1
|
Gupta P, Kumar R. MicroRNAs in sickle cell disease: A comprehensive review. Gene 2025; 957:149470. [PMID: 40187617 DOI: 10.1016/j.gene.2025.149470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Sickle cell disease (SCD) is a multifactorial disease characterized by a high incidence of morbidity and mortality due to chronic hemolysis, inflammation and oxidative stress. Recent studies have highlighted the crucial role of microRNAs (miRNAs) in regulating key pathophysiological processes in SCD, including high levels of fetal hemoglobin production, and reduction in inflammation and cellular adhesion. This comprehensive review discusses the current understanding of miRNAs in SCD, including their potential as biomarkers and therapeutic targets. Furthermore, despite substantial evidences indicating that malaria exacerbates SCD, the review will explore the complex interplay between miRNAs and SCD, with a focus on the exacerbating effects of malaria on SCD severity. Understanding the complex interplay between miRNAs and SCD may lead to the development of novel therapeutic interventions aimed at ameliorating disease severity and improving patient outcomes. Future prospects, challenges and safety concerns related to miRNA-based therapies, highlighting the need for further research.
Collapse
Affiliation(s)
- Parul Gupta
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
2
|
Saadh MJ, Muhammad FA, Alazzawi TS, Fahdil AA, Athab ZH, Tuxtayev J, Alsaikhan F, Farhood B. Regulation of Apoptotic Pathways by MicroRNAs: A Therapeutic Strategy for Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04833-5. [PMID: 40220245 DOI: 10.1007/s12035-025-04833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder marked by a gradual decline in memory and cognitive functions. It is characterized by the presence of senile plaques, neurofibrillary tangles, and neuronal degeneration, affecting a significant portion of the human population. A key feature of various nervous system disorders, including AD, is extensive cellular death caused by apoptosis, which affects not only neurons but also glial cells. While apoptosis plays a vital role in eliminating certain cells and supporting normal development, alterations or disruptions in apoptotic pathways can lead to harmful neurodegenerative conditions such as AD. Thus, targeting apoptosis presents a promising therapeutic approach for these diseases. MicroRNAs (miRNAs), a class of non-coding RNA, play diverse roles in cellular functions, including proliferation, gene expression regulation, programmed cell death, intercellular communication, and angiogenesis. By modulating regulatory genes, miRNAs can influence apoptosis, either promoting or inhibiting it. Aberrant expression of miRNAs can impact multiple apoptotic pathways, potentially driving the progression of AD and related health issues. This review summarizes recent research on miRNAs and their dual role in exacerbating or protecting against neural cell damage in AD by altering apoptotic pathways. The regulation of apoptosis by miRNAs offers a prospective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Jamshid Tuxtayev
- Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Yang T, Ge J, Huang L, Zhu X, Zhang D, Tang S, Zhao J, Ma Y, Long M, Bo X, Li J, Zhang Y, Yuan Q, Sharma AD, Ott M, Geng H, Zhao Y, Zhang L, Shen H, Li H, Li D, Wan P, Xia Q. Preclinical evaluation of AGT mRNA replacement therapy for primary hyperoxaluria type I disease. SCIENCE ADVANCES 2025; 11:eadt9694. [PMID: 40203111 PMCID: PMC11980851 DOI: 10.1126/sciadv.adt9694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare inherited liver disorder caused by alanine glyoxylate aminotransferase (AGT) dysfunction, leading to accumulation of glyoxylate which is then converted into oxalate. Excessive oxalate results in kidney damage due to deposition of oxalate crystals. We have developed an mRNA-based protein replacement therapy for PH1 to restore normal glyoxylate to glycine metabolism. Sequence optimized human AGT mRNA (hAGT mRNA) was encapsulated in lipopolyplex (LPP) and produced functional AGT enzyme in peroxisomes. Pharmacokinetics and pharmacodynamics (PK/PD) were evaluated in vitro and in vivo. PK demonstrated that AGT mRNA and AGT protein maintained high expression levels for up to 48 hours. A single 2 mg/kg dose in AgxtQ84-/- rats achieved a 70% reduction in urinary oxalate. Toxicological assessment identified the highest nonserious toxic dose (HNSTD) as 2 mg/kg. These findings affirm the efficacy and safety of hAGT mRNA/LPP and support its clinical application in PH1 treatment.
Collapse
Affiliation(s)
- Taihua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiahao Ge
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Huang
- Stemirna Therapeutics, Shanghai 201203, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Xinye Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dexin Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Siyuan Tang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yinhe Ma
- Department of Clinical research unit, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mei Long
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaochen Bo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yiqing Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hongquan Geng
- Department of Urology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yicheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130062, China
| | - Liang Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Haifa Shen
- Stemirna Therapeutics, Shanghai 201203, China
| | - Hangwen Li
- Stemirna Therapeutics, Shanghai 201203, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Institute of Organ Transplantation, Shanghai 200127, China
- Shanghai Organ Transplantation and Immune Engineering Technology Research Center, Shanghai 200127, China
| |
Collapse
|
4
|
Alamdari SG, Mohammadzadeh R, Amini M, Najafi S, Baradaran B, Bahojb Mahdavi SZ, Yari A, Mokhtarzadeh AA. Improvement of carboplatin chemosensitivity in lung cancer cells by siRNA-mediated downregulation of DLGAP1-AS2 expression. Sci Rep 2025; 15:7971. [PMID: 40055367 DOI: 10.1038/s41598-025-87649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/21/2025] [Indexed: 03/12/2025] Open
Abstract
Despite being one of the primary and most effective treatments for advanced stages of lung cancer, chemotherapy drugs like carboplatin have limitations due to their adverse side effects and the development of drug resistance in lung cancer cells. However, recent studies have shown promising results in using small interfering RNAs (siRNAs) as a therapeutic agent for cancer treatment. Hence, this study aimed to investigate the potential of combining siRNA-DLGAP1-AS2 with carboplatin in human lung cancer cell lines. The viability of the cells was assessed using the MTT assay, and apoptosis induction was examined through Annexin V/Pi staining. Additionally, the effect of the combination on cell cycle arrest and colony formation of lung cancer cells was studied. Furthermore, the expression of Bax, Bcl-2, MMP-2, MMP-9, GCLC, and CD44 was evaluated. Our functional analysis revealed that inhibiting the expression of DLGAP1-AS2 increased the sensitivity of lung cancer cells to carboplatin. Moreover, our study demonstrated that the combination of DLGAP1-AS2 inhibition through siRNA-DLGAP1-AS2 transfection and carboplatin treatment had a tumor-suppressive function, inhibiting the progression and proliferation of A549 lung cancer cells. Therefore, it can be concluded that targeting DLGAP1-AS2 using specific siRNA in combination with carboplatin chemotherapy holds promise as a valuable therapeutic approach for lung cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Zahra Bahojb Mahdavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | |
Collapse
|
5
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
6
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
7
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Tani H. Recent Advances and Prospects in RNA Drug Development. Int J Mol Sci 2024; 25:12284. [PMID: 39596348 PMCID: PMC11594839 DOI: 10.3390/ijms252212284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
RNA therapeutics have undergone remarkable evolution since their inception in the late 1970s, revolutionizing medicine by offering new possibilities for treating previously intractable diseases. The field encompasses various modalities, including antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), each with unique mechanisms and applications. The foundation was laid in 1978 with the discovery that synthetic oligonucleotides could inhibit viral replication, followed by pivotal developments such as RNA interference's discovery in 1998. The COVID-19 pandemic marked a crucial turning point, demonstrating the potential of mRNA vaccines and accelerating interest in RNA-based approaches. However, significant challenges remain, including stability issues, delivery to target tissues, potential off-target effects, and immunogenicity concerns. Recent advancements in chemical modifications, delivery systems, and the integration of AI technologies are addressing these challenges. The field has seen notable successes, such as approved treatments for spinal muscular atrophy and hereditary transthyretin-mediated amyloidosis. Looking ahead, RNA therapeutics show promise for personalized medicine approaches, particularly in treating genetic disorders and cancer. The continued evolution of this field, driven by technological innovations and deeper understanding of RNA biology, suggests a transformative impact on future medical treatments. The purpose of this review is to provide a comprehensive overview of the evolution, current state, and prospects of RNA therapeutics.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama 245-0066, Japan
| |
Collapse
|
9
|
Chen H, Sun H, Yang Y, Wang P, Chen X, Yin J, Li A, Zhang L, Cai J, Huang J, Zhang S, Zhang Z, Feng X, Yin J, Wang Y, Xiong W, Wan B. Engineered melatonin-pretreated plasma exosomes repair traumatic spinal cord injury by regulating miR-138-5p/SOX4 axis mediated microglia polarization. J Orthop Translat 2024; 49:230-245. [PMID: 39512441 PMCID: PMC11541837 DOI: 10.1016/j.jot.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Background Neuroinflammation plays a crucial role in the repair of spinal cord injury (SCI), with microglia, pivotal in neuroinflammation, driving either degeneration or recovery in this pathological process. Recently, plasma-derived exosomes (denoted Exos) have presented a high capacity for promoting functional recovery of SCI through the anti-inflammatory effects, and pretreated exosomes are associated with better outcomes. Thus, we aimed to explore whether melatonin-pretreated plasma-derived exosomes (denoted MExo) could exert superior effects on SCI, and attempted to elucidate the potential mechanisms. Methods Electron microscopy, nanoparticle tracking analysis, and western blot were applied to delineate the distinctions between Exos and MExos. To assess their therapeutic potentials, we established a contusion SCI rat model, complemented by a battery of in vitro experiments comparing both groups. Subsequently, a miRNA microarray analysis was conducted, followed by a series of rescue experiments to elucidate the specific role of miRNAs in MExos. To further delve into the molecular mechanisms involved, we employed western blot analysis and the luciferase reporter gene assay. Results Melatonin promoted the release of exosome from plasma, concurrently amplifying their anti-inflammatory properties. Furthermore, it was discerned that MExos facilitated a transition in microglia polarization from M1 to M2 phenotype, a phenomenon more pronounced than that observed with Exos. In an endeavor to elucidate this variance, we scrutinized miRNAs exhibiting elevated expression levels in MExos, pinpointing miR-138-5p as a pivotal element in this dynamic. Following this, an in-depth investigation into the role of miR-138-5p was undertaken, which uncovered its efficacy in driving phenotypic alterations within microglia. The analysis of downstream genes targeted by miR-138-5p revealed that it exerted a negative regulatory influence on SOX4, which was found to obstruct the generation of M2-type microglia and the secretion of anti-inflammatory cytokines, thereby partially elucidating the mechanism behind miR-138-5p's regulation of microglia polarization. Conclusions We innovatively observed that melatonin enhanced the anti-inflammatory function of Exos, which further decreased the expression of SOX4 by delivering miR-138-5p. This inhibition promoted the conversion of M1 microglia to M2 microglia, thus offering a viable option for the treatment of SCI. The translational potential of this article This study highlights that melatonin enhances the anti-inflammatory function of Exos through delivery of miR-138-5p. Activation of miR-138-5p/SOX4 axis by engineered melatonin-pretreated plasma exosomes may be a potential target for SCI treatment.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huihui Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yaqing Yang
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Pingchuan Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xizhao Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Junxiang Yin
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Aoying Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Liang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jun Cai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jijun Huang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Shengfei Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhiqiang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xinmin Feng
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Orthopedics, the Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Department of Orthopedics, Northern Jiangsu People's Hospital, Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
11
|
Teng M, Xia ZJ, Lo N, Daud K, He HH. Assembling the RNA therapeutics toolbox. MEDICAL REVIEW (2021) 2024; 4:110-128. [PMID: 38680684 PMCID: PMC11046573 DOI: 10.1515/mr-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
From the approval of COVID-19 mRNA vaccines to the 2023 Nobel Prize awarded for nucleoside base modifications, RNA therapeutics have entered the spotlight and are transforming drug development. While the term "RNA therapeutics" has been used in various contexts, this review focuses on treatments that utilize RNA as a component or target RNA for therapeutic effects. We summarize the latest advances in RNA-targeting tools and RNA-based technologies, including but not limited to mRNA, antisense oligos, siRNAs, small molecules and RNA editors. We focus on the mechanisms of current FDA-approved therapeutics but also provide a discussion on the upcoming workforces. The clinical utility of RNA-based therapeutics is enabled not only by the advances in RNA technologies but in conjunction with the significant improvements in chemical modifications and delivery platforms, which are also briefly discussed in the review. We summarize the latest RNA therapeutics based on their mechanisms and therapeutic effects, which include expressing proteins for vaccination and protein replacement therapies, degrading deleterious RNA, modulating transcription and translation efficiency, targeting noncoding RNAs, binding and modulating protein activity and editing RNA sequences and modifications. This review emphasizes the concept of an RNA therapeutic toolbox, pinpointing the readers to all the tools available for their desired research and clinical goals. As the field advances, the catalog of RNA therapeutic tools continues to grow, further allowing researchers to combine appropriate RNA technologies with suitable chemical modifications and delivery platforms to develop therapeutics tailored to their specific clinical challenges.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ziting Judy Xia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicholas Lo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kashif Daud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
12
|
Eom S, Peak J, Park J, Ahn SH, Cho YK, Jeong Y, Lee HS, Lee J, Ignatova E, Lee SE, Hong Y, Gu D, Kim GWD, Lee DC, Hahm JY, Jeong J, Choi D, Jang ES, Chi SW. Widespread 8-oxoguanine modifications of miRNA seeds differentially regulate redox-dependent cancer development. Nat Cell Biol 2023; 25:1369-1383. [PMID: 37696949 DOI: 10.1038/s41556-023-01209-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023]
Abstract
Oxidative stress contributes to tumourigenesis by altering gene expression. One accompanying modification, 8-oxoguanine (o8G) can change RNA-RNA interactions via o8G•A base pairing, but its regulatory roles remain elusive. Here, on the basis of o8G-induced guanine-to-thymine (o8G > T) variations featured in sequencing, we discovered widespread position-specific o8Gs in tumour microRNAs, preferentially oxidized towards 5' end seed regions (positions 2-8) with clustered sequence patterns and clinically associated with patients in lower-grade gliomas and liver hepatocellular carcinoma. We validated that o8G at position 4 of miR-124 (4o8G-miR-124) and 4o8G-let-7 suppress lower-grade gliomas, whereas 3o8G-miR-122 and 4o8G-let-7 promote malignancy of liver hepatocellular carcinoma by redirecting the target transcriptome to oncogenic regulatory pathways. Stepwise oxidation from tumour-promoting 3o8G-miR-122 to tumour-suppressing 2,3o8G-miR-122 occurs and its specific modulation in mouse liver effectively attenuates diethylnitrosamine-induced hepatocarcinogenesis. These findings provide resources and insights into epitranscriptional o8G regulation of microRNA functions, reprogrammed by redox changes, implicating its control for cancer treatment.
Collapse
Affiliation(s)
- Sangkyeong Eom
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jongjin Peak
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jongyeun Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Seung Hyun Ahn
- Department of Life Sciences, Korea University, Seoul, Korea
| | - You Kyung Cho
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Yeahji Jeong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hye-Sook Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jung Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | | | - Sung Eun Lee
- Department of Life Sciences, Korea University, Seoul, Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Yunji Hong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Dowoon Gu
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Geun-Woo D Kim
- Department of Life Sciences, Korea University, Seoul, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Dong Chan Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Ja Young Hahm
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Eun-Sook Jang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea.
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Korea.
| |
Collapse
|
13
|
Chen C, Guo M, Zhao X, Zhao J, Chen L, He Z, Xu L, Zha Y. MicroRNA-7: A New Intervention Target for Inflammation and Related Diseases. Biomolecules 2023; 13:1185. [PMID: 37627250 PMCID: PMC10452300 DOI: 10.3390/biom13081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA that can regulate physiological and pathological processes through post-transcriptional regulatory gene expression. As an important member of the miRNAs family, microRNA-7 (miR-7) was first discovered in 2001 to play an important regulatory role in tissue and organ development. Studies have shown that miR-7 participates in various tissue and organ development processes, tumorigenesis, aging, and other processes by regulating different target molecules. Notably, a series of recent studies have determined that miR-7 plays a key regulatory role in the occurrence of inflammation and related diseases. In particular, miR-7 can affect the immune response of the body by influencing T cell activation, macrophage function, dendritic cell (DC) maturation, inflammatory body activation, and other mechanisms, which has important potential application value in the intervention of related diseases. This article reviews the current regulatory role of miR-7 in inflammation and related diseases, including viral infection, autoimmune hepatitis, inflammatory bowel disease, and encephalitis. It expounds on the molecular mechanism by which miR-7 regulates the occurrence of inflammatory diseases. Finally, the existing problems and future development directions of miR-7-based intervention on inflammation and related diseases are discussed to provide new references and help strengthen the understanding of the pathogenesis of inflammation and related diseases, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Chao Chen
- School of Medicine, Guizhou University, Guiyang 550025, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Xu Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Longqing Chen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Yan Zha
- School of Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Isenmann M, Stoddart MJ, Schmelzeisen R, Gross C, Della Bella E, Rothweiler RM. Basic Principles of RNA Interference: Nucleic Acid Types and In Vitro Intracellular Delivery Methods. MICROMACHINES 2023; 14:1321. [PMID: 37512632 PMCID: PMC10383872 DOI: 10.3390/mi14071321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Since its discovery in 1989, RNA interference (RNAi) has become a widely used tool for the in vitro downregulation of specific gene expression in molecular biological research. This basically involves a complementary RNA that binds a target sequence to affect its transcription or translation process. Currently, various small RNAs, such as small interfering RNA (siRNA), micro RNA (miRNA), small hairpin RNA (shRNA), and PIWI interacting RNA (piRNA), are available for application on in vitro cell culture, to regulate the cells' gene expression by mimicking the endogenous RNAi-machinery. In addition, several biochemical, physical, and viral methods have been established to deliver these RNAs into the cell or nucleus. Since each RNA and each delivery method entail different off-target effects, limitations, and compatibilities, it is crucial to understand their basic mode of action. This review is intended to provide an overview of different nucleic acids and delivery methods for planning, interpreting, and troubleshooting of RNAi experiments.
Collapse
Affiliation(s)
- Marie Isenmann
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Martin James Stoddart
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Christian Gross
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - René Marcel Rothweiler
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
15
|
Migunova E, Rajamani S, Bonanni S, Wang F, Zhou C, Dubrovsky EB. Cardiac RNase Z edited via CRISPR-Cas9 drives heart hypertrophy in Drosophila. PLoS One 2023; 18:e0286214. [PMID: 37228086 PMCID: PMC10212119 DOI: 10.1371/journal.pone.0286214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiomyopathy (CM) is a group of diseases distinguished by morphological and functional abnormalities in the myocardium. It is etiologically heterogeneous and may develop via cell autonomous and/or non-autonomous mechanisms. One of the most severe forms of CM has been linked to the deficiency of the ubiquitously expressed RNase Z endoribonuclease. RNase Z cleaves off the 3'-trailer of both nuclear and mitochondrial primary tRNA (pre-tRNA) transcripts. Cells mutant for RNase Z accumulate unprocessed pre-tRNA molecules. Patients carrying RNase Z variants with reduced enzymatic activity display a plethora of symptoms including muscular hypotonia, microcephaly and severe heart hypertrophy; still, they die primarily due to acute heart decompensation. Determining whether the underlying mechanism of heart malfunction is cell autonomous or not will provide an opportunity to develop novel strategies of more efficient treatments for these patients. In this study, we used CRISPR-TRiM technology to create Drosophila models that carry cardiomyopathy-linked alleles of RNase Z only in the cardiomyocytes. We found that this modification is sufficient for flies to develop heart hypertrophy and systolic dysfunction. These observations support the idea that the RNase Z linked CM is driven by cell autonomous mechanisms.
Collapse
Affiliation(s)
- Ekaterina Migunova
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Saathvika Rajamani
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Stefania Bonanni
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Edward B. Dubrovsky
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
- Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY, United States of America
| |
Collapse
|
16
|
Xiao Y, Liu TM, MacRae IJ. A tiny loop in the Argonaute PIWI domain tunes small RNA seed strength. EMBO Rep 2023:e55806. [PMID: 37082939 DOI: 10.15252/embr.202255806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Argonaute (AGO) proteins use microRNAs (miRNAs) and small interfering RNAs (siRNAs) as guides to regulate gene expression in plants and animals. AGOs that use miRNAs in bilaterian animals recognize short (6-8 nt.) elements complementary to the miRNA seed region, enabling each miRNA to interact with hundreds of otherwise unrelated targets. By contrast, AGOs that use miRNAs in plants employ longer (> 13 nt.) recognition elements such that each miRNA silences a small number of physiologically related targets. Here, we show that this major functional distinction depends on a minor structural difference between plant and animal AGO proteins: a 9-amino acid loop in the PIWI domain. Swapping the PIWI loop from human Argonaute2 (HsAGO2) into Arabidopsis Argonaute10 (AtAGO10) increases seed strength, resulting in animal-like miRNA targeting. Conversely, swapping the plant PIWI loop into HsAGO2 reduces seed strength and accelerates the turnover of cleaved targets. The loop-swapped HsAGO2 silences targets more potently, with reduced miRNA-like targeting, than wild-type HsAGO2 in mammalian cells. Thus, tiny structural differences can tune the targeting properties of AGO proteins for distinct biological roles.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - TingYu M Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
17
|
Chong ZX, Ho WY, Yeap SK. Delineating the tumour-regulatory roles of EYA4. Biochem Pharmacol 2023; 210:115466. [PMID: 36849065 DOI: 10.1016/j.bcp.2023.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3β, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
18
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
19
|
Bao X, Han Y, Song Y. Effects of MiR-27a on proliferation and apoptosis of breast cancer cells by targeting KRAS. Minerva Med 2023; 114:126-127. [PMID: 33198441 DOI: 10.23736/s0026-4806.20.07038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinzhou Bao
- Department of Breast Surgery, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, China
| | - Yangbo Han
- Department of Breast Surgery, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, China
| | - Yifeng Song
- Department of Breast Surgery, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, China -
| |
Collapse
|
20
|
Samad AFA, Kamaroddin MF. Innovative approaches in transforming microRNAs into therapeutic tools. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1768. [PMID: 36437633 DOI: 10.1002/wrna.1768] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
MicroRNA (miRNA) is regarded as a prominent genetic regulator, as it can fine-tune an entire biological pathway by targeting multiple target genes. This characteristic makes miRNAs promising therapeutic tools to reinstate cell functions that are disrupted as a consequence of diseases. Currently, miRNA replacement by miRNA mimics and miRNA inhibition by anti-miRNA oligonucleotides are the main approaches to utilizing miRNA molecules for therapeutic purposes. Nevertheless, miRNA-based therapeutics are hampered by major issues such as off-target effects, immunogenicity, and uncertain delivery platforms. Over the past few decades, several innovative approaches have been established to minimize off-target effects, reduce immunostimulation, and provide efficient transfer to the target cells in which these molecules exert their function. Recent achievements have led to the testing of miRNA-based drugs in clinical trials, and these molecules may become next-generation therapeutics for medical intervention. Despite the achievement of exciting milestones, the dosage of miRNA administration remains unclear, and ways to address this issue are proposed. Elucidating the current status of the main factors of therapeutic miRNA would allow further developments and innovations to achieve safe therapeutic tools. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Abdul Fatah A Samad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
21
|
Bharathi JK, Anandan R, Benjamin LK, Muneer S, Prakash MAS. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:600-618. [PMID: 36529010 DOI: 10.1016/j.plaphy.2022.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
22
|
Lin L, Zhu S, Huang H, Wu LP, Huang J. Chemically modified small interfering RNA targeting Hedgehog signaling pathway for rheumatoid arthritis therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:88-104. [PMID: 36618268 PMCID: PMC9813581 DOI: 10.1016/j.omtn.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that leads to disability; however, existing therapies are still unsatisfactory. Activated fibroblast-like synoviocytes (FLSs) play an essential role in synovitis formation and joint destruction in RA. The Hedgehog signaling pathway is aberrantly activated and contributes to the aggressive phenotype of RA-FLSs. However, it remains uncertain whether inhibiting Smoothened (SMO), a critical component of the Hedgehog signaling pathway, is an effective treatment for RA. Here, we design a series of small interfering RNAs (siRNAs) that specifically target the SMO gene. With precise chemical modifications, siRNAs' efficacy and stability are significantly improved, and the off-target effects are minimized. The optimized chemically modified siRNA (si-S1A3-Chol) decreases RA-FLS proliferation and invasiveness without the transfection reagent. Furthermore, si-S1A3-Chol injected intra-articularly effectively alleviates joint destruction and improves motor function in collagen-induced arthritis mouse models. Consequently, our results demonstrate that chemically modified siRNA targeting the Hedgehog signaling pathway may be a potential therapy for RA.
Collapse
Affiliation(s)
- Lang Lin
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China
| | - Shangling Zhu
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China
| | - Hongyu Huang
- Division of Clinical Public Health and Institute for Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China,Corresponding author: Lin-Ping Wu, Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China.
| | - Jianlin Huang
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China,Corresponding author: Jianlin Huang, Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China.
| |
Collapse
|
23
|
Shah AM, Giacca M. Small non-coding RNA therapeutics for cardiovascular disease. Eur Heart J 2022; 43:4548-4561. [PMID: 36106499 PMCID: PMC9659475 DOI: 10.1093/eurheartj/ehac463] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023] Open
Abstract
Novel bio-therapeutic agents that harness the properties of small, non-coding nucleic acids hold great promise for clinical applications. These include antisense oligonucleotides that inhibit messenger RNAs, microRNAs (miRNAs), or long non-coding RNAs; positive effectors of the miRNA pathway (short interfering RNAs and miRNA mimics); or small RNAs that target proteins (i.e. aptamers). These new therapies also offer exciting opportunities for cardiovascular diseases and promise to move the field towards more precise approaches based on disease mechanisms. There have been substantial advances in developing chemical modifications to improve the in vivo pharmacological properties of antisense oligonucleotides and reduce their immunogenicity. Carrier methods (e.g. RNA conjugates, polymers, and lipoplexes) that enhance cellular uptake of RNA therapeutics and stability against degradation by intracellular nucleases are also transforming the field. A number of small non-coding RNA therapies for cardiovascular indications are now approved. Moreover, there is a large pipeline of therapies in clinical development and an even larger list of putative therapies emerging from pre-clinical studies. Progress in this area is reviewed herein along with the hurdles that need to be overcome to allow a broader clinical translation.
Collapse
Affiliation(s)
- Ajay M Shah
- King’s College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- King’s College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
24
|
Hahm JY, Park J, Jang ES, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med 2022; 54:1626-1642. [PMID: 36266447 PMCID: PMC9636213 DOI: 10.1038/s12276-022-00822-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
In pathophysiology, reactive oxygen species control diverse cellular phenotypes by oxidizing biomolecules. Among these, the guanine base in nucleic acids is the most vulnerable to producing 8-oxoguanine, which can pair with adenine. Because of this feature, 8-oxoguanine in DNA (8-oxo-dG) induces a G > T (C > A) mutation in cancers, which can be deleterious and thus actively repaired by DNA repair pathways. 8-Oxoguanine in RNA (o8G) causes problems in aberrant quality and translational fidelity, thereby it is subjected to the RNA decay pathway. In addition to oxidative damage, 8-oxo-dG serves as an epigenetic modification that affects transcriptional regulatory elements and other epigenetic modifications. With the ability of o8G•A in base pairing, o8G alters structural and functional RNA-RNA interactions, enabling redirection of posttranscriptional regulation. Here, we address the production, regulation, and function of 8-oxo-dG and o8G under oxidative stress. Primarily, we focus on the epigenetic and epitranscriptional roles of 8-oxoguanine, which highlights the significance of oxidative modification in redox-mediated control of gene expression.
Collapse
Affiliation(s)
- Ja Young Hahm
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Jongyeun Park
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Eun-Sook Jang
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Sung Wook Chi
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481 Republic of Korea
| |
Collapse
|
25
|
Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol 2022; 39:53-83. [PMID: 36125599 PMCID: PMC9486770 DOI: 10.1007/s10565-022-09761-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which are essential post-transcriptional gene regulators in various neuronal degenerative diseases and playact a key role in these physiological progresses. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, and, stroke, are seriously threats to the life and health of all human health and life kind. Recently, various studies have reported that some various miRNAs can regulate the development of neurodegenerative diseases as well as act as biomarkers to predict these neuronal diseases conditions. Endogenic miRNAs such as miR-9, the miR-29 family, miR-15, and the miR-34 family are generally dysregulated in animal and cell models. They are involved in regulating the physiological and biochemical processes in the nervous system by targeting regulating different molecular targets and influencing a variety of pathways. Additionally, exogenous miRNAs derived from homologous plants and defined as botanmin, such as miR2911 and miR168, can be taken up and transferred by other species to be and then act analogously to endogenic miRNAs to regulate the physiological and biochemical processes. This review summarizes the mechanism and principle of miRNAs in the treatment of some neurodegenerative diseases, as well as discusses several types of miRNAs which were the most commonly reported in diseases. These miRNAs could serve as a study provided some potential biomarkers in neurodegenerative diseases might be an ideal and/or therapeutic targets for neurodegenerative diseases. Finally, the role accounted of the prospective exogenous miRNAs involved in mammalian diseases is described.
Collapse
Affiliation(s)
- Shijie Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China. .,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
26
|
Lv S, Zhao X, Ma X, Zou Q, Li N, Yan Y, Sun L, Song T. Efficient and reversible Cas13d-mediated knockdown with an all-in-one lentivirus-vector. Front Bioeng Biotechnol 2022; 10:960192. [PMID: 36185457 PMCID: PMC9521038 DOI: 10.3389/fbioe.2022.960192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Type VI CRISPR effector Cas13d from Ruminococcus flavefaciens XPD3002 (RfxCas13d) is an RNA-guided RNA endonuclease. RfxCas13d has been harnessed to knockdown gene expression with high specificity in various systems including mammalian cells. While inducible knockdown is advantageous over constitutive knockdown in many scenarios, current inducible systems of RfxCas13d express CRISPR RNA and Cas13d separately. Such systems could be cumbersome to handle and may hamper the application of RfxCas13d in some scenarios. Here, we design an all-in-one Cas13d lentivirus vector which renders efficient and inducible knockdown in a doxycycline dosage-dependent manner. Furthermore, we find that Cas13d has a short half-life in mammalian cells. As a result, knockdown can be promptly reversed after doxycycline withdrawal. This vector is particularly useful for applications involving indispensable genes and/or in cells hard to transduce.
Collapse
Affiliation(s)
- Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyun Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Tanjing Song, ; Lidong Sun,
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Tanjing Song, ; Lidong Sun,
| |
Collapse
|
27
|
Dysregulation of Pseudogenes/lncRNA-Hsa-miR-1-3p-PAICS Pathway Promotes the Development of NSCLC. JOURNAL OF ONCOLOGY 2022; 2022:4714931. [PMID: 36081668 PMCID: PMC9448537 DOI: 10.1155/2022/4714931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Objective Non-small cell lung cancer (NSCLC) explains about 80 percent of whole lung cancers, and its 5-year survival rate is impoverished, as when people are first diagnosed, 68% of whom are identified at a dangerous stage. The molecular mechanisms of NSCLC are still being explored. Methods GSE18842 and GSE19804 were exerted to scan for diversely expressed genes (DEGs) in NSCLC, and then we used GEPIA for the validation of DEGs expression. The prognostic values were determined through Kaplan–Meier analysis. Three target prediction databases indicated potential microRNAs (miRNAs), while miRNet predicted hsa-miR-1-3p′s upstream long non-coding RNAs (lncRNAs) and pseudogenes. UALCAN was utilized to identify the co-expressed genes of PAICS, while enrichment analysis on them was managed with Enrichr. Results We initially found that the gene expression level of cyclin B1 (CCNB1), cyclin-dependent kinases1 (CDK1), and phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) had a notable increase in NSCLC. We predicted 6, 10, and 7 microRNAs to target CCNB1, CDK1, and PAICS, respectively. Among miRNA-mRNA (microRNA-messenger RNA) pairs, we deduced that the hsa-miR-1-PAICS axis was the most potential one to inhibit the occurrence of NSCLC. We also noted that the hsa-miR-1-3p-PAICS axis participated in regulating the process of mitosis with mechanical functions. Moreover, we identified 5 pseudogenes and 33 long non-coding RNAs (lncRNAs) that might inhibit the hsa-miR-1-3p-PAICS axis in NSCLC. Conclusions The pseudogene/lncRNA-hsa-miR-1-3p-PAICS is very important in NSCLC on the basis of this study, thus providing us with effective treatments and promising biomarkers for the diagnosis of NSCLC.
Collapse
|
28
|
Zhang F, Zhou Y, Ding J. The current landscape of microRNAs (miRNAs) in bacterial pneumonia: opportunities and challenges. Cell Mol Biol Lett 2022; 27:70. [PMID: 35986232 PMCID: PMC9392286 DOI: 10.1186/s11658-022-00368-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs), which were initially discovered in Caenorhabditis elegans, can regulate gene expression by recognizing cognate sequences and interfering with the transcriptional or translational machinery. The application of bioinformatics tools for structural analysis and target prediction has largely driven the investigation of certain miRNAs. Notably, it has been found that certain miRNAs which are widely involved in the inflammatory response and immune regulation are closely associated with the occurrence, development, and outcome of bacterial pneumonia. It has been shown that certain miRNA techniques can be used to identify related targets and explore associated signal transduction pathways. This enhances the understanding of bacterial pneumonia, notably for "refractory" or drug-resistant bacterial pneumonia. Although these miRNA-based methods may provide a basis for the clinical diagnosis and treatment of this disease, they still face various challenges, such as low sensitivity, poor specificity, low silencing efficiency, off-target effects, and toxic reactions. The opportunities and challenges of these methods have been completely reviewed, notably in bacterial pneumonia. With the continuous improvement of the current technology, the miRNA-based methods may surmount the aforementioned limitations, providing promising support for the clinical diagnosis and treatment of "refractory" or drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yunxin Zhou
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
29
|
Ma C, Shi ZH, Han XY, Liu C, Yan B, Du JL. Targeting circRNA-MAP4K2 for the treatment of diabetes-induced retinal vascular dysfunction. Aging (Albany NY) 2022; 14:6255-6268. [PMID: 35963645 PMCID: PMC9417218 DOI: 10.18632/aging.204215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Diabetic retinopathy (DR) is an important ocular vascular disease in working-age adults. However, the molecular mechanism underlying retinal vascular dysfunction is still not fully understood in DR. Circular RNAs have been recognized as the crucial regulators in many biological processes and human diseases. Herein, we determined the role of circular RNA-MAP4K2 (cMAP4K2) in diabetes-induced retinal vascular dysfunction. The results showed that high glucose treatment led to increased levels of cMAP4K2 expression in vitro and in vivo. Silencing of cMAP4K2 could reduce endothelial cell viability, proliferation, migration, and tube formation in vitro and alleviate retinal vascular dysfunction in vivo as shown by decreased vascular leakage and inflammation. By contrast, cMAP4K2 overexpression had an opposite effect on retinal vascular dysfunction. Mechanistically, cMAP4K2 acted as miR-377 sponge to affect the biological activity of miR-377, which led to increased expression of vascular endothelial growth factor A (VEGFA). Clinically, cMAP4K2 expression was significantly up-regulated in the clinical sample of DR patients. Collectively, cMAP4K2 is shown as a potential target for the diagnosis and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Cong Ma
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.,Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ze-Hui Shi
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Han
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chang Liu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biao Yan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Ling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
30
|
Guenther DC, Mori S, Matsuda S, Gilbert JA, Willoughby JLS, Hyde S, Bisbe A, Jiang Y, Agarwal S, Madaoui M, Janas MM, Charisse K, Maier MA, Egli M, Manoharan M. Role of a "Magic" Methyl: 2'-Deoxy-2'-α-F-2'-β- C-methyl Pyrimidine Nucleotides Modulate RNA Interference Activity through Synergy with 5'-Phosphate Mimics and Mitigation of Off-Target Effects. J Am Chem Soc 2022; 144:14517-14534. [PMID: 35921401 PMCID: PMC9389587 DOI: 10.1021/jacs.2c01679] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Although 2′-deoxy-2′-α-F-2′-β-C-methyl (2′-F/Me) uridine nucleoside derivatives
are a successful class of antiviral drugs, this modification had not
been studied in oligonucleotides. Herein, we demonstrate the facile
synthesis of 2′-F/Me-modified pyrimidine phosphoramidites and
their subsequent incorporation into oligonucleotides. Despite the
C3′-endo preorganization of the parent nucleoside,
a single incorporation into RNA or DNA resulted in significant thermal
destabilization of a duplex due to unfavorable enthalpy, likely resulting
from steric effects. When located at the terminus of an oligonucleotide,
the 2′-F/Me modification imparted more resistance to degradation
than the corresponding 2′-fluoro nucleotides. Small interfering
RNAs (siRNAs) modified at certain positions with 2′-F/Me had
similar or better silencing activity than the parent siRNAs when delivered
via a lipid nanoparticle formulation or as a triantennary N-acetylgalactosamine conjugate in cells and in mice. Modification
in the seed region of the antisense strand at position 6 or 7 resulted
in an activity equivalent to the parent in mice. Additionally, placement
of the antisense strand at position 7 mitigated seed-based off-target
effects in cell-based assays. When the 2′-F/Me modification
was combined with 5′-vinyl phosphonate, both E and Z isomers had silencing activity comparable
to the parent. In combination with other 2′-modifications such
as 2′-O-methyl, the Z isomer
is detrimental to silencing activity. Presumably, the equivalence
of 5′-vinyl phosphonate isomers in the context of 2′-F/Me
is driven by the steric and conformational features of the C-methyl-containing sugar ring. These data indicate that
2′-F/Me nucleotides are promising tools for nucleic acid-based
therapeutic applications to increase potency, duration, and safety.
Collapse
Affiliation(s)
- Dale C Guenther
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Shohei Mori
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Jason A Gilbert
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | | | - Sarah Hyde
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Saket Agarwal
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Mimouna Madaoui
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Martin A Maier
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
31
|
Wu BC, Hsu ATW, Abadchi SN, Johnson CR, Bengali S, Lay F, Melinosky K, Shao C, Chang KH, Born LJ, Abraham J, Evans D, Ha JS, Harmon JW. Potential Role of Silencing Ribonucleic Acid for Esophageal Cancer Treatment. J Surg Res 2022; 278:433-444. [PMID: 35667884 DOI: 10.1016/j.jss.2022.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Esophageal cancer is an aggressive malignancy with high mortality. Optimal treatment of esophageal cancer remains an elusive goal. Ribonucleic acid (RNA) interference is a novel potential targeted approach to treat esophageal cancer. Targeting oncogenes that can alter critical cellular functions with silencing RNA molecules is a promising approach. The silencing of specific oncogenes in esophageal cancer cells in the experimental setting has been shown to decrease the expression of oncogenic proteins. This has resulted in cell apoptosis, reduction in cell proliferation, reduced invasion, migration, epithelial-mesenchymal transition, decrease in tumor angiogenesis and metastasis, and overcoming drug resistance. The Hedgehog (Hh) signaling pathway has been shown to be involved in esophageal adenocarcinoma formation in a reflux animal model. In addition to Hh, we will focus on other targets with clinical potential in the treatment of esophageal cancer. MATERIALS AND METHODS We searched for articles published from 2005 to August 2020 that studied the siRNA effects on inhibiting esophageal cancer formation in experimental settings. We used combinations of the following terms for searching: "esophageal cancer," "RNA interference," "small interfering RNA," "siRNA," "silencing RNA," "Smoothened (Smo)," "Gli," "Bcl-2," "Bcl-XL," "Bcl-W,″ "Mcl-1," "Bfl-1," "STAT3,"and "Hypoxia inducible factor (HIF)". A total of 21 relevant articles were found. RESULTS AND CONCLUSIONS Several proto-oncogenes/oncogenes including Hh pathway mediators, glioma-associated oncogene homolog 1 (Gli-1), Smoothened (Smo), and antiapoptotic Bcl-2 have potential as targets for silencing RNA in the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Bo-Chang Wu
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angela Ting-Wei Hsu
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanaz Nourmohammadi Abadchi
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher R Johnson
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sameer Bengali
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frank Lay
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kelsey Melinosky
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Kai-Hua Chang
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Louis J Born
- Department of Bioengineering, University of Maryland, College Park, College Park, Maryland
| | - John Abraham
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Jinny S Ha
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W Harmon
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
32
|
Qian M, Shi Y, Lu W. LINC00707 knockdown inhibits IL-1β-induced apoptosis and extracellular matrix degradation of osteoarthritis chondrocytes by the miR-330-5p/FSHR axis. Immunopharmacol Immunotoxicol 2022; 44:671-681. [PMID: 35536095 DOI: 10.1080/08923973.2022.2076241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a severe disabling condition that causes major health problems. The roles of lncRNAs in regulating OA progression have been increasingly researched. Based on previously published microarray analysis, LINC00707 is upregulated in OA. This research was done to uncover the function of LINC00707 in IL-1β-induced chondrocyte injury and its possible mechanisms. METHODS LINC00707, miR-330-5p, and FSHR expression in OA cartilage tissues were assessed by RT-qPCR. Primary chondrocytes were isolated from OA tissues and treated with IL-1β to establish an in vitro OA model. Under the indicated treatment, chondrocyte apoptosis, senescence, ECM degradation, and inflammation were determined using flow cytometry, TUNEL, SA-β-Gal staining, and ELISA experiments, respectively. Interactions between gene were evaluated using Ago2 RIP and luciferase reporter assays. RESULTS LINC00707 and FSHR were elevated, and miR-330-5p was reduced in cartilage tissues of OA patients and in IL-1β-treated primary chondrocytes. Silencing LINC00707 hampered chondrocytes apoptosis, senescence, ECM degradation, and inflammation. LINC00707 acted as a ceRNA to regulate FSHR through controlling miR-330-5p availability. Additionally, both miR-330-5p depletion and FSHR overexpression diminished the effects of silencing LINC00707 in OA progression. CONCLUSION Silencing LINC00707 mitigates chondrocyte injury in osteoarthritis via sponging miR-330-5p and inhibiting FSHR.
Collapse
Affiliation(s)
- Minglei Qian
- Department of Traumatology, Changshu No.2 People's Hospital, Changshu 215500, Jiangsu, China
| | - Yuanxin Shi
- Department of Traumatology, Changshu No.2 People's Hospital, Changshu 215500, Jiangsu, China
| | - Wei Lu
- Department of Traumatology, Changshu No.2 People's Hospital, Changshu 215500, Jiangsu, China
| |
Collapse
|
33
|
Luo F, Liu W, Bu H. MicroRNAs in hypertrophic cardiomyopathy: pathogenesis, diagnosis, treatment potential and roles as clinical biomarkers. Heart Fail Rev 2022; 27:2211-2221. [PMID: 35332416 DOI: 10.1007/s10741-022-10231-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 12/28/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy and is characterized by increased left ventricular wall thickness, but existing diagnostic and treatment approaches face limitations. MicroRNAs (miRNAs) are type of noncoding RNA molecule that plays crucial roles in the pathological process of cardiac remodelling. Accordingly, miRNAs related to HCM may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development of HCM. We then summarize the roles of common miRNAs as diagnostic and clinical biomarkers in HCM. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HCM.
Collapse
Affiliation(s)
- Fanyan Luo
- The Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- The Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haisong Bu
- The Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
34
|
Manikkath J, Jishnu PV, Wich PR, Manikkath A, Radhakrishnan R. Nanoparticulate strategies for the delivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine (Lond) 2022; 17:181-195. [PMID: 35014880 DOI: 10.2217/nnm-2021-0381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are naturally occurring noncoding RNAs with multiple functionalities. They are dysregulated in several conditions and can serve as disease biomarkers, therapeutic targets and therapeutic agents. Translation of miRNA therapeutics to the clinic poses several challenges related to the safe and effective delivery of these agents to the site of action. Nanoparticulate carriers hold promise in this area by enhancing targeting efficiency and reducing off-target effects. This paper reviews recent advances in the delivery strategies of miRNAs in anticancer therapy, with a focus on lipid-based, polymeric, inorganic platforms, cell membrane-derived vesicles and bacterial minicells. Additionally, this review explores the potentiality of miRNAs in the treatment of oral submucous fibrosis, a potentially premalignant condition of the oral cavity with no definitive treatment to date.
Collapse
Affiliation(s)
- Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Padacherri Vethil Jishnu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Aparna Manikkath
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
35
|
Unveiling the tumour-regulatory roles of miR-1275 in cancer. Pathol Res Pract 2021; 230:153745. [PMID: 34953353 DOI: 10.1016/j.prp.2021.153745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The rapid development of small RNA and molecular biology research in the past 20 years has enabled scientists to discover many new miRNAs that are proven to play essential roles in regulating the development of different cancer types. Among these miRNAs, miR-1275 is one of the well-studied miRNAs that has been described to act as a tumour-promoting or tumour-suppressing miRNA in various cancer types. Even though miR-1275 has been widely reported in different original research articles on its roles in modulating the progression of different cancer types, however, there is scarce an in-depth review that could constructively summarize the findings from different studies on the regulatory roles of miR-1275 in different cancer types. To fill up this literature gap, therefore, this review was aimed to provide an overview and summary of the roles of miR-1275 in modulating the development of different cancers and to unravel the mechanism of how miR-1275 regulates cancer progression. Based on the findings summarized from various sources, it was found that miR-1275 plays a vital role in regulating various cellular signaling pathways like the PI3K/AKT, ERK/JNK, MAPK, and Wnt signaling pathways, and the dysregulation of this miRNA has been shown to contribute to the development of multiple cancer types such as cancers of the liver, breast, lung, gastrointestinal tract and genitourinary tract. Therefore, miR-1275 has great potential to be employed as a biomarker to diagnose cancer and to predict the prognosis of cancer patients. In addition, by inhibiting the expression of its unique downstream targets that are involved in regulating the mentioned cellular pathways, this miRNA could also be utilized as a novel therapeutic agent to halt cancer development.
Collapse
|
36
|
Zhou H, Tang W, Yang J, Peng J, Guo J, Fan C. MicroRNA-Related Strategies to Improve Cardiac Function in Heart Failure. Front Cardiovasc Med 2021; 8:773083. [PMID: 34869689 PMCID: PMC8639862 DOI: 10.3389/fcvm.2021.773083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Heart failure (HF) describes a group of manifestations caused by the failure of heart function as a pump that supports blood flow through the body. MicroRNAs (miRNAs), as one type of non-coding RNA molecule, have crucial roles in the etiology of HF. Accordingly, miRNAs related to HF may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development and diseases of the heart. We then outline commonly used miRNA chemical modifications and delivery systems. Further, we summarize the opportunities and challenges for HF-related miRNA therapeutics targets, and discuss the first clinical trial of an antisense drug (CDR132L) in patients with HF. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HF.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianjun Guo
- Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| |
Collapse
|
37
|
Huang Q, Chen L, Bai Q, Tong T, Zhou Y, Li Z, Lu C, Chen S, Chen L. The roles of microRNAs played in lung diseases via regulating cell apoptosis. Mol Cell Biochem 2021; 476:4265-4275. [PMID: 34398353 DOI: 10.1007/s11010-021-04242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/10/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a type of endogenous non-coding short-chain RNA, which plays a crucial role in the regulation of many essential cellular functions, including cellular migration, proliferation, invasion, autophagy, oxidative stress, apoptosis, and differentiation. The lung can be damaged by pathogenic microorganisms, as well as physical or chemical factors. Research has confirmed that miRNAs and lung cell apoptosis can affect the development and progression of several lung diseases. This article reviews the role of miRNAs in the development of lung disease through regulating host cell apoptosis.
Collapse
Affiliation(s)
- Qiaoling Huang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Li Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Ting Tong
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - You Zhou
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Zhongyu Li
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Chunxue Lu
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Shenghua Chen
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| |
Collapse
|
38
|
Ahn SH, Gu D, Koh Y, Lee HS, Chi SW. AGO CLIP-based imputation of potent siRNA sequences targeting SARS-CoV-2 with antifibrotic miRNA-like activity. Sci Rep 2021; 11:19161. [PMID: 34580386 PMCID: PMC8476540 DOI: 10.1038/s41598-021-98708-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/13/2021] [Indexed: 01/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with fatal pulmonary fibrosis. Small interfering RNAs (siRNAs) can be developed to induce RNA interference against SARS-CoV-2, and their susceptible target sites can be inferred by Argonaute crosslinking immunoprecipitation sequencing (AGO CLIP). Here, by reanalysing AGO CLIP data in RNA viruses, we delineated putative AGO binding in the conserved non-structural protein 12 (nsp12) region encoding RNA-dependent RNA polymerase (RdRP) in SARS-CoV-2. We utilised the inferred AGO binding to optimise the local RNA folding parameter to calculate target accessibility and predict all potent siRNA target sites in the SARS-CoV-2 genome, avoiding sequence variants. siRNAs loaded onto AGO also repressed seed (positions 2–8)-matched transcripts by acting as microRNAs (miRNAs). To utilise this, we further screened 13 potential siRNAs whose seed sequences were matched to known antifibrotic miRNAs and confirmed their miRNA-like activity. A miR-27-mimicking siRNA designed to target the nsp12 region (27/RdRP) was validated to silence a synthesised nsp12 RNA mimic in lung cell lines and function as an antifibrotic miR-27 in regulating target transcriptomes related to TGF-β signalling. siRNA sequences with an antifibrotic miRNA-like activity that could synergistically treat COVID-19 are available online (http://clip.korea.ac.kr/covid19).
Collapse
Affiliation(s)
- Seung Hyun Ahn
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Dowoon Gu
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Yongjun Koh
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hye-Sook Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
39
|
Huang J, Zhang F, Su M, Li J, Yi W, Hou L, Yang S, Liu J, Zhang H, Ma T, Wu D. MeCP2 prevents age-associated cognitive decline via restoring synaptic plasticity in a senescence-accelerated mouse model. Aging Cell 2021; 20:e13451. [PMID: 34363729 PMCID: PMC8441320 DOI: 10.1111/acel.13451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Age‐related cognitive decline in neurodegenerative diseases, such as Alzheimer's disease (AD), is associated with the deficits of synaptic plasticity. Therefore, exploring promising targets to enhance synaptic plasticity in neurodegenerative disorders is crucial. It has been demonstrated that methyl‐CpG binding protein 2 (MeCP2) plays a vital role in neuronal development and MeCP2 malfunction causes various neurodevelopmental disorders. However, the role of MeCP2 in neurodegenerative diseases has been less reported. In the study, we found that MeCP2 expression in the hippocampus was reduced in the hippocampus of senescence‐accelerated mice P8 (SAMP8) mice. Overexpression of hippocampal MeCP2 could elevate synaptic plasticity and cognitive function in SAMP8 mice, while knockdown of MeCP2 impaired synaptic plasticity and cognitive function in senescence accelerated‐resistant 1 (SAMR1) mice. MeCP2‐mediated regulation of synaptic plasticity may be associated with CREB1 pathway. These results suggest that MeCP2 plays a vital role in age‐related cognitive decline by regulating synaptic plasticity and indicate that MeCP2 may be promising targets for the treatment of age‐related cognitive decline in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin‐Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Fan Zhang
- Scientific research center of traditional Chinese medicine Guangxi University of Chinese Medicine Nanning China
| | - Min Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Jiaxin Li
- Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Wen Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Li‐Xiang Hou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Si‐Man Yang
- Scientific research center of traditional Chinese medicine Guangxi University of Chinese Medicine Nanning China
| | - Jin‐Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Hao‐An Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Deng‐Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| |
Collapse
|
40
|
Wang P, Zhou Y, Richards AM. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics 2021; 11:8771-8796. [PMID: 34522211 PMCID: PMC8419061 DOI: 10.7150/thno.62642] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The approval of the first small interfering RNA (siRNA) drug Patisiran by FDA in 2018 marks a new era of RNA interference (RNAi) therapeutics. MicroRNAs (miRNA), an important post-transcriptional gene regulator, are also the subject of both basic research and clinical trials. Both siRNA and miRNA mimics are ~21 nucleotides RNA duplexes inducing mRNA silencing. Given the well performance of siRNA, researchers ask whether miRNA mimics are unnecessary or developed siRNA technology can pave the way for the emergence of miRNA mimic drugs. Through comprehensive comparison of siRNA and miRNA, we focus on (1) the common features and lessons learnt from the success of siRNAs; (2) the unique characteristics of miRNA that potentially offer additional therapeutic advantages and opportunities; (3) key areas of ongoing research that will contribute to clinical application of miRNA mimics. In conclusion, miRNA mimics have unique properties and advantages which cannot be fully matched by siRNA in clinical applications. MiRNAs are endogenous molecules and the gene silencing effects of miRNA mimics can be regulated or buffered to ameliorate or eliminate off-target effects. An in-depth understanding of the differences between siRNA and miRNA mimics will facilitate the development of miRNA mimic drugs.
Collapse
Affiliation(s)
- Peipei Wang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Yue Zhou
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
| | - Arthur M. Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Medicine, National University Health System, 119228 Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, New Zealand
| |
Collapse
|
41
|
Jakutis G, Stainier DYR. Genotype-Phenotype Relationships in the Context of Transcriptional Adaptation and Genetic Robustness. Annu Rev Genet 2021; 55:71-91. [PMID: 34314597 DOI: 10.1146/annurev-genet-071719-020342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic manipulations with a robust and predictable outcome are critical to investigate gene function, as well as for therapeutic genome engineering. For many years, knockdown approaches and reagents including RNA interference and antisense oligonucleotides dominated functional studies; however, with the advent of precise genome editing technologies, CRISPR-based knockout systems have become the state-of-the-art tools for such studies. These technologies have helped decipher the role of thousands of genes in development and disease. Their use has also revealed how limited our understanding of genotype-phenotype relationships is. The recent discovery that certain mutations can trigger the transcriptional modulation of other genes, a phenomenon called transcriptional adaptation, has provided an additional explanation for the contradicting phenotypes observed in knockdown versus knockout models and increased awareness about the use of each of these approaches. In this review, we first cover the strengths and limitations of different gene perturbation strategies. Then we highlight the diverse ways in which the genotype-phenotype relationship can be discordant between these different strategies. Finally, we review the genetic robustness mechanisms that can lead to such discrepancies, paying special attention to the recently discovered phenomenon of transcriptional adaptation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gabrielius Jakutis
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; .,German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, 60590 Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| |
Collapse
|
42
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
43
|
Jones CE, Tan WS, Grey F, Hughes DJ. Discovering antiviral restriction factors and pathways using genetic screens. J Gen Virol 2021; 102:001603. [PMID: 34020727 PMCID: PMC8295917 DOI: 10.1099/jgv.0.001603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infections activate the powerful interferon (IFN) response that induces the expression of several hundred IFN stimulated genes (ISGs). The principal role of this extensive response is to create an unfavourable environment for virus replication and to limit spread; however, untangling the biological consequences of this large response is complicated. In addition to a seemingly high degree of redundancy, several ISGs are usually required in combination to limit infection as individual ISGs often have low to moderate antiviral activity. Furthermore, what ISG or combination of ISGs are antiviral for a given virus is usually not known. For these reasons, and since the function(s) of many ISGs remains unexplored, genome-wide approaches are well placed to investigate what aspects of this response result in an appropriate, virus-specific phenotype. This review discusses the advances screening approaches have provided for the study of host defence mechanisms, including clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9), ISG expression libraries and RNA interference (RNAi) technologies.
Collapse
Affiliation(s)
- Chloe E. Jones
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Wenfang S. Tan
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - David J. Hughes
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
44
|
Zhang F, Yuan X, Sun H, Yin X, Gao Y, Zhang M, Jia Z, Yu M, Ying S, Xia H, Ju L, Xiao Y, Tao H, Lou J, Zhu L. A nontoxic dose of chrysotile can malignantly transform Met-5A cells, in which microRNA-28 has inhibitory effects. J Appl Toxicol 2021; 41:1879-1892. [PMID: 33890321 DOI: 10.1002/jat.4174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Chrysotile, which is classified as a class I carcinogen by the International Agency for Research on Cancer (IARC), has extensive application in the industry and can lead to lung or other cancers. However, whether chrysotile causes malignant mesothelioma and its molecular mechanism remain debatable. Thus, this study aimed to demonstrate the mesothelioma-inducing potential of chrysotile at the mesothelial cellular level and the function of microRNA-28 in malignantly transformed mesothelial MeT-5A cells. MeT-5A cells malignantly transformed by a nontoxic dose of chrysotile were named Asb-T, and miR-28 expression was downregulated in Asb-T cells. Restoration of miR-28 expression inhibited the proliferation, migration and invasion of Asb-T cells. We verified that IMPDH is a putative target of miR-28. The expression of IMPDH was significantly higher in Asb-T MeT-5A cells than in control cells, whereas the opposite trend was observed with miR-28 overexpression. Additionally, inhibition of IMPDH had similar effects as miR-28 overexpression. After miR-28 was elevated or IMPDH was inhibited, Ras activation was reduced, and its downstream pathways (the Erk and Akt signalling pathways) were inhibited. Surprisingly, the content of miR-28 in the blood of mesothelioma patients was higher than that in control subjects. Overall, nontoxic doses of chrysotile can cause malignant transformation of MeT-5A cells. Moreover, miR-28 inhibits the proliferation, migration and invasion of Asb-T MeT-5A cells, negatively regulates the expression of IMPDH through the Ras signalling pathway and may be an important therapeutic target.
Collapse
Affiliation(s)
- Fangfang Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Xiuyuan Yuan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hongjing Sun
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhong Yin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Gao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Jia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Shibo Ying
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Li Ju
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yun Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - He Tao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lijin Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
45
|
Sun Z, Liu F, Cai X, Yu W, Xu L, Yang B. MiR-126 affects femoral fracture healing in rats through PI3K/AKT signaling pathway. Panminerva Med 2021; 63:89-90. [PMID: 31262144 DOI: 10.23736/s0031-0808.19.03669-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengkao Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, Qingdao, China
| | - Feng Liu
- Department of Orthopedics, Zhangqiu People's Hospital, Jinan, China
| | - Xia Cai
- Disinfection Supply Room, Zhangqiu People's Hospital, Jinan, China
| | - Wenhao Yu
- Department of Orthopedics, Handan First Hospital, Hebei, China
| | - Liang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China
| | - Bin Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Qingdao, China -
| |
Collapse
|
46
|
Wang Q, Fan X, Jing N, Zhao H, Yu L, Tang X. Photoregulation of Gene Expression with Ligand-Modified Caged siRNAs through Host/Guest Interaction. Chembiochem 2021; 22:1901-1907. [PMID: 33432703 DOI: 10.1002/cbic.202000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/22/2020] [Indexed: 02/05/2023]
Abstract
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Han Zhao
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Lijia Yu
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| |
Collapse
|
47
|
Dong B, Li S, Zhu S, Yi M, Luo S, Wu K. MiRNA-mediated EMT and CSCs in cancer chemoresistance. Exp Hematol Oncol 2021; 10:12. [PMID: 33579377 PMCID: PMC7881653 DOI: 10.1186/s40164-021-00206-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a small group of cancer cells, which contribute to tumorigenesis and cancer progression. Cancer cells undergoing epithelial-to-mesenchymal transition (EMT) acquire the chemoresistant ability, which is regarded as an important feature of CSCs. Thus, there emerges an opinion that the generation of CSCs is considered to be driven by EMT. In this complex process, microRNAs (miRNAs) are found to play a key role. In order to overcome the drug resistance, inhibiting EMT as well as CSCs phenotype seem feasible. Thereinto, regulating the EMT- or CSCs-associated miRNAs is a crucial approach. Herein, we conduct this review to elaborate on the complicated interplay between EMT and CSCs in cancer chemoresistance, which is modulated by miRNAs. In addition, we elucidate the therapeutic strategy to overcome drug resistance through targeting EMT and CSCs.
Collapse
Affiliation(s)
- Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
48
|
Neumeier J, Meister G. siRNA Specificity: RNAi Mechanisms and Strategies to Reduce Off-Target Effects. FRONTIERS IN PLANT SCIENCE 2021; 11:526455. [PMID: 33584737 PMCID: PMC7876455 DOI: 10.3389/fpls.2020.526455] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/15/2020] [Indexed: 05/04/2023]
Abstract
Short interfering RNAs (siRNAs) are processed from long double-stranded RNA (dsRNA), and a guide strand is selected and incorporated into the RNA-induced silencing complex (RISC). Within RISC, a member of the Argonaute protein family directly binds the guide strand and the siRNA guides RISC to fully complementary sites on-target RNAs, which are then sequence-specifically cleaved by the Argonaute protein-a process commonly referred to as RNA interference (RNAi). In animals, endogenous microRNAs (miRNAs) function similarly but do not lead to direct cleavage of the target RNA but to translational inhibition followed by exonucleolytic decay. This is due to only partial complementarity between the miRNA and the target RNA. SiRNAs, however, can function as miRNAs, and partial complementarity can lead to miRNA-like off-target effects in RNAi applications. Since siRNAs are widely used not only for screening but also for therapeutics as well as crop protection purposes, such miRNA-like off-target effects need to be minimized. Strategies such as RNA modifications or pooling of siRNAs have been developed and are used to reduce off-target effects.
Collapse
Affiliation(s)
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
49
|
Zhang C, Na N, Liu L, Qiu Y. CircRNA hsa_circ_0005909 Promotes Cell Proliferation of Osteosarcoma Cells by Targeting miR-338-3p/HMGA1 Axis. Cancer Manag Res 2021; 13:795-803. [PMID: 33536787 PMCID: PMC7850455 DOI: 10.2147/cmar.s285118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023] Open
Abstract
Objective Osteosarcoma (OS) is the most common malignant bone tumor in the pediatric population. The main goal of this study is to investigate the role of hsa_circ_0005909 and the underlying signaling pathway involved in OS. Methods Cell proliferation was measured using a CCK-8 assay kit and clone formation assay. Change of RNA and protein expression was determined using RNA extract and quantitative real time PCR (RT-qPCR) assay and Western blotting, respectively. CircInteractome was used to predict the target of circRNA and starBase v2.0 was used to predict the target of miRNAs. Luciferase assay was used to confirm the predicted results from CircInteractome, starBase v2.0, and MirTarget2. Results Expression of circ_0005909 was upregulated in both OS tissues and cell lines. The predicted results from CircInteractome, starBase v2.0, and MirTarget2 demonstrated that circ_0005909 could sponge miR-338-3p and that HGMA1 was the direct target of miR-338-3p. Cell viability and cell clones were inhibited by knockdown of circ_0005909 but increased by dual inhibition of circ_0005909 and miR-338-3p. Phosphorylation of ERK, Akt, and PI3K was inhibited by sh-circ_0005909, while this inhibition was repressed by co-transfection of sh-circ_0005909 and HGMA1. Conclusion Expression of circ_0005909 was upregulated in both OS tissues and cell lines which upregulated expression of HGMA1 through sponging miR-338-3p, resulting in the activation of MAPK-ERK and PI3K-Akt signaling pathways to promote the development of OS.
Collapse
Affiliation(s)
- Cailong Zhang
- Department of Arthrology Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Na Na
- Department of Obstetrics, Qingdao Eighth People's Hospital, Qingdao 266000, People's Republic of China
| | - Li Liu
- Department of Stereotactic Radiotherapy, Qingdao Central Hospital, Qingdao 266000, People's Republic of China
| | - Yingzhu Qiu
- Department of Spine Surgery, Zibo Central Hospital, Zibo 255000, People's Republic of China
| |
Collapse
|
50
|
Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, Liu XS, Lan HY. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol 2021; 11:583528. [PMID: 33574750 PMCID: PMC7870688 DOI: 10.3389/fphar.2020.583528] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not only by many classical signaling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this review, we focus on our current understanding of the role and mechanisms of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic approach for combating diabetic nephropathy is also discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fu-Hua Lu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhang
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|