1
|
Zeng Q, Yao C, Zhang S, Mao Y, Wang J, Wang Z, Sheng C, Chen S. ORMDL3 restrains type I interferon signaling and anti-tumor immunity by promoting RIG-I degradation. eLife 2025; 13:RP101973. [PMID: 40126553 PMCID: PMC11932694 DOI: 10.7554/elife.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Mounting evidence has demonstrated the genetic association of ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) gene polymorphisms with bronchial asthma and a diverse set of inflammatory disorders. However, its role in type I interferon (type I IFN) signaling remains poorly defined. Herein, we report that ORMDL3 is a negative modulator of the type I IFN signaling by interacting with mitochondrial antiviral signaling protein (MAVS) and subsequently promoting the proteasome-mediated degradation of retinoic acid-inducible gene I (RIG-I). Immunoprecipitation coupled with mass spectrometry (IP-MS) assays uncovered that ORMDL3 binds to ubiquitin-specific protease 10 (USP10), which forms a complex with and stabilizes RIG-I through decreasing its K48-linked ubiquitination. ORMDL3 thus disrupts the interaction between USP10 and RIG-I, thereby promoting RIG-I degradation. Additionally, subcutaneous syngeneic tumor models in C57BL/6 mice revealed that inhibition of ORMDL3 enhances anti-tumor efficacy by augmenting the proportion of cytotoxic CD8 positive T cells and IFN production in the tumor microenvironment (TME). Collectively, our findings reveal the pivotal roles of ORMDL3 in maintaining antiviral innate immune responses and anti-tumor immunity.
Collapse
Affiliation(s)
- Qi Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Shimeng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Yizhi Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Ziyang Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer CenterGuangzhouChina
| |
Collapse
|
2
|
Yoshida K, Morishima Y, Ishii Y, Mastuzaka T, Shimano H, Hizawa N. Abnormal saturated fatty acids and sphingolipids metabolism in asthma. Respir Investig 2024; 62:526-530. [PMID: 38640569 DOI: 10.1016/j.resinv.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Recent advances in fatty acid analysis have highlighted the links between lipid disruption and disease development. Lipid abnormalities are well-established risk factors for many of the most common chronic illnesses, and their involvement in asthma is also becoming clear. Here, we review research demonstrating the role of abnormal lipid metabolism in asthma, with a focus on saturated fatty acids and sphingolipids. High levels of palmitic acid, the most abundant saturated fatty acid in the human body, have been found in the airways of asthmatic patients with obesity, and were shown to worsen eosinophilic airway inflammation in asthma model mice on a high-fat diet. Aside from being a building block of longer-chain fatty acids, palmitic acid is also the starting point for de novo synthesis of ceramides, a class of sphingolipids. We outline the three main pathways for the synthesis of ceramides, which have been linked to the severity of asthma and act as precursors for the dynamic lipid mediator sphingosine 1-phosphate (S1P). S1P signaling is involved in allergen-induced eosinophilic inflammation, airway hyperresponsiveness, and immune-cell trafficking. A recent study of mice with mutations for the elongation of very long-chain fatty acid family member 6 (Elovl6), an enzyme that elongates fatty acid chains, has highlighted the potential role of palmitic acid composition, and thus lipid balance, in the pathophysiology of allergic airway inflammation. Elovl6 may be a potential therapeutic target in severe asthma.
Collapse
Affiliation(s)
- Kazufumi Yoshida
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yuko Morishima
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukio Ishii
- Department of Respiratory Medicine, National Hospital Organization Ibaraki Higashi National Hospital, 825 Terunuma, Tokai-Mura, Naka-Gun, Ibaraki, 319-1113, Japan
| | - Takashi Mastuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
3
|
Demkova L, Bugajev V, Adamcova MK, Kuchar L, Grusanovic S, Alberich-Jorda M, Draber P, Halova I. Simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupts immune cell homeostasis. Front Immunol 2024; 15:1376629. [PMID: 38715613 PMCID: PMC11074395 DOI: 10.3389/fimmu.2024.1376629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 06/04/2024] Open
Abstract
ORMDL3 is a prominent member of a family of highly conserved endoplasmic reticulum resident proteins, ORMs (ORM1 and ORM2) in yeast, dORMDL in Drosophila and ORMDLs (ORMDL1, ORMDL2, and ORMDL3) in mammals. ORMDL3 mediates feedback inhibition of de novo sphingolipid synthesis. Expression levels of ORMDL3 are associated with the development of inflammatory and autoimmune diseases including asthma, systemic lupus erythematosus, type 1 diabetes mellitus and others. It has been shown that simultaneous deletions of other ORMDL family members could potentiate ORMDL3-induced phenotypes. To understand the complex function of ORMDL proteins in immunity in vivo, we analyzed mice with single or double deletions of Ormdl genes. In contrast to other single and double knockouts, simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupted blood homeostasis and reduced immune cell content in peripheral blood and spleens of mice. The reduced number of splenocytes was not caused by aberrant immune cell homing. A competitive bone marrow transplantation assay showed that the development of Ormdl1-/-/Ormdl3-/- B cells was dependent on lymphocyte intrinsic factors. Highly increased sphingolipid production was observed in the spleens and bone marrow of Ormdl1-/-/Ormdl3-/- mice. Slight, yet significant, increase in some sphingolipid species was also observed in the spleens of Ormdl3-/- mice and in the bone marrow of both, Ormdl1-/- and Ormdl3-/- single knockout mice. Taken together, our results demonstrate that the physiological expression of ORMDL proteins is critical for the proper development and circulation of lymphocytes. We also show cell-type specific roles of individual ORMDL family members in the production of different sphingolipid species.
Collapse
Affiliation(s)
- Livia Demkova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava K. Adamcova
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Srdjan Grusanovic
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Meritxell Alberich-Jorda
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Stefanović M, Stojković L, Životić I, Dinčić E, Stanković A, Živković M. Expression levels of GSDMB and ORMDL3 are associated with relapsing-remitting multiple sclerosis and IKZF3 rs12946510 variant. Heliyon 2024; 10:e25033. [PMID: 38314276 PMCID: PMC10837620 DOI: 10.1016/j.heliyon.2024.e25033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Multiple sclerosis (MS), a noncurable autoimmune neurodegenerative disease, requires constant research that could improve understanding of both environmental and genetic factors that lead to its occurrence and/or progression. Recognition of the genetic basis of MS further leads to an investigation of the regulatory role of genetic variants on gene expression. Among risk variants for MS, Ikaros zinc finger 3 (IKZF3) gene variant rs12946510 was identified as one of the top-ranked and the expression quantitative trait loci (eQTL) for genes residing in chromosomal locus 17q12-21. The study aimed to investigate the association of gene expression of the immunologically relevant genes, which map to indicated locus, ORMDL3, GSDMB, and IKZF3, with MS and rs12946510 genotype, taking into account disease phase, clinical parameters of disease progression, and severity and immunomodulatory therapy. We used TaqMan® technology for both allelic discrimination and gene expression determination in 67 relapsing MS patients and 50 healthy controls. Decreased ORMDL3 and GSDMB mRNA levels had significant associations with MS and rs12946510 TT rare homozygote among patients. Significant positive correlations between ORMDL3 and GSDMB mRNA expression were observed in both patients and controls. We detected the significant between-effect of sex and rs12946510 on the expression of ORMDL3 in the patient group and interferon β therapy and rs12946510 on GSDMB expression. Our results show the association of ORMDL3 and GSDMB mRNA expression with the clinical manifestation of MS and confirm that IKZF3 rs12946510 exerts the eQTL effect on both genes in multiple sclerosis. Besides providing novel insight related to MS phases and interferon β therapy, the study results confirm previous studies on regulatory genetic variants, autoimmunity, and MS.
Collapse
Affiliation(s)
- Milan Stefanović
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Stojković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivan Životić
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Evica Dinčić
- Military Medical Academy, Clinic for Neurology, Belgrade, Serbia
| | - Aleksandra Stanković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Bugajev V, Draberova L, Utekal P, Blazikova M, Tumova M, Draber P. Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions. Cells 2023; 12:2069. [PMID: 37626879 PMCID: PMC10453462 DOI: 10.3390/cells12162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Signal transduction by the high-affinity IgE receptor (FcεRI) depends on membrane lipid and protein compartmentalization. Recently published data show that cells treated with 1-heptanol, a cell membrane fluidizer, exhibit changes in membrane properties. However, the functional consequences of 1-heptanol-induced changes on mast cell signaling are unknown. This study shows that short-term exposure to 1-heptanol reduces membrane thermal stability and dysregulates mast cell signaling at multiple levels. Cells treated with 1-heptanol exhibited increased lateral mobility and decreased internalization of the FcεRI. However, this did not affect the initial phosphorylation of the FcεRI-β chain and components of the SYK/LAT1/PLCγ1 signaling pathway after antigen activation. In contrast, 1-heptanol inhibited SAPK/JNK phosphorylation and effector functions such as calcium response, degranulation, and cytokine production. Membrane hyperfluidization induced a heat shock-like response via increased expression of the heat shock protein 70, increased lateral diffusion of ORAI1-mCherry, and unsatisfactory performance of STIM1-ORAI1 coupling, as determined by flow-FRET. Furthermore, 1-heptanol inhibited the antigen-induced production of reactive oxygen species and potentiated stress-induced plasma membrane permeability by interfering with heat shock protein 70 activity. The combined data suggest that 1-heptanol-mediated membrane fluidization does not interfere with the earliest biochemical steps of FcεRI signaling, such as phosphorylation of the FcεRI-β chain and components of the SYK/LAT/PLCγ1 signaling pathway, instead inhibiting the FcεRI internalization and mast cell effector functions, including degranulation and cytokine production.
Collapse
Affiliation(s)
- Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Lubica Draberova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Pavol Utekal
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Magda Tumova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| |
Collapse
|
6
|
Demkova L, Bugajev V, Utekal P, Kuchar L, Schuster B, Draber P, Halova I. Simultaneous reduction of all ORMDL proteins decreases the threshold of mast cell activation. Sci Rep 2023; 13:9615. [PMID: 37316542 PMCID: PMC10267218 DOI: 10.1038/s41598-023-36344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
In mammals, the ORMDL family of evolutionarily conserved sphingolipid regulators consists of three highly homologous members, ORMDL1, ORMDL2 and ORMDL3. ORMDL3 gene has been associated with childhood-onset asthma and other inflammatory diseases in which mast cells play an important role. We previously described increased IgE-mediated activation of mast cells with simultaneous deletions of ORMDL2 and ORMDL3 proteins. In this study, we prepared mice with Ormdl1 knockout and thereafter, produced primary mast cells with reduced expression of one, two or all three ORMDL proteins. The lone deletion of ORMDL1, or in combination with ORMDL2, had no effect on sphingolipid metabolism nor IgE-antigen dependent responses in mast cells. Double ORMDL1 and ORMDL3 knockout mast cells displayed enhanced IgE-mediated calcium responses and cytokine production. Silencing of ORMDL3 in mast cells after maturation increased their sensitivity to antigen. Mast cells with reduced levels of all three ORMDL proteins demonstrated pro-inflammatory responses even in the absence of antigen activation. Overall, our results show that reduced levels of ORMDL proteins shift mast cells towards a pro-inflammatory phenotype, which is predominantly dependent on the levels of ORMDL3 expression.
Collapse
Affiliation(s)
- Livia Demkova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Pavol Utekal
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Björn Schuster
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| | - Ivana Halova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
7
|
Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med 2023; 55:1110-1130. [PMID: 37258585 PMCID: PMC10318102 DOI: 10.1038/s12276-023-01018-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.
Collapse
Affiliation(s)
- Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Yoshida K, Morishima Y, Ano S, Sakurai H, Kuramoto K, Tsunoda Y, Yazaki K, Nakajima M, Sherpa MT, Matsuyama M, Kiwamoto T, Matsuno Y, Ishii Y, Hayashi A, Matsuzaka T, Shimano H, Hizawa N. ELOVL6 deficiency aggravates allergic airway inflammation through the ceramide-S1P pathway in mice. J Allergy Clin Immunol 2022; 151:1067-1080.e9. [PMID: 36592705 DOI: 10.1016/j.jaci.2022.12.808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Elongation of very-long-chain fatty acids protein 6 (ELOVL6), an enzyme regulating elongation of saturated and monounsaturated fatty acids with C12 to C16 to those with C18, has been recently indicated to affect various immune and inflammatory responses; however, the precise process by which ELOVL6-related lipid dysregulation affects allergic airway inflammation is unclear. OBJECTIVES This study sought to evaluate the biological roles of ELOVL6 in allergic airway responses and investigate whether regulating lipid composition in the airways could be an alternative treatment for asthma. METHODS Expressions of ELOVL6 and other isoforms were examined in the airways of patients who are severely asthmatic and in mouse models of asthma. Wild-type and ELOVL6-deficient (Elovl6-/-) mice were analyzed for ovalbumin-induced, and also for house dust mite-induced, allergic airway inflammation by cell biological and biochemical approaches. RESULTS ELOVL6 expression was downregulated in the bronchial epithelium of patients who are severely asthmatic compared with controls. In asthmatic mice, ELOVL6 deficiency led to enhanced airway inflammation in which lymphocyte egress from lymph nodes was increased, and both type 2 and non-type 2 immune responses were upregulated. Lipidomic profiling revealed that the levels of palmitic acid, ceramides, and sphingosine-1-phosphate were higher in the lungs of ovalbumin-immunized Elovl6-/- mice compared with those of wild-type mice, while the aggravated airway inflammation was ameliorated by treatment with fumonisin B1 or DL-threo-dihydrosphingosine, inhibitors of ceramide synthase and sphingosine kinase, respectively. CONCLUSIONS This study illustrates a crucial role for ELOVL6 in controlling allergic airway inflammation via regulation of fatty acid composition and ceramide-sphingosine-1-phosphate biosynthesis and indicates that ELOVL6 may be a novel therapeutic target for asthma.
Collapse
Affiliation(s)
- Kazufumi Yoshida
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuko Morishima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Satoshi Ano
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Department of Respiratory Medicine, National Hospital Organization Kasumigaura Medical Center, Tsuchiura, Ibaraki, Japan
| | - Hirofumi Sakurai
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenya Kuramoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiya Tsunoda
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kai Yazaki
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Nakajima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mingma Thering Sherpa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masashi Matsuyama
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takumi Kiwamoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yosuke Matsuno
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukio Ishii
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akio Hayashi
- Exploratory Research Laboratories, Minase Research Institute, Ono Pharmaceutical Co Ltd, Mishima, Osaka, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Jo H, Shim K, Jeoung D. The Crosstalk between FcεRI and Sphingosine Signaling in Allergic Inflammation. Int J Mol Sci 2022; 23:ijms232213892. [PMID: 36430378 PMCID: PMC9695510 DOI: 10.3390/ijms232213892] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingolipid molecules have recently attracted attention as signaling molecules in allergic inflammation diseases. Sphingosine-1-phosphate (S1P) is synthesized by two isoforms of sphingosine kinases (SPHK 1 and SPHK2) and is known to be involved in various cellular processes. S1P levels reportedly increase in allergic inflammatory diseases, such as asthma and anaphylaxis. FcεRI signaling is necessary for allergic inflammation as it can activate the SPHKs and increase the S1P level; once S1P is secreted, it can bind to the S1P receptors (S1PRs). The role of S1P signaling in various allergic diseases is discussed. Increased levels of S1P are positively associated with asthma and anaphylaxis. S1P can either induce or suppress allergic skin diseases in a context-dependent manner. The crosstalk between FcεRI and S1P/SPHK/S1PRs is discussed. The roles of the microRNAs that regulate the expression of the components of S1P signaling in allergic inflammatory diseases are also discussed. Various reports suggest the role of S1P in FcεRI-mediated mast cell (MC) activation. Thus, S1P/SPHK/S1PRs signaling can be the target for developing anti-allergy drugs.
Collapse
|
10
|
Haas-Neill S, Dvorkin-Gheva A, Forsythe P. Severe, but not moderate asthmatics share blood transcriptomic changes with post-traumatic stress disorder and depression. PLoS One 2022; 17:e0275864. [PMID: 36206293 PMCID: PMC9543640 DOI: 10.1371/journal.pone.0275864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Asthma, an inflammatory disorder of the airways, is one of the most common chronic illnesses worldwide and is associated with significant morbidity. There is growing recognition of an association between asthma and mood disorders including post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). Although there are several hypotheses regarding the relationship between asthma and mental health, there is little understanding of underlying mechanisms and causality. In the current study we utilized publicly available datasets of human blood mRNA collected from patients with severe and moderate asthma, MDD, and PTSD. We performed differential expression (DE) analysis and Gene Set Enrichment Analysis (GSEA) on diseased subjects against the healthy subjects from their respective datasets, compared the results between diseases, and validated DE genes and gene sets with 4 more independent datasets. Our analysis revealed that commonalities in blood transcriptomic changes were only found between the severe form of asthma and mood disorders. Gene expression commonly regulated in PTSD and severe asthma, included ORMDL3 a gene known to be associated with asthma risk and STX8, which is involved in TrkA signaling. We also identified several pathways commonly regulated to both MDD and severe asthma. This study reveals gene and pathway regulation that potentially drives the comorbidity between severe asthma, PTSD, and MDD and may serve as foci for future research aimed at gaining a better understanding of both the relationship between asthma and PTSD, and the pathophysiology of the individual disorders.
Collapse
Affiliation(s)
- Sandor Haas-Neill
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Paul Forsythe
- Alberta Respiratory Centre, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Boukeileh S, Darawshi O, Shmuel M, Mahameed M, Wilhelm T, Dipta P, Forno F, Praveen B, Huber M, Levi-Schaffer F, Tirosh B. Endoplasmic Reticulum Homeostasis Regulates TLR4 Expression and Signaling in Mast Cells. Int J Mol Sci 2022; 23:ijms231911826. [PMID: 36233127 PMCID: PMC9569687 DOI: 10.3390/ijms231911826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that responds to demand in secretory proteins by undergoing expansion. The mechanisms that control the homeostasis of ER size and function involve the activation of the unfolded protein response (UPR). The UPR plays a role in various effector functions of immune cells. Mast cells (MCs) are highly granular tissue-resident cells and key drivers of allergic inflammation. Their diverse secretory functions in response to activation through the high-affinity receptor for IgE (FcεRI) suggest a role for the UPR in their function. Using human cord blood-derived MCs, we found that FcεRI triggering elevated the expression level and induced activation of the UPR transducers IRE1α and PERK, accompanied by expansion of the ER. In mouse bone marrow-derived MCs and peritoneal MCs, the ER underwent a more moderate expansion, and the UPR was not induced following MC activation. The deletion of IRE1α in mouse MCs did not affect proliferation, survival, degranulation, or cytokine stimulation following FcεRI triggering, but it did diminish the surface expression of TLR4 and the consequent response to LPS. A similar phenotype was observed in human MCs using an IRE1α inhibitor. Our data indicate that the ER of MCs, primarily of humans, undergoes a rapid remodeling in response to activation that promotes responses to TLR4. We suggest that IRE1α inhibition can be a strategy for inhibiting the hyperactivation of MCs by LPS over the course of allergic responses.
Collapse
Affiliation(s)
- Shatha Boukeileh
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Odai Darawshi
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Miriam Shmuel
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Mohamed Mahameed
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, D-52074 Aachen, Germany
| | - Priya Dipta
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Francesca Forno
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Bellam Praveen
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, D-52074 Aachen, Germany
| | - Francesca Levi-Schaffer
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
| | - Boaz Tirosh
- The School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 9112002, Israel
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: or ; Tel.: +972-2-6758730; Fax: +972-2-6758741
| |
Collapse
|
12
|
Crosstalk between ORMDL3, serine palmitoyltransferase, and 5-lipoxygenase in the sphingolipid and eicosanoid metabolic pathways. J Lipid Res 2021; 62:100121. [PMID: 34560079 PMCID: PMC8527048 DOI: 10.1016/j.jlr.2021.100121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Leukotrienes (LTs) and sphingolipids are critical lipid mediators participating in numerous cellular signal transduction events and developing various disorders, such as bronchial hyperactivity leading to asthma. Enzymatic reactions initiating production of these lipid mediators involve 5-lipoxygenase (5-LO)-mediated conversion of arachidonic acid to LTs and serine palmitoyltransferase (SPT)-mediated de novo synthesis of sphingolipids. Previous studies have shown that endoplasmic reticulum membrane protein ORM1-like protein 3 (ORMDL3) inhibits the activity of SPT and subsequent sphingolipid synthesis. However, the role of ORMDL3 in the synthesis of LTs is not known. In this study, we used peritoneal-derived mast cells isolated from ORMDL3 KO or control mice and examined their calcium mobilization, degranulation, NF-κB inhibitor-α phosphorylation, and TNF-α production. We found that peritoneal-derived mast cells with ORMDL3 KO exhibited increased responsiveness to antigen. Detailed lipid analysis showed that compared with WT cells, ORMDL3-deficient cells exhibited not only enhanced production of sphingolipids but also of LT signaling mediators LTB4, 6t-LTB4, LTC4, LTB5, and 6t-LTB5. The crosstalk between ORMDL3 and 5-LO metabolic pathways was supported by the finding that endogenous ORMDL3 and 5-LO are localized in similar endoplasmic reticulum domains in human mast cells and that ORMDL3 physically interacts with 5-LO. Further experiments showed that 5-LO also interacts with the long-chain 1 and long-chain 2 subunits of SPT. In agreement with these findings, 5-LO knockdown increased ceramide levels, and silencing of SPTLC1 decreased arachidonic acid metabolism to LTs to levels observed upon 5-LO knockdown. These results demonstrate functional crosstalk between the LT and sphingolipid metabolic pathways, leading to the production of lipid signaling mediators.
Collapse
|
13
|
Ogi K, Takabayashi T, Tomita K, Sakashita M, Morikawa T, Ninomiya T, Okamoto M, Narita N, Fujieda S. ORMDL3 overexpression facilitates FcεRI-mediated transcription of proinflammatory cytokines and thapsigargin-mediated PERK phosphorylation in RBL-2H3 cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1394-1405. [PMID: 34288557 PMCID: PMC8589398 DOI: 10.1002/iid3.489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022]
Abstract
Introduction The chromosomal region 17q21 harbors the human orosomucoid‐like 3 (ORMDL3) gene and has been linked to asthma and other inflammatory diseases. ORMDL3 is involved in the unfolded protein response (UPR), lipid metabolism, and inflammatory reactions. We investigated the effects of ORMDL3 overexpression in RBL‐2H3 cells to determine the contribution of ORMDL3 to inflammatory disease development. Methods We generated ORMDL3 stably overexpressing RBL‐2H3 cells to assess degranulation, transcriptional upregulation of interleukin‐4 (IL‐4), tumor necrosis factor‐α (TNF‐α), monocyte chemoattractant protein‐1 (MCP‐1), and mitogen‐activated protein kinase (MAPK) phosphorylation via FcεRI. In addition, we examined the effects of ORMDL3 overexpression on thapsigargin (TG)‐mediated proinflammatory cytokine transcription and UPR by monitoring MAPK, protein kinase‐like endoplasmic reticulum kinase (PERK), and inositol‐requiring enzyme 1 (IRE1) phosphorylation. Results Overexpression of ORMDL3 enhanced IL‐4, TNF‐α, and MCP‐1 expression after FcεRI cross‐linking, whereas the sphingosine‐1‐phosphate (S1P) agonist FTY720 suppressed this enhancement. There was no significant difference in degranulation and MAPK phosphorylation via FcεRI‐mediated activation between vector‐transfected and ORMDL3‐overexpressing cells. ORMDL3 overexpression accelerated TG‐mediated PERK phosphorylation, while MAPK phosphorylation and proinflammatory cytokine expression showed no significant changes in ORMDL3‐overexpressing cells. Conclusions Our findings suggest that ORMDL3 plays an important role in regulating proinflammatory cytokine expression via the S1P pathway and selectively affects the UPR pathway in mast cells.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kaori Tomita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Taiyo Morikawa
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takahiro Ninomiya
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Okamoto
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Norihiko Narita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
14
|
Li J, Ullah MA, Jin H, Liang Y, Lin L, Wang J, Peng X, Liao H, Li Y, Ge Y, Li L. ORMDL3 Functions as a Negative Regulator of Antigen-Mediated Mast Cell Activation via an ATF6-UPR-Autophagy-Dependent Pathway. Front Immunol 2021; 12:604974. [PMID: 33679742 PMCID: PMC7933793 DOI: 10.3389/fimmu.2021.604974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Antigen (Ag)-mediated mast cell activation plays a critical role in the immunopathology of IgE-dependent allergic diseases. Restraining the signaling cascade that regulates the release of mast cell-derived inflammatory mediators is an attractive therapeutic strategy to treat allergic diseases. Orosomucoid-like-3 (ORMDL3) regulates the endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) and autophagy. Although ERS/UPR/autophagy pathway is crucial in Ag-induced mast cell activation, it is unknown whether ORMDL3 regulates the ERS/UPR/autophagy pathway during mast cell activation. In this study, we found that ORMDL3 expression was downregulated in Ag-activated MC/9 cells. Overexpression of ORMDL3 significantly inhibited degranulation, and cytokine/chemokine production, while the opposite effect was observed with ORMDL3 knockdown in MC/9 cells. Importantly, ORMDL3 overexpression upregulated mediators of ERS-UPR (SERCA2b, ATF6) and autophagy (Beclin 1 and LC3BII). Knockdown of ATF6 and/or inhibition of autophagy reversed the decreased degranulation and cytokine/chemokine expression caused by ORMDL3 overexpression. Moreover, in vivo knockdown of ORMDL3 and/or ATF6 enhanced passive cutaneous anaphylaxis (PCA) reactions in mouse ears. These data indicate that ORMDL3 suppresses Ag-mediated mast cell activation via an ATF6 UPR-autophagy dependent pathway and thus, attenuates anaphylactic reaction. This highlights a potential mechanism to intervene in mast cell mediated diseases.
Collapse
Affiliation(s)
- Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Md Ashik Ullah
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yuting Liang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanjin Liao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqin Ge
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Bugajev V, Halova I, Demkova L, Cernohouzova S, Vavrova P, Mrkacek M, Utekal P, Draberova L, Kuchar L, Schuster B, Draber P. ORMDL2 Deficiency Potentiates the ORMDL3-Dependent Changes in Mast Cell Signaling. Front Immunol 2021; 11:591975. [PMID: 33643282 PMCID: PMC7905224 DOI: 10.3389/fimmu.2020.591975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
The systemic anaphylactic reaction is a life-threatening allergic response initiated by activated mast cells. Sphingolipids are an essential player in the development and attenuation of this response. De novo synthesis of sphingolipids in mammalian cells is inhibited by the family of three ORMDL proteins (ORMDL1, 2, and 3). However, the cell and tissue-specific functions of ORMDL proteins in mast cell signaling are poorly understood. This study aimed to determine cross-talk of ORMDL2 and ORMDL3 proteins in IgE-mediated responses. To this end, we prepared mice with whole-body knockout (KO) of Ormdl2 and/or Ormdl3 genes and studied their role in mast cell-dependent activation events in vitro and in vivo. We found that the absence of ORMDL3 in bone marrow-derived mast cells (BMMCs) increased the levels of cellular sphingolipids. Such an increase was further raised by simultaneous ORMDL2 deficiency, which alone had no effect on sphingolipid levels. Cells with double ORMDL2 and ORMDL3 KO exhibited increased intracellular levels of sphingosine-1-phosphate (S1P). Furthermore, we found that concurrent ORMDL2 and ORMDL3 deficiency increased IκB-α phosphorylation, degranulation, and production of IL-4, IL-6, and TNF-α cytokines in antigen-activated mast cells. Interestingly, the chemotaxis towards antigen was increased in all mutant cell types analyzed. Experiments in vivo showed that passive cutaneous anaphylaxis (PCA), which is initiated by mast cell activation, was increased only in ORMDL2,3 double KO mice, supporting our in vitro observations with mast cells. On the other hand, ORMDL3 KO and ORMDL2,3 double KO mice showed faster recovery from passive systemic anaphylaxis, which could be mediated by increased levels of blood S1P presented in such mice. Our findings demonstrate that Ormdl2 deficiency potentiates the ORMDL3-dependent changes in mast cell signaling.
Collapse
Affiliation(s)
- Viktor Bugajev
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Livia Demkova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Sara Cernohouzova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Vavrova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Mrkacek
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Pavol Utekal
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Björn Schuster
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
16
|
Lee H, Fenske RJ, Akcan T, Domask E, Davis DB, Kimple ME, Engin F. Differential Expression of Ormdl Genes in the Islets of Mice and Humans with Obesity. iScience 2020; 23:101324. [PMID: 32659722 PMCID: PMC7358727 DOI: 10.1016/j.isci.2020.101324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/28/2022] Open
Abstract
The orosomucoid-like (Ormdl) proteins play a critical role in sphingolipid homeostasis, inflammation, and ER stress, all of which are associated with obesity and βcell dysfunction. However, their roles in β cells and obesity remain unknown. Here, we show that islets from overweight/obese human donors displayed marginally reduced ORMDL1-2 expression, whereas ORMDL3 expression was significantly downregulated compared with islets from lean donors. In contrast, Ormdl3 was substantially upregulated in the islets of leptin-deficient obese (ob/ob) mice compared with lean mice. Treatment of ob/ob mice and their islets with leptin markedly reduced islet Ormld3 expression. Ormdl3 knockdown in a β cell line induced expression of pro-apoptotic markers, which was rescued by ceramide synthase inhibitor fumonisin B1. Our results reveal differential expression of Ormdl3 in the islets of a mouse model and humans with obesity, highlight the potential effect of leptin in this differential regulation, and suggest a role for Ormdl3 in β cell apoptosis. Islets of overweight/obese human donors display markedly reduced ORMDL3 expression Ormdl3 expression was significantly upregulated in the islets of ob/ob mice Leptin treatment markedly reduced Ormld3 expression in the islets of ob/ob mice Fumonisin B1 restores increased apoptotic marker levels induced by Ormdl3 silencing
Collapse
Affiliation(s)
- Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA
| | - Rachel J Fenske
- Interdepartmental Graduate Program in Nutritional Sciences, Madison, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Tugce Akcan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA
| | - Elliot Domask
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michelle E Kimple
- Interdepartmental Graduate Program in Nutritional Sciences, Madison, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, Madison, WI 53705, USA; Department of Academic Affairs, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA.
| |
Collapse
|
17
|
Dileepan M, Ha SG, Rastle-Simpson S, Ge XN, Greenberg YG, Wijesinghe DS, Contaifer D, Rao SP, Sriramarao P. Pulmonary delivery of ORMDL3 short hairpin RNA - a potential tool to regulate allergen-induced airway inflammation. Exp Lung Res 2020; 46:243-257. [PMID: 32578458 DOI: 10.1080/01902148.2020.1781297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aim/Purpose: Exposure to various allergens has been shown to increase expression of ORMDL3 in the lung in models of allergic asthma. Studies using genetically modified (transgenic or knock out) mice have revealed some of the functions of ORMDL3 in asthma pathogenesis, although amid debate. The goal of this study was to use targeted post-transcriptional downregulation of ORMDL3 in allergen-challenged wild-type (WT) mice by RNA interference to further elucidate the functional role of ORMDL3 in asthma pathogenesis and evaluate a potential therapeutic option.Methods: Allergen (ovalbumin [OVA])-challenged WT mice were administered intranasally (i.n) with a single dose of five short hairpin RNA (shRNA) constructs with different target sequence for murine ORMDL3 cloned in a lentiviral vector or with the empty vector (control). Mice were evaluated for allergen-induced airway hyperresponsiveness (AHR) and various features of airway inflammation after 72 hours.Results: I.n administration of a single dose of ORMDL3 shRNAs to OVA-challenged mice resulted in reduction of ORMDL3 gene expression in the lungs associated with a significant reduction in AHR to inhaled methacholine and in the number of inflammatory cells recruited in the airways, specifically eosinophils, as well as in airway mucus secretion compared to OVA-challenged mice that received the empty vector. Administration of ORMDL3 shRNAs also significantly inhibited levels of IL-13, eotaxin-2 and sphingosine in the lungs. Additionally, ORMDL3 shRNAs significantly inhibited the allergen-mediated increase in monohexyl ceramides C22:0 and C24:0.Conclusions: Post-transcriptional down regulation of ORMDL3 in allergic lungs using i.n-delivered ORMDL3 shRNA (akin to inhaled therapy) attenuates development of key features of airway allergic disease, confirming the involvement of ORMDL3 in allergic asthma pathogenesis and serving as a model for a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Sung Gil Ha
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | - Xiao Na Ge
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.,Merck & Co., Inc, Palo Alto, CA, USA
| | - Yana G Greenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Savita P Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - P Sriramarao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
18
|
Haflidadottir S, Matthews IL, Almaas R. Cytokine profile in children with food allergy following liver transplantation. Pediatr Transplant 2020; 24:e13657. [PMID: 32067305 DOI: 10.1111/petr.13657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/02/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND LTX in children is associated with increased risk of food allergy, and the mechanisms underlying this are unknown. We wanted to study whether plasma cytokine profile differed in liver transplanted children, with and without food allergy, and whether it differed from untransplanted children with CLD. METHODS Plasma cytokines, total and specific IgE in nine patients with food allergy were compared with 13 patients without food allergy following LTX, and also with seven untransplanted patients with CLD. RESULTS No difference was found in the cytokine profile between liver transplanted patients with and without food allergy. Transplanted patients with food allergy having received a prescription of epinephrine had a significantly higher total IgE (2033 [234-2831] vs 10 [5-41] IU/L, P = .002) and MIP-1b (52 [37-96] vs 36 [32-39], P = .035) compared with transplanted patients without food allergy. Two patients with severe food allergy responded favorably to conversion from tacrolimus-based immunosuppression to MMF and corticosteroids with reduction in clinical symptoms, total IgE, specific IgE, IL-1ra, IL-4, RANTES, PDGF, MIP-1a, and TNFα. The transplantation group had higher levels of IL-1b, IL-5, IL-7, IL-13, GCSF, IFNγ, and MIP-1a compared with the CLD group. CONCLUSIONS No overall difference was found in plasma cytokine profile between patients with and without food allergy. Patients with severe food allergy had significant elevation of MIP-1b. Discontinuation of tacrolimus reduced total and specific IgE and changed plasma cytokine profile. The plasma cytokine profile in liver transplanted children was different compared with children with CLD.
Collapse
Affiliation(s)
- Svanhildur Haflidadottir
- Division of Paediatric and Adolescent Medicine, Department of Pediatric Research, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Iren Lindbak Matthews
- Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Division of Paediatric and Adolescent Medicine, Department of Pediatric Research, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Debeuf N, Zhakupova A, Steiner R, Van Gassen S, Deswarte K, Fayazpour F, Van Moorleghem J, Vergote K, Pavie B, Lemeire K, Hammad H, Hornemann T, Janssens S, Lambrecht BN. The ORMDL3 asthma susceptibility gene regulates systemic ceramide levels without altering key asthma features in mice. J Allergy Clin Immunol 2019; 144:1648-1659.e9. [PMID: 31330218 DOI: 10.1016/j.jaci.2019.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Assem Zhakupova
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Regula Steiner
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Farzaneh Fayazpour
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- VIB Bioimaging Core, VIB Center for Inflammation Research, Ghent, Belgium; Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Lemeire
- Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB Center for Inflammation Research, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Halova I, Bambouskova M, Draberova L, Bugajev V, Draber P. The transmembrane adaptor protein NTAL limits mast cell chemotaxis toward prostaglandin E2. Sci Signal 2018; 11:11/556/eaao4354. [DOI: 10.1126/scisignal.aao4354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotaxis of mast cells is one of the crucial steps in their development and function. Non–T cell activation linker (NTAL) is a transmembrane adaptor protein that inhibits the activation of mast cells and B cells in a phosphorylation-dependent manner. Here, we studied the role of NTAL in the migration of mouse mast cells stimulated by prostaglandin E2 (PGE2). Although PGE2 does not induce the tyrosine phosphorylation of NTAL, unlike IgE immune complex antigens, we found that loss of NTAL increased the chemotaxis of mast cells toward PGE2. Stimulation of mast cells that lacked NTAL with PGE2 enhanced the phosphorylation of AKT and the production of phosphatidylinositol 3,4,5-trisphosphate. In resting NTAL-deficient mast cells, phosphorylation of an inhibitory threonine in ERM family proteins accompanied increased activation of β1-containing integrins, which are features often associated with increased invasiveness in tumors. Rescue experiments indicated that only full-length, wild-type NTAL restored the chemotaxis of NTAL-deficient cells toward PGE2. Together, these data suggest that NTAL is a key inhibitor of mast cell chemotaxis toward PGE2, which may act through the RHOA/ERM/β1-integrin and PI3K/AKT axes.
Collapse
|
21
|
Ma X, Long F, Yun Y, Dang J, Wei S, Zhang Q, Li J, Zhang H, Zhang W, Wang Z, Liu Q, Zou C. ORMDL3 and its implication in inflammatory disorders. Int J Rheum Dis 2018; 21:1154-1162. [PMID: 29879314 DOI: 10.1111/1756-185x.13324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A growing body of evidence has suggested the genetic association of ORMDL3 gene (ORMDL Sphingolipid Biosynthesis Regulator 3) polymorphisms with a diverse set of inflammatory disorders that include bronchial asthma, inflammatory bowel disease, ankylosing spondylitis and atherosclerosis. Gene functional investigations have revealed the particular relevance of ORMDL3 in endoplasmic reticulum stress, lipid metabolism and inflammatory reactions. Additionally, several reports have recently added a new dimension to our understanding of the modulation of ORMDL3 gene expression in inflammation. This mini-review summarizes the pertinent publications regarding the genetic association studies and mechanistic exploration of ORMDL3 in common inflammatory disorders.
Collapse
Affiliation(s)
- Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Feng Long
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Yan Yun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Dang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China.,Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, China
| | - Shijun Wei
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Jinzhang Li
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
22
|
Shi JP, Wang SY, Chen LL, Zhang XY, Zhao YH, Du B, Jiang WZ, Qian M, Ren H. P2Y6 contributes to ovalbumin-induced allergic asthma by enhancing mast cell function in mice. Oncotarget 2018; 7:60906-60918. [PMID: 27590515 PMCID: PMC5308625 DOI: 10.18632/oncotarget.11758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022] Open
Abstract
Extracelluar nucleotides have been identified as regulatory factors in asthmatic pathogenesis by activating purinergic receptors. This research aimed to investigate the function of the purinergic receptor P2Y6 in mediating airway inflammation in allergic asthma. Wild-type (WT) and P2Y6-deficient mice were stimulated with ovalbumin (OVA) to construct asthmatic mouse models. Overexpression of P2Y6 and uridine 5'-diphosphate (UDP)-releasing were demonstrated in lung tissues in ovalbumin-induced asthmatic mice. The release of the cytokine IL-4, mast cell invasion, and the airway remodeling phenotypes were more severe following the application of UDP in asthmatic mice. However, P2Y6 deficiency reduced these asthmatic pathogeneticsymptoms markedly in a mouse model. In vitro, we found that P2Y6 in purified mast cells enhanced the functions of mast cells in the inflammatory response in the asthmatic process by triggering their capability for migration, cytokine secretion and granule release. Moreover, P2Y6 stimulated the function of mast cells through activation of the AKT signaling pathway. Our data provides evidence that P2Y6 contributes to allergic airway inflammation and remodeling by enhancing the functions of mast cells in ovalbumin-induced asthmatic mice.
Collapse
Affiliation(s)
- Jue-Ping Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Shao-Ying Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Li-Li Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Xiao-Yu Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Yi-Han Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Wen-Zheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| |
Collapse
|
23
|
Das S, Miller M, Broide DH. Chromosome 17q21 Genes ORMDL3 and GSDMB in Asthma and Immune Diseases. Adv Immunol 2017; 135:1-52. [PMID: 28826527 DOI: 10.1016/bs.ai.2017.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome 17q21 contains a cluster of genes including ORMDL3 and GSDMB, which have been highly linked to asthma in genome-wide association studies. ORMDL3 is localized to the endoplasmic reticulum and regulates downstream pathways including sphingolipids, metalloproteases, remodeling genes, and chemokines. ORMDL3 inhibits serine palmitoyl-CoA transferase, the rate-limiting enzyme for sphingolipid biosynthesis. In addition, ORMDL3 activates the ATF6α branch of the unfolded protein response which regulates SERCA2b and IL-6, pathways of potential importance to asthma. The SNP-linking chromosome 17q21 to asthma is associated with increased ORMDL3 and GSDMB expression. Mice expressing either increased levels of human ORMDL3, or human GSDMB, have an asthma phenotype characterized by increased airway responsiveness and increased airway remodeling (increased smooth muscle and fibrosis) in the absence of airway inflammation. GSDMB regulates expression of 5-LO and TGF-β1 which are known pathways involved in the pathogenesis of asthma. GSDMB is one of four members of the GSDM family (GSDMA, GSDMB, GSDMC, and GSDMD). GSDMD (located on chromosome 8q24 and not linked to asthma) has emerged as a key mediator of pyroptosis. GSDMD is a key component of the NLPR3 inflammasome and is required for its activation. GSDMD undergoes proteolytic cleavage by caspase-1 to release its N-terminal fragment, which in turn mediates pyroptosis and IL-1β secretion. Chromosome 17q21 has not only been linked to asthma but also to type 1 diabetes, inflammatory bowel disease, and primary biliary cirrhosis suggesting that future insights into the biology of genes located in this region will increase our understanding of these diseases.
Collapse
Affiliation(s)
- Sudipta Das
- University of California, San Diego, CA, United States
| | - Marina Miller
- University of California, San Diego, CA, United States
| | | |
Collapse
|
24
|
17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells. Nat Commun 2016; 7:13426. [PMID: 27848966 PMCID: PMC5116091 DOI: 10.1038/ncomms13426] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 10/03/2016] [Indexed: 12/20/2022] Open
Abstract
Asthma and autoimmune disease susceptibility has been strongly linked to genetic variants in the 17q21 haploblock that alter the expression of ORMDL3; however, the molecular mechanisms by which these variants perturb gene expression and the cell types in which this effect is most prominent are unclear. We found several 17q21 variants overlapped enhancers present mainly in primary immune cell types. CD4+ T cells showed the greatest increase (threefold) in ORMDL3 expression in individuals carrying the asthma-risk alleles, where ORMDL3 negatively regulated interleukin-2 production. The asthma-risk variants rs4065275 and rs12936231 switched CTCF-binding sites in the 17q21 locus, and 4C-Seq assays showed that several distal cis-regulatory elements upstream of the disrupted ZPBP2 CTCF-binding site interacted with the ORMDL3 promoter region in CD4+ T cells exclusively from subjects carrying asthma-risk alleles. Overall, our results suggested that T cells are one of the most prominent cell types affected by 17q21 variants. Variations in the 17q21 locus are linked to asthma susceptibility and other autoimmune diseases. Here, the authors perform cell type-specific functional genomic analyses of asthma-risk SNPs, and show a genotype specific mechanism of differential gene regulation relevant to immune function.
Collapse
|
25
|
Paulenda T, Draber P. The role of ORMDL proteins, guardians of cellular sphingolipids, in asthma. Allergy 2016; 71:918-30. [PMID: 26969910 DOI: 10.1111/all.12877] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
A family of widely expressed ORM-like (ORMDL) proteins has been recently linked to asthma in genomewide association studies in humans and extensively explored in in vivo studies in mice. ORMDL proteins are key regulators of serine palmitoyltransferase, an enzyme catalyzing the initial step of sphingolipid biosynthesis. Sphingolipids play prominent roles in cell signaling and response to stress, and they affect the mechanistic properties of cellular membranes. Deregulation of sphingolipid biosynthesis and their recycling has been proven to support and even cause several diseases including allergy, inflammation, and asthma. ORMDL3, the most extensively studied member of the ORMDL family, has been shown to be important for endoplasmic reticulum homeostasis by regulating the unfolded protein response and calcium response. In immune cells, ORMDL3 is involved in migration and in the production of proinflammatory cytokines. Furthermore, changes in the expression level of ORMDL3 are important in allergen-induced asthma pathologies. This review focuses on functional aspects of the ORMDL family proteins, which may serve as new therapeutic targets for the treatment of asthma and some other life-threatening diseases.
Collapse
Affiliation(s)
- T. Paulenda
- Laboratory of Signal Transduction; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - P. Draber
- Laboratory of Signal Transduction; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|