1
|
Basu B, Dutta S, Rahaman M, Bose A, Das S, Prajapati J, Prajapati B. The Future of Cystic Fibrosis Care: Exploring AI's Impact on Detection and Therapy. CURRENT RESPIRATORY MEDICINE REVIEWS 2024; 20:302-321. [DOI: 10.2174/011573398x283365240208195944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/03/2025]
Abstract
:
Cystic Fibrosis (CF) is a fatal hereditary condition marked by thicker mucus production,
which can cause problems with the digestive and respiratory systems. The quality of life and
survival rates of CF patients can be improved by early identification and individualized therapy
measures. With an emphasis on its applications in diagnosis and therapy, this paper investigates
how Artificial Intelligence (AI) is transforming the management of Cystic Fibrosis (CF). AI-powered
algorithms are revolutionizing CF diagnosis by utilizing huge genetic, clinical, and imaging
data databases. In order to identify CF mutations quickly and precisely, machine learning methods
evaluate genomic profiles. Furthermore, AI-driven imaging analysis helps to identify lung and gastrointestinal
issues linked to cystic fibrosis early and allows for prompt treatment. Additionally,
AI aids in individualized CF therapy by anticipating how patients will react to already available
medications and enabling customized treatment regimens. Drug repurposing algorithms find
prospective candidates from already-approved drugs, advancing treatment choices. Additionally,
AI supports the optimization of pharmacological combinations, enhancing therapeutic results
while minimizing side effects. AI also helps with patient stratification by connecting people with
CF mutations to therapies that are best for their genetic profiles. Improved treatment effectiveness
is promised by this tailored strategy. The transformational potential of artificial intelligence (AI)
in the field of cystic fibrosis is highlighted in this review, from early identification to individualized
medication, bringing hope for better patient outcomes, and eventually prolonging the lives of
people with this difficult ailment.
Collapse
Affiliation(s)
- Biswajit Basu
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Srabona Dutta
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Monosiz Rahaman
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Anirbandeep Bose
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Sourav Das
- School of Pharmacy, The Neotia University, Sarisha, Diamond Harbour, West
Bengal, India
| | - Jigna Prajapati
- Achaya Motibhai Patel Institute of Computer Studies, Ganpat University, Mehsana, Gujarat, 384012,
India
| | - Bhupendra Prajapati
- S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012,
India
| |
Collapse
|
2
|
Umashankar B, Eliasson L, Ooi CY, Kim KW, Shaw JAM, Waters SA. Beyond insulin: Unraveling the complex interplay of ER stress, oxidative damage, and CFTR modulation in CFRD. J Cyst Fibros 2024; 23:842-852. [PMID: 38897882 DOI: 10.1016/j.jcf.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
CF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action. Studies indicate that ER stress and subsequent UPR activation play critical roles in both exocrine and endocrine pancreatic cell dysfunction, contributing to β-cell loss and insulin insufficiency. Additionally, oxidative stress and altered calcium flux, exacerbated by CFTR dysfunction, impair β-cell survival and function, highlighting the significance of antioxidant pathways in CFRD pathogenesis. Emerging evidence underscores the importance of exosomal microRNAs (miRNAs) in mediating inflammatory and stress responses, offering novel insights into CFRD's molecular landscape. Despite insulin therapy remaining the cornerstone of CFRD management, the variability in response to CFTR modulators underscores the need for personalized treatment approaches. The review advocates for further research into non-CFTR therapeutic targets, emphasizing the need to address the multifaceted pathophysiology of CFRD. Understanding the intricate mechanisms underlying CFRD will pave the way for innovative treatments, moving beyond insulin therapy to target the disease's root causes and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Chee Y Ooi
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital Randwick, NSW, Australia
| | - Ki Wook Kim
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Virology and Serology Division (SaViD), New South Wales Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Anwar S, Peng JL, Zahid KR, Zhou YM, Ali Q, Qiu CR. Cystic Fibrosis: Understanding Cystic Fibrosis Transmembrane Regulator Mutation Classification and Modulator Therapies. Adv Respir Med 2024; 92:263-277. [PMID: 39051188 PMCID: PMC11270331 DOI: 10.3390/arm92040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
A common life-threatening hereditary disease, Cystic Fibrosis (CF), affects primarily Caucasian infants. High sweat-salt levels are observed as a result of a single autosomal mutation in chromosome 7 that affects the critical function of the cystic fibrosis transmembrane regulator (CFTR). For establishing tailored treatment strategies, it is important to understand the broad range of CFTR mutations and their impacts on disease pathophysiology. This study thoroughly investigates the six main classes of classification of CFTR mutations based on their functional effects. Each class is distinguished by distinct molecular flaws, such as poor protein synthesis, misfolding, gating defects, conduction defects, and decreased CFTR expression at the apical membrane. Furthermore, this paper focuses on the emerging field of CFTR modulators, which intend to restore CFTR function or mitigate its consequences. These modulators, which are characterized by the mode of action and targeted mutation class, have the potential to provide personalized therapy regimens in CF patients. This review provides valuable insights into the genetic basis of CF pathology, and highlights the potential for precision medicine methods in CF therapy by thoroughly investigating CFTR mutation classification and related modulators.
Collapse
Affiliation(s)
- Saba Anwar
- Centre for Applied Molecular Biology, University of the Punjab Lahore, Lahore 53700, Pakistan;
| | - Jin-Liang Peng
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, China; (J.-L.P.); (Y.-M.Z.)
| | - Kashif Rafiq Zahid
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianaapolis, IN 46202, USA;
| | - Yu-Ming Zhou
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, China; (J.-L.P.); (Y.-M.Z.)
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Chong-Rong Qiu
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, China; (J.-L.P.); (Y.-M.Z.)
| |
Collapse
|
4
|
Kappel S, Melek K, Ross-Kaschitza D, Hauert B, Gerber CE, Lochner M, Peinelt C. CBA (4-chloro-2-(2-chlorophenoxy)acetamido) benzoic acid) inhibits TMEM206 mediated currents and TMEM206 does not contribute to acid-induced cell death in colorectal cancer cells. Front Pharmacol 2024; 15:1369513. [PMID: 38515848 PMCID: PMC10955468 DOI: 10.3389/fphar.2024.1369513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Upon activation at low pH, TMEM206 conducts Cl- ions across plasma and vesicular membranes. In a (patho)physiological context, TMEM206 was reported to contribute to acid-induced cell death in neurons, kidney and cervical epithelial cells. We investigated the role of TMEM206 in acid-induced cell death in colorectal cancer cells. In addition, we studied CBA as a new small molecule inhibitor for TMEM206. Methods: The role of TMEM206 in acid-induced cell death was studied with CRISPR/Cas9-mediated knockout and FACS analysis. The pharmacology of TMEM206 was determined with the patch clamp technique. Results: In colorectal cancer cells, TMEM206 is not a critical mediator of acid-induced cell death. CBA is a small molecule inhibitor of TMEM206 (IC50 = 9.55 µM) at low pH, at pH 6.0 inhibition is limited. Conclusion: CBA demonstrates effective and specific inhibition of TMEM206; however, its inhibitory efficacy is limited at pH 6.0. Despite this limitation, CBA is a potent inhibitor for functional studies at pH 4.5 and may be a promising scaffold for the development of future TMEM206 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
6
|
Lv H, Niu J, Pan W, Wang Y, Wang L, Wang M, Shi Y, Zhang G, Al Hamyari B, Wang S, Li X, Shi Y. Stool-softening effect and action mechanism of free anthraquinones extracted from Rheum palmatum L. on water deficit-induced constipation in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117336. [PMID: 37907143 DOI: 10.1016/j.jep.2023.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese herbal medicine, rhubarb is said to remove accumulation with purgation, clearing heat, and discharging fire. Modern pharmacology has shown that rhubarb extract has a purgative effect when given to experimental animals in an appropriate dose. However, the active components and their mechanism of action are still not clearly defined. AIM OF THE STUDY The current research aimed to evaluate the synergistic stool-softening effects and explore the action mechanism of rhubarb free anthraquinones (RhA) and their monomers on constipation in rats. MATERIALS AND METHODS A rat model of water deficit-induced constipation was established to induce constipation, and these rats were treated with RhA and its monomers. ELISA, histopathology, immunohistochemistry, qPCR and Western blotting based on network pharmacology and molecular docking were conducted to explore the possible mechanism of action of RhA and its monomers. RESULTS RhA, aloe-emodin, rhein, and chrysophanol showed stool-softening activity, and the combination of aloe-emodin and rhein had the strongest softening effect on faecal pellets. Aloe-emodin, rhein, and chrysophanol significantly increased the serum levels of vasoactive intestinal peptide (VIP), motilin (MTL), and substance P (SP), upregulated the expression of VIP, cyclase-associated protein 1 (CAP1), protein kinase A (PKA), cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 3 (AQP3), aquaporin 4 (AQP4), and aquaporin 8 (AQP8), decreased the expression of epithelial sodium channel (ENaC) and Na+/H+ exchanger 3 (NHE3), and reduced the colonic tissue concentration of Na+-K+-ATPase in the constipated rats. Osmolality of colonic fluid in model rats treated by RhA, aloe-emodin, rhein, and chrysophanol was increased. CONCLUSION Aloe-emodin, rhein, and chrysophanol were the stool-softening components of the RhA extract, and there were certain drug-interactions between the components. RhA upregulated VIP expression, activated the cyclic adenosine monophosphate protein kinase A (cAMP/PKA) pathway, and further stimulated CFTR expression while inhibiting NHE3 and ENaC expression, resulting in a hypertonic state in the colonic lumen. Water transport could then be driven by an osmotic gradient, which in turn led to the upregulation of AQP3, AQP4, and AQP8 expression. In addition, RhA likely improved gastrointestinal motility by increasing serum VIP, SP, and MTL concentrations, thus promoting faecal excretion.
Collapse
Affiliation(s)
- Huijuan Lv
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China.
| | - Jingjing Niu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China.
| | - Wenhao Pan
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China.
| | - Yudong Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China.
| | - Lifang Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China.
| | - Meng Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China.
| | - Yali Shi
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China.
| | - Guifang Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China.
| | - Bandar Al Hamyari
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China.
| | - Shaohua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China; Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Xuefeng Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yanbin Shi
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, China; Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Wu D, Zhu J, Yang F, Li R, Liu L, Liu D, Liu C, Qu X, Liu H, Ji M, Qin X, Hua L, Xiang Y. CTNNAL1 deficiency suppresses CFTR expression in HDM-induced asthma mouse model through ROCK1-CAL signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1618-1629. [PMID: 37715489 PMCID: PMC10579809 DOI: 10.3724/abbs.2023152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 09/17/2023] Open
Abstract
The downregulation of adhesion molecule catenin alpha-like 1 (CTNNAL1) in airway epithelial cells of asthma patients and house dust mite (HDM)-induced asthma animal models was illustrated in our previous study. It is assumed to contribute to airway inflammation and mucus hypersecretion. In this work, we further explore the underlying mechanism of CTNNAL1 in asthma. CTNNAL1-silenced female mice exhibit a decreased level of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated and ATP-gated Cl - channel that correlates with mucus hypersecretion. Our previous study demonstrated that ROCK1 expression decreases but ROCK2 expression increases in the lungs of a CTNNAL1-silenced mouse model. Inhibition of ROCK1 leads to a reduction in CFTR expression in CTNNAL1-overexpressing and CTNNAL1-silenced human bronchial epithelial (HBE) cells. It has been reported that ROCK1 is a downstream target of RhoA and that activation of RhoA increases CFTR expression after CTNNAL1 deficiency in vitro and in vivo. The above results indicate that CTNNAL1 regulates CFTR expression through the ROCK1 pathway. In addition, the expression of CFTR-associated ligand (CAL) is increased after CTNNAL1 silencing, and immunoprecipitation results confirm the interaction between ROCK1 and CAL. Inhibition of CAL does not influence ROCK1 expression but increases CFTR expression in CTNNAL1-silenced HBE cells. These data suggest that CTNNAL1 deficiency decreases CFTR expression in the HDM-induced asthma mouse model through the ROCK1-CAL signaling pathway.
Collapse
Affiliation(s)
- Di Wu
- School of MedicineFoshan UniversityFoshan528000China
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Jiahui Zhu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Fang Yang
- School of MedicineFoshan UniversityFoshan528000China
| | - Riwang Li
- School of MedicineFoshan UniversityFoshan528000China
| | - Lexin Liu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Dahai Liu
- School of MedicineFoshan UniversityFoshan528000China
| | - Chi Liu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Xiangping Qu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Huijun Liu
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Ming Ji
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Xiaoqun Qin
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| | - Lan Hua
- the Second Xiangya Hospital of Central South UniversityChangsha410011China
| | - Yang Xiang
- Department of PhysiologySchool of Basic Medical ScienceCentral South UniversityChangsha410008China
| |
Collapse
|
8
|
Pavlou S, Foskolou S, Patikas N, Field SF, Papachristou EK, Santos CD, Edwards AR, Kishore K, Ansari R, Rajan SS, Fernandes HJR, Metzakopian E. CRISPR-Cas9 genetic screen leads to the discovery of L-Moses, a KAT2B inhibitor that attenuates Tunicamycin-mediated neuronal cell death. Sci Rep 2023; 13:3934. [PMID: 36894612 PMCID: PMC9998435 DOI: 10.1038/s41598-023-31141-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Accumulation of aggregated and misfolded proteins, leading to endoplasmic reticulum stress and activation of the unfolded protein response, is a hallmark of several neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Genetic screens are powerful tools that are proving invaluable in identifying novel modulators of disease associated processes. Here, we performed a loss-of-function genetic screen using a human druggable genome library, followed by an arrayed-screen validation, in human iPSC-derived cortical neurons. We identified and genetically validated 13 genes, whose knockout was neuroprotective against Tunicamycin, a glycoprotein synthesis inhibitor widely used to induce endoplasmic reticulum stress. We also demonstrated that pharmacological inhibition of KAT2B, a lysine acetyltransferase identified by our genetic screens, by L-Moses, attenuates Tunicamycin-mediated neuronal cell death and activation of CHOP, a key pro-apoptotic member of the unfolded protein response in both cortical and dopaminergic neurons. Follow-up transcriptional analysis suggested that L-Moses provided neuroprotection by partly reversing the transcriptional changes caused by Tunicamycin. Finally, L-Moses treatment attenuated total protein levels affected by Tunicamycin, without affecting their acetylation profile. In summary, using an unbiased approach, we identified KAT2B and its inhibitor, L-Moses, as potential therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sofia Pavlou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Stefanie Foskolou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Sarah F Field
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Evangelia K Papachristou
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Clive D' Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Sandeep S Rajan
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hugo J R Fernandes
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
9
|
Wang H, Su X, Zhang QQ, Zhang YY, Chu ZY, Sun ZH, Zhang JL, Tang YF. Cystic Fibrosis Transmembrane Conductance Regulator Attenuates Oxidative Stress-Induced Injury in Diabetic Retinopathy Rats. Curr Eye Res 2023; 48:416-424. [PMID: 36476257 DOI: 10.1080/02713683.2022.2156548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the effects of cystic fibrosis transmembrane conductance regulator (CFTR) on oxidative stress-induced injury of diabetic retinopathy (DR) rats. METHODS DR rat model was constructed treated with Ad-CFTR. Hematoxylin and Eosin (HE) staining was applied for testing the thickness of each layer of retinal tissues. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of serum inflammatory cytokines and contents of oxidative stress related genes in rats. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining was used to detect retinal cell apoptosis, and western blotting to measure the expression of MAPK/NF-κB pathway-related proteins in retinal tissues. RESULTS Our experiment revealed the remarkable decrease of CFTR protein in retinal tissues of DR rats. DR rats had decreased body weight and increased blood glucose level, with decreased thickness of total retinal thickness (TRT), outer nuclear layer and outer plexiform layer (ONL + OPL), inner nuclear layer (INL), and inner plexiform layer (IPL). Besides, DR rats were apparently up-regulated in the expression of pro-inflammatory cytokines, with increased malondial dehyde (MDA), p-ERK1/2/ERK1/2 and p-JNK1/2/JNK1/2 expressions, decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in retinal tissues, as well as up-regulated p65 protein in nucleus and down-regulated p65 protein in cytoplasm. DR rats treated with Ad-CFTR were effectively improved regarding the above parameters except body weight and blood glucose. CONCLUSIONS CFTR can inhibit MAPK/NF-κB signaling pathway to ameliorate inflammatory response and oxidative stress-induced injury of DR rats, thereby reducing retinal cell apoptosis and playing a protective role in retina.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xian Su
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Qian-Qian Zhang
- Outpatient Department, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Ying-Ying Zhang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhan-Ya Chu
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhao-Hui Sun
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Jin-Ling Zhang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yu-Fen Tang
- Department of Outpatient Operating Room, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
10
|
Zhang T, Liu Q, Li Z, Tang S, An Q, Fan D, Xiang Y, Wu X, Jin Z, Ding J, Hu Y, Du Q, Xu J, Xie R. The role of ion channels in immune-related diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:129-140. [PMID: 36417963 DOI: 10.1016/j.pbiomolbio.2022.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Ion channel is an integral membrane protein that allows the permeation of charge ions across hydrophobic phospholipid membranes, including plasma membranes and organelle membranes (such as mitochondria, endoplasmic reticulum and vacuoles), which are widely distributed in various cells and tissues, such as cardiomyocytes, smooth muscle cells, and nerve cells. Ion channels establish membrane potential by regulating ion concentration and membrane potential. Membrane potential plays an important role in cells. Studies have shown that ion channels play a role in a number of immune-related diseases caused by functional defects in ion channels on immune or non-immune cells in major human organs, usually affecting specific organs or multiple organs. The present review discusses the relationship between ion channels and immune diseases in major organs of the human body.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhe Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
11
|
Li H, Wang X, Wang Y, Zhang M, Hong F, Wang H, Cui A, Zhao J, Ji W, Chen YG. Cross-species single-cell transcriptomic analysis reveals divergence of cell composition and functions in mammalian ileum epithelium. CELL REGENERATION 2022; 11:19. [PMID: 35511361 PMCID: PMC9072607 DOI: 10.1186/s13619-022-00118-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
AbstractAnimal models are widely used for biomedical studies and drug evaluation. The small intestine plays key roles in nutrient absorption, hormone secretion, microbiota defense and drug absorption and metabolism. Although the intestinal structure of mammals is conserved, the differences on epithelial cell composition, functional assignments and drug absorption among mammals are largely unknown. Here, cross-species analysis of single-cell transcriptomic atlas of the ileum epithelium from mouse, rat, pig, macaque and human reveals the conserved and differential cell types and functions among species, identifies a new CA7+ cell type in pig, macaque and human ileum, uncovers the distinct expression pattern in enterocytes, enteroendocrine cells and Paneth cells, and defines the conserved and species-specific intestinal stem cell signature genes. The examination of drug absorption across species suggests that drug metabolism in mouse ileum is closer to human while drug transport in macaque ileum is more similar to human. Together, our data provide the comprehensive information about cell composition and functional assignments in five species, and offer the valuable guidance for animal model selection and drug testing.
Collapse
|
12
|
Moxidectin induces autophagy arrest in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:211. [PMID: 36175702 DOI: 10.1007/s12032-022-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a cancer with a high morbidity and mortality worldwide. Hence, developing new therapeutic drugs for CRC is very important. Moxidectin (MOX) has shown good anti-glioblastoma effect both in vitro and in vivo. This study aimed to elucidate the anti-CRC effect of MOX and its potential mechanism by investigating the influence of MOX on the viability, apoptosis, necrosis and autophagy of colorectal cancer cells (HCT15 and SW620) and its underlying mechanisms. It was found that MOX can induce autophagy arrest, promote autophagy initiation, inhibit autophagic flux and cell proliferation, simultaneously PI3K-Akt-mTOR signaling pathway and microtubule acetylation. Furthermore, MOX suppressed the growth of xenograft tumors, which was consistent with the in vitro results.
Collapse
|
13
|
Ding D, Wu JX, Duan X, Ma S, Lai L, Chen L. Structural identification of vasodilator binding sites on the SUR2 subunit. Nat Commun 2022; 13:2675. [PMID: 35562524 PMCID: PMC9106677 DOI: 10.1038/s41467-022-30428-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
ATP-sensitive potassium channels (KATP), composed of Kir6 and SUR subunits, convert the metabolic status of the cell into electrical signals. Pharmacological activation of SUR2- containing KATP channels by class of small molecule drugs known as KATP openers leads to hyperpolarization of excitable cells and to vasodilation. Thus, KATP openers could be used to treat cardiovascular diseases. However, where these vasodilators bind to KATP and how they activate the channel remains elusive. Here, we present cryo-EM structures of SUR2A and SUR2B subunits in complex with Mg-nucleotides and P1075 or levcromakalim, two chemically distinct KATP openers that are specific to SUR2. Both P1075 and levcromakalim bind to a common site in the transmembrane domain (TMD) of the SUR2 subunit, which is between TMD1 and TMD2 and is embraced by TM10, TM11, TM12, TM14, and TM17. These KATP openers synergize with Mg-nucleotides to stabilize SUR2 in the NBD-dimerized occluded state to activate the channel.
Collapse
Affiliation(s)
- Dian Ding
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China.,National Biomedical Imaging Center, Peking University, 100871, Beijing, China
| | - Xinli Duan
- Beijing Jingtai Technology Co., Ltd., Beijing, China
| | - Songling Ma
- Beijing Jingtai Technology Co., Ltd., Beijing, China
| | - Lipeng Lai
- Beijing Jingtai Technology Co., Ltd., Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China. .,National Biomedical Imaging Center, Peking University, 100871, Beijing, China.
| |
Collapse
|
14
|
Anglès F, Wang C, Balch WE. Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Commun Biol 2022; 5:356. [PMID: 35418593 PMCID: PMC9008016 DOI: 10.1038/s42003-022-03302-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although the impact of genome variation on the thermodynamic properties of function on the protein fold has been studied in vitro, it remains a challenge to assign these relationships across the entire polypeptide sequence in vivo. Using the Gaussian process regression based principle of Spatial CoVariance, we globally assign on a residue-by-residue basis the biological thermodynamic properties that contribute to the functional fold of CFTR in the cell. We demonstrate the existence of a thermodynamically sensitive region of the CFTR fold involving the interface between NBD1 and ICL4 that contributes to its export from endoplasmic reticulum. At the cell surface a new set of residues contribute uniquely to the management of channel function. These results support a general 'quality assurance' view of global protein fold management as an SCV principle describing the differential pre- and post-ER residue interactions contributing to compartmentalization of the energetics of the protein fold for function. Our results set the stage for future analyses of the quality systems managing protein sequence-to-function-to-structure broadly encompassing genome design leading to protein function in complex cellular relationships responsible for diversity and fitness in biology in response to the environment.
Collapse
Affiliation(s)
- Frédéric Anglès
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
15
|
Amaral MD. Precision medicine for rare diseases: The times they are A-Changin'. Curr Opin Pharmacol 2022; 63:102201. [DOI: 10.1016/j.coph.2022.102201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
|
16
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
17
|
Yang S, Wu Y, Wang C, Jin X. Ocular Surface Ion-Channels Are Closely Related to Dry Eye: Key Research Focus on Innovative Drugs for Dry Eye. Front Med (Lausanne) 2022; 9:830853. [PMID: 35308542 PMCID: PMC8927818 DOI: 10.3389/fmed.2022.830853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abundant ion-channels, including various perceptual receptors, chloride channels, purinergic receptor channels, and water channels that exist on the ocular surface, play an important role in the pathogenesis of dry eye. Channel-targeting activators or inhibitor compounds, which have shown positive effects in in vivo and in vitro experiments, have become the focus of the dry eye drug research and development, and individual compounds have been applied in clinical experimental treatment. This review summarized various types of ion-channels on the ocular surface related to dry eye, their basic functions, and spatial distribution, and discussed basic and clinical research results of various channel receptor regulatory compounds. Therefore, further elucidating the relationship between ion-channels and dry eye will warrant research of dry eye targeted drug therapy.
Collapse
Affiliation(s)
| | | | | | - Xiuming Jin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Role of internal loop dynamics in antibiotic permeability of outer membrane porins. Proc Natl Acad Sci U S A 2022; 119:2117009119. [PMID: 35193963 PMCID: PMC8872756 DOI: 10.1073/pnas.2117009119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance in Gram-negative pathogens has been identified as an urgent threat to human health by the World Health Organization. The major challenge with treating infections by these pathogens is developing antibiotics that can traverse the dense bacterial outer membrane (OM) formed by a mesh of lipopolysaccharides. Effective antibiotics permeate through OM porins, which have evolved for nutrient diffusion; however, the conformational states of these porins regulating permeation are still unclear. Here, we used molecular dynamics simulations, free energy calculations, Markov-state modeling, and whole-cell accumulation assays to provide mechanistic insight on how a porin shifts between open and closed states. We provide a mechanism of how Gram-negative bacteria confer resistance to antibiotics. Gram-negative bacteria pose a serious public health concern due to resistance to many antibiotics, caused by the low permeability of their outer membrane (OM). Effective antibiotics use porins in the OM to reach the interior of the cell; thus, understanding permeation properties of OM porins is instrumental to rationally develop broad-spectrum antibiotics. A functionally important feature of OM porins is undergoing open–closed transitions that modulate their transport properties. To characterize the molecular basis of these transitions, we performed an extensive set of molecular dynamics (MD) simulations of Escherichia coli OM porin OmpF. Markov-state analysis revealed that large-scale motion of an internal loop, L3, underlies the transition between energetically stable open and closed states. The conformation of L3 is controlled by H bonds between highly conserved acidic residues on the loop and basic residues on the OmpF β-barrel. Mutation of key residues important for the loop’s conformation shifts the equilibrium between open and closed states and regulates translocation of permeants (ions and antibiotics), as observed in the simulations and validated by our whole-cell accumulation assay. Notably, one mutant system G119D, which we find to favor the closed state, has been reported in clinically resistant bacterial strains. Overall, our accumulated ∼200 µs of simulation data (the wild type and mutants) along with experimental assays suggest the involvement of internal loop dynamics in permeability of OM porins and antibiotic resistance in Gram-negative bacteria.
Collapse
|
19
|
Li T, Stefano G, Raza GS, Sommerer I, Riederer B, Römermann D, Tan X, Tan Q, Pallagi P, Hollenbach M, Herzig K, Seidler U. Hydrokinetic pancreatic function and insulin secretion are moduled by Cl - uniporter Slc26a9 in mice. Acta Physiol (Oxf) 2022; 234:e13729. [PMID: 34525257 DOI: 10.1111/apha.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022]
Abstract
AIM Slc26a9 is a member of the Slc26 multifunctional anion transporter family. Polymorphisms in Slc26a9 are associated with an increased incidence of meconium ileus and diabetes in cystic fibrosis patients. We investigated the expression of Slc26a9 in the murine pancreatic ducts, islets and parenchyma, and elucidated its role in pancreatic ductal electrolyte and fluid secretion and endocrine function. METHODS Pancreatic Slc26a9 and CFTR mRNA expression, fluid and bicarbonate secretion were assessed in slc26a9-/- mice and their age- and sex-matched wild-type (wt) littermates. Glucose and insulin tolerance tests were performed. RESULTS Compared with stomach, the mRNA expression of Slc26a9 was low in pancreatic parenchyma, 20-fold higher in microdissected pancreatic ducts than parenchyma, and very low in islets. CFTR mRNA was ~10 fold higher than Slc26a9 mRNA expression in each pancreatic cell type. Significantly reduced pancreatic fluid secretory rates and impaired glucose tolerance were observed in female slc26a9-/- mice, whereas alterations in male mice did not reach statistical significance. No significant difference was observed in peripheral insulin resistance in slc26a9-/- compared to sex- and aged-matched wt controls. In contrast, isolated slc26a9-/- islets in short term culture displayed no difference in insulin content, but a significantly reduced glucose-stimulated insulin secretion compared to age- and sex-matched wt islets, suggesting that the impaired glucose tolerance in the absence of Slc26a9 expression these is a pancreatic defect. CONCLUSIONS Deletion of Slc26a9 is associated with a reduction in pancreatic fluid secretion and impaired glucose tolerance in female mice. The results underline the importance of Slc26a9 in pancreatic physiology.
Collapse
Affiliation(s)
- T. Li
- Department of Gastroenterology Hannover Medical School Hannover Germany
- Department of Thyroid and Breast Surgery Affiliated Hospital of Zunyi Medical University Zunyi P.R. China
| | - G. Stefano
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - G. S. Raza
- Institute of Biomedicine and Biocenter of Oulu Oulu University Oulu Finland
| | - I. Sommerer
- Department of Medicine Szeged University Szeged Hungary
| | - B. Riederer
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - D. Römermann
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - X. Tan
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - Q. Tan
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - P. Pallagi
- Department of Gastroenterology Leipzig University Leipzig Germany
| | - M. Hollenbach
- Department of Medicine Szeged University Szeged Hungary
| | - K.‐H. Herzig
- Institute of Biomedicine and Biocenter of Oulu Oulu University Oulu Finland
- Department of Gastroenterology and Metabolism Poznan University of Medical Sciences Poznan Poland
| | - U. Seidler
- Department of Gastroenterology Hannover Medical School Hannover Germany
| |
Collapse
|
20
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
21
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
CFTR Lifecycle Map-A Systems Medicine Model of CFTR Maturation to Predict Possible Active Compound Combinations. Int J Mol Sci 2021; 22:ijms22147590. [PMID: 34299207 PMCID: PMC8306775 DOI: 10.3390/ijms22147590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Different causative therapeutics for CF patients have been developed. There are still no mutation-specific therapeutics for some patients, especially those with rare CFTR mutations. For this purpose, high-throughput screens have been performed which result in various candidate compounds, with mostly unclear modes of action. In order to elucidate the mechanism of action for promising candidate substances and to be able to predict possible synergistic effects of substance combinations, we used a systems biology approach to create a model of the CFTR maturation pathway in cells in a standardized, human- and machine-readable format. It is composed of a core map, manually curated from small-scale experiments in human cells, and a coarse map including interactors identified in large-scale efforts. The manually curated core map includes 170 different molecular entities and 156 reactions from 221 publications. The coarse map encompasses 1384 unique proteins from four publications. The overlap between the two data sources amounts to 46 proteins. The CFTR Lifecycle Map can be used to support the identification of potential targets inside the cell and elucidate the mode of action for candidate substances. It thereby provides a backbone to structure available data as well as a tool to develop hypotheses regarding novel therapeutics.
Collapse
|
23
|
Busslinger GA, Weusten BLA, Bogte A, Begthel H, Brosens LAA, Clevers H. Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Rep 2021; 34:108819. [PMID: 33691112 DOI: 10.1016/j.celrep.2021.108819] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
The upper gastrointestinal tract, consisting of the esophagus, stomach, and duodenum, controls food transport, digestion, nutrient uptake, and hormone production. By single-cell analysis of healthy epithelia of these human organs, we molecularly define their distinct cell types. We identify a quiescent COL17A1high KRT15high stem/progenitor cell population in the most basal cell layer of the esophagus and detect substantial gene expression differences between identical cell types of the human and mouse stomach. Selective expression of BEST4, CFTR, guanylin, and uroguanylin identifies a rare duodenal cell type, referred to as BCHE cell, which likely mediates high-volume fluid secretion because of continual activation of the CFTR channel by guanylin/uroguanylin-mediated autocrine signaling. Serotonin-producing enterochromaffin cells in the antral stomach significantly differ in gene expression from duodenal enterochromaffin cells. We, furthermore, discover that the histamine-producing enterochromaffin-like cells in the oxyntic stomach express the luteinizing hormone, yet another member of the enteroendocrine hormone family.
Collapse
Affiliation(s)
- Georg A Busslinger
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bas L A Weusten
- Department of Gastroenterology and Hepatology, UMC Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Auke Bogte
- Department of Gastroenterology and Hepatology, UMC Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, UMC Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
24
|
Structural dynamics of ABC transporters: molecular simulation studies. Biochem Soc Trans 2021; 49:405-414. [PMID: 33634827 DOI: 10.1042/bst20200710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
The biological activities of living organisms involve various inputs and outputs. The ATP-driven substances (biomolecules) responsible for these kinds of activities through membrane (i.e. uptake and efflux of substrates) include ATP-binding cassette (ABC) transporters, some of which play important roles in multidrug resistance. The basic architecture of ABC transporters comprises transmembrane domains (TMDs) and nucleotide-binding domains (NBDs). The functional dynamics (substrate transport) of ABC transporters are realized by concerted motions, such as NBD dimerization, mechanical transmission via coupling helices (CHs), and the translocation of substrates through TMDs, which are induced by the binding and/or hydrolysis of ATP molecules and substrates. In this mini-review, we briefly discuss recent progresses in the structural dynamics as revealed by molecular simulation studies at all-atom (AA), coarse-grained (CG), and quantum mechanics/molecular mechanics (QM/MM) levels.
Collapse
|
25
|
Pelleg A. Extracellular adenosine 5'-triphosphate in pulmonary disorders. Biochem Pharmacol 2020; 187:114319. [PMID: 33161021 DOI: 10.1016/j.bcp.2020.114319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is found in every cell of the human body where it plays a critical role in cellular energetics and metabolism. ATP is released from cells under physiologic and pathophysiologic condition; extracellular ATP is rapidly degraded to adenosine 5'-diphosphate (ADP) and adenosine by ecto-enzymes (mainly, CD39 and CD73). Before its degradation, ATP acts as an autocrine and paracrine agent exerting its effects on targeted cells by activating cell surface receptors named P2 Purinergic receptors. The latter are expressed by different cell types in the lungs, the activation of which is involved in multiple pulmonary disorders. This succinct review summarizes the role of ATP in inflammation processes associated with these disorders including bronchoconstriction, cough, mechanical ventilation-induced lung injury and idiopathic pulmonary fibrosis. All of these disorders still constitute unmet clinical needs. Therefore, the various ATP-signaling pathways in pulmonary inflammation constitute attractive targets for novel drug-candidates that would improve the management of patients with multiple pulmonary diseases.
Collapse
Affiliation(s)
- Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, USA. http://www.danmirtherapeutics.com
| |
Collapse
|
26
|
Amaral MD. How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. Eur J Med Chem 2020; 210:112989. [PMID: 33190956 DOI: 10.1016/j.ejmech.2020.112989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The greatest challenge of 21st century biology is to fully understand mechanisms of disease to drive new approaches and medical innovation. Parallel to this is the huge biomedical endeavour of treating people through personalized medicine. Until now all CFTR modulator drugs that have entered clinical trials have been genotype-dependent. An emerging alternative is personalized/precision medicine in CF, i.e., to determine whether rare CFTR mutations respond to existing (or novel) CFTR modulator drugs by pre-assessing them directly on patient's tissues ex vivo, an approach also now termed theranostics. To administer the right drug to the right person it is essential to understand how drugs work, i.e., to know their mechanism of action (MoA), so as to predict their applicability, not just in certain mutations but also possibly in other diseases that share the same defect/defective pathway. Moreover, an understanding the MoA of a drug before it is tested in clinical trials is the logical path to drug discovery and can increase its chance for success and hence also approval. In conclusion, the most powerful approach to determine the MoA of a compound is to understand the underlying biology. Novel large datasets of intervenients in most biological processes, namely those emerging from the post-genomic era tools, are available and should be used to help in this task.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Faculty of Sciences, University of Lisboa, Portugal.
| |
Collapse
|
27
|
Ouyang Y, Wu Q, Li J, Sun S, Sun S. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif 2020; 53:e12891. [PMID: 33030764 PMCID: PMC7653241 DOI: 10.1111/cpr.12891] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a mechanism that enables cells to maintain cellular homeostasis by removing damaged materials and mobilizing energy reserves in conditions of starvation. Although nutrient availability strongly impacts the process of autophagy, the specific metabolites that regulate autophagic responses have not yet been determined. Recent results indicate that S-adenosylmethionine (SAM) represents a critical inhibitor of methionine starvation-induced autophagy. SAM is primarily involved in four key metabolic pathways: transmethylation, transsulphuration, polyamine synthesis and 5'-deoxyadenosyl 5'-radical-mediated biochemical transformations. SAM is the sole methyl group donor involved in the methylation of DNA, RNA and histones, modulating the autophagic process by mediating epigenetic effects. Moreover, the metabolites of SAM, such as homocysteine, glutathione, decarboxylated SAM and spermidine, also exert important influences on the regulation of autophagy. From our perspective, nuclear-cytosolic SAM is a conserved metabolic inhibitor that connects cellular metabolic status and the regulation of autophagy. In the future, SAM might be a new target of autophagy regulators and be widely used in the treatment of various diseases.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qi Wu
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juanjuan Li
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Si Sun
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shengrong Sun
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
28
|
Wei T, Sui H, Su Y, Cheng W, Liu Y, He Z, Ji Q, Xu C. Research advances in molecular mechanisms underlying the pathogenesis of cystic fibrosis: From technical improvement to clinical applications (Review). Mol Med Rep 2020; 22:4992-5002. [PMID: 33173976 PMCID: PMC7646950 DOI: 10.3892/mmr.2020.11607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a chronic disease causing severe impairment to the respiratory system and digestive tracts. Currently, CF is incurable. As an autosomal recessive disorder, the morbidity of CF is significantly higher among Caucasians of European descent, whereas it is less pervasive among African and Asian populations. The disease is caused by identical mutations (homozygosity) or different mutations (heterozygosity) of an autosomal recessive mutation at position 7q31.2-q31.1 of chromosome 7. Diagnostic criteria and guidelines work concurrently with laboratory detection to facilitate precise CF detection. With technological advances, the understanding of CF pathogenesis has reached an unprecedented level, allowing for increasingly precise carrier screening, more effective early stage CF intervention and improved prognostic outcomes. These advances significantly increase the life quality and expectancy of patients with CF. Given the numerous improvements in the field of CF, the current review summarized the technical advances in the study of the molecular mechanisms underlying CF, as well as how these improvements facilitate the clinical outcomes of CF. Furthermore, challenges and obstacles to overcome are discussed.
Collapse
Affiliation(s)
- Tao Wei
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Wanjing Cheng
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Yunhua Liu
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Zilin He
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Qingchao Ji
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Changlong Xu
- Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi Zhuang Autonomous Region 530031, P.R. China
| |
Collapse
|
29
|
Phase separation as a therapeutic target in tight junction-associated human diseases. Acta Pharmacol Sin 2020; 41:1310-1313. [PMID: 32694756 PMCID: PMC7608859 DOI: 10.1038/s41401-020-0470-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 01/02/2023]
Abstract
Tight junctions (TJs) play an important role in the maintenance of epithelial and endothelial barriers. Zonula occludens (ZO) proteins are scaffolding molecules essential for the formation of TJ complexes, and abnormalities in ZO proteins have been implicated in various TJ-associated human diseases such as tumor invasion and metastasis, and barrier dysfunction. Recent studies reveal that liquid–liquid phase separation of ZO proteins drives the polymerization of TJ proteins into a continuous belt, which then recruits various proteins to form the TJ complex to regulate selective paracellular permeability and signal transduction. Herein, we describe recent advances on how ZO phase separation contributes to TJ formation and discuss the potential of phase separation as a target for the treatment of TJ-associated diseases.
Collapse
|
30
|
Liu J, Ou C, Zhu X, Tan C, Xiang X, He Y. Potential role of CFTR in bisphenol A-induced malignant transformation of prostate cells via mitochondrial apoptosis. Toxicol Ind Health 2020; 36:531-539. [PMID: 32729384 DOI: 10.1177/0748233720943750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bisphenol A (BPA) is an environmental endocrine disruptor and a risk factor for prostate cancer. The cystic fibrosis transmembrane conductance regulator (CFTR) is proposed to be a prostate cancer suppressor in some recent researches. However, the potential role and mechanism of CFTR in BPA-induced prostate cancer cells has not been well identified. In this study, BPA decreased the viability of human normal prostate RWPE-1 cells detected with a CCK-8 kit. The capacity of the cell line on soft agar colony formation, wound healing, and transwell invasion indicated malignant transformation induced by BPA. Western blot analysis demonstrated that the levels of CFTR and Bcl-2 decreased, whereas Bax level increased, and ELISA detection showed a decreased ATP level in BPA-exposed cells. Cell apoptosis was analyzed with Annexin V-FITC Detection Kit by flow cytometry. However, no significant difference was observed in cell viability and apoptosis rates compared to normal RWPE-1 cells. Our research revealed a potential role of CFTR in BPA-induced malignant transformation via mitochondrial apoptosis of normal prostate cells.
Collapse
Affiliation(s)
- Jia Liu
- Department of Epidemiology and Statistics, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Chaoyan Ou
- Department of Toxicology, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Xiaonian Zhu
- Department of Toxicology, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Chao Tan
- Department of Epidemiology and Statistics, School of Public Health, 74716Guilin Medical University, Guilin, China
| | - Xuebao Xiang
- Department of Urology, Affiliated Hospital of 74716Guilin Medical University, Guilin, China
| | - Yonghua He
- Department of Epidemiology and Statistics, School of Public Health, 74716Guilin Medical University, Guilin, China
| |
Collapse
|
31
|
Wu Z, Li J, Zhang Y, Hu L, Peng X. CFTR Regulates the Proliferation, Migration and Invasion of Cervical Cancer Cells by Inhibiting the NF-κB Signalling Pathway. Cancer Manag Res 2020; 12:4685-4697. [PMID: 32606960 PMCID: PMC7308183 DOI: 10.2147/cmar.s252296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background The cystic fibrosis transmembrane conductance regulator (CFTR) and nuclear factor κB (NF-κB) signalling pathways are currently regarded as co-regulators of the occurrence of cervical cancer. However, the detailed mechanism of CFTR- and NF-κB-mediated effects in cervical cancer remains to be elucidated. This study aimed to investigate the mechanism by which CFTR and NF-κB influence the development of cervical cancer. Patients and Methods CFTR ΔF508 mutation and CFTR promoter methylation were detected in cervical tissue samples. NF-κB p65 and IκBα protein levels were tested in HeLa cells with CFTR overexpression and knockdown by Western blotting. The effects of CFTR on cell proliferation, migration, and invasion were examined in HeLa cells by WST-1 and soft agar assays, cell wound scratch assay, and Matrigel invasion assays, respectively. The protein–protein interaction (PPI) network was constructed by using GeneMANIA. GeneCoDis3 was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis on genes in the PPI network. Results CFTR mutation and CFTR promoter methylation were not associated with the occurrence of cervical cancer. NF-κB p65 protein levels were decreased in CFTR overexpression lines and increased in CFTR knockdown lines, and IκBα levels were affected in the opposite manner, indicating that CFTR inhibited the NF-κB signalling pathway. CFTR also regulated the cell proliferation, migration, and invasion ability of cervical cancer cells. When CFTR was overexpressed, cell proliferation, migration, and invasion ability were decreased. There were 20 genes that interacted with CFTR. KEGG pathway analysis showed enrichment in the gastric acid secretion, chemokine signalling, bile secretion and apoptosis pathways. Conclusion CFTR plays an important role in cancer cell proliferation, migration and invasion by inhibiting the NF-κB signalling pathway in cervical cancer.
Collapse
Affiliation(s)
- Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Jinke Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Chengdu, Sichuan, People's Republic of China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xue Peng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
32
|
Drosophila as a model for studying cystic fibrosis pathophysiology of the gastrointestinal system. Proc Natl Acad Sci U S A 2020; 117:10357-10367. [PMID: 32345720 DOI: 10.1073/pnas.1913127117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is a recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The most common symptoms include progressive lung disease and chronic digestive conditions. CF is the first human genetic disease to benefit from having five different species of animal models. Despite the phenotypic differences among the animal models and human CF, these models have provided invaluable insight into understanding disease mechanisms at the organ-system level. Here, we identify a member of the ABCC4 family, CG5789, that has the structural and functional properties expected for encoding the Drosophila equivalent of human CFTR, and thus refer to it as Drosophila CFTR (Dmel\CFTR). We show that knockdown of Dmel\CFTR in the adult intestine disrupts osmotic homeostasis and displays CF-like phenotypes that lead to intestinal stem cell hyperplasia. We also show that expression of wild-type human CFTR, but not mutant variants of CFTR that prevent plasma membrane expression, rescues the mutant phenotypes of Dmel\CFTR Furthermore, we performed RNA sequencing (RNA-Seq)-based transcriptomic analysis using Dmel\CFTR fly intestine and identified a mucin gene, Muc68D, which is required for proper intestinal barrier protection. Altogether, our findings suggest that Drosophila can be a powerful model organism for studying CF pathophysiology.
Collapse
|
33
|
Nanoparticle-Mediated Therapeutic Application for Modulation of Lysosomal Ion Channels and Functions. Pharmaceutics 2020; 12:pharmaceutics12030217. [PMID: 32131531 PMCID: PMC7150957 DOI: 10.3390/pharmaceutics12030217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Applications of nanoparticles in various fields have been addressed. Nanomaterials serve as carriers for transporting conventional drugs or proteins through lysosomes to various cellular targets. The basic function of lysosomes is to trigger degradation of proteins and lipids. Understanding of lysosomal functions is essential for enhancing the efficacy of nanoparticles-mediated therapy and reducing the malfunctions of cellular metabolism. The lysosomal function is modulated by the movement of ions through various ion channels. Thus, in this review, we have focused on the recruited ion channels for lysosomal function, to understand the lysosomal modulation through the nanoparticles and its applications. In the future, lysosomal channels-based targets will expand the therapeutic application of nanoparticles-associated drugs.
Collapse
|
34
|
Ivey G, Youker RT. Disease-relevant mutations alter amino acid co-evolution networks in the second nucleotide binding domain of CFTR. PLoS One 2020; 15:e0227668. [PMID: 31978131 PMCID: PMC6980524 DOI: 10.1371/journal.pone.0227668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 12/25/2019] [Indexed: 01/23/2023] Open
Abstract
Cystic Fibrosis (CF) is an inherited disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Mutations in CFTR cause impaired chloride ion transport in the epithelial tissues of patients leading to cardiopulmonary decline and pancreatic insufficiency in the most severely affected patients. CFTR is composed of twelve membrane-spanning domains, two nucleotide-binding domains (NBDs), and a regulatory domain. The most common mutation in CFTR is a deletion of phenylalanine at position 508 (ΔF508) in NBD1. Previous research has primarily concentrated on the structure and dynamics of the NBD1 domain; However numerous pathological mutations have also been found in the lesser-studied NBD2 domain. We have investigated the amino acid co-evolved network of interactions in NBD2, and the changes that occur in that network upon the introduction of CF and CF-related mutations (S1251N(T), S1235R, D1270N, N1303K(T)). Extensive coupling between the α- and β-subdomains were identified with residues in, or near Walker A, Walker B, H-loop and C-loop motifs. Alterations in the predicted residue network varied from moderate for the S1251T perturbation to more severe for N1303T. The S1235R and D1270N networks varied greatly compared to the wildtype, but these CF mutations only affect ion transport preference and do not severely disrupt CFTR function, suggesting dynamic flexibility in the network of interactions in NBD2. Our results also suggest that inappropriate interactions between the β-subdomain and Q-loop could be detrimental. We also identified mutations predicted to stabilize the NBD2 residue network upon introduction of the CF and CF-related mutations, and these predicted mutations are scored as benign by the MUTPRED2 algorithm. Our results suggest the level of disruption of the co-evolution predictions of the amino acid networks in NBD2 does not have a straightforward correlation with the severity of the CF phenotypes observed.
Collapse
Affiliation(s)
- Gabrianne Ivey
- Kyder Christian Academy, Franklin, North Carolina, United States of America
- Southwestern Community College, Sylva, North Carolina, United States of America
| | - Robert T. Youker
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
| |
Collapse
|
35
|
Linsdell P. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure. Channels (Austin) 2019; 12:284-290. [PMID: 30152709 PMCID: PMC6986785 DOI: 10.1080/19336950.2018.1502585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a member of the ATP-binding cassette (ABC) family of membrane transport proteins, most members of which function as ATP-dependent pumps. CFTR is unique among human ABC proteins in functioning not as a pump, but as an ion channel. Recent structural data has indicated that CFTR shares broadly similar overall architecture and ATP-dependent conformational changes as other ABC proteins. Functional investigations suggest that CFTR has a unique open portal connecting the cytoplasm to the transmembrane channel pore, that allows for a continuous pathway for Cl− ions to cross the membrane in one conformation. This lateral portal may be what allows CFTR to function as an ion channel rather than as a pump, suggesting a plausible mechanism by which channel function may have evolved in CFTR.
Collapse
Affiliation(s)
- Paul Linsdell
- a Department of Physiology & Biophysics , Dalhousie University , Halifax , Canada
| |
Collapse
|
36
|
Negoda A, Hogan MS, Cowley EA, Linsdell P. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore. Cell Mol Life Sci 2019; 76:2411-2423. [PMID: 30758641 PMCID: PMC11105405 DOI: 10.1007/s00018-019-03043-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
Our molecular understanding of the cystic fibrosis transmembrane conductance regulator (CFTR)-the chloride channel that is mutated in cystic fibrosis-has been greatly enhanced by a number of recent atomic-level structures of the protein in different conformations. One surprising aspect of these structures was the finding that the eighth of CFTR's 12 membrane-spanning segments (TM8) appeared close to the channel pore. Although functional evidence supports a role for other TMs in forming the pore, such a role for TM8 has not previously been reported. Here, we use patch-clamp recording to investigate the functional role of TM8. Using substituted cysteine accessibility mutagenesis, we find that three amino acid side-chains in TM8 (Y913, Y914, and Y917) are exposed to the extracellular, but not the intracellular, solution. Cysteine cross-linking experiments suggest that Y914 and Y917 are in close proximity to L102 (TM1) and F337 (TM6), respectively, suggesting that TM8 contributes to the narrow selectivity filter region of the pore. Different amino acid substitutions suggest that Y914, and to a lesser extent Y917, play important roles in controlling anion flux through the open channel. Furthermore, substitutions that reduce side-chain volume at Y917 severely affect channel gating, resulting in a channel with an extremely unstable open state. Our results suggest that pore-lining TM8 is among the most important TMs controlling the permeation phenotype of the CFTR channel, and also that movement of TM8 may be critically involved in channel gating.
Collapse
Affiliation(s)
- Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Mairin S Hogan
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
37
|
Functional characterization reveals that zebrafish CFTR prefers to occupy closed channel conformations. PLoS One 2018; 13:e0209862. [PMID: 30596737 PMCID: PMC6312236 DOI: 10.1371/journal.pone.0209862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), the culprit behind the genetic disease cystic fibrosis (CF), is a phosphorylation-activated, but ATP-gated anion channel. Studies of human CFTR over the past two decades have provided an in-depth understanding of how CFTR works as an ion channel despite its structural resemblance to ABC transporters. Recently-solved cryo-EM structures of unphosphorylated human and zebrafish CFTR (hCFTR and zCFTR), as well as phosphorylated ATP-bound zebrafish and human CFTR offer an unprecedented opportunity to understand CFTR's function at a molecular level. Interestingly, despite millions of years of phylogenetic distance between human and zebrafish, the structures of zCFTR and hCFTR exhibit remarkable similarities. In the current study, we characterized biophysical and pharmacological properties of zCFTR with the patch-clamp technique, and showed surprisingly very different functional properties between these two orthologs. First, while hCFTR has a single-channel conductance of 8.4 pS with a linear I-V curve, zCFTR shows an inwardly-rectified I-V relationship with a single-channel conductance of ~3.5 pS. Second, single-channel gating behaviors of phosphorylated zCFTR are very different from those of hCFTR, featuring a very low open probability Po (0.03 ± 0.02, vs. ~0.50 for hCFTR) with exceedingly long closed events and brief openings. In addition, unlike hCFTR where each open burst is clearly defined with rare short-lived flickery closures, the open bursts of zCFTR are not easily resolved. Third, although abolishing ATP hydrolysis by replacing the catalytic glutamate with glutamine (i.e., E1372Q) drastically prolongs the open bursts defined by the macroscopic relaxation analysis in zCFTR, the Po within a "locked-open" burst of E1372Q-zCFTR is only ~ 0.35 (vs. Po > 0.94 in E1371Q-hCFTR). Collectively, our data not only provide a reasonable explanation for the unexpected closed-state structure of phosphorylated E1372Q-zCFTR with a canonical ATP-bound dimer of the nucleotide binding domains (NBDs), but also implicate significant structural and functional differences between these two evolutionarily distant orthologs.
Collapse
|
38
|
Negoda A, Cowley EA, El Hiani Y, Linsdell P. Conformational change of the extracellular parts of the CFTR protein during channel gating. Cell Mol Life Sci 2018; 75:3027-3038. [PMID: 29441426 PMCID: PMC11105745 DOI: 10.1007/s00018-018-2777-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis can be treated by potentiators, drugs that interact directly with the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel to increase its open probability. These substances likely target key conformational changes occurring during channel opening and closing, however, the molecular bases of these conformational changes, and their susceptibility to manipulation are poorly understood. We have used patch clamp recording to identify changes in the three-dimensional organization of the extracellularly accessible parts of the CFTR protein during channel opening and closing. State-dependent formation of both disulfide bonds and Cd2+ bridges occurred for pairs of cysteine side-chains introduced into the extreme extracellular ends of transmembrane helices (TMs) 1, 6, and 12. Between each of these three TMs, we found that both disulfide bonds and metal bridges formed preferentially or exclusively in the closed state and that these inter-TM cross-links stabilized the closed state. These results indicate that the extracellular ends of these TMs are close together when the channel is closed and that they separate from each other when the channel opens. These findings identify for the first time key conformational changes in the extracellular parts of the CFTR protein that can potentially be manipulated to control channel activity.
Collapse
Affiliation(s)
- Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
39
|
Sites associated with Kalydeco binding on human Cystic Fibrosis Transmembrane Conductance Regulator revealed by Hydrogen/Deuterium Exchange. Sci Rep 2018; 8:4664. [PMID: 29549268 PMCID: PMC5856801 DOI: 10.1038/s41598-018-22959-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Mutations associated with CF cause loss-of-function in CFTR leading to salt imbalance in epithelial tissues. Kalydeco (also called VX-770 or ivacaftor) was approved for CF treatment in 2012 but little is known regarding the compound’s interactions with CFTR including the site of binding or mechanisms of action. In this study we use hydrogen/deuterium exchange (HDX) coupled with mass spectrometry to assess the conformational dynamics of a thermostabilized form of CFTR in apo and ligand-bound states. We observe HDX protection at a known binding site for AMPPNP and significant protection for several regions of CFTR in the presence of Kalydeco. The ligand-induced changes of CFTR in the presence of Kalydeco suggest a potential binding site.
Collapse
|
40
|
Muimo R, Alothaid HM, Mehta A. NM23 proteins: innocent bystanders or local energy boosters for CFTR? J Transl Med 2018; 98:272-282. [PMID: 29251738 DOI: 10.1038/labinvest.2017.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies.
Collapse
Affiliation(s)
- Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Hani Mm Alothaid
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Anil Mehta
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
41
|
Zhang XC, Liu M, Lu G, Heng J. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters. Protein Sci 2017; 27:595-613. [PMID: 29193407 DOI: 10.1002/pro.3355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyuan Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Heng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| |
Collapse
|
42
|
Correcting CFTR folding defects by small-molecule correctors to cure cystic fibrosis. Curr Opin Pharmacol 2017; 34:83-90. [PMID: 29055231 DOI: 10.1016/j.coph.2017.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
Pharmacological intervention to treat the lethal genetic disease cystic fibrosis has become reality, even for the severe, most common folding mutant F508del CFTR. CFTR defects range from absence of the protein, misfolding that leads to degradation rather than cell-surface localization (such as F508del), to functional chloride-channel defects on the cell surface. Corrector and potentiator drugs improve cell-surface location and channel activity, respectively, and combination therapy of two correctors and a potentiator have shown synergy. Several combinations are in the drug-development pipeline and although the primary defect is not repaired, rescue levels are reaching those resembling a cure for CF. Combination therapy with correctors may also improve functional CFTR mutants and benefit patients on potentiator therapy.
Collapse
|
43
|
Varga G, DenBesten P, Rácz R, Zsembery Á. Importance of bicarbonate transport in pH control during amelogenesis - need for functional studies. Oral Dis 2017; 24:879-890. [PMID: 28834043 DOI: 10.1111/odi.12738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022]
Abstract
Dental enamel, the hardest mammalian tissue, is produced by ameloblasts. Ameloblasts show many similarities to other transporting epithelia although their secretory product, the enamel matrix, is quite different. Ameloblasts direct the formation of hydroxyapatite crystals, which liberate large quantities of protons that then need to be buffered to allow mineralization to proceed. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. Many investigations have used immunohistochemical and knockout studies to determine the effects of these genes on enamel formation, but up till recently very little functional data were available for mineral ion transport. To address this, we developed a novel 2D in vitro model using HAT-7 ameloblast cells. HAT-7 cells can be polarized and develop functional tight junctions. Furthermore, they are able to accumulate bicarbonate ions from the basolateral to the apical fluid spaces. We propose that in the future, the HAT-7 2D system along with similar cellular models will be useful to functionally model ion transport processes during amelogenesis. Additionally, we also suggest that similar approaches will allow a better understanding of the regulation of the cycling process in maturation-stage ameloblasts, and the pH sensory mechanisms, which are required to develop sound, healthy enamel.
Collapse
Affiliation(s)
- G Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - P DenBesten
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - R Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Á Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|