1
|
Alnaaim SA, Al-Kuraishy HM, Alexiou A, Papadakis M, Saad HM, Batiha GES. Role of Brain Liver X Receptor in Parkinson's Disease: Hidden Treasure and Emerging Opportunities. Mol Neurobiol 2024; 61:341-357. [PMID: 37606719 PMCID: PMC10791998 DOI: 10.1007/s12035-023-03561-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). The liver X receptor (LXR) is involved in different neurodegenerative diseases. Therefore, the objective of the present review was to clarify the possible role of LXR in PD neuropathology. LXRs are the most common nuclear receptors of transcription factors that regulate cholesterol metabolism and have pleiotropic effects, including anti-inflammatory effects and reducing intracellular cholesterol accumulation. LXRs are highly expressed in the adult brain and act as endogenous sensors for intracellular cholesterol. LXRs have neuroprotective effects against the development of neuroinflammation in different neurodegenerative diseases by inhibiting the expression of pro-inflammatory cytokines. LXRs play an essential role in mitigating PD neuropathology by reducing the expression of inflammatory signaling pathways, neuroinflammation, oxidative stress, mitochondrial dysfunction, and enhancement of BDNF signaling.In conclusion, LXRs, through regulating brain cholesterol homeostasis, may be effectual in PD. Also, inhibition of node-like receptor pyrin 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) by LXRs could effectively prevent neuroinflammation in PD. Taken together, LXRs play a crucial role in PD neuropathology by inhibiting neuroinflammation and associated degeneration of DNs.
Collapse
Affiliation(s)
- Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
2
|
Deshwal S, Baidya AT, Kumar R, Sandhir R. Structure-based virtual screening for identification of potential non-steroidal LXR modulators against neurodegenerative conditions. J Steroid Biochem Mol Biol 2022; 223:106150. [PMID: 35787453 DOI: 10.1016/j.jsbmb.2022.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
Liver X Receptors (LXRs) are members of the nuclear receptor superfamily that regulate cholesterol metabolism. LXRs have been suggested as promising targets against many neurodegenerative diseases (NDDs). The present study was aimed to identify novel non-steroidal molecules that may potentially modulate LXR activity. The structure-based virtual screening (SBVS) was used to search for suitable compounds from the Asinex library. The top hits were selected and filtered based on their binding affinity for LXR α and β isoforms. Based on molecular docking and scoring results, 24 compounds were selected that had binding energy in the range of - 13.9 to - 12 for LXRα and - 12.5 to - 11 for LXRβ, which were higher than the reference ligands (GW3965 and TO901317). Further, the five hits referred to as model 29, 64, 202, 250, 313 were selected by virtue of their binding interactions with amino acid residues at the active site of LXRs. The selected hits were then subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis and blood-brain permeability prediction. It was observed that the selected hits had better pharmacokinetic properties with no toxicity and could cross blood-brain barrier. Further, the selected hits were analysed for dynamic evolution of the system with LXRs by molecular dynamics (MD) simulation at 100 ns using GROMACS. The MD simulation results validated that selected hits possess a remarkable amount of flexibility, stability, compactness, binding energy and exhibited limited conformational modification. The root mean square deviation (RMSD) values of the top-scoring hits complexed with LXRα and LXRβ were 0.05-0.6 nm and 0.05-0.45 nm respectively, which is greater than the protein itself. Altogether the study identified potential non-steroidal LXR modulators that appear to be effective against various neurodegenerative conditions involving perturbed cholesterol and lipid homeostasis.
Collapse
Affiliation(s)
- Sonam Deshwal
- Department of Biochemistry, Basic Medical Sciences, Block-II, Panjab University, Chandigarh 160014, India
| | - Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences, Block-II, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
T0901317, an Agonist of Liver X Receptors, Attenuates Neuronal Apoptosis in Early Brain Injury after Subarachnoid Hemorrhage in Rats via Liver X Receptors/Interferon Regulatory Factor/P53 Upregulated Modulator of Apoptosis/Dynamin-1-Like Protein Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8849131. [PMID: 34194609 PMCID: PMC8181056 DOI: 10.1155/2021/8849131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/29/2020] [Accepted: 05/12/2021] [Indexed: 12/28/2022]
Abstract
Methods Subarachnoid hemorrhage (SAH) models of Sprague-Dawley rats were established with perforation method. T0901317 was injected intraperitoneally 1-hour post-SAH. GSK2033, an inhibitor of LXRs, and interferon regulatory factor (IRF-1) CRISPR activation were injected intracerebroventricularly to evaluate potential signaling pathway. The severity of SAH, neurobehavior test in both short- and long-term and apoptosis was measured with Western blot and immunofluorescence staining. Results Expression of LXR-α and IRF-1 increased and peaked at 24 h post-SAH, while LXR-β remained unaffected in SAH+vehicle group compared with Sham group. Post-SAH T0901317 treatment attenuated neuronal impairments in both short- and long-term and decreased neuronal apoptosis, the expression of IRF-1, P53 upregulated modulator of apoptosis (PUMA), dynamin-1-like protein (Drp1), Bcl-2-associated X protein (Bax) and cleaved caspase-3, and increasing B-cell lymphoma 2 (Bcl-2) at 24 h from modeling. GSK2033 inhibited LXRs and reversed T0901317's neuroprotective effects. IRF-1 CRISPR activation upregulated the expression of IRF-1 and abolished the treatment effects of T0901317. Conclusion T0901317 attenuated neuronal apoptosis via LXRs/IRF-1/PUMA/Drp1 pathway in SAH rats.
Collapse
|
4
|
Zhang S, Li W, Zheng R, Zhao B, Zhang Y, Zhao D, Zhao C, Yan C, Zhao Y. Cerebrotendinous xanthomatosis with peripheral neuropathy: a clinical and neurophysiological study in Chinese population. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1372. [PMID: 33313117 PMCID: PMC7723652 DOI: 10.21037/atm-20-2746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Cerebrotendinous xanthomatosis (CTX) is an inborn disorder of bile acid metabolism caused by deficiency of sterol 27-hydroxylase (CYP27A1) gene. CTX-related peripheral neuropathy has rarely been discussed in Chinese population. Here, we reported 6 CTX cases and performed a literature review focused on CTX with neuropathy to summarize its clinical and neurophysiological features. Methods All clinical data of 6 CTX cases were collected, and 21 reported Chinese CTX patients (including this study) were reviewed and summarized. Results Clinical manifestations of 6 CTX cases showed great heterogeneity. Cognitive decline, spastic paraplegia, cerebellar ataxia and advanced bulbar palsy were common neurological disorders, often accompanied by non-neurological signs like xanthomas, cataract, diarrhea and pes cavus. Dentate nuclei hyperintensity with or without hyposignal is a valuable MRI hallmark. Pooling our patients and literature review together, peripheral neuropathy was predominant sensorimotor demyelinating type in Chinese population, with an evident length dependent pattern and increased vulnerability in motor nerves. Demyelinating and axonal degeneration tend to exist in severe neuropathy. Three novel mutations including c.1055C>A; c.432T>G; c.472T>G were identified in CYP27A1 and predicted to be pathogenic. Oral CDCA therapy could ameliorate some of the existing symptoms and provide clinical stability, but it could not cease disease progression completely. Conclusions Our study broadens the phenotype and mutation spectrum of CTX. Patients with cognitive decline, spastic tetraparesis, cerebellar ataxia and bulbar palsy, should be highly suspicious of CTX even no xanthomas disclosed. Peripheral neuropathy was predominant sensorimotor demyelinating type in Chinese population, with mixed axonal and demyelinating type in severe cases. Three novel likely pathogenic mutations including c.1055C>A; c.432T>G; c.472T>G were identified in CYP27A1.
Collapse
Affiliation(s)
- Shu Zhang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Rui Zheng
- Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bing Zhao
- Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Yongqing Zhang
- Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Cuiping Zhao
- Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, China.,Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
5
|
Desai R, Campanella M. Exploring mitochondrial cholesterol signalling for therapeutic intervention in neurological conditions. Br J Pharmacol 2019; 176:4284-4292. [PMID: 31077345 PMCID: PMC6887905 DOI: 10.1111/bph.14697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 02/06/2023] Open
Abstract
The pharmacological targeting of cholesterol levels continues to generate interest due to the undoubted success of therapeutic agents, such as statins, in extending life expectancy by modifying the prognosis of diseases associated with the impairment of lipid metabolism. Advances in our understanding of mitochondrial dysfunction in chronic age-related diseases of the brain have disclosed an emerging role for mitochondrial cholesterol in their pathophysiology, thus delineating an opportunity to provide mechanistic insights and explore strategies of intervention. This review draws attention to novel signalling mechanisms in conditions linked with impaired metabolism associated with impaired handling of cholesterol and its oxidized forms (oxysterols) by mitochondria. By emphasizing the role of mitochondrial cholesterol in neurological diseases, we here call for novel approaches and new means of assessment. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Radha Desai
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, University of LondonLondonUK
| | - Michelangelo Campanella
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, University of LondonLondonUK
- Consortium for Mitochondrial Research (CfMR)University College LondonLondonUK
| |
Collapse
|
6
|
Mouzat K, Chudinova A, Polge A, Kantar J, Camu W, Raoul C, Lumbroso S. Regulation of Brain Cholesterol: What Role Do Liver X Receptors Play in Neurodegenerative Diseases? Int J Mol Sci 2019; 20:E3858. [PMID: 31398791 PMCID: PMC6720493 DOI: 10.3390/ijms20163858] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Liver X Receptors (LXR) alpha and beta are two members of nuclear receptor superfamily documented as endogenous cholesterol sensors. Following conversion of cholesterol in oxysterol, both LXR isoforms detect intracellular concentrations and act as transcription factors to promote expression of target genes. Among their numerous physiological roles, they act as central cholesterol-lowering factors. In the central nervous system (CNS), cholesterol has been shown to be an essential determinant of brain function, particularly as a major constituent of myelin and membranes. In the brain, LXRs act as cholesterol central regulators, and, beyond this metabolic function, LXRs have additional roles such as providing neuroprotective effects and lowering neuroinflammation. In many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and multiple sclerosis (MS), dysregulations of cholesterol and oxysterol have been reported. In this paper, we propose to focus on recent advances in the knowledge of the LXRs roles on brain cholesterol and oxysterol homeostasis, neuroinflammation, neuroprotection, and their putative involvement in neurodegenerative disorders. We will discuss their potential use as candidates for both molecular diagnosis and as promising pharmacological targets in the treatment of ALS, AD, or MS patients.
Collapse
Affiliation(s)
- Kevin Mouzat
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France.
| | - Aleksandra Chudinova
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - Anne Polge
- Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Jovana Kantar
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, University of Montpellier, 34091 Montpellier, France
| | - Serge Lumbroso
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| |
Collapse
|
7
|
Canosa A, Pagani M, Brunetti M, Barberis M, Iazzolino B, Ilardi A, Cammarosano S, Manera U, Moglia C, Calvo A, Cistaro A, Chiò A. Correlation between Apolipoprotein E genotype and brain metabolism in amyotrophic lateral sclerosis. Eur J Neurol 2018; 26:306-312. [PMID: 30240096 DOI: 10.1111/ene.13812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The aim of the study was to evaluate the metabolic correlates of Apolipoprotein E (APOE) genotype in amyotrophic lateral sclerosis (ALS) and to investigate the role of ε2 as a risk factor for cognitive impairment. METHODS A total of 159 ALS cases underwent APOE and ALS-related genes analysis, neuropsychological assessment and cerebral 18 F-2-fluoro-2-deoxy-D-glucose positron emission tomography. The APOE genotype was regressed against whole brain metabolism as assessed by 18 F-2-fluoro-2-deoxy-D-glucose positron emission tomography, with age, sex, education, type of onset and C9orf72 status as covariates. RESULTS Brain metabolism was significantly positively correlated with APOE genotype from ε2/ε2 to ε3/ε4 in the left prefrontal [Brodmann area (BA) 10], orbitofrontal (BAs 11, 45, 47) and anterior cingulate (BA 32) cortices. There was a tendency to a relative hypometabolism going towards the ε2/ε2 extreme. CONCLUSIONS We found a highly significant, relatively lower metabolism in association with the ε2 allele in extra-motor areas typically affected in frontotemporal dementia (left prefrontal, orbitofrontal and anterior cingulate cortices), strengthening the finding of a role of ε2 as a risk factor for cognitive impairment in ALS. Our data suggested a link between cholesterol homeostasis and neurodegeneration.
Collapse
Affiliation(s)
- A Canosa
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin
| | - M Pagani
- Institute of Cognitive Sciences and Technologies (CNR), Rome, Italy.,Department of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden
| | - M Brunetti
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin
| | - M Barberis
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin
| | - B Iazzolino
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin
| | - A Ilardi
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin
| | - S Cammarosano
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin
| | - U Manera
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin
| | - C Moglia
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin
| | - A Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin.,Neuroscience Institute of Turin (NIT), Turin
| | - A Cistaro
- PET Centre AFFIDEA IRMET, Turin, Italy
| | - A Chiò
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin.,Institute of Cognitive Sciences and Technologies (CNR), Rome, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin.,Neuroscience Institute of Turin (NIT), Turin
| |
Collapse
|
8
|
Integrating Thyroid Hormone Signaling in Hypothalamic Control of Metabolism: Crosstalk Between Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19072017. [PMID: 29997323 PMCID: PMC6073315 DOI: 10.3390/ijms19072017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
The obesity epidemic is well recognized as a significant global health issue. A better understanding of the energy homeostasis mechanisms could help to identify promising anti-obesity therapeutic strategies. It is well established that the hypothalamus plays a pivotal role governing energy balance. The hypothalamus consists of tightly interconnected and specialized neurons that permit the sensing and integration of several peripheral inputs, including metabolic and hormonal signals for an appropriate physiological response. Current evidence shows that thyroid hormones (THs) constitute one of the key endocrine factors governing the regulation and the integration of metabolic homeostasis at the hypothalamic level. THs modulate numerous genes involved in the central control of metabolism, as TRH (Thyrotropin-Releasing Hormone) and MC4R (Melanocortin 4 Receptor). THs act through their interaction with thyroid hormone receptors (TRs). Interestingly, TH signaling, especially regarding metabolic regulations, involves TRs crosstalk with other metabolically linked nuclear receptors (NRs) including PPAR (Peroxisome proliferator-activated receptor) and LXR (Liver X receptor). In this review, we will summarize current knowledge on the important role of THs integration of metabolic pathways in the central regulation of metabolism. Particularly, we will shed light on the crosstalk between TRs and other NRs in controlling energy homeostasis. This could be an important track for the development of attractive therapeutic compounds.
Collapse
|
9
|
Spagnuolo MS, Donizetti A, Iannotta L, Aliperti V, Cupidi C, Bruni AC, Cigliano L. Brain-derived neurotrophic factor modulates cholesterol homeostasis and Apolipoprotein E synthesis in human cell models of astrocytes and neurons. J Cell Physiol 2018; 233:6925-6943. [PMID: 29323721 DOI: 10.1002/jcp.26480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
In the central nervous system, cholesterol is critical to maintain membrane plasticity, cellular function, and synaptic integrity. In recent years, much attention was focused on the role of cholesterol in brain since a breakdown of cholesterol metabolism has been associated with different diseases. Brain-derived neurotrophic factor (BDNF) was previously reported to elicit cholesterol biosynthesis and promote the accumulation of presynaptic proteins in cholesterol-rich lipid rafts, but no data are available on its ability to modulate physiological mechanisms involved in cholesterol homeostasis. Major aim of this research was to investigate whether BDNF influences cholesterol homeostasis, focusing on the effect of the neurotrophin on Apolipoprotein E (ApoE) synthesis, cholesterol efflux from astrocytes and cholesterol incorporation into neurons. Our results show that BDNF significantly stimulates cholesterol efflux by astrocytes, as well as ATP binding cassette A1 (ABCA1) transporter and ApoE expression. Conversely, cholesterol uptake in neurons was downregulated by BDNF. This effect was associated with the increase of Liver X Receptor (LXR)-beta expression in neuron exposed to BDNF. The level of apoptosis markers, that is, cleaved caspase 3 and poly ADP ribose polymerase (PARP), was found increased in neurons treated with high cholesterol, but significantly lower when the cells were exposed to cholesterol in the presence of BDNF, thus suggesting a neuroprotective role of the neurotrophin, likely through its reducing effect of neuronal cholesterol uptake. Interestingly, cholesterol stimulates BDNF production by neurons. Overall, our findings evidenced a novel role of BDNF in the modulation of ApoE and cholesterol homeostasis in glial and neuronal cells.
Collapse
Affiliation(s)
- Maria S Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lucia Iannotta
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Vincenza Aliperti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Chiara Cupidi
- Centro Regionale di Neurogenetica, via Perugini, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Amalia C Bruni
- Centro Regionale di Neurogenetica, via Perugini, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Liver X Receptor Genes Variants Modulate ALS Phenotype. Mol Neurobiol 2017; 55:1959-1965. [PMID: 28244008 DOI: 10.1007/s12035-017-0453-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.
Collapse
|