1
|
Improved High-Throughput Sequencing of the Human Oral Microbiome: From Illumina to PacBio. ACTA ACUST UNITED AC 2020; 2020:6678872. [PMID: 33381248 PMCID: PMC7748900 DOI: 10.1155/2020/6678872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Background A comprehensive understanding of the commensal microflora and its relation to health is essential for preventing and combating diseases. The aim of this study was to examine the structure of the oral microbiome by using different sequencing technologies. Material and Methods. Five preschool children with no symptoms of oral and systemic diseases were recruited. Samples of saliva were collected. A 468 bp insert size library was constructed on the MiSeq platform and then subjected to 300 bp paired-end sequencing. Libraries with longer insert sizes, including a full-length 16S rDNA gene, were sequenced on the PacBio RS II platform. Results A total of 122.6 Mb of raw data, including 244,967 high-quality sequences, were generated by the MiSeq platform, while 134.6 Mb of raw data, including 70,030 high-quality reads, were generated by the PacBio RS II platform. Clustering of the unique sequences into OTUs at 3% dissimilarity resulted in an average of 225 OTUs on the MiSeq platform; however, the number of OTUs generated on the PacBio RS II platform was 449, far greater than the number of OTUs generated on the MiSeq platform. A total of 437 species belonging to 10 phyla and 60 genera were detected by the PacBio RS II platform, while 163 species belonging to 12 phyla and 72 genera were detected by the MiSeq platform. Conclusions The oral microflora of healthy Chinese children were analyzed. Compared with traditional 16S rRNA sequencing technology, the PacBio system, despite providing a lower amount of clean data, surpassed the resolution of the MiSeq platform by improving the read length and annotating the nucleotide sequences at the species or strain level. This trial is registered with NCT02341352.
Collapse
|
2
|
Xu J, Wu J, Teng X, Cai L, Yuan H, Chen X, Hu M, Wang X, Jiang N, Chen H. Large duplication in LMBR1 gene in a large Chinese pedigree with triphalangeal thumb polysyndactyly syndrome. Am J Med Genet A 2020; 182:2117-2123. [PMID: 32662247 DOI: 10.1002/ajmg.a.61757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
Abstract
Polydactyly and syndactyly are digital abnormalities in limb-associated birth defects usually caused by genetic disorders. In this study, a five-generation Chinese pedigree was found with triphalangeal thumb polysyndactyly syndrome (TPTPS), showing an autosomal dominant pattern of inheritance. We utilized linkage analysis and whole genome sequencing (WGS) for the genetic diagnosis of this pedigree. Linkage analysis was performed using a genome-wide single nucleotide polymorphism (SNP) chip and three genomic regions were identified in chromosomes 2, 6, and 7 with significant linkage signals. WGS discovered a copy number variation (CNV) mutation caused by a large duplication region at the tail of chromosome 7 located in exons 1-5 of the LMBR1 gene, including the zone of polarizing activity regulatory sequence (ZRS), with a length of approximately 180 kb. A real-time polymerase chain reaction (PCR) assay confirmed the duplication. The findings of our study supported the notion that large duplications including the ZRS caused TPTPS. Our study showed that linkage analysis in combination with WGS could successfully identify the disease locus and causative mutation in TPTPS, which could help elucidate the molecular mechanisms and genotype-phenotype correlations in polydactyly.
Collapse
Affiliation(s)
- Jihai Xu
- Department of Hand Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Teng
- Department of Hand Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Libing Cai
- Department of Hand Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Huizong Yuan
- Department of Hand Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Xiaokun Chen
- Department of Orthopedic Trauma, Peking University People Hospital, Beijing, China
| | - Mu Hu
- Department of Orthopedics, Ruijin Hospital North, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- Department of Hand Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Ning Jiang
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Chen
- Department of Hand Surgery, Ningbo No. 6 Hospital, Ningbo, China
| |
Collapse
|
3
|
Retroelement-Linked Transcription Factor Binding Patterns Point to Quickly Developing Molecular Pathways in Human Evolution. Cells 2019; 8:cells8020130. [PMID: 30736359 PMCID: PMC6406739 DOI: 10.3390/cells8020130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Retroelements (REs) are transposable elements occupying ~40% of the human genome that can regulate genes by providing transcription factor binding sites (TFBS). RE-linked TFBS profile can serve as a marker of gene transcriptional regulation evolution. This approach allows for interrogating the regulatory evolution of organisms with RE-rich genomes. We aimed to characterize the evolution of transcriptional regulation for human genes and molecular pathways using RE-linked TFBS accumulation as a metric. Methods: We characterized human genes and molecular pathways either enriched or deficient in RE-linked TFBS regulation. We used ENCODE database with mapped TFBS for 563 transcription factors in 13 human cell lines. For 24,389 genes and 3124 molecular pathways, we calculated the score of RE-linked TFBS regulation reflecting the regulatory evolution rate at the level of individual genes and molecular pathways. Results: The major groups enriched by RE regulation deal with gene regulation by microRNAs, olfaction, color vision, fertilization, cellular immune response, and amino acids and fatty acids metabolism and detoxication. The deficient groups were involved in translation, RNA transcription and processing, chromatin organization, and molecular signaling. Conclusion: We identified genes and molecular processes that have characteristics of especially high or low evolutionary rates at the level of RE-linked TFBS regulation in human lineage.
Collapse
|
4
|
Dimitrakopoulos L, Prassas I, Sieuwerts AM, Diamandis EP, Martens JWM, Charames GS. Proteome-wide onco-proteogenomic somatic variant identification in ER-positive breast cancer. Clin Biochem 2019; 66:63-75. [PMID: 30684468 DOI: 10.1016/j.clinbiochem.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recent advances in mass spectrometric instrumentation and bioinformatics have critically contributed to the field of proteogenomics. Nonetheless, whether that integrative approach has reached the point of maturity to effectively reveal the flow of genetic variants from DNA to proteins still remains elusive. The objective of this study was to detect somatically acquired protein variants in breast cancer specimens for which full genome and transcriptome data was already available (BASIS cohort). METHODS LC-MS/MS shotgun proteomic results of 21 breast cancer tissues were coupled to DNA sequencing data to identify variants at the protein level and finally were used to associate protein expression with gene expression levels. RESULTS Here we report the observation of three sequencing-predicted single amino acid somatic variants. The sensitivity of single amino acid variant (SAAV) detection based on DNA sequencing-predicted single nucleotide variants was 0.4%. This sensitivity was increased to 0.6% when all the predicted variants were filtered for MS "compatibility" and was further increased to 2.9% when only proteins with at least one wild type peptide detected were taken into account. A correlation of mRNA abundance and variant peptide detection revealed that transcripts for which variant proteins were detected ranked among the top 6.3% most abundant transcripts. The variants were detected in highly abundant proteins as well, thus establishing transcript and protein abundance and MS "compatibility" as the main factors affecting variant onco-proteogenomic identification. CONCLUSIONS While proteomics fails to identify the vast majority of exome DNA variants in the resulting proteome, its ability to detect a small subset of SAAVs could prove valuable for precision medicine applications.
Collapse
Affiliation(s)
- Lampros Dimitrakopoulos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Anieta M Sieuwerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Clinical Biochemistry, University Health Network, 190 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - George S Charames
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
5
|
Bravo P, Darvish H, Tafakhori A, Azcona LJ, Johari AH, Jamali F, Paisán-Ruiz C. Molecular characterization of PRKN structural variations identified through whole-genome sequencing. Mol Genet Genomic Med 2018; 6:1243-1248. [PMID: 30328284 PMCID: PMC6305656 DOI: 10.1002/mgg3.482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
Background Early‐onset Parkinson's disease (PD) is the most common inherited form of parkinsonism, with the PRKN gene being the most frequently identified mutated. Exon rearrangements, identified in about 43.2% of the reported PD patients and with higher frequency in specific ethnicities, are the most prevalent PRKN mutations reported to date in PD patients. Methods In this study, three consanguineous families with early‐onset PD were subjected to whole‐genome sequencing (WGS) analyses that were followed by Sanger sequencing and droplet digital PCR to validate and confirm the disease segregation of the identified genomic variations and to determine their parental origin. Results Five different PRKN structural variations (SVs) were identified. Because the genomic sequences surrounding the break points of the identified SVs might hold important information about their genesis, these were also characterized for the presence of homology and repeated sequences. Conclusion We concluded that all identified PRKN SVs might originate through retrotransposition events.
Collapse
Affiliation(s)
- Paloma Bravo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Hossein Darvish
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital and Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Luis J Azcona
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,Department of Neurosciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Amir Hossein Johari
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Faezeh Jamali
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Coro Paisán-Ruiz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,Department of Genetics and Genomic sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,The Friedman Brain and Mindich Child Health and Development Institutes, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The incidence of aortic dilation and acute complications (rupture and dissection) is higher in patients with a bicuspid aortic valve (BAV), the most frequent congenital heart defect.The present review focuses on the current knowledge in the genetics of BAV, emphasizing the clinical implications for early detection and personalized care. RECENT FINDINGS BAV is a highly heritable trait, but the genetic causes remain largely elusive. NOTCH1 is the only proven candidate gene to be associated with both familial and sporadic BAV. Other genes have been reported to be associated with BAV, but some of these associations may result from coexisting disease.The application of modern high-throughput technologies (next generation sequencing, genome-wide copy number and genome-wide methylation arrays) have begun to dissect the genetic heterogeneity underlying BAV as well as the diverse molecular pathways involved in the progression of BAV aortopathy. SUMMARY The clinical variability seen in BAV aortopathy, in terms of phenotype and natural/clinical history, suggests complex interactions between primary genetic defects, other modifier genes, epigenetic factors (DNA methylation or histone modifications, microRNA) and environmental factors (disturbed flow). Integrated, more comprehensive studies are needed for elucidating these connections to develop more individualized and accurate risk assessment methods.
Collapse
|
7
|
Konstantakou EG, Velentzas AD, Anagnostopoulos AK, Giannopoulou AF, Anastasiadou E, Papassideri IS, Voutsinas GE, Tsangaris GT, Stravopodis DJ. Unraveling the human protein atlas of metastatic melanoma in the course of ultraviolet radiation-derived photo-therapy. J Proteomics 2017; 188:119-138. [PMID: 29180045 DOI: 10.1016/j.jprot.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
To explore the photo-therapeutic capacity of UV radiation in solid tumors, we herein employed an nLC-MS/MS technology to profile the proteomic landscape of irradiated WM-266-4 human metastatic-melanoma cells. Obtained data resulted in proteomic catalogues of 5982 and 7280 proteins for UVB- and UVC-radiation conditions, respectively, and indicated the ability of UVB/C-radiation forms to eliminate metastatic-melanoma cells through induction of synergistically operating programs of apoptosis and necroptosis. However, it seems that one or more WM-266-4 cell sub-populations may escape from UV-radiation's photo-damaging activity, acquiring, besides apoptosis tolerance, an EMT phenotype that likely offers them the advantage of developing resistance to certain chemotherapeutic drugs. Low levels of autophagy may also critically contribute to the selective survival and growth of UV-irradiated melanoma-cell escapers. These are the cells that must be systemically targeted with novel therapeutic schemes, like the one of UV radiation and Irinotecan herein suggested to be holding strong promise for the effective treatment of metastatic-melanoma patients. Given the dual nature of UV radiation to serve as both anti-tumorigenic and tumorigenic agent, all individuals being subjected to risk factors for melanoma development have to be appropriately informed and educated, in order to integrate the innovative PPPM concept in their healthcare-sector management. SIGNIFICANCE This study reports the application of nLC-MS/MS technology to deeply map the proteomic landscape of UV-irradiated human metastatic-melanoma cells. Data bioinformatics processing led to molecular-network reconstructions that unearthed the dual nature of UV radiation to serve as both anti-tumorigenic and tumorigenic factor in metastatic-melanoma cellular environments. Our UV radiation-derived "photo-proteomic" atlas may prove valuable for the identification of new biomarkers and development of novel therapies for the disease. Given that UV radiation represents a major risk factor causing melanoma, a PPPM-based life style and clinical practice must be embraced by all individuals being prone to disease's appearance and expansion.
Collapse
Affiliation(s)
- Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios K Anagnostopoulos
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ema Anastasiadou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerassimos E Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - George Th Tsangaris
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
8
|
|
9
|
Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of Next-Generation Sequencing Technologies for the Diagnosis of Primary Immunodeficiencies. Front Immunol 2017; 8:847. [PMID: 28791010 PMCID: PMC5522848 DOI: 10.3389/fimmu.2017.00847] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are genetic disorders impairing host immunity, leading to life-threatening infections, autoimmunity, and/or malignancies. Genomic technologies have been critical for expediting the discovery of novel genetic defects underlying PIDs, expanding our knowledge of the complex clinical phenotypes associated with PIDs, and in shifting paradigms of PID pathogenesis. Once considered Mendelian, monogenic, and completely penetrant disorders, genomic studies have redefined PIDs as a heterogeneous group of diseases found in the global population that may arise through multigenic defects, non-germline transmission, and with variable penetrance. This review examines the uses of next-generation DNA sequencing (NGS) in the diagnosis of PIDs. While whole genome sequencing identifies variants throughout the genome, whole exome sequencing sequences only the protein-coding regions within a genome, and targeted gene panels sequence only a specific cohort of genes. The advantages and limitations of each sequencing approach are compared. The complexities of variant interpretation and variant validation remain the major challenge in wide-spread implementation of these technologies. Lastly, the roles of NGS in newborn screening and precision therapeutics for individuals with PID are also addressed.
Collapse
Affiliation(s)
- Michael Seleman
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | | | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Sarig O, Sprecher E. The Molecular Revolution in Cutaneous Biology: Era of Next-Generation Sequencing. J Invest Dermatol 2017; 137:e79-e82. [PMID: 28411851 DOI: 10.1016/j.jid.2016.02.818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/22/2015] [Accepted: 02/01/2016] [Indexed: 11/20/2022]
Abstract
Like any true conceptual revolution, next-generation sequencing (NGS) has not only radically changed research and clinical practice, it has also modified scientific culture. With the possibility to investigate DNA contents of any organism and in any context, including in somatic disorders or in tissues carrying complex microbial populations, it initially seemed as if the genetic underpinning of any biological phenomenon could now be deciphered in an almost streamlined fashion. However, over the past recent years, we have once again come to understand that there is no such a thing as great opportunities without great challenges. The steadily expanding use of NGS and related applications is now facing biologists and physicians with novel technological obstacles, analytical hurdles and increasingly pressing ethical questions.
Collapse
Affiliation(s)
- Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Brait M, Izumchenko E, Kagohara LT, Long S, Wysocki PT, Faherty B, Fertig EJ, Khor TO, Bruckheimer E, Baia G, Ciznadija D, Sloma I, Ben-Zvi I, Paz K, Sidransky D. Comparative mutational landscape analysis of patient-derived tumour xenografts. Br J Cancer 2017; 116:515-523. [PMID: 28118322 PMCID: PMC5318980 DOI: 10.1038/bjc.2016.450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/23/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Screening of patients for cancer-driving mutations is now used for cancer prognosis, remission scoring and treatment selection. Although recently emerged targeted next-generation sequencing-based approaches offer promising diagnostic capabilities, there are still limitations. There is a pressing clinical need for a well-validated, rapid, cost-effective mutation profiling system in patient specimens. Given their speed and cost-effectiveness, quantitative PCR mutation detection techniques are well suited for the clinical environment. The qBiomarker mutation PCR array has high sensitivity and shorter turnaround times compared with other methods. However, a direct comparison with existing viable alternatives are required to assess its true potential and limitations. METHODS In this study, we evaluated a panel of 117 patient-derived tumour xenografts by the qBiomarker array and compared with other methods for mutation detection, including Ion AmpliSeq sequencing, whole-exome sequencing and droplet digital PCR. RESULTS Our broad analysis demonstrates that the qBiomarker's performance is on par with that of other labour-intensive and expensive methods of cancer mutation detection of frequently altered cancer-associated genes, and provides a foundation for supporting its consideration as an option for molecular diagnostics. CONCLUSIONS This large-scale direct comparison and validation of currently available mutation detection approaches is extremely relevant for the current scenario of precision medicine and will lead to informed choice of screening methodologies, especially in lower budget conditions or time frame limitations.
Collapse
Affiliation(s)
- Mariana Brait
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Evgeny Izumchenko
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Luciane T Kagohara
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Samuel Long
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Piotr T Wysocki
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Brian Faherty
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tin Oo Khor
- Champions Oncology, Baltimore, MD 21205, USA
| | | | - Gilson Baia
- Champions Oncology, Baltimore, MD 21205, USA
| | | | - Ido Sloma
- Champions Oncology, Baltimore, MD 21205, USA
| | - Ido Ben-Zvi
- Champions Oncology, Baltimore, MD 21205, USA
| | - Keren Paz
- Champions Oncology, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
12
|
Zhang Q, Jun SR, Leuze M, Ussery D, Nookaew I. Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer. Sci Rep 2017; 7:40712. [PMID: 28102365 PMCID: PMC5244389 DOI: 10.1038/srep40712] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022] Open
Abstract
The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral "tree of life". However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conserved proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. The resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.
Collapse
Affiliation(s)
- Qian Zhang
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 USA
| | - Se-Ran Jun
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael Leuze
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville, TN 37831, USA
- Computational Biomolecular Modeling and Bioinformatics Group, Computer Science and Mathematics Division, Oak Ridge National Laboratories, Oak Ridge, TN 37831, USA
| | - David Ussery
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Intawat Nookaew
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
13
|
Digital Karyotyping with Whole Genomic Sequencing for Complex Congenital Disorder. J Genet Genomics 2015; 42:651-655. [PMID: 26674382 DOI: 10.1016/j.jgg.2015.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022]
|
14
|
Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:161648. [PMID: 26665001 PMCID: PMC4668301 DOI: 10.1155/2015/161648] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/30/2015] [Accepted: 10/18/2015] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.
Collapse
|
15
|
Ma Y, Shi N, Li M, Chen F, Niu H. Applications of Next-generation Sequencing in Systemic Autoimmune Diseases. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:242-9. [PMID: 26432094 PMCID: PMC4610970 DOI: 10.1016/j.gpb.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune diseases are a group of heterogeneous disorders caused by both genetic and environmental factors. Although numerous causal genes have been identified by genome-wide association studies (GWAS), these susceptibility genes are correlated to a relatively low disease risk, indicating that environmental factors also play an important role in the pathogenesis of disease. The intestinal microbiome, as the main symbiotic ecosystem between the host and host-associated microorganisms, has been demonstrated to regulate the development of the body’s immune system and is likely related to genetic mutations in systemic autoimmune diseases. Next-generation sequencing (NGS) technology, with high-throughput capacity and accuracy, provides a powerful tool to discover genomic mutations, abnormal transcription and intestinal microbiome identification for autoimmune diseases. In this review, we briefly outlined the applications of NGS in systemic autoimmune diseases. This review may provide a reference for future studies in the pathogenesis of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Yiyangzi Ma
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing 100021, China
| | - Na Shi
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing 100021, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing 100730, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haitao Niu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing 100021, China.
| |
Collapse
|
16
|
Di Paolo A, Polillo M, Lastella M, Bocci G, Del Re M, Danesi R. Methods: for studying pharmacogenetic profiles of combination chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 2015; 11:1253-67. [PMID: 26037261 DOI: 10.1517/17425255.2015.1053460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Molecular and genetic analysis of tumors and individuals has led to patient-centered therapies, through the discovery and identification of genetic markers predictive of drug efficacy and tolerability. Present therapies often include a combination of synergic drugs, each of them directed against different targets. Therefore, the pharmacogenetic profiling of tumor masses and patients is becoming a challenge, and several questions may arise when planning a translational study. AREAS COVERED The review presents the different techniques used to stratify oncology patients and to tailor antineoplastic treatments according to individual pharmacogenetic profiling. The advantages of these methodologies are discussed as well as current limits. EXPERT OPINION Facing the rapid technological evolution for genetic analyses, the most pressing issues are the choice of appropriate strategies (i.e., from gene candidate up to next-generation sequencing) and the possibility to replicate study results for their final validation. It is likely that the latter will be the major obstacle in the future. However, the present landscape is opening up new possibilities, overcoming those hurdles that have limited result translation into clinical settings for years.
Collapse
Affiliation(s)
- Antonello Di Paolo
- University of Pisa, Department of Clinical and Experimental Medicine, Via Roma 55, 56126 Pisa , Italy +39 050 2218755 ; +39 050 2218758 ;
| | | | | | | | | | | |
Collapse
|