1
|
Fang Y, Qiu J, Xu Y, Wu Q, Huo XC, Liu SH. Ophiopogonin D Alleviates Sepsis-Induced Acute Lung Injury Through Improving Microvascular Endothelial Barrier Dysfunction via Inhibition of HIF-1α-VEGF Pathway. Cell Biochem Biophys 2025:10.1007/s12013-024-01661-7. [PMID: 39890704 DOI: 10.1007/s12013-024-01661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 02/03/2025]
Abstract
Pulmonary endothelial barrier dysfunction is a hallmark of sepsis-induced acute lung injury (ALI). Ophiopogonin D (OP-D), isolated from the roots of Ophiopogon japonicus, is involved in regulating inflammation, apoptosis and intestinal permeability. However, the role of OP-D in ALI has not been reported and the related mechanisms remain unclear. In this study, cecal ligation and puncture (CLP) was used to establish a septic ALI model in mice. We found that OP-D effectively alleviated lung pathological damage. Moreover, OP-D decreased pulmonary microvascular permeability, restrained the inflammatory response and apoptosis in murine lung tissues and LPS-exposed PMVECs. Specifically, OP-D exerted the beneficial effects via mediating the inactivation of HIF-1α-VEGF pathway, which was partly abrogated by the overexpression of HIF-1α. Collectively, our findings showed that OP-D protected against sepsis-induced ALI through improving pulmonary microvascular endothelial barrier dysfunction via suppressing HIF-1α-VEGF pathway.
Collapse
Affiliation(s)
- Yi Fang
- Department of Anesthesiology, Affiliated Changsha Central Hospital to Nanhua University, Changsha, 410016, Hunan, PR China
| | - Jun Qiu
- The first-affiliated hospital of Hunan normal university (The second tumor ward, Hunan Provincial People's Hospital), Changsha, 410006, Hunan, PR China
| | - Yu Xu
- Department of Anesthesiology, Affiliated Changsha Central Hospital to Nanhua University, Changsha, 410016, Hunan, PR China
| | - Qing Wu
- Department of Anesthesiology, Affiliated Changsha Central Hospital to Nanhua University, Changsha, 410016, Hunan, PR China
| | - Xing-Chen Huo
- Department of Anesthesiology, Affiliated Changsha Central Hospital to Nanhua University, Changsha, 410016, Hunan, PR China
| | - Song-Hua Liu
- Department of Anesthesiology, Affiliated Changsha Central Hospital to Nanhua University, Changsha, 410016, Hunan, PR China.
| |
Collapse
|
2
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
3
|
Naslavsky N, Caplan S. Receptor-mediated internalization promotes increased endosome size and number in a RAB4- and RAB5-dependent manner. Eur J Cell Biol 2023; 102:151339. [PMID: 37423034 PMCID: PMC10585956 DOI: 10.1016/j.ejcb.2023.151339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
Despite their significance in receptor-mediated internalization and continued signal transduction in cells, early/sorting endosomes (EE/SE) remain incompletely characterized, with many outstanding questions that surround the dynamics of their size and number. While several studies have reported increases in EE/SE size and number resulting from endocytic events, few studies have addressed such dynamics in a methodological and quantitative manner. Herein we apply quantitative fluorescence microscopy to measure the size and number of EE/SE upon internalization of two different ligands: transferrin and epidermal growth factor. Additionally, we used siRNA knock-down to determine the involvement of 5 different endosomal RAB proteins (RAB4, RAB5, RAB8A, RAB10 and RAB11A) in EE/SE dynamics. Our study provides new information on the dynamics of endosomes during endocytosis, an important reference for researchers studying receptor-mediated internalization and endocytic events.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Spurling D, Anchan A, Hucklesby J, Finlay G, Angel CE, Graham ES. Melanoma Cells Produce Large Vesicular-Bodies That Cause Rapid Disruption of Brain Endothelial Barrier-Integrity and Disassembly of Junctional Proteins. Int J Mol Sci 2023; 24:ijms24076082. [PMID: 37047054 PMCID: PMC10093843 DOI: 10.3390/ijms24076082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
It is known that many cells produce extracellular vesicles, and this includes a range of different cancer cell types. Here we demonstrate the profound effects of large vesicular-like bodies produced by melanoma cells on the barrier integrity of human brain endothelial cells. These vesicular-bodies have not been fully characterised but range in size from ~500 nm to >10 µm, are surrounded by membrane and are enzymatically active based on cell-tracker incorporation. Their size is consistent with previously reported large oncosomes and apoptotic bodies. We demonstrate that these melanoma-derived vesicular-bodies rapidly affect brain endothelial barrier integrity, measured using ECIS biosensor technology, where the disruption is evident within ~60 min. This disruption involves acquisition of the vesicles through transcellular uptake into the endothelial cells. We also observed extensive actin-rearrangement, actin removal from the paracellular boundary of the endothelial cells and envelopment of the vesicular-bodies by actin. This was concordant with widespread changes in CD144 localisation, which was consistent with the loss of junctional strength. High-resolution confocal imaging revealed proximity of the melanoma vesicular-bodies juxtaposed to the endothelial nucleus, often containing fragmented DNA themselves, raising speculation over this association and potential delivery of nuclear material into the brain endothelial cells. The disruption of the endothelial cells occurs in a manner that is faster and completely distinct to that of invasion by intact melanoma cells. Given the clinical observation of large vesicles in the circulation of melanoma patients by others, we hypothesize their involvement in weakening or priming the brain vasculature for melanoma invasion.
Collapse
Affiliation(s)
- Dayna Spurling
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Akshata Anchan
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - James Hucklesby
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
5
|
Liao S, Lin Y, Liu L, Yang S, Lin Y, He J, Shao Y. ADAM10-a "multitasker" in sepsis: focus on its posttranslational target. Inflamm Res 2023; 72:395-423. [PMID: 36565333 PMCID: PMC9789377 DOI: 10.1007/s00011-022-01673-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sepsis has a complex pathogenesis in which the uncontrolled systemic inflammatory response triggered by infection leads to vascular barrier disruption, microcirculation dysfunction and multiple organ dysfunction syndrome. Numerous recent studies reveal that a disintegrin and metalloproteinase 10 (ADAM10) acts as a "molecular scissor" playing a pivotal role in the inflammatory response during sepsis by regulating proteolysis by cleaving various membrane protein substrates, including proinflammatory cytokines, cadherins and Notch, which are involved in intercellular communication. ADAM10 can also act as the cellular receptor for Staphylococcus aureus α-toxin, leading to lethal sepsis. However, its substrate-specific modulation and precise targets in sepsis have not yet to be elucidated. METHODS We performed a computer-based online search using PubMed and Google Scholar for published articles concerning ADAM10 and sepsis. CONCLUSIONS In this review, we focus on the functions of ADAM10 in sepsis-related complex endothelium-immune cell interactions and microcirculation dysfunction through the diversity of its substrates and its enzymatic activity. In addition, we highlight the posttranslational mechanisms of ADAM10 at specific subcellular sites, or in multimolecular complexes, which will provide the insight to intervene in the pathophysiological process of sepsis caused by ADAM10 dysregulation.
Collapse
Affiliation(s)
- Shuanglin Liao
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
| | - Yao Lin
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Tianfu Road 107, Rongcheng District, Jieyang, 522000 Guangdong China
| | - Lizhen Liu
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
| | - Shuai Yang
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
| | - YingYing Lin
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Tianfu Road 107, Rongcheng District, Jieyang, 522000 Guangdong China
| | - Junbing He
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Tianfu Road 107, Rongcheng District, Jieyang, 522000 Guangdong China
| | - Yiming Shao
- grid.410560.60000 0004 1760 3078The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Jiaoping Road 42, Tangxia Town, Dongguan, 523710 Guangdong China
- grid.410560.60000 0004 1760 3078The Key Laboratory of Sepsis Translational Medicine, Guangdong Medical University, Zhanjiang, Guangdong China
| |
Collapse
|
6
|
Shu Z, Chen S, Xiang H, Wu R, Wang X, Ouyang J, Zhang J, Liu H, Chen AF, Lu H. AKT/PACS2 Participates in Renal Vascular Hyperpermeability by Regulating Endothelial Fatty Acid Oxidation in Diabetic Mice. Front Pharmacol 2022; 13:876937. [PMID: 35865947 PMCID: PMC9294407 DOI: 10.3389/fphar.2022.876937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that can cause many microvascular and macrovascular complications, including diabetic nephropathy. Endothelial cells exhibit phenotypic and metabolic diversity and are affected by metabolic disorders. Whether changes in endothelial cell metabolism affect vascular endothelial function in diabetic nephropathy remains unclear. In diabetic mice, increased renal microvascular permeability and fibrosis, as well as increased MAMs and PACS2 in renal endothelial cells, were observed. Mice lacking PACS2 improved vascular leakage and glomerulosclerosis under high fat diet. In vitro, PACS2 expression, VE-cadherin internalization, fibronectin production, and Smad-2 phosphorylation increased in HUVECs treated with high glucose and palmitic acid (HGHF). Pharmacological inhibition of AKT significantly reduced HGHF-induced upregulation of PACS2 and p-Smad2 expression. Blocking fatty acid β-oxidation (FAO) ameliorated the impaired barrier function mediated by HGHF. Further studies observed that HGHF induced decreased FAO, CPT1α expression, ATP production, and NADPH/NADP+ ratio in endothelial cells. However, these changes in fatty acid metabolism were rescued by silencing PACS2. In conclusion, PACS2 participates in renal vascular hyperpermeability and glomerulosclerosis by regulating the FAO of diabetic mice. Targeting PACS2 is potential new strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Zhihao Shu
- Health Management Center, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ruoru Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuewen Wang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Ouyang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Huiqin Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F. Chen
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Lu
- Health Management Center, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Hongwei Lu,
| |
Collapse
|
7
|
Identification of Key Genes Associated with Endothelial Cell Dysfunction in Atherosclerosis Using Multiple Bioinformatics Tools. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5544276. [PMID: 35059464 PMCID: PMC8764276 DOI: 10.1155/2022/5544276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 12/07/2022]
Abstract
Atherosclerosis is the most notable cardiovascular disease, the latter being the main cause of death globally. Endothelial cell dysfunction plays a major role in the pathogenesis of atherosclerosis. However, it is currently unclear which genes are involved between endothelial cell dysfunction and atherosclerosis. This study was aimed at identifying these genes. Based on the GSE83500 dataset, the quantification of endothelial cell function was conducted using single-sample gene set enrichment analysis; the coexpression modules were conducted using weighted correlation network analysis. After building module-trait relationships, tan and yellow modules were regarded as hub modules. 10 hub genes from each hub module were identified by the protein-protein interaction network analysis. The key genes (RAB5A, CTTN, ITGB1, and MMP9) were obtained by comparing the expression differences of the hub gene between atherosclerotic and normal groups from the GSE28829 and GSE43292 datasets, respectively. ROC analysis showed the diagnostic value of key genes. Moreover, the differential expression of key genes in normal and atherosclerotic aortic walls was verified. In vitro, we establish a model of ox-LDL-injured endothelial cells and transfect RAB5A overexpression and shRNA plasmids. The results showed that overexpression of RAB5A ameliorates the proliferation and migration function of ox-LDL-injured endothelial cells, including the ability of tubule formation. It was speculated that the interferon response, Notch signaling pathways, etc. were involved in this function of RAB5A by using gene set variation analysis. With the multiple bioinformatics analysis methods, we detected that yellow and tan modules are related to the abnormal proliferation and migration of endothelial cells associated with atherosclerosis. RAB5A, CTTN, ITGB1, and MMP9 can be used as potential targets for therapy and diagnostic markers. In vitro, overexpression of RAB5A can ameliorate the proliferation and migration function of ox-LDL-injured endothelial cells, and the possible molecules involved in this process were speculated.
Collapse
|
8
|
Zhang W, Wang Y, Li C, Xu Y, Wang X, Wu D, Gao Z, Qian H, You Z, Zhang Z, He B, Wang G. Extracellular CIRP-Impaired Rab26 Restrains EPOR-Mediated Macrophage Polarization in Acute Lung Injury. Front Immunol 2021; 12:768435. [PMID: 34925338 PMCID: PMC8671298 DOI: 10.3389/fimmu.2021.768435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a condition with an imbalanced inflammatory response and delayed resolution of inflammation. Macrophage polarization plays an important role in inflammation and resolution. However, the mechanism of macrophage polarization in ALI/ARDS is not fully understood. We found that mice with lipopolysaccharide administration developed lung injury with the accumulation of extracellular cold-inducible RNA-binding protein (eCIRP) in the lungs. eCIRP, as a damage-associated molecular pattern (DAMP), inhibited M2 macrophage polarization, thereby tipping the balance toward inflammation rather than resolution. Anti-CIRP antibodies reversed such phenotypes. The levels of macrophage erythropoietin (EPO) receptor (EPOR) were reduced after eCIRP treatment. Myeloid-specific EPOR-deficient mice displayed restrained M2 macrophage polarization and impaired inflammation resolution. Mechanistically, eCIRP impaired Rab26, a member of Ras superfamilies of small G proteins, and reduced the transportation of surface EPOR, which resulted in macrophage polarization toward the M1 phenotype. Moreover, EPO treatment hardly promotes M2 polarization in Rab26 knockout (KO) macrophages through EPOR. Collectively, macrophage EPOR signaling is impaired by eCIRP through Rab26 during ALI/ARDS, leading to the restrained M2 macrophage polarization and delayed inflammation resolution. These findings identify a mechanism of persistent inflammation and a potential therapy during ALI/ARDS.
Collapse
Affiliation(s)
- Wen Zhang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yao Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chuanwei Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Xu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Di Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhan Gao
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zaichun You
- Department of General Practice, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Binfeng He
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Cervero P, Vrenken K, Klose M, Rehm K, Linder S. Nectin stabilization at adherens junctions is counteracted by Rab5a-dependent endocytosis. Eur J Cell Biol 2021; 100:151184. [PMID: 34826799 DOI: 10.1016/j.ejcb.2021.151184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cell-cell junctions undergo constant remodeling, which is crucial for the control of vascular integrity. Indeed, transport of junctional components such as cadherins is understood in increasing depth. However, little is known about the respective pathways regulating localization of nectin at cell-cell junctions. Here, we performed an siRNA-based screen of vesicle regulators of the RabGTPase family, leading to the identification of a novel role for Rab5a in the endocytosis nectin-2 at adherens junctions of primary human endothelial cells (HUVEC). Confocal microscopy experiments revealed disordered nectin-2 localization at adherens junctions upon Rab5a depletion. In addition, internalized nectin-2 was shown to prominently localize to Rab5a-positive vesicles in both fixed and living cells. As shown previously, nectin-2 stabilization at junctions is achieved via drebrin-dependent coupling to the subcortical actin cytoskeleton. Consistently, depletion of drebrin in this study leads to enhanced internalization of nectin-2 from junctions. Strikingly, simultaneous silencing of Rab5a and drebrin restored the junctional localization of nectin-2, pointing to Rab5a as counteracting the drebrin-dependent stabilization of nectin-2 at adherens junctions. This mechanism could be further validated by transendothelial resistance measurements. Collectively, our results identify Rab5a as a key player in the endocytosis of nectin-2 and thus in the regulation of adherens junction integrity in primary human endothelial cells.
Collapse
Affiliation(s)
- Pasquale Cervero
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kirsten Vrenken
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, P.O.Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Matthias Klose
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kerstin Rehm
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
10
|
Zhang N, Wang G, Sun G. Actin-binding protein, IQGAP1, regulates LPS-induced RPMVECs hyperpermeability and ICAM-1 upregulation via Rap1/Src signalling pathway. Cell Signal 2021; 85:110067. [PMID: 34147590 DOI: 10.1016/j.cellsig.2021.110067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
Pulmonary microvascular barrier dysfunction is a hallmark feature of acute lung injury (ALI). IQGAP1 is a ubiquitously expressed scaffolding protein known to regulate cancer metastasis, angiogenesis, and barrier stability. However, the function of IQGAP1 in lipopolysaccharide (LPS)-induced microvascular endothelial hyperpermeability remains poorly understood. In the present study, we demonstrated that IQGAP1 was markedly upregulated in LPS-induced ALI models and rat pulmonary microvascular endothelial cells (RPMVECs). Lentivirus-mediated knockdown of IQGAP1 significantly attenuated the formation of actin stress fibers, phosphorylation of myosin light chain (MLC), and disruption of VE-cadherin, thereby protecting the RPMVECs barrier failure from LPS damage. In addition, IQGAP1 depletion reduced the reactive oxygen species (ROS)-mediated increase in intracellular adhesion molecule-1 (ICAM-1) in RPMVECs stimulated with LPS. Mechanistically, we found that the upregulation of IQGAP1 affected the activity of Rap1 and the downstream phosphorylation of Src. In conclusion, these findings reveal an essential mechanism by which increased IQGAP1 in LPS-treated RPMVECs promotes barrier dysfunction and ICAM-1 upregulation, at least in part by regulating Rap1/Src signalling, indicating that IQGAP1 may be a potential therapeutic target to prevent endothelial hyperpermeability and inflammation in ALI.
Collapse
Affiliation(s)
- Na Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.
| |
Collapse
|
11
|
Wang Y, Xue L, Wu Y, Zhang J, Dai Y, Li F, Kou J, Zhang Y. Ruscogenin attenuates sepsis-induced acute lung injury and pulmonary endothelial barrier dysfunction via TLR4/Src/p120-catenin/VE-cadherin signalling pathway. J Pharm Pharmacol 2021; 73:893-900. [PMID: 33769524 DOI: 10.1093/jpp/rgaa039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Sepsis-associated acute lung injury (ALI) occurs with the highest morbidity and carries the highest mortality rates among the pathogenies of ALI. Ruscogenin (RUS) has been found to exhibit anti-inflammation property and rescue lipopolysaccharide-induced ALI, but little is known about its role in sepsis-triggered ALI. The aim of this study was to investigate the potential role of RUS in sepsis-induced ALI and the probable mechanism. METHODS Mice model of cecal ligation and puncture (CLP) was replicated, and three doses of RUS (0.01, 0.03 and 0.1 mg/kg) were administrated 1 h before CLP surgeries. KEY FINDINGS RUS significantly extended the survival time and attenuated the lung pathological injury, oedema and vascular leakage in sepsis-induced ALI mice. RUS efficiently decreased the level of MPO in lung tissue and the WBC, NEU counts in BALF. In addition, RUS rescued the expression of VE-cadherin and p120-catenin and suppressed the TLR4/Src signalling in lung tissue. CONCLUSIONS RUS attenuated sepsis-induced ALI via protecting pulmonary endothelial barrier and regulating TLR4/Src/p120-catenin/VE-cadherin signalling pathway.
Collapse
Affiliation(s)
- Yuwei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Lixuan Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Yunhao Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Jiazhi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Yujie Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
12
|
Yu Z, Zeng J, Wang J, Cui Y, Song X, Zhang Y, Cheng X, Hou N, Teng Y, Lan Y, Chen Y, Yang X. Hepatocyte growth factor-regulated tyrosine kinase substrate is essential for endothelial cell polarity and cerebrovascular stability. Cardiovasc Res 2021; 117:533-546. [PMID: 32044971 PMCID: PMC7820882 DOI: 10.1093/cvr/cvaa016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS Hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs), a key component of the endosomal sorting complex required for transport (ESCRT), has been implicated in many essential biological processes. However, the physiological role of endogenous Hgs in the vascular system has not previously been explored. Here, we have generated brain endothelial cell (EC) specific Hgs knockout mice to uncover the function of Hgs in EC polarity and cerebrovascular stability. METHODS AND RESULTS Knockout of Hgs in brain ECs led to impaired endothelial apicobasal polarity and brain vessel collapse in mice. We determined that Hgs is essential for recycling of vascular endothelial (VE)-cadherin to the plasma membrane, since loss of Hgs blocked trafficking of endocytosed VE-cadherin from early endosomes to recycling endosomes, and impaired the motility of recycling endosomes. Supportively, overexpression of the motor kinesin family member 13A (KIF13A) restored endosomal recycling and rescued abrogated polarized trafficking and distribution of VE-cadherin in Hgs knockdown ECs. CONCLUSION These data uncover a novel physiological function of Hgs and support an essential role for the ESCRT machinery in the maintenance of EC polarity and cerebrovascular stability.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zeng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yaxiong Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaopeng Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yizhe Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yu Lan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yeguang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
13
|
Colás-Algora N, García-Weber D, Cacho-Navas C, Barroso S, Caballero A, Ribas C, Correas I, Millán J. Compensatory increase of VE-cadherin expression through ETS1 regulates endothelial barrier function in response to TNFα. Cell Mol Life Sci 2020; 77:2125-2140. [PMID: 31396656 PMCID: PMC11105044 DOI: 10.1007/s00018-019-03260-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
VE-cadherin plays a central role in controlling endothelial barrier function, which is transiently disrupted by proinflammatory cytokines such as tumor necrosis factor (TNFα). Here we show that human endothelial cells compensate VE-cadherin degradation in response to TNFα by inducing VE-cadherin de novo synthesis. This compensation increases adherens junction turnover but maintains surface VE-cadherin levels constant. NF-κB inhibition strongly reduced VE-cadherin expression and provoked endothelial barrier collapse. Bacterial lipopolysaccharide and TNFα upregulated the transcription factor ETS1, in vivo and in vitro, in an NF-κB dependent manner. ETS1 gene silencing specifically reduced VE-cadherin protein expression in response to TNFα and exacerbated TNFα-induced barrier disruption. We propose that TNFα induces not only the expression of genes involved in increasing permeability to small molecules and immune cells, but also a homeostatic transcriptional program in which NF-κB- and ETS1-regulated VE-cadherin expression prevents the irreversible damage of endothelial barriers.
Collapse
Affiliation(s)
| | - Diego García-Weber
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
- INSERM, U1016, Institut Cochin, Paris, France.
| | | | - Susana Barroso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | - Alvaro Caballero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
| | - Catalina Ribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| |
Collapse
|
14
|
Chan YH, Harith HH, Israf DA, Tham CL. Differential Regulation of LPS-Mediated VE-Cadherin Disruption in Human Endothelial Cells and the Underlying Signaling Pathways: A Mini Review. Front Cell Dev Biol 2020; 7:280. [PMID: 31970155 PMCID: PMC6955238 DOI: 10.3389/fcell.2019.00280] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells lining the inner vascular wall form a monolayer that contributes to the selective permeability of endothelial barrier. This selective permeability is mainly regulated by an endothelium-specific adherens junctional protein, known as vascular endothelial-cadherin (VE-cadherin). In endothelial cells, the adherens junction comprises of VE-cadherin and its associated adhesion molecules such as p120, α-catenin, and β-catenin, in which α-catenin links cytoplasmic tails of VE-cadherin to actin cytoskeleton through β-catenin. Proinflammatory stimuli such as lipopolysaccharide (LPS) are capable of attenuating vascular integrity through the disruption of VE-cadherin adhesion in endothelial cells. To date, numerous studies demonstrated the disruption of adherens junction as a result of phosphorylation-mediated VE-cadherin disruption. However, the outcomes from these studies were inconsistent and non-conclusive as different cell fractions were used to examine the effect of LPS on the disruption of VE-cadherin. By using Western Blot, some studies utilized total protein lysate and reported decreased protein expression while some studies reported unchanged expression. Other studies which used membrane and cytosolic fractions of protein extract demonstrated decreased and increased VE-cadherin expression, respectively. Despite the irregularities, the results of immunofluorescence staining are consistent with the formation of intercellular gap. Besides that, the overall underlying disruptive mechanisms of VE-cadherin remain largely unknown. Therefore, this mini review will focus on different experiment approaches in terms of cell fractions used in different human endothelial cell studies, and relate these differences to the results obtained in Western blot and immunofluorescence staining in order to give some insights into the overall differential regulatory mechanisms of LPS-mediated VE-cadherin disruption and address the discrepancy in VE-cadherin expression.
Collapse
Affiliation(s)
- Yee Han Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
15
|
Chichger H, Rounds S, Harrington EO. Endosomes and Autophagy: Regulators of Pulmonary Endothelial Cell Homeostasis in Health and Disease. Antioxid Redox Signal 2019; 31:994-1008. [PMID: 31190562 PMCID: PMC6765061 DOI: 10.1089/ars.2019.7817] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Significance: Alterations in oxidant/antioxidant balance injure pulmonary endothelial cells and are important in the pathogenesis of lung diseases, such as Acute Respiratory Distress Syndrome (ARDS), ischemia/reperfusion injury, pulmonary arterial hypertension (PAH), and emphysema. Recent Advances: The endosomal and autophagic pathways regulate cell homeostasis. Both pathways support recycling or degradation of macromolecules or organelles, targeted to endosomes or lysosomes, respectively. Thus, both processes promote cell survival. However, with environmental stress or injury, imbalance in endosomal and autophagic pathways may enhance macromolecular or organelle degradation, diminish biosynthetic processes, and cause cell death. Critical Issues: While the role of autophagy in cellular homeostasis in pulmonary disease has been investigated, the role of the endosome in the lung vasculature is less known. Furthermore, autophagy can either decrease or exacerbate endothelial injury, depending upon inciting insult and disease process. Future Directions: Diseases affecting the pulmonary endothelium, such as emphysema, ARDS, and PAH, are linked to altered endosomal or autophagic processing, leading to enhanced degradation of macromolecules and potential cell death. Efforts to target this imbalance have yielded limited success as treatments for lung injuries, which may be due to the complexity of both processes. It is possible that endosomal trafficking proteins, such as Rab GTPases and late endosomal/lysosomal adaptor, MAPK and MTOR activator 1, may be novel therapeutic targets. While endocytosis or autophagy have been linked to improved function of the pulmonary endothelium in vitro and in vivo, further studies are needed to identify targets for modulating cellular homeostasis in the lung.
Collapse
Affiliation(s)
- Havovi Chichger
- Biomedical Research Group, Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O. Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
16
|
Inhibition of Vascular Endothelial Cell Leak Following Escherichia coli Attachment in an Experimental Model of Sepsis. Crit Care Med 2019; 46:e805-e810. [PMID: 29782355 DOI: 10.1097/ccm.0000000000003219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The vascular endothelium is a major target of sepsis-induced events, and endothelial activation accounts for much of the pathology of sepsis. Urinary tract infections and pneumonia caused by Escherichia coli are among of the most common infections causing sepsis in both community and hospital settings. Currently, there are no approved drugs on the market to treat the underlying pathophysiology of sepsis. The aim of this study is to elucidate the molecular mechanism by which E. coli induces endothelial injury as a result of attachment. DESIGN Laboratory research using a hemodynamic perfusion ex vivo model. SETTING Research Laboratories of Royal College of Surgeons in Ireland and Beaumont Hospital. PATIENTS Ex vivo human vascular endothelial cells. INTERVENTIONS Addition of αVβ3 antagonist, cilengitide. MEASUREMENTS AND MAIN RESULTS Clinical strains of E. coli isolated from patients with sepsis bound to sheared human endothelial cells under static and hemodynamic shear conditions. Binding was dependent on E. coli cell membrane protein outer membrane protein A attaching directly to endothelial cell integrin αVβ3. Attachment resulted in disturbances in endothelial barrier integrity, as determined by loss of tight junction protein staining, permeability changes, and ultimately cell death by apoptosis. Using a low concentration of the αVβ3 antagonist cilengitide or using a strain deficient in outer membrane protein A resulted in a significant reduction in endothelial dysfunction following infection. CONCLUSIONS Inhibition of E. coli binding to endothelial cell αVβ3 by cilengitide prevents endothelial dysfunction and may, therefore, present as a novel early therapeutic for the treatment of sepsis.
Collapse
|
17
|
Endothelial Cell Inflammation and Barriers Are Regulated by the Rab26-Mediated Balance between β2-AR and TLR4 in Pulmonary Microvessel Endothelial Cells. Mediators Inflamm 2019; 2019:7538071. [PMID: 31182932 PMCID: PMC6512073 DOI: 10.1155/2019/7538071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/03/2019] [Accepted: 03/05/2019] [Indexed: 01/04/2023] Open
Abstract
Rab26 GTPase modulates the trafficking of cell surface receptors, such as G protein-coupled receptors including α2-adrenergic receptors in some cell types. However, the effect of Rab26 on β2-adrenergic receptor (β2-AR) trafficking or/and Toll-like receptor 4 (TLR4) expression in human pulmonary microvascular endothelial cells (HPMECs) is still unclear. Here, we investigated the role of Rab26 in regulating the expression of β2-ARs and TLR4 in HPMECs and the effect of these receptors' imbalance on endothelial cell barrier function. The results showed that there was unbalance expression in these receptors, where β2-AR expression was remarkably reduced, and TLR4 was increased on the cell membrane after lipopolysaccharide (LPS) treatment. Furthermore, we found that Rab26 overexpression not only upregulated β2-ARs but also downregulated TLR4 expression on the cell membrane. Subsequently, the TLR4-related inflammatory response was greatly attenuated, and the hyperpermeability of HPMECs also was partially relived. Taken together, these data suggest that basal Rab26 maintains the balance between β2-ARs and TLR4 on the cell surface, and it might be a potential therapeutic target for diseases involving endothelial barrier dysfunction.
Collapse
|
18
|
Wang L, Chung J, Gill SE, Mehta S. Quantification of adherens junction disruption and contiguous paracellular protein leak in human lung endothelial cells under septic conditions. Microcirculation 2019; 26:e12528. [PMID: 30636088 DOI: 10.1111/micc.12528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Sepsis is associated with dysfunction of MVEC resulting in organ edema and inflammation. VE-cadherin, a component of MVEC adherens junctions, may be disrupted in sepsis. However, the direct connection between individual MVEC VE-cadherin disruption and increased paracellular permeability is uncertain. METHODS Human pulmonary MVEC were cultured on a biotin matrix and treated with cytomix, as a model of sepsis, vs PBS. MVEC permeability was assessed by trans-MVEC monolayer leak of Oregon green 488-conjugated avidin, which bound subcellular biotin to localize sites of paracellular leak. Leak was correlated with individual cell-specific MVEC surface VE-cadherin continuity by fluorescence microscopy. RESULTS Cytomix treatment reduced total MVEC VE-cadherin density, disrupted surface VE-cadherin continuity, was associated with intercellular gap formation, and enhanced paracellular avidin leak. Cytomix-induced MVEC paracellular avidin leak was strongly correlated temporally and was highly contiguous with focal MVEC surface VE-cadherin disruption. Total cellular VE-cadherin density was less strongly correlated with MVEC paracellular avidin leak and individual cell-specific focal surface VE-cadherin discontinuity. CONCLUSIONS These data support a mechanistic link between septic human lung MVEC VE-cadherin disruption and contiguous paracellular protein leak, and will permit more detailed assessment of individual cell-specific mechanisms of septic MVEC barrier dysfunction.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Justin Chung
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| |
Collapse
|
19
|
He M, Shi W, Yu M, Li X, Xu J, Zhu J, Jin L, Xie W, Kong H. Nicorandil Attenuates LPS-Induced Acute Lung Injury by Pulmonary Endothelial Cell Protection via NF- κB and MAPK Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4957646. [PMID: 30984337 PMCID: PMC6431468 DOI: 10.1155/2019/4957646] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/04/2018] [Accepted: 11/28/2018] [Indexed: 01/06/2023]
Abstract
Acute lung injury (ALI) is a devastating critical disease characterized by diffuse inflammation and endothelial dysfunction. Increasing evidence, including from our laboratory, has revealed that the opening of ATP-sensitive potassium (KATP) channels has promising anti-inflammation and endothelial protection activities in various disorders. However, the impacts of KATP channels on ALI remain obscure. In this study, we used nicorandil (Nico), a classic KATP channel opener, to investigate whether opening of KATP channels could alleviate ALI with an emphasis on human pulmonary artery endothelial cell (HPAEC) modulation. The results showed that Nico inhibited lipopolysaccharide- (LPS-) induced inflammatory response, protein accumulation, myeloperoxidase activity, and endothelial injury. In vitro, Nico reduced LPS-induced HPAEC apoptosis and the expression of cleaved-caspase-3, caspase-9, and CCAAT/enhancer-binding protein homologous protein (CHOP). Additionally, Nico inhibited inflammation by suppressing monocyte-endothelial adhesion and decreasing the expression of proinflammatory proteins. Moreover, Nico restored the expression and the distribution of adherens junction vascular endothelial- (VE-) cadherin. Further, Nico abolished the increase in intracellular reactive oxygen species (ROS) and the activation of NF-κB and mitogen-activated protein kinase (MAPK) in HPAECs. Glibenclamide (Gli), a nonselective KATP channel blocker, abrogated the effects of Nico, implying that opening of KATP channels contributes to the relief of ALI. Together, our findings indicated that Nico alleviated LPS-induced ALI by protecting ECs function via preventing apoptosis, suppressing endothelial inflammation and reducing oxidative stress, which may be attributed to the inhibition of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Mengyu He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wen Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Min Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiali Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Linling Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
20
|
Raza Q, Choi JY, Li Y, O’Dowd RM, Watkins SC, Chikina M, Hong Y, Clark NL, Kwiatkowski AV. Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. PLoS Genet 2019; 15:e1007720. [PMID: 30763317 PMCID: PMC6375579 DOI: 10.1371/journal.pgen.1007720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
The adherens junction couples the actin cytoskeletons of neighboring cells to provide the foundation for multicellular organization. The core of the adherens junction is the cadherin-catenin complex that arose early in the evolution of multicellularity to link actin to intercellular adhesions. Over time, evolutionary pressures have shaped the signaling and mechanical functions of the adherens junction to meet specific developmental and physiological demands. Evolutionary rate covariation (ERC) identifies proteins with correlated fluctuations in evolutionary rate that can reflect shared selective pressures and functions. Here we use ERC to identify proteins with evolutionary histories similar to the Drosophila E-cadherin (DE-cad) ortholog. Core adherens junction components α-catenin and p120-catenin displayed positive ERC correlations with DE-cad, indicating that they evolved under similar selective pressures during evolution between Drosophila species. Further analysis of the DE-cad ERC profile revealed a collection of proteins not previously associated with DE-cad function or cadherin-mediated adhesion. We then analyzed the function of a subset of ERC-identified candidates by RNAi during border cell (BC) migration and identified novel genes that function to regulate DE-cad. Among these, we found that the gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates BC migration and adhesion. We named CG42684 raskol (“to split” in Russian) and show that it regulates DE-cad levels and actin protrusions in BCs. We propose that Raskol functions with DE-cad to restrict Ras/Rho signaling and help guide BC migration. Our results demonstrate that a coordinated selective pressure has shaped the adherens junction and this can be leveraged to identify novel components of the complexes and signaling pathways that regulate cadherin-mediated adhesion. The establishment of intercellular adhesions facilitated the genesis of multicellular organisms. The adherens junction, which links the actin cytoskeletons of neighboring cells, arose early in the evolution of multicellularity and selective pressures have shaped its function and molecular composition over time. In this study, we used evolutionary rate covariation (ERC) analysis to examine the evolutionary history of the adherens junction and to identify proteins that coevolved with the core adherens junction protein Drosophila E-cadherin (DE-cad). ERC analysis of DE-cad revealed a collection of proteins with similar evolutionary histories. We then tested the role of ERC-identified candidates in border cell migration in the fly egg chamber, a process that requires the coordinated regulation of cell-cell adhesion and cell motility. Among these, we found that a previously uncharacterized gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates the collective cell migration of border cells, stabilizes cell-cell adhesions and regulates the actin dynamics. Our results demonstrate that components of the adherens junction share an evolutionary history and that ERC analysis is a powerful method to identify novel components of cell adhesion complexes in Drosophila.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Yang Li
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Roisin M. O’Dowd
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nathan L. Clark
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Adam V. Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Han S, Chen Y, Wang J, Zhang Q, Han B, Ge Y, Xiang Y, Liang R, Zhu X, You Y, Liao F. Anti-thrombosis Effects and Mechanisms by Xueshuantong Capsule Under Different Flow Conditions. Front Pharmacol 2019; 10:35. [PMID: 30792653 PMCID: PMC6374556 DOI: 10.3389/fphar.2019.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
Xueshuantong capsule (XST) is a patented traditional Chinese medicine used for the prevention and treatment of thrombosis. The molecular mechanism of anti-thrombotic effect of XST was investigated through the cross-talk among the platelets/leukocytes, endothelial cells (ECs), and flow shear stress. The Bioflux 1000 system was used to generate two levels of shear stress conditions: 0.1 and 0.9 Pa. Bioflux Metamorph microscopic imaging system was used to analyze the adhesion cell numbers. Protein expressions were detected by western blotting and flow cytometry. The flow-cytometry results showed that under 0.1 Pa flow, XST decreased ADP induced platelets CD62p surface expression in a concentration-dependent manner. Under 0.9 Pa flow, XST at a concentration of 0.15 g⋅L-1 reduced the platelets activation by 29.5%, and aspirin (ASA) showed no inhibitory effects. XST showed similar efficiency on monocytes adhesion both under 0.1 and 0.9 Pa flow conditions, and the inhibition rate was 30.2 and 28.3%, respectively. Under 0.9 Pa flow, the anti-adhesive effects of XST might be associated with the suppression of VE-cadherin and Cx43 in HUVECs. Blood flow not only acts as a drug transporter, but also exerts its effects to influence the pharmacodynamics of XST. Effects of XST on inhibiting platelets activation and suppressing platelets/leukocytes adhesion to injured ECs are not only concentration-dependent, but also shear stress-dependent. The mechanic forces combined with traditional Chinese medicine may be used as a precise treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuxian Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinyu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Han
- Harbin Zhenbao Pharmaceutical Co., Ltd., Harbin, China
| | - Yimeng Ge
- Harbin Zhenbao Pharmaceutical Co., Ltd., Harbin, China
| | - Yanhua Xiang
- Harbin Zhenbao Pharmaceutical Co., Ltd., Harbin, China
| | - Rixin Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Ludewig P, Winneberger J, Magnus T. The cerebral endothelial cell as a key regulator of inflammatory processes in sterile inflammation. J Neuroimmunol 2018; 326:38-44. [PMID: 30472304 DOI: 10.1016/j.jneuroim.2018.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/17/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022]
Abstract
Cerebral endothelial cells accomplish numerous tasks connected to the maintenance of homeostasis of the central nervous system. They create a barrier between the central nervous system and peripheral blood and regulate mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. In pathophysiological conditions (e.g., stroke or ischemia-reperfusion injury) the endothelial functions are impaired, leading to increased vascular permeability, vascular inflammation, leukocyte-endothelium interactions, and transendothelial migration, driving CNS inflammation and neuronal destruction. This review describes the current knowledge on the regulatory roles of endothelial cells in neuroinflammatory processes.
Collapse
Affiliation(s)
- Peter Ludewig
- Department of Neurology at the University Medical Center Hamburg- Eppendorf, Hamburg, Germany.
| | - Jack Winneberger
- Department of Neurology at the University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology at the University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
24
|
Dong W, He B, Qian H, Liu Q, Wang D, Li J, Wei Z, Wang Z, Xu Z, Wu G, Qian G, Wang G. RAB26-dependent autophagy protects adherens junctional integrity in acute lung injury. Autophagy 2018; 14:1677-1692. [PMID: 29965781 DOI: 10.1080/15548627.2018.1476811] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microvascular barrier dysfunction is the central pathophysiological feature of acute lung injury (ALI). RAB26 is a newly identified small GTPase involved in the regulation of endothelial cell (EC) permeability. However, the mechanism behind this protection has not been clearly elucidated. Here we found that RAB26 promoted the integrity of adherens junctions (AJs) in a macroautophagy/autophagy-dependent manner in ALI. RAB26 is frequently downregulated in mouse lungs after LPS treatment. Mice lacking Rab26 exhibited phosphorylated SRC expression and increased CDH5/VE-cadherin phosphorylation, leading to AJ destruction. rab26-null mice showed further aggravation of the effects of endotoxin insult on lung vascular permeability and water content. Depletion of RAB26 resulted in upregulation of phosphorylated SRC, enhancement of CDH5 phosphorylation, and aggravation of CDH5 internalization, thereby weakening AJ integrity and endothelial barrier function in human pulmonary microvascular endothelial cells (HPMECs). RAB26 overexpression caused active interaction between SRC and the autophagy marker LC3-II and promoted degradation of phosphorylated SRC. Furthermore, RAB26 was involved in a direct and activation-dependent manner in autophagy induction through interaction with ATG16L1 in its GTP-bound form. These findings demonstrate that RAB26 exerts a protective effect on endothelial cell (EC) permeability, which is in part dependent on autophagic targeting of active SRC, and the resultant CDH5 dephosphorylation maintains AJ stabilization. Thus, RAB26-mediated autophagic targeting of phosphorylated SRC can maintain barrier integrity when flux through the RAB26-SRC pathway is protected. These findings suggest that activation of RAB26-SRC signaling provides a new therapeutic opportunity to prevent vascular leakage in ALI. ABBREVIATIONS AJs: adherens junctions; ALI: acute lung injury; ARDS: acute respiratory distress syndrome; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG 16L1: autophagy related 16 like; 1 BALF: bronchoalveolar lavage fluidCQ: chloroquine; Ctrl: control; EC: endothelial cell; GFP: green fluorescent protein; HA-tagged; RAB26WT: HA-tagged wild-type; RAB26 HA-tagged; RAB26QL: HA-tagged; RAB26Q123LHA-tagged; RAB26NI: HA-tagged; RAB26N177IHPMECs: human pulmonary microvascular endothelial cells; H&E: hematoxylin & eosin; IgG: immunoglobulin; GIF: immunofluorescence; IP: immunoprecipitationi;. p.: intraperitoneal; LPS: lipopolysaccharide; PBS: phosphate-buffered salinesi; RNA: small interfering;RNASQSTM1/p62, sequestosome; 1TBS: Tris-buffered saline; VEGF: vascular endothelial growth factor; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Weijie Dong
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Binfeng He
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Hang Qian
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Qian Liu
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Dong Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jin Li
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zhenghua Wei
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zi Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zhi Xu
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Guangyu Wu
- b Department of Pharmacology and Toxicology , Georgia Regents University , Augusta , Georgia , USA
| | - Guisheng Qian
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Guansong Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
25
|
Li XK, Zhang SF, Xu W, Xing B, Lu QB, Zhang PH, Li H, Zhang L, Zhang WC, Chen WW, Cao WC, Liu W. Vascular endothelial injury in severe fever with thrombocytopenia syndrome caused by the novel bunyavirus. Virology 2018; 520:11-20. [PMID: 29754008 DOI: 10.1016/j.virol.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/14/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) infection typically causes acute fever, thrombocytopenia and leucopenia, presenting with a high case fatality rate. The pathogenesis of SFTSV infection, however, is not well described. It was hypothesized that endothelial dysfunction might play part in the disease process. In current study, we retrospectively analyzed the clinical manifestations among a large group of confirmed SFTS cases and found evidence of plasma leakage and vascular endothelial injury. Then we established a SFTSV infection cell model and determined the infectivity and stimulation of SFTSV on vascular endothelial cells in vitro. The hyperpermeability of endothelial cells directly induced by SFTSV was confirmed by electrical resistance and dextran diffusion assay. The virus induced alterations of cell junctions and cytoskeleton was also revealed. It's suggested that vascular endothelial cell injury and barrier function damage were induced after SFTSV infection, which is a vital but neglected pathogenesis of SFTS.
Collapse
Affiliation(s)
- Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, 100071, Beijing, PR China
| | - Shao-Fei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, 100071, Beijing, PR China
| | - Wen Xu
- Treatment and Research Centre for Infectious Diseases, The 302 Hospital, People's Liberation Army, No. 100, West 4th Ring Road, Fengtai District, Beijing, PR China
| | - Bo Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, 100071, Beijing, PR China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38, Xue yuan Road, Hai-dian District, Beijing, PR China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, 100071, Beijing, PR China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, 100071, Beijing, PR China
| | - Li Zhang
- Xinxiang Medical University, Xinxiang City, PR China
| | | | - Wei-Wei Chen
- Treatment and Research Centre for Infectious Diseases, The 302 Hospital, People's Liberation Army, No. 100, West 4th Ring Road, Fengtai District, Beijing, PR China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, 100071, Beijing, PR China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, 100071, Beijing, PR China.
| |
Collapse
|
26
|
Yu J, Ma M, Ma Z, Fu J. HDAC6 inhibition prevents TNF-α-induced caspase 3 activation in lung endothelial cell and maintains cell-cell junctions. Oncotarget 2018; 7:54714-54722. [PMID: 27419634 PMCID: PMC5342375 DOI: 10.18632/oncotarget.10591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023] Open
Abstract
Pro-inflammatory mediators such as TNF-α induce caspase activation in endothelial cells, which leads to degradation of cellular proteins, induction of apoptotic signaling, and endothelial cell dysfunction. New therapeutic agents that can inhibit caspase activation may provide protection against inflammatory injury to endothelial cells. In the present study, we examined the effects of selective histone deacetylase 6 (HDAC6) inhibition on TNF-α induced caspase 3 activation and cell-cell junction dysfunction in lung endothelial cells. We also assessed the protective effects of HDAC6 inhibition against lung inflammatory injury in a mouse model of endotoxemia. We demonstrated that selective HDAC6 inhibition or knockdown of HDAC6 expression was able to prevent caspase 3 activation in lung endothelial cells and maintain lung endothelial cell-cell junctions. Mice pre-treated with HDAC6 inhibitors exhibited decreased endotoxin-induced caspase 3 activation and reduced lung vascular injury as indicated by the retention of cell-cell junction protein VE-Cadherin level and alleviated lung edema. Collectively, our data suggest that HDAC6 inhibition is a potent therapeutic strategy against inflammatory injury to endothelial cells.
Collapse
Affiliation(s)
- Jinyan Yu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China.,Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Mengshi Ma
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China.,Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zhongsen Ma
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Jian Fu
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
28
|
Abstract
Endothelial cells line blood vessels and provide a dynamic interface between the blood and tissues. They remodel to allow leukocytes, fluid and small molecules to enter tissues during inflammation and infections. Here we compare the signaling networks that contribute to endothelial permeability and leukocyte transendothelial migration, focusing particularly on signals mediated by small GTPases that regulate cell adhesion and the actin cytoskeleton. Rho and Rap GTPase signaling is important for both processes, but they differ in that signals are activated locally under leukocytes, whereas endothelial permeability is a wider event that affects the whole cell. Some molecules play a unique role in one of the two processes, and could therefore be targeted to selectively alter either endothelial permeability or leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Camilla Cerutti
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
29
|
Yan M, Zhang X, Chen A, Gu W, Liu J, Ren X, Zhang J, Wu X, Place AT, Minshall RD, Liu G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. FASEB J 2017; 31:4759-4769. [PMID: 28701303 DOI: 10.1096/fj.201700280r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2-via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.
Collapse
Affiliation(s)
- Meiping Yan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinhua Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ao Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Gu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jie Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojiao Ren
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxiong Wu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aaron T Place
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guoquan Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
30
|
Li H, He B, Liu X, Li J, Liu Q, Dong W, Xu Z, Qian G, Zuo H, Hu C, Qian H, Mao C, Wang G. Regulation on Toll-like Receptor 4 and Cell Barrier Function by Rab26 siRNA-loaded DNA Nanovector in Pulmonary Microvascular Endothelial Cells. Am J Cancer Res 2017; 7:2537-2554. [PMID: 28744333 PMCID: PMC5525755 DOI: 10.7150/thno.17584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
The small GTPase Rab26 is involved in multiple processes, such as vesicle-mediated secretion and autophagy. However, the mechanisms and functions of Rab26 in the human pulmonary microvascular endothelial cells (HPMVECs) are not clear. In this study, we thoroughly investigated the role and novel mechanism of Rab26 in permeability and apoptosis of HPMVECs using a self-assembled Rab26 siRNA loaded DNA Y-motif nanoparticle (siRab26-DYM) and Rab26 adenovirus. We found that siRab26-DYM could be efficiently transfected into HPMVECs in a time- and dose-dependent manner. Importantly, the siRab26-DYM nanovector markedly aggravated the LPS-induced apoptosis and hyper-permeability of HPMVECs by promoting the nuclear translocation of Foxo1, and subsequent activation of Toll-like receptor 4 (TLR4) signal pathway. Overexpression of Rab26 by Rab26 adenoviruses partially inactivated LPS-induced TLR4 signaling pathway, suppressed the cell apoptosis and attenuated the hyperpermeability of HPMVECs. These results suggest that the permeability and apoptosis of HPMVECs can be modulated by manipulating Rab26 derived TLR4 signaling pathway, and that Rab26 can be potential therapeutic target for the treatment of vascular diseases related to endothelial barrier functions.
Collapse
|
31
|
Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:105-137. [PMID: 29047084 PMCID: PMC7120947 DOI: 10.1007/978-3-319-63245-2_8] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.
Collapse
Affiliation(s)
- Manuela Kellner
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Satish Noonepalle
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Qing Lu
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Anup Srivastava
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Evgeny Zemskov
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Stephen M Black
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA.
| |
Collapse
|
32
|
Wu Z, Liu H, Ren W, Dai F, Chang J, Li B. VE-cadherin involved in the pulmonary microvascular endothelial cell barrier injury induced by angiotensin II through modulating the cellular apoptosis and skeletal rearrangement. Am J Transl Res 2016; 8:4310-4319. [PMID: 27830014 PMCID: PMC5095323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Angiotensin II (AngII) involved in the pathogenesis of pulmonary injury through impairing the integrity of pulmonary microvascular endothelial barrier, but the mechanism is still not clear. We aim to determine the roles of VE-cadherin, playing crucial roles in the adhesion of the vascular endothelial barrier and the barrier function, in the pulmonary microvascular endothelial cell (PMVEC) barrier injury mediated by AngII. METHODS Mice acute lung injury (ALI) model was induced through pumping of AngII. The infiltration of macrophages and neutrophils as well as the PMVEC permeability were determined in order to determine the barrier injury in vivo and in vitro. Knockdown of VE-cadherin was established using siRNA technique, and its roles in the apoptosis and skeletal rearrangement in the PMVECs were evaluated. RESULTS After AngII interference, the expression of VE-cadherin in the PMVECs and pulmonary tissues in mice was down-regulated. Upon VE-cadherin knockdown through siRNA technique, AngII induced susceptibility of PMVECs to apoptosis. Knockdown of VE-cadherin contributed to the skeletal rearrangement in the endothelial cells, together with increase of permeability. CONCLUSIONS VE-cadherin expression is closely related to the apoptosis and skeletal rearrangement of PMVECs induced by AngII.
Collapse
Affiliation(s)
- Zhiyong Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Huagang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Wei Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Feifeng Dai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Jinxing Chang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University Wuhan 430060, China
| |
Collapse
|
33
|
Yu J, Ma Z, Shetty S, Ma M, Fu J. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Am J Physiol Lung Cell Mol Physiol 2016; 311:L39-47. [PMID: 27190059 DOI: 10.1152/ajplung.00051.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022] Open
Abstract
Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Jinyan Yu
- The Second Hospital of Jilin University, Jilin, China; Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky; and
| | - Zhongsen Ma
- The Second Hospital of Jilin University, Jilin, China
| | - Sreerama Shetty
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas
| | - Mengshi Ma
- The Second Hospital of Jilin University, Jilin, China; Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jian Fu
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky; and
| |
Collapse
|
34
|
Huang Y, Tan Q, Chen R, Cao B, Li W. Sevoflurane prevents lipopolysaccharide-induced barrier dysfunction in human lung microvascular endothelial cells: Rho-mediated alterations of VE-cadherin. Biochem Biophys Res Commun 2015; 468:119-24. [PMID: 26529544 DOI: 10.1016/j.bbrc.2015.10.150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) mainly occurs as increased permeability of lung tissue and pleural effusion. Inhaled anesthetic sevoflurane has been demonstrated to alleviate lung permeability by upregulating junction proteins after ischemia-reperfusion. However, the exact mechanisms of its protective effect on reperfusion injury remain elusive. The aim of this study was to assess possible preconditioning with sevoflurane in an in vitro model of lipopolysaccharide (LPS)-induced barrier dysfunction in human lung microvascular endothelial cells (HMVEC-Ls). In this study, HMVEC-Ls were exposed to minimum alveolar concentration of sevoflurane for 2 h. LPS significantly increased the permeability of HMVEC-L. Moreover, the distribution of junction protein, vascular endothelial (VE)-cadherin, in cell-cell junction area and the total expression in HMVEC-Ls were significantly decreased by LPS treatment. However, the abnormal distribution and decreased expression of VE-cadherin and hyperpermeability of HMVEC-Ls were significantly reversed by pretreatment with sevoflurane. Furthermore, LPS-induced activation of the RhoA/ROCK signaling pathway was significantly inhibited with sevoflurane. Such activation, abnormal distribution and decreased expression of VE-cadherin and hyperpermeability of HMVEC-Ls were significantly inhibited with sevoflurane pretreatment or knockdown of RhoA or ROCK-2. In conclusion, sevoflurane prevented LPS-induced rupture of HMVEC-L monolayers by suppressing the RhoA/ROCK-mediated VE-cadherin signaling pathway. Our results may explain, at least in part, some beneficial effects of sevoflurane on pulmonary dysfunction such as ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China.
| | - Qindong Tan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, PR China
| | - Rui Chen
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China
| | - Biao Cao
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China
| | - Wenhong Li
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China
| |
Collapse
|