Affiliation(s)
- Aanuja Singha
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Magesh K T
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Ramya Mahalingam
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Sathya Kumar M
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Aravindhan R
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Sivachandran A
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| |
Collapse
|
29
|
Zhang Y, Liu J, Liu S, Yu L, Liu S, Li M, Jin F. Extracellular vesicles in oral squamous cell carcinoma: current progress and future prospect. Front Bioeng Biotechnol 2023; 11:1149662. [PMID: 37304135 PMCID: PMC10250623 DOI: 10.3389/fbioe.2023.1149662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most aggressive oral and maxillofacial malignancy with a high incidence and low survival rate. OSCC is mainly diagnosed by tissue biopsy, which is a highly traumatic procedure with poor timeliness. Although there are various options for treating OSCC, most of them are invasive and have unpredictable therapeutic outcomes. Generally, early diagnosis and noninvasive treatment cannot be always satisfied simultaneously in OSCC. Extracellular vesicles (EVs) are involved in intercellular communication. EVs facilitate disease progression and reflect the location and status of the lesions. Therefore, EVs are relatively less invasive diagnostic tools for OSCC. Furthermore, the mechanisms by which EVs are involved in tumorigenesis and tumor treatment have been well studied. This article dissects the involvement of EVs in the diagnosis, development, and treatment of OSCC, providing new insight into the treatment of OSCC by EVs. Different mechanisms, such as inhibiting EV internalization by OSCC cells and constructing engineered vesicles, with potential applications for treating OSCC will be discussed in this review article.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jianing Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Lu Yu
- Department of Periodontology, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Siying Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Meng Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
30
|
Malhotra P, Casari I, Falasca M. Can the molecules carried by extracellular vesicles help to diagnose pancreatic cancer early? Biochim Biophys Acta Gen Subj 2023:130387. [PMID: 37236324 DOI: 10.1016/j.bbagen.2023.130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Pancreatic cancer is a deadly malignancy mainly because of its asymptomatic onset which prevents the implementation of the primary tumour's resection surgery, leading to metastatic spread resistant to chemotherapy. Early-detection of this cancer in its initial stage would represent a game changer in the fight against this disease. The few currently available biomarkers detectable in patients' body fluids lack sensitivity and specificity. SCOPE OF REVIEW The recent discovery of extracellular vesicles and their role in promoting cancer's advancement, has boosted interest in researching their cargo, to find reliable early detection biological markers. This review examines the most recent discoveries in the analysis of potential extra vesicle-carried biological markers for the early detection of pancreatic cancer. MAJOR CONCLUSIONS Despite the advantages of using extracellular vesicles for early diagnosis, and the promising findings of extracellular vesicle-carried molecules possibly functional as biomarkers, until now there are no validated markers derived from extracellular vesicles available to be used in the clinic. GENERAL SIGNIFICANCE Further studies in this direction are urgently required to provide what would be a major asset for defeating pancreatic cancer.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
31
|
Jahromi FNA, Dowran R, Jafari R. Recent advances in the roles of exosomal microRNAs (exomiRs) in hematologic neoplasms: pathogenesis, diagnosis, and treatment. Cell Commun Signal 2023; 21:88. [PMID: 37127640 PMCID: PMC10152632 DOI: 10.1186/s12964-023-01102-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023] Open
Abstract
In clinical diagnosis, the capability of exosomes to serve as biomarkers is one of the most important biological functions of exosomes. The superior stability of exosome biomarkers makes them superior to those isolated from traditional samples such as serum and urine. Almost all body fluids contain exosomes, which contain proteins, nucleic acids, and lipids. Several molecular components of exosomes, including exosome proteins and microRNAs (miRNAs), are promising diagnostic biomarkers. These exosomes may carry genetic information by containing messenger RNA (mRNA) and miRNA. The miRNAs are small noncoding RNAs that regulate protein-coding genes by acting as translational repressors. It has been shown that miRNAs are mis-expressed in a range of conditions, including hematologic neoplasms. Additionally, miRNAs found within exosomes have been linked with specific diseases, including hematologic neoplasms. Numerous studies suggest that circulating exosomes contain miRNAs similar to those found in parental cancer cells. Exosomes contain miRNAs that are released by almost all kinds of cells. MiRNAs are packaged into exosomes and delivered to recipient cells, and manipulate its function. It has been recognized that exosomes are new therapeutic targets for immunotherapy and biomedicine of cancers. The current review discusses the current evidence around exosomal miRNAs involved in the pathogenesis, diagnosis, and treatment of hematologic neoplasms. Video Abstract.
Collapse
Affiliation(s)
- Faride Nam Avar Jahromi
- Department of Hematology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Dowran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, P.O. BoX: 1138, Shafa St., Ershad Blvd., 57147, Urmia, Iran.
| |
Collapse
|
32
|
Galardi A, De Bethlen A, Di Paolo V, Lampis S, Mastronuzzi A, Di Giannatale A. Recent Advancements on the Use of Exosomes as Drug Carriers for the Treatment of Glioblastoma. Life (Basel) 2023; 13:life13040964. [PMID: 37109493 PMCID: PMC10142357 DOI: 10.3390/life13040964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive cancer of the brain. Presently, GBM patients have a poor prognosis, and therapy primarily aims to extend the life expectancy of affected patients. The current treatment of GBM in adult cases and high-grade gliomas in the pediatric population involves a multimodal approach that includes surgical resection followed by simultaneous chemo/radiotherapy. Exosomes are nanoparticles that transport proteins and nucleic acids and play a crucial role in mediating intercellular communication. Recent evidence suggests that these microvesicles may be used as biological carriers and offer significant advantages in targeted therapy. Due to their inherent cell-targeting properties, circulation stability, and biocompatibility, exosomes are emerging as promising new carriers for drugs and biotherapeutics. Furthermore, these nanovesicles are a repository of potential diagnostic and prognostic markers. In this review, we focus on the therapeutic potentials of exosomes in nano-delivery and describe the latest evidence of their use as a therapeutic tool in GBM.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Alexander De Bethlen
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Virginia Di Paolo
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Silvia Lampis
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| |
Collapse
|
33
|
Cherian SG, Narayan SK, Arumugam M. Exosome therapies improve outcome in rodents with ischemic stroke; meta-analysis. Brain Res 2023; 1803:148228. [PMID: 36592803 DOI: 10.1016/j.brainres.2022.148228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Exosome therapy has been theorized to be safer, more effective, and less cumbersome in replacing stem cell therapies for tissue repair and regeneration. There remains considerable uncertainty on whether exosome therapy is efficacious and safe for recovery from brain injury due to cerebral infarction. There is growing consensus that systematic reviews of data, from preclinical studies which yielded conflicting and confusing results, can provide valuable directions for novel therapeutic options for several clinical conditions. This study systematically evaluated the efficacy of exosome therapy in ischemic stroke in preclinical studies in rodent models. METHODS We reviewed existing literature on exosome therapy in rodent stroke models from various databases, and reviewed the interventional measures, and outcome measures systematically, with changes in the infarct volume and functional scores as outcome parameters. Seventeen homogeneous studies were found qualitatively acceptable for meta-analysis. The study used software RevMan 5.3 to conduct the meta-analysis (PROSPERO Register Number: CRD42022314138) RESULTS: Compared to placebo, exosomes treated ischemic stroke models showed significantly reduced brain infarct volume and improved functional recovery on days 7 and 28. Though there are no safety concerns reported in any preclinical studies, there is insufficient data to make robust conclusions on the therapy's safety. INTERPRETATION Therapy with subcellular exosomes is a promising treatment to be explored further in animal ischemic stroke models to arrive at robust conclusions for its safety and therapeutic dosage. This must precede Phase I and II- human randomized clinical trials to establish the safety and proof of concept of efficacy of exosome therapy in human ischemic stroke.
Collapse
Affiliation(s)
- Simy Grace Cherian
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvanthari Nagar, Puducherry, India
| | - Sunil K Narayan
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvanthari Nagar, Puducherry, India.
| | - Murugesan Arumugam
- Department of Pharmacology, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India.
| |
Collapse
|
34
|
Del Real Mata C, Jeanne O, Jalali M, Lu Y, Mahshid S. Nanostructured-Based Optical Readouts Interfaced with Machine Learning for Identification of Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2202123. [PMID: 36443009 DOI: 10.1002/adhm.202202123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Indexed: 11/30/2022]
Abstract
Extracellular vesicles (EVs) are shed from cancer cells into body fluids, enclosing molecular information about the underlying disease with the potential for being the target cancer biomarker in emerging diagnosis approaches such as liquid biopsy. Still, the study of EVs presents major challenges due to their heterogeneity, complexity, and scarcity. Recently, liquid biopsy platforms have allowed the study of tumor-derived materials, holding great promise for early-stage diagnosis and monitoring of cancer when interfaced with novel adaptations of optical readouts and advanced machine learning analysis. Here, recent advances in labeled and label-free optical techniques such as fluorescence, plasmonic, and chromogenic-based systems interfaced with nanostructured sensors like nanoparticles, nanoholes, and nanowires, and diverse machine learning analyses are reviewed. The adaptability of the different optical methods discussed is compared and insights are provided into prospective avenues for the translation of the technological approaches for cancer diagnosis. It is discussed that the inherent augmented properties of nanostructures enhance the sensitivity of the detection of EVs. It is concluded by reviewing recent integrations of nanostructured-based optical readouts with diverse machine learning models as novel analysis ventures that can potentially increase the capability of the methods to the point of translation into diagnostic applications.
Collapse
Affiliation(s)
| | - Olivia Jeanne
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| | - Mahsa Jalali
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| | - Yao Lu
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| | - Sara Mahshid
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| |
Collapse
|
35
|
CAR-tropic extracellular vesicles carry tumor-associated antigens and modulate CAR T cell functionality. Sci Rep 2023; 13:463. [PMID: 36627334 PMCID: PMC9832131 DOI: 10.1038/s41598-023-27604-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Tumor-derived extracellular vesicles (EVs) are active contributors in metastasis and immunosuppression in tumor microenvironment. At least some of the EVs carry tumor surface molecules such as tumor-associated antigens (TAAs) and/or checkpoint inhibitors, and potentially could interact with T cells or CAR T cells. Upon contact with T cells, EVs could alter their phenotype and functions by triggering signaling through TCR or CAR reprogramming them to escape immune response. We hypothesize that EVs that possess TAA on the surface will probably interact with CAR T cells which can recognize and bind corresponding TAA. This interaction between EVs and CAR T cells may change the outcome of CAR T-based cancer immunotherapy since it should affect CAR T cells. Also, EVs could serve as adjuvants and antigenic components of antitumor vaccines. Herein, we isolated EVs from B cell precursor leukemia cell line (pre-B ALL) Nalm-6 and demonstrated that recognition and binding of CD19+EVs with CD19-CAR T cells strongly depends on the presence of CD19 antigen. CD19+EVs induce secretion of pro-inflammatory cytokines (IL-2 and IFN-y) and upregulated transcription of activation-related genes (IFNG, IFNGR1, FASLG, IL2) in CD19-CAR T cells. Tumor necrosis factor receptor superfamily (TNFRSF4 and TNFRSF9) and T-cell exhaustion markers (CTLA4, LAG3, TIM3 and PDCD1LG2) were also upregulated in CD19-CAR T cells after incubation with CD19+EVs. Long-term cultivation of CD19+ or PD-L1+EVs with CD19-CAR T cells led to increased terminal differentiation and functional exhaustion according to elevated expression of PD-1, TIGIT, CD57. In summary, our results suggest that chronic exposure of CD19-CAR T cells to CD19+EVs mediates activation and systemic exhaustion in antigen-specific manner, and this negative effect is accompanied by the impaired cytotoxic activity in vitro.
Collapse
|
36
|
Mirza S, Bhadresha K, Mughal MJ, McCabe M, Shahbazi R, Ruff P, Penny C. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet? Front Oncol 2023; 12:1023565. [PMID: 36686736 PMCID: PMC9853908 DOI: 10.3389/fonc.2022.1023565] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with nearly half of patients detected in the advanced stages. This is due to the fact that symptoms associated with CRC often do not appear until the cancer has reached an advanced stage. This suggests that CRC is a cancer with a slow progression, making it curable and preventive if detected in its early stage. Therefore, there is an urgent clinical need to improve CRC early detection and personalize therapy for patients with this cancer. Recently, liquid biopsy as a non-invasive or nominally invasive approach has attracted considerable interest for its real-time disease monitoring capability through repeated sample analysis. Several studies in CRC have revealed the potential for liquid biopsy application in a real clinical setting using circulating RNA/miRNA, circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still remains a challenge since there are currently no promising results with high specificity and specificity that might be employed as optimal circulatory biomarkers. Therefore, in this review, we conferred the plausible role of less explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which may allow researchers to develop improved strategies to unravel unfulfilled clinical requirements in CRC patients. Moreover, we have also discussed immunotherapy approaches to improve the prognosis of MSI (Microsatellite Instability) CRC patients using neoantigens and immune cells in the tumor microenvironment (TME) as a liquid biopsy approach in detail.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kinjal Bhadresha
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| | - Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Clement Penny,
| |
Collapse
|
37
|
Shi Y, Shao J, Zhang Z, Zhang J, Lu H. Effect of condylar chondrocyte exosomes on condylar cartilage osteogenesis in rats under tensile stress. Front Bioeng Biotechnol 2022; 10:1061855. [PMID: 36561044 PMCID: PMC9766957 DOI: 10.3389/fbioe.2022.1061855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Functional orthoses are commonly used to treat skeletal Class II malocclusion, but the specific mechanism through which they do this has been a challenging topic in orthodontics. In the present study, we aimed to explore the effect of tensile stress on the osteogenic differentiation of condylar chondrocytes from an exosomal perspective. Methods: We cultured rat condylar chondrocytes under resting and tensile stress conditions and subsequently extracted cellular exosomes from them. We then screened miRNAs that were differentially expressed between the two exosome extracts by high-throughput sequencing and performed bioinformatics analysis and osteogenesis-related target gene prediction using the TargetScan and miRanda softwares. Exosomes cultured under resting and tensile stress conditions were co-cultured with condylar chondrocytes for 24 h to form the Control-Exo and Force-Exo exosome groups, respectively. Quantitative real time PCR(RT-qPCR) and western blotting were then used to determine the mRNA and protein expression levels of Runx2 and Sox9 in condylar chondrocytes. Results: The mRNA and protein expression levels of Runx2 and Sox9 in the Force-Exo group were significantly higher than those in the Control-Exo group (p < 0.05). The differential miRNA expression results were consistent with our sequencing results. Bioinformatics analysis and target gene prediction results showed that the main biological processes and molecular functions involved in differential miRNA expression in exosomes under tensile stress were biological processes and protein binding, respectively. Kyoto Gene and Genome Data Bank (KEGG) pathway enrichment analysis showed significant enrichment of differentially expressed miRNAs in the mTOR signaling pathway. The differentially expressed miRNAs were found to target osteogenesis-related genes. Conclusion: These results suggest that stimulation of rat condylar chondrocytes with tensile stress can alter the expression levels of certain miRNAs in their exosomes and promote their osteogenic differentiation. Exosomes under tensile stress culture conditions thus have potential applications in the treatment of Osteoarthritis (OA).
Collapse
Affiliation(s)
- Yuan Shi
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Shao
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zanzan Zhang
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianan Zhang
- Department of Dentistry, Center of Orthodontics, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Haiping Lu
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Haiping Lu,
| |
Collapse
|
38
|
The role of exosomes in the molecular mechanisms of metastasis: Focusing on EMT and cancer stem cells. Life Sci 2022; 310:121103. [DOI: 10.1016/j.lfs.2022.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
39
|
Iskrzak J, Zygmunciak P, Misiewicz-Krzemińska I, Puła B. Extracellular Vesicles in Multiple Myeloma-Cracking the Code to a Better Understanding of the Disease. Cancers (Basel) 2022; 14:cancers14225575. [PMID: 36428668 PMCID: PMC9688731 DOI: 10.3390/cancers14225575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell-derived malignancy that stands for around 1.5% of newly discovered cancer cases. Despite constantly improving treatment methods, the disease is incurable with over 13,000 deaths in the US and over 30,000 in Europe. Recent studies suggest that extracellular vesicles (EVs) might play a significant role in the pathogenesis and evolution of MM. Further investigation of their role could prove to be beneficial in establishing new therapies and hence, improve the prognosis of MM patients. What is more, EVs might serve as novel markers in diagnosing and monitoring the disease. Great advancements concerning the position of EVs in the pathophysiology of MM have recently been shown in research and in this review, we would like to delve into the still expanding state of knowledge.
Collapse
Affiliation(s)
- Justyna Iskrzak
- Medical University of Warsaw, 02-091 Warsaw, Poland
- Institute of Hematology and Transfusion Medicine, Indira Gandhi Str. 14, 02-776 Warsaw, Poland
| | - Przemysław Zygmunciak
- Medical University of Warsaw, 02-091 Warsaw, Poland
- Institute of Hematology and Transfusion Medicine, Indira Gandhi Str. 14, 02-776 Warsaw, Poland
| | - Irena Misiewicz-Krzemińska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Chocimska Str. 5, 00-791 Warsaw, Poland
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indira Gandhi Str. 14, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-223-496-302; Fax: +48-223-496-335
| |
Collapse
|
40
|
Ebrahimi N, Faghihkhorasani F, Fakhr SS, Moghaddam PR, Yazdani E, Kheradmand Z, Rezaei-Tazangi F, Adelian S, Mobarak H, Hamblin MR, Aref AR. Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer. Cell Mol Life Sci 2022; 79:572. [PMID: 36308630 PMCID: PMC11802992 DOI: 10.1007/s00018-022-04552-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
Abstract
Almost all clinical oncologists agree that the discovery of reliable, accessible, and non-invasive biomarkers is necessary to decrease cancer mortality. It is possible to employ reliable biomarkers to diagnose cancer in the early stages, predict the patient prognosis, follow up the response to treatment, and estimate the risk of disease recurrence with high sensitivity and specificity. Extracellular vesicles (EVs), especially exosomes, have been the focus of translational research to develop such biomarkers over the past decade. The abundance and distribution of exosomes in bodily fluids, including serum, saliva, and urine, as well as their ability to transport various biomolecules (nucleic acids, proteins, and lipids) derived from their parent cells, make exosomes reliable, accessible, and potent biomarkers for diagnosis and follow-up of solid and hematopoietic tumors. In addition, exosomes play a vital role in various cellular processes, including tumor progression, by participating in intercellular communication. Although these advantages underline the high potential of tumor-derived exosomes as diagnostic biomarkers, the lack of standardized effective methods for their isolation, identification, and precise characterization makes their application challenging in clinical settings. We discuss the importance of non-coding RNAs (ncRNAs) in cellular processes, and the role of tumor-derived exosomes containing ncRNAs as potential biomarkers in several types of cancer. In addition, the advantages and challenges of these studies for translation into clinical applications are covered.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | - Parichehr Roozbahani Moghaddam
- Department of Molecular Genetics, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tehran, Mazandaran, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Kheradmand
- Department of Agriculture, Islamic Azad University Maragheh Branch, Maragheh, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
41
|
Khan N, Umar MS, Haq M, Rauf T, Zubair S, Owais M. Exosome-encapsulated ncRNAs: Emerging yin and yang of tumor hallmarks. Front Genet 2022; 13:1022734. [PMID: 36338993 PMCID: PMC9632295 DOI: 10.3389/fgene.2022.1022734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Tumorigenesis is a multifaceted process, where multiple physiological traits serving as cancer’s distinctive characteristics are acquired. “Hallmarks of cancer” is a set of cognitive abilities acquired by human cells that are pivotal to their tumor-forming potential. With limited or no protein-coding ability, non-coding RNAs (ncRNAs) interact with their target molecules and yield significant regulatory effects on several cell cycle processes. They play a “yin” and “yang” role, thereby functioning both as oncogenic and tumor suppressor and considered important in the management of various types of cancer entities. ncRNAs serve as important post-transcriptional and translational regulators of not only unrestricted expansion and metastasis of tumor cells but also of various biological processes, such as genomic mutation, DNA damage, immune escape, and metabolic disorder. Dynamical attributes such as increased proliferative signaling, migration, invasion, and epithelial–mesenchymal transition are considered to be significant determinants of tumor malignancy, metastatic dissemination, and therapeutic resistance. Furthermore, these biological attributes engage tumor cells with immune cells within the tumor microenvironment to promote tumor formation. We elaborate the interaction of ncRNAs with various factors in order to regulate cancer intra/intercellular signaling in a specific tumor microenvironment, which facilitates the cancer cells in acquiring malignant hallmarks. Exosomes represent a means of intercellular communication and participate in the maintenance of the tumor hallmarks, adding depth to the intricate, multifactorial character of malignant neoplasia. To summarize, ncRNAs have a profound impact on tumors, affecting their microcirculation, invasiveness, altered metabolism, microenvironment, and the capacity to modify the host immunological environment. Though the significance of ncRNAs in crosstalk between the tumor and its microenvironment is being extensively explored, we intend to review the hallmarks in the light of exosome-derived non-coding RNAs and their impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Nazoora Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Saad Umar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohamed Haq
- University of Houston, Houston, TX, United States
| | - Talha Rauf
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Swaleha Zubair
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- *Correspondence: Mohammad Owais,
| |
Collapse
|
42
|
Jiang A, Nie W, Xie H. In Vivo Imaging for the Visualization of Extracellular Vesicle-Based Tumor Therapy. ChemistryOpen 2022; 11:e202200124. [PMID: 36101512 PMCID: PMC9471060 DOI: 10.1002/open.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) exhibiting versatile biological functions provide promising prospects as natural therapeutic agents and drug delivery vehicles. For future clinical translation, revealing the fate of EVs in vivo, especially their accumulation at lesion sites, is very important. The continuous development of in vivo imaging technology has made it possible to track the real-time distribution of EVs. This article reviews the applications of mammal-, plant-, and bacteria-derived EVs in tumor therapy, the labeling methods of EVs for in vivo imaging, the advantages and disadvantages of different imaging techniques, and possible improvements for future work.
Collapse
Affiliation(s)
- Anqi Jiang
- School of Life ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| | - Weidong Nie
- School of Life ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| | - Hai‐Yan Xie
- School of Life ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
43
|
de Nóbrega M, Dos Reis MB, Pereira ÉR, de Souza MF, de Syllos Cólus IM. The potential of cell-free and exosomal microRNAs as biomarkers in liquid biopsy in patients with prostate cancer. J Cancer Res Clin Oncol 2022; 148:2893-2910. [PMID: 35922694 DOI: 10.1007/s00432-022-04213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Prostate cancer (PCa) is the 4th most diagnosed cancer and the 8th leading cause of cancer-related death worldwide. Currently, clinical risk stratification models including factors like PSA levels, Gleason score, and digital rectal examination are used for this purpose. There is a need for novel biomarkers that can distinguish between indolent and aggressive pathology and reduce the risk of overdiagnosis/overtreatment. Liquid biopsy has a non-invasive character, can lead to less morbidity and provide new biomarkers, such as miRNAs, that regulate diverse important cellular processes. Here, we report an extended revision about the role of cell-free and exosomal miRNAs (exomiRNAs) as biomarkers for screening, diagnosis, prognosis, or treatment of PCa. METHODS A comprehensive review of the published literature was conducted focusing on the usefulness, advantages, and clinical applications of cell-free and exomiRNAs in serum and plasma. Using PubMed database 53 articles published between 2012 and 2021 were selected and discussed from the perspective of their use as diagnostic, prognostic and therapeutic biomarkers for PCa. RESULTS We identify 119 miRNAs associated with PCa development and the cell-free and exosomal miR-21, miR-141, miR-200c, and miR-375 were consistently associated with progression in multiple cohorts/studies. However, standardized experimental procedures, and well-defined and clinically relevant cohort studies are urgently needed to confirm the biomarker potential of cell-free and exomiRNAs in serum or plasma. CONCLUSION Cell-free and exomiRNAs in serum or plasma are promising tools for be used as non-invasive biomarkers for diagnostic, prognosis, therapy improvement and clinical outcome prediction in PCa patients.
Collapse
Affiliation(s)
- Monyse de Nóbrega
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Mariana Bisarro Dos Reis
- Barretos Cancer Hospital (Molecular Oncology Research Center), Barretos, SP, CEP 14784-400, Brazil
| | - Érica Romão Pereira
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Marilesia Ferreira de Souza
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil.
| |
Collapse
|
44
|
Zebrowska A, Jelonek K, Mondal S, Gawin M, Mrowiec K, Widłak P, Whiteside T, Pietrowska M. Proteomic and Metabolomic Profiles of T Cell-Derived Exosomes Isolated from Human Plasma. Cells 2022; 11:1965. [PMID: 35741093 PMCID: PMC9222142 DOI: 10.3390/cells11121965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Exosomes that are released by T cells are key messengers involved in immune regulation. However, the molecular profiling of these vesicles, which is necessary for understanding their functions, requires their isolation from a very heterogeneous mixture of extracellular vesicles that are present in the human plasma. It has been shown that exosomes that are produced by T cells could be isolated from plasma by immune capture using antibodies that target the CD3 antigen, which is a key component of the TCR complex that is present in all T lymphocytes. Here, we demonstrate that CD3(+) exosomes that are isolated from plasma can be used for high-throughput molecular profiling using proteomics and metabolomics tools. This profiling allowed for the identification of proteins and metabolites that differentiated the CD3(+) from the CD3(-) exosome fractions that were present in the plasma of healthy donors. Importantly, the proteins and metabolites that accumulated in the CD3(+) vesicles reflected the known molecular features of T lymphocytes. Hence, CD3(+) exosomes that are isolated from human plasma by immune capture could serve as a "T cell biopsy".
Collapse
Affiliation(s)
- Aneta Zebrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Karol Jelonek
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Sujan Mondal
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
| | - Marta Gawin
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Piotr Widłak
- Clinical Research Support Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Theresa Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| |
Collapse
|
45
|
Dohmen J, Semaan A, Kobilay M, Zaleski M, Branchi V, Schlierf A, Hettwer K, Uhlig S, Hartmann G, Kalff JC, Matthaei H, Lingohr P, Holdenrieder S. Diagnostic Potential of Exosomal microRNAs in Colorectal Cancer. Diagnostics (Basel) 2022; 12:diagnostics12061413. [PMID: 35741223 PMCID: PMC9221658 DOI: 10.3390/diagnostics12061413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Despite the significance of colonoscopy for early diagnosis of colorectal adenocarcinoma (CRC), population-wide screening remains challenging, mainly because of low acceptance rates. Herein, exosomal (exo-miR) and free circulating microRNA (c-miR) may be used as liquid biopsies in CRC to identify individuals at risk. Direct comparison of both compartments has shown inconclusive results, which is why we directly compared a panel of 10 microRNAs in this entity. Methods: Exo-miR and c-miR levels were measured using real-time quantitative PCR after isolation from serum specimens in a cohort of 69 patients. Furthermore, results were compared to established tumor markers CEA and CA 19-9. Results: Direct comparison of exo- and c-miR biopsy results showed significantly higher microRNA levels in the exosomal compartment (p < 0.001). Exo-Let7, exo-miR-16 and exo-miR-23 significantly differed between CRC and healthy controls (all p < 0.05), while no c-miR showed this potential. Sensitivity and specificity can be further enhanced using combinations of multiple exosomal miRNAs. Conclusions: Exosomal microRNA should be considered as a promising biomarker in CRC for future studies. Nonetheless, results may show interference with common comorbidities, which must be taken into account in future studies.
Collapse
Affiliation(s)
- Jonas Dohmen
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Alexander Semaan
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
| | - Martin Zaleski
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Anja Schlierf
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Karina Hettwer
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Steffen Uhlig
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Jörg C. Kalff
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
46
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
47
|
Li F, Kang X, Xin W, Li X. The Emerging Role of Extracellular Vesicle Derived From Neurons/Neurogliocytes in Central Nervous System Diseases: Novel Insights Into Ischemic Stroke. Front Pharmacol 2022; 13:890698. [PMID: 35559228 PMCID: PMC9086165 DOI: 10.3389/fphar.2022.890698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023] Open
Abstract
Neurons and neurogliocytes (oligodendrocytes, astrocytes, and microglia) are essential for maintaining homeostasis of the microenvironment in the central nervous system (CNS). These cells have been shown to support cell-cell communication via multiple mechanisms, most recently by the release of extracellular vesicles (EVs). Since EVs carry a variety of cargoes of nucleic acids, lipids, and proteins and mediate intercellular communication, they have been the hotspot of diagnosis and treatment. The mechanisms underlying CNS disorders include angiogenesis, autophagy, apoptosis, cell death, and inflammation, and cell-EVs have been revealed to be involved in these pathological processes. Ischemic stroke is one of the most common causes of death and disability worldwide. It results in serious neurological and physical dysfunction and even leads to heavy economic and social burdens. Although a large number of researchers have reported that EVs derived from these cells play a vital role in regulating multiple pathological mechanisms in ischemic stroke, the specific interactional relationships and mechanisms between specific cell-EVs and stroke treatment have not been clearly described. This review aims to summarize the therapeutic effects and mechanisms of action of specific cell-EVs on ischemia. Additionally, this study emphasizes that these EVs are involved in stroke treatment by inhibiting and activating various signaling pathways such as ncRNAs, TGF-β1, and NF-κB.
Collapse
Affiliation(s)
- Fan Li
- Department of Neurosurgery, Heji Hospital Affiliated Changzhi Medical College, Shanxi, China
| | - Xiaokui Kang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
48
|
Jiang H, Zhao H, Zhang M, He Y, Li X, Xu Y, Liu X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol 2022; 13:824188. [PMID: 35444652 PMCID: PMC9013908 DOI: 10.3389/fimmu.2022.824188] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Exosomes are small extracellular vesicles that are secreted by almost all types of cells and exist in almost all extracellular spaces. As an important mediator of intercellular communication, exosomes encapsulate the miRNA, lncRNA, cirRNA, mRNA, cytokine, enzyme, lipid, and other components from the cytoplasm into its closed single membrane structure and transfer them to recipient units in an autocrine, paracrine, or endocrine manner. Hypoxia is a state of low oxygen tension and is involved in many pathological processes. Hypoxia influences the size, quantity, and expression of exosome cargos. Exosomes derived from hypoxic tumor cells transfer genetics, proteins, and lipids to the recipient units to exert pleiotropic effects. Different donor cells produce different cargo contents, target different recipient units and lead to different biological effects. Hypoxic exosomes derived from tumor cells uptaken by normoxic tumor cells lead to promoted proliferation, migration, and invasion; uptaken by extracellular space or liver lead to promoted metastasis; uptaken by endothelial cells lead to promoted angiogenesis; uptaken by immune cells lead to promoted macrophage polarization and changed tumor immune microenvironment. In addition to various types of tumors, hypoxic exosomes also participate in the development of diseases in the cardiovascular system, neuron system, respiratory system, hematology system, endocrine system, urinary system, reproduction system, and skeletomuscular system. Understanding the special characteristics of hypoxic exosomes provide new insight into elaborating the pathogenesis of hypoxia related disease. This review summarizes hypoxia induced cargo changes and the biological effects of hypoxic exosomes in tumors and non-malignant diseases in different systems.
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Hanqiu Zhao
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Mengzhe Zhang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| |
Collapse
|
49
|
Georgievski A, Michel A, Thomas C, Mlamla Z, Pais de Barros JP, Lemaire-Ewing S, Garrido C, Quéré R. Acute lymphoblastic leukemia-derived extracellular vesicles affect quiescence of hematopoietic stem and progenitor cells. Cell Death Dis 2022; 13:337. [PMID: 35414137 PMCID: PMC9005650 DOI: 10.1038/s41419-022-04761-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/05/2023]
Abstract
Patient-derived xenografted (PDX) models were generated through the transplantation of primary acute lymphoblastic leukemia (ALL) cells into immunodeficient NSG mice. We observed that ALL cells from mouse bone marrow (BM) produced extracellular vesicles (EVs) with specific expression of inducible heat shock protein HSP70, which is commonly activated in cancer cells. Taking advantage of this specific expression, we designed a strategy to generate fluorescent HSP70-labeled ALL EVs and monitor the impact of these EVs on endogenous murine BM cells ex vivo and in vivo. We discovered that hematopoietic stem and progenitor cells (HSPC) were mainly targeted by ALL EVs, affecting their quiescence and maintenance in the murine BM environment. Investigations revealed that ALL EVs were enriched in cholesterol and other metabolites that contribute to promote the mitochondrial function in targeted HSPC. Furthermore, using CD34+ cells isolated from cord blood, we confirmed that ALL EVs can modify quiescence of human HSPC. In conclusion, we have discovered a new oncogenic mechanism illustrating how EVs produced by proliferative ALL cells can target and compromise a healthy hematopoiesis system during leukemia development.
Collapse
Affiliation(s)
- Aleksandra Georgievski
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Anaïs Michel
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France
| | - Charles Thomas
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Zandile Mlamla
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Lemaire-Ewing
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Biochimie Spécialisée, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Carmen Garrido
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Ronan Quéré
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France. .,LipSTIC Labex, Dijon, France.
| |
Collapse
|
50
|
Zhou J, Chng WJ. Biological Hallmarks and Emerging Strategies to Target STAT3 Signaling in Multiple Myeloma. Cells 2022; 11:941. [PMID: 35326392 PMCID: PMC8946161 DOI: 10.3390/cells11060941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, characterized by an abnormal accumulation of plasma cells in the bone marrow. Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that modulates the transcription of multiple genes to regulate various principal biological functions, for example, cell proliferation and survival, stemness, inflammation and immune responses. Aberrant STAT3 activation has been identified as a key driver of tumorigenesis in many types of cancers, including MM. Herein, we summarize the current evidence for the role of STAT3 in affecting cancer hallmark traits by: (1) sustaining MM cell survival and proliferation, (2) regulating tumor microenvironment, (3) inducing immunosuppression. We also provide an update of different strategies for targeting STAT3 in MM with special emphasis on JAK inhibitors that are currently undergoing clinical trials. Finally, we discuss the challenges and future direction of understanding STAT3 signaling in MM biology and the clinical development of STAT3 inhibitors.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore 119228, Singapore
| |
Collapse
|