1
|
Xu C, Qin D, Lu X, Qi Q, Wu Y, Wang Q, Han Z, Nie X, Jiang Y, Deng D, Xie W, Gao Z, Li L. The subcortical maternal complex safeguards mouse oocyte-to-embryo transition by preventing nuclear entry of SPIN1. Nat Struct Mol Biol 2025:10.1038/s41594-025-01538-0. [PMID: 40247146 DOI: 10.1038/s41594-025-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
How cytoplasmic regulators control nuclear events in mammalian oocytes and early embryos remains largely enigmatic. We previously identified a subcortical maternal complex (SCMC) that specifically resides in the cytoplasm of mammalian oocytes and early embryos but is also involved in nuclear events. Nevertheless, how the cytoplasmic SCMC exerts its role in nuclear processes remains unknown. In this study, we unveil SPIN1, a histone methylation reader, as a novel member of the SCMC. The SCMC component FILIA tightly regulates the expression and cytoplasmic localization of SPIN1 through direct interaction. When the expression of FILIA is decreased because of genetic mutations of SCMC genes, SPIN1 expression is dramatically reduced but the residual SPIN1 translocates into the nucleus. The abnormal nuclear presence of SPIN1 impairs H3K4me3 reprogramming, zygotic genome activation and physiological embryonic development. Inhibiting the interaction between SPIN1 and H3K4me3 partially rescues the abnormal phenotype in FILIA-null embryos. Mechanistically, SPIN1 partially perturbs the demethylation process by competing with KDM5B for binding to H3K4me3. Collectively, our work highlights the complexity of the mammalian SCMC and oocyte-to-embryo transition, revealing an intricate regulatory mechanism that facilitates the smooth progression of this process.
Collapse
Affiliation(s)
- Chengpeng Xu
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xukun Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
| | - Qianqian Qi
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qizhi Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Han
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoqing Nie
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongmei Jiang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dong Deng
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Key Laboratory for Reproductive Medicine of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lei Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Ma X, Chen X, Mu X, Cao M, Zhang Y. Epigenetics of maternal-fetal interface immune microenvironment and placental related pregnancy complications. Front Immunol 2025; 16:1549839. [PMID: 40248704 PMCID: PMC12003353 DOI: 10.3389/fimmu.2025.1549839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Epigenetic regulation of placental development and pregnancy-related disease processes has recently been a hot research topic. Implantation and subsequent placental development depend on carefully orchestrated interactions between fetal and maternal tissues, involving a delicate balance of immune factors. Epigenetic regulation, which refers to altering gene expression and function without changing the DNA sequence, is an essential regulatory process in cell biology. Several epigenetic modifications are known, such as DNA methylation, histone modifications, non-coding RNA regulation, and RNA methylation. Recently, there has been increasing evidence that epigenetic modifications are critical for the immune microenvironment at the maternal-fetal interface. In this review, we highlight recent advances in the role of epigenetics in the immune microenvironment at the maternal-fetal interface and in epigenetic regulation and placenta-associated pregnancy complications.
Collapse
Affiliation(s)
| | | | | | | | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Pankammoon P, Salinas MBS, Thitaram C, Sathanawongs A. The Complexities of Interspecies Somatic Cell Nuclear Transfer: From Biological and Molecular Insights to Future Perspectives. Int J Mol Sci 2025; 26:3310. [PMID: 40244161 PMCID: PMC11989385 DOI: 10.3390/ijms26073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome crosstalk. This review synthesized peer-reviewed English articles from PubMed, Web of Science, and Scopus, spanning nearly three decades, using relevant keywords to explore the molecular mechanisms underlying iSCNT inefficiencies and potential improvement strategies. We highlight recent findings deepening the understanding of interspecies barriers in iSCNT, emphasizing their interconnected complexities, including the following: (1) nucleocytoplasmic incompatibility may disrupt nuclear pore complex (NPC) assembly and maturation, impairing the nuclear transport of essential transcription factors (TFs), embryonic genome activation (EGA), and nuclear reprogramming; (2) mitonuclear incompatibility could lead to nuclear and mitochondrial DNA (nDNA-mtDNA) mismatches, affecting electron transport chain (ETC) assembly, oxidative phosphorylation, and energy metabolism; (3) these interrelated incompatibilities can further influence epigenetic regulation, potentially leading to incomplete epigenetic reprogramming in iSCNT embryos. Addressing these challenges requires a multifaceted, species-specific approach that balances multiple incompatibilities rather than isolating a single factor. Gaining insight into the molecular interactions between the donor nucleus and recipient cytoplast, coupled with optimizing strategies tailored to specific pairings, could significantly enhance iSCNT efficiency, ultimately transforming experimental breakthroughs into real-world applications in reproductive biotechnology, regenerative medicine, and species conservation.
Collapse
Affiliation(s)
- Peachanika Pankammoon
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
| | - Marvin Bryan Segundo Salinas
- Department of Basic Veterinary Sciences, College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines;
| | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anucha Sathanawongs
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
4
|
Chen X, Yang H, Wang L, Chen Y, Yang Y, Chen H, Wang F, Zhang Y, Deng M. H3K4me3 Genome-Wide Distribution and Transcriptional Regulation of Transposable Elements by RNA Pol2 Deposition. Int J Mol Sci 2024; 25:13545. [PMID: 39769308 PMCID: PMC11677803 DOI: 10.3390/ijms252413545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Zygotic genome activation (ZGA) is critical for early embryo development and is meticulously regulated by epigenetic modifications. H3K4me3 is a transcription-permissive histone mark preferentially found at promoters, but its distribution across genome features remains incompletely understood. In this study, we investigated the genome-wide enrichment of H3K4me3 during early embryo development and embryonic stem cells (ESCs) in both sheep and mice. We discovered that broad H3K4me3 domains were present in MII stage oocytes and were progressively diminished, while promoter H3K4me3 enrichment was increased and correlated with gene upregulation during ZGA in sheep. Additionally, we reported the dynamic distribution of H3K4me3 at the transposable elements (TEs) during early embryo development in both sheep and mice. Specifically, the H3K4me3 distribution of LINE1 and ERVL, two subsets of TEs, was associated with their expression during early embryo development in sheep. Furthermore, H3K4me3 enrichment in TEs was greatly increased during ZGA following Kdm5b knockdown, and the distribution of RNA polymerase II (Pol2) in TEs was also markedly increased in Kdm5b knockout ESCs in mice. These findings suggest that H3K4me3 plays important roles in regulating TE expression through interaction with RNA Pol2, providing valuable insights into the regulation of ZGA initiation and cell fate determination by H3K4me3.
Collapse
Affiliation(s)
- Xiaowei Chen
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (H.Y.); (Y.Y.); (H.C.); (F.W.)
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (H.Y.); (Y.Y.); (H.C.); (F.W.)
| | - Liqin Wang
- Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China; (L.W.); (Y.C.)
| | - Ying Chen
- Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China; (L.W.); (Y.C.)
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (H.Y.); (Y.Y.); (H.C.); (F.W.)
| | - Haonan Chen
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (H.Y.); (Y.Y.); (H.C.); (F.W.)
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (H.Y.); (Y.Y.); (H.C.); (F.W.)
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (H.Y.); (Y.Y.); (H.C.); (F.W.)
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (H.Y.); (Y.Y.); (H.C.); (F.W.)
| |
Collapse
|
5
|
Chen Y, Zhou Z, Chen Y, Chen D. Reading the m 6A-encoded epitranscriptomic information in development and diseases. Cell Biosci 2024; 14:124. [PMID: 39342406 PMCID: PMC11439334 DOI: 10.1186/s13578-024-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent internal and reversible modification on RNAs. Different cell types display their unique m6A profiles, which are determined by the functions of m6A writers and erasers. M6A modifications lead to different outcomes such as decay, stabilization, or transport of the RNAs. The m6A-encoded epigenetic information is interpreted by m6A readers and their interacting proteins. M6A readers are essential for different biological processes, and the defects in m6A readers have been discovered in diverse diseases. Here, we review the latest advances in the roles of m6A readers in development and diseases. These recent studies not only highlight the importance of m6A readers in regulating cell fate transitions, but also point to the potential application of drugs targeting m6A readers in diseases.
Collapse
Affiliation(s)
- Yunbing Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Ziyu Zhou
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yanxi Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang, 314400, China.
| |
Collapse
|
6
|
Tang C, Hu W. Epigenetic modifications during embryonic development: Gene reprogramming and regulatory networks. J Reprod Immunol 2024; 165:104311. [PMID: 39047672 DOI: 10.1016/j.jri.2024.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of normal pregnancy requires appropriate maturation and transformation of various cells, which constitute the microenvironmental regulatory network at the maternal-fetal interface. Interestingly, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of epigenetic modifications of the genome have attracted much attention. With the development of epigenetics (DNA and RNA methylation, histone modifications, etc.), new insights have been gained into early embryonic developmental stages (e.g., maternal-to-zygotic transition, MZT). Understanding the various appropriate modes of transcriptional regulation required for the early embryonic developmental process from the perspective of epigenetic modifications will help us to provide new targets and insights into the pathogenesis of embryonic failure during further natural fertilization. This review focuses on the loci of action of epigenetic modifications from the perspectives of female germ cell development and embryo development to provide new insights for personalized diagnosis and treatment of abortion.
Collapse
Affiliation(s)
- Cen Tang
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China
| | - Wanqin Hu
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China.
| |
Collapse
|
7
|
Hernandez-Huertas L, Moreno-Sanchez I, Crespo-Cuadrado J, Vargas-Baco A, da Silva Pescador G, Santos-Pereira JM, Bazzini AA, Moreno-Mateos MA. CRISPR-RfxCas13d screening uncovers Bckdk as a post-translational regulator of the maternal-to-zygotic transition in teleosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595167. [PMID: 38826327 PMCID: PMC11142190 DOI: 10.1101/2024.05.22.595167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The Maternal-to-Zygotic transition (MZT) is a reprograming process encompassing zygotic genome activation (ZGA) and the clearance of maternally-provided mRNAs. While some factors regulating MZT have been identified, there are thousands of maternal RNAs whose function has not been ascribed yet. Here, we have performed a proof-of-principle CRISPR-RfxCas13d maternal screening targeting mRNAs encoding protein kinases and phosphatases in zebrafish and identified Bckdk as a novel post-translational regulator of MZT. Bckdk mRNA knockdown caused epiboly defects, ZGA deregulation, H3K27ac reduction and a partial impairment of miR-430 processing. Phospho-proteomic analysis revealed that Phf10/Baf45a, a chromatin remodeling factor, is less phosphorylated upon Bckdk depletion. Further, phf10 mRNA knockdown also altered ZGA and Phf10 constitutively phosphorylated rescued the developmental defects observed after bckdk mRNA depletion. Altogether, our results demonstrate the competence of CRISPR-RfxCas13d screenings to uncover new regulators of early vertebrate development and shed light on the post-translational control of MZT mediated by protein phosphorylation.
Collapse
Affiliation(s)
- Luis Hernandez-Huertas
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ismael Moreno-Sanchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Jesús Crespo-Cuadrado
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ana Vargas-Baco
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | | | - José M. Santos-Pereira
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ariel A. Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Miguel A. Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| |
Collapse
|
8
|
Min H, Liang X, Wang C, Qin J, Boonhok R, Muneer A, Brashear AM, Li X, Minns AM, Adapa SR, Jiang RHY, Ning G, Cao Y, Lindner SE, Miao J, Cui L. The DEAD-box RNA helicase PfDOZI imposes opposing actions on RNA metabolism in Plasmodium falciparum. Nat Commun 2024; 15:3747. [PMID: 38702310 PMCID: PMC11068891 DOI: 10.1038/s41467-024-48140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
In malaria parasites, the regulation of mRNA translation, storage and degradation during development and life-stage transitions remains largely unknown. Here, we functionally characterized the DEAD-box RNA helicase PfDOZI in P. falciparum. Disruption of pfdozi enhanced asexual proliferation but reduced sexual commitment and impaired gametocyte development. By quantitative transcriptomics, we show that PfDOZI is involved in the regulation of invasion-related genes and sexual stage-specific genes during different developmental stages. PfDOZI predominantly participates in processing body-like mRNPs in schizonts but germ cell granule-like mRNPs in gametocytes to impose opposing actions of degradation and protection on different mRNA targets. We further show the formation of stress granule-like mRNPs during nutritional deprivation, highlighting an essential role of PfDOZI-associated mRNPs in stress response. We demonstrate that PfDOZI participates in distinct mRNPs to maintain mRNA homeostasis in response to life-stage transition and environmental changes by differentially executing post-transcriptional regulation on the target mRNAs.
Collapse
Affiliation(s)
- Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Azhar Muneer
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Awtum M Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Gang Ning
- Electron Microscopy Facility, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Liu M, Ding Z, Sun P, Zhou S, Wu H, Huo L, Yang L, Davis JS, Liang A. Neddylation inhibition affects early embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function in mice. Theriogenology 2024; 220:1-11. [PMID: 38457854 DOI: 10.1016/j.theriogenology.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Post-translational modifications (PTMs) are critical for early development in mice because early cleavage-stage embryos are characterized by transcriptional inactivity. Neddylation is an important ubiquitin-like PTM that regulates multiple biophysical processes. However, the exact roles of neddylation in regulating early embryonic development remain largely unknown. In the present study, we found that inhibition of neddylation by specific inhibitor MLN4924 led to severe arrest of early embryonic development. Transcriptomic analysis showed that neddylation inhibition changed the expression of 3959 genes at the 2-cell stage. Importantly, neddylation inhibition blocked zygotic genome activation and maternal mRNA degradation, thus disrupting the maternal-to-zygotic transition. Moreover, inhibition of neddylation induced mitochondrial dysfunction including aberrant mitochondrial distribution, decreased mitochondrial membrane potential, and reduced ATP content. Further analysis showed that inhibition of neddylation resulted in the accumulation of reactive oxygen species and superoxide anion, thereby resulting in oxidative stress and severe DNA damage at the 2-cell stage. Overall, this study demonstrates that neddylation is vital for early embryonic development in mice. Our findings suggest that proper neddylation regulation is essential for the timely inter-stage transition during early embryonic development.
Collapse
Affiliation(s)
- Mingxiao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhiming Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, PR China
| | - Peihao Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shuo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hanxiao Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lijun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, PR China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, PR China
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, and Veterans Affairs Medical Center, Omaha, NE, 68198, USA
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, PR China.
| |
Collapse
|
10
|
Yang D, Zheng H, Lu W, Tian X, Sun Y, Peng H. Histone Lactylation Is Involved in Mouse Oocyte Maturation and Embryo Development. Int J Mol Sci 2024; 25:4821. [PMID: 38732042 PMCID: PMC11084948 DOI: 10.3390/ijms25094821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, the lysine lactylation (Kla) modifications were determined during mouse oocyte maturation and early embryo development by immunofluorescence staining. Exogenous lactate was supplemented to explore the consequences of modulating histone lactylation levels on oocyte maturation and embryo development processes by transcriptomics. Results demonstrated that lactylated proteins are widely present in mice with tissue- and cell-specific distribution. During mouse oocyte maturation, immunofluorescence for H3K9la, H3K14la, H4K8la, and H4K12la was most intense at the germinal vesicle (GV) stage and subsequently weakened or disappeared. Further, supplementing the culture medium with 10 mM sodium lactate elevated both the oocyte maturation rate and the histone Kla levels in GV oocytes, and there were substantial increases in Kla levels in metaphase II (MII) oocytes. It altered the transcription of molecules involved in oxidative phosphorylation. Moreover, histone lactylation levels changed dynamically during mouse early embryogenesis. Sodium lactate at 10 mM enhanced early embryo development and significantly increased lactylation, while impacting glycolytic gene transcription. This study reveals the roles of lactylation during oocyte maturation and embryo development, providing new insights to improving oocyte maturation and embryo quality.
Collapse
Affiliation(s)
- Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| | - Haoyi Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjie Lu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| | - Xueqi Tian
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| | - Yanyu Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (D.Y.)
| |
Collapse
|
11
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Castillo-Aleman YM, Casado-Hernandez I, Villegas-Valverde CA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Rivero-Jimenez RA. The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. Int J Mol Sci 2024; 25:1459. [PMID: 38338738 PMCID: PMC10855761 DOI: 10.3390/ijms25031459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mammalian fertilization initiates the reprogramming of oocytes and sperm, forming a totipotent zygote. During this intricate process, the zygotic genome undergoes a maternal-to-zygotic transition (MZT) and subsequent zygotic genome activation (ZGA), marking the initiation of transcriptional control and gene expression post-fertilization. Histone modifications are pivotal in shaping cellular identity and gene expression in many mammals. Recent advances in chromatin analysis have enabled detailed explorations of histone modifications during ZGA. This review delves into conserved and unique regulatory strategies, providing essential insights into the dynamic changes in histone modifications and their variants during ZGA in mammals. The objective is to explore recent advancements in leading mechanisms related to histone modifications governing this embryonic development phase in depth. These considerations will be useful for informing future therapeutic approaches that target epigenetic regulation in diverse biological contexts. It will also contribute to the extensive areas of evolutionary and developmental biology and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi P.O. Box 4600, United Arab Emirates; (F.S.-L.); (N.I.-B.); (Y.M.C.-A.); (I.C.-H.); (C.A.V.-V.); (A.A.B.-H.); (Y.V.-C.)
| |
Collapse
|
12
|
Xiong X, Yang M, Hai Z, Fei X, Zhu Y, Pan B, Yang Q, Xie Y, Cheng Y, Xiong Y, Lan D, Fu W, Li J. Maternal Kdm2a-mediated PI3K/Akt signaling and E-cadherin stimulate the morula-to-blastocyst transition revealing crucial roles in early embryonic development. Theriogenology 2023; 209:60-75. [PMID: 37356280 DOI: 10.1016/j.theriogenology.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Histone methylation plays an essential role in oocyte growth and preimplantation embryonic development. The modification relies on histone methyl-transferases and demethylases, and one of these, lysine-specific demethylase 2a (Kdm2a), is responsible for modulating histone methylation during oocyte and early embryonic development. The mechanism of how Kdm2a deficiency disrupts early embryonic development and fertility remains elusive. To determine if maternally deposited Kdm2a is required for preimplantation embryonic development, the expression profile of Kdm2a during early embryos was detected via immunofluorescence staining and RT-qPCR. The Kdm2a gene in oocytes was specifically deleted with the Zp3-Cre/LoxP system and the effects of maternal Kdm2a loss were studied through a comprehensive range of female reproductive parameters including fertilization, embryo development, and the number of births. RNA transcriptome sequencing was performed to determine differential mRNA expression, and the interaction between Kdm2a and the PI3K/Akt pathway was studied with a specific inhibitor and activator. Our results revealed that Kdm2a was continuously expressed in preimplantation embryos and loss of maternal Kdm2a suppressed the morula-to-blastocyst transition, which may have been responsible for female subfertility. After the deletion of Kdm2a, the global H3K36me2 methylation in mutant embryos was markedly increased, but the expression of E-cadherin decreased significantly in morula embryos compared to controls. Mechanistically, RNA-seq analysis revealed that deficiency of maternal Kdm2a altered the mRNA expression profile, especially in the PI3K/Akt signaling pathway. Interestingly, the addition of a PI3K/Akt inhibitor (LY294002) to the culture medium blocked embryo development at the stage of morula; however, the developmental block caused by maternal Kdm2a loss was partially rescued with a PI3K/Akt activator (SC79). In summary, our results indicate that loss of Kdm2a influences the transcriptome profile and disrupts the PI3K/Akt signaling pathway during the development of preimplantation embryo. This can result in embryo block at the morula stage and female subfertility, which suggests that maternal Kdm2a is a potential partial redundancy with other genes encoding enzymes in the dynamics of early embryonic development. Our results provide further insight into the role of histone modification, especially on Kdm2a, in preimplantation embryonic development in mice.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Manzhen Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Zhuo Hai
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yumian Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yuying Cheng
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Gu L, Li X, Zhu W, Shen Y, Wang Q, Liu W, Zhang J, Zhang H, Li J, Li Z, Liu Z, Li C, Wang H. Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition. J Pharm Anal 2023; 13:942-954. [PMID: 37719194 PMCID: PMC10499587 DOI: 10.1016/j.jpha.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 09/19/2023] Open
Abstract
Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development. However, the single-cell or low-input proteomic research in this field is relatively underdeveloped because of the higher threshold of the starting material for mammalian embryo samples and the lack of hypersensitive proteome technology. In this study, a comprehensive solution of ultrasensitive proteome technology (CS-UPT) was developed for single-cell or low-input mouse oocyte/embryo samples. The deep coverage and high-throughput routes significantly reduced the starting material and were selected by investigators based on their demands. Using the deep coverage route, we provided the first large-scale snapshot of the very early stage of mouse maternal-to-zygotic transition, including almost 5,500 protein groups from 20 mouse oocytes or zygotes for each sample. Moreover, significant protein regulatory networks centered on transcription factors and kinases between the MII oocyte and 1-cell embryo provided rich insights into minor zygotic genome activation.
Collapse
Affiliation(s)
- Lei Gu
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xumiao Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Yi Shen
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Qinqin Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjun Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Junfeng Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Jingquan Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyi Li
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Chen Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
14
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
15
|
Li T, Ye Y, Wu P, Luo R, Zhang H, Zheng W. Proteasome β3 subunit (PSMB3) controls female reproduction by promoting ecdysteroidogenesis during sexual maturation in Bactrocera dorsalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103959. [PMID: 37172766 DOI: 10.1016/j.ibmb.2023.103959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Steroid hormone 20-hydroxyecdysone (20E) plays critical roles in reproductive development in dipterans and several other insect species. Ecdysteroidogenesis in the glands of larval or nymphal insects and other arthropods has been extensively studied, but that in the adult gonads remains largely unknown. Here we identified a proteasome β3 subunit (PSMB3) from a highly invasive pest Bactrocera dorsalis, and found that this gene was crucial for ecdysone production during female reproduction. PSMB3 was enriched in the ovary, and it was upregulated during sexual maturation. RNAi-mediated depletion of PSMB3 resulted in retarded ovarian development and decreased fecundity. Additionally, knockdown of PSMB3 reduced 20E titer in hemolymph of B. dorsalis. Molecularly, RNA sequencing and qPCR validation revealed that PSMB3 depletion suppressed the expression of 20E biosynthetic genes in the ovary and 20E responsive genes in the ovary and fat body. Furthermore, exogenous 20E rescued the inhibition of the ovarian development caused by PSMB3 depletion. Taken together, this study provides new insights into the adult reproductive development-related biological processes controlled by PSMB3, and proposed a potential eco-friendly control strategy against this notorious agricultural pest.
Collapse
Affiliation(s)
- Tianran Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinhao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rengang Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
16
|
Krajnik K, Mietkiewska K, Skowronska A, Kordowitzki P, Skowronski MT. Oogenesis in Women: From Molecular Regulatory Pathways and Maternal Age to Stem Cells. Int J Mol Sci 2023; 24:ijms24076837. [PMID: 37047809 PMCID: PMC10095116 DOI: 10.3390/ijms24076837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
It is a well-known fact that the reproductive organs in women, especially oocytes, are exposed to numerous regulatory pathways and environmental stimuli. The maternal age is one cornerstone that influences the process of oocyte fertilization. More precisely, the longer a given oocyte is in the waiting-line to be ovulated from menarche to menopause, the longer the duration from oogenesis to fertilization, and therefore, the lower the chances of success to form a viable embryo. The age of menarche in girls ranges from 10 to 16 years, and the age of menopause in women ranges from approximately 45 to 55 years. Researchers are paying attention to the regulatory pathways that are impacting the oocyte at the very beginning during oogenesis in fetal life to discover genes and proteins that could be crucial for the oocyte’s lifespan. Due to the general trend in industrialized countries in the last three decades, women are giving birth to their first child in their thirties. Therefore, maternal age has become an important factor impacting oocytes developmental competence, since the higher a woman’s age, the higher the chances of miscarriage due to several causes, such as aneuploidy. Meiotic failures during oogenesis, such as, for instance, chromosome segregation failures or chromosomal non-disjunction, are influencing the latter-mentioned aging-related phenomenon too. These errors early in life of women can lead to sub- or infertility. It cannot be neglected that oogenesis is a precisely orchestrated process, during which the oogonia and primary oocytes are formed, and RNA synthesis takes place. These RNAs are crucial for oocyte growth and maturation. In this review, we intend to describe the relevance of regulatory pathways during the oogenesis in women. Furthermore, we focus on molecular pathways of oocyte developmental competence with regard to maternal effects during embryogenesis. On the background of transcriptional mechanisms that enable the transition from a silenced oocyte to a transcriptionally active embryo, we will briefly discuss the potential of induced pluripotent stem cells.
Collapse
Affiliation(s)
- Kornelia Krajnik
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Klaudia Mietkiewska
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Pawel Kordowitzki
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
17
|
Hanot M, Raby L, Völkel P, Le Bourhis X, Angrand PO. The Contribution of the Zebrafish Model to the Understanding of Polycomb Repression in Vertebrates. Int J Mol Sci 2023; 24:ijms24032322. [PMID: 36768643 PMCID: PMC9916924 DOI: 10.3390/ijms24032322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Polycomb group (PcG) proteins are highly conserved proteins assembled into two major types of complexes, PRC1 and PRC2, involved in the epigenetic silencing of a wide range of gene expression programs regulating cell fate and tissue development. The crucial role of PRC1 and PRC2 in the fundamental cellular processes and their involvement in human pathologies such as cancer attracted intense attention over the last few decades. Here, we review recent advancements regarding PRC1 and PRC2 function using the zebrafish model. We point out that the unique characteristics of the zebrafish model provide an exceptional opportunity to increase our knowledge of the role of the PRC1 and PRC2 complexes in tissue development, in the maintenance of organ integrity and in pathology.
Collapse
Affiliation(s)
- Mariette Hanot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Ludivine Raby
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pamela Völkel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Xuefen Le Bourhis
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
18
|
Paulino LRFM, de Assis EIT, Azevedo VAN, Silva BR, da Cunha EV, Silva JRV. Why Is It So Difficult To Have Competent Oocytes from In vitro Cultured Preantral Follicles? Reprod Sci 2022; 29:3321-3334. [PMID: 35084715 DOI: 10.1007/s43032-021-00840-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
The developmental competence of oocytes is acquired gradually during follicular development, mainly through oocyte accumulation of RNA molecules and proteins that will be used during fertilization and early embryonic development. Several attempts to develop in vitro culture systems to support preantral follicle development up to maturation are reported in the literature, but oocyte competence has not yet been achieved in human and domestic animals. The difficulties to have fertilizable oocytes are related to thousands of mRNAs and proteins that need to be synthesized, long-term duration of follicular development, size of preovulatory follicles, composition of in vitro culture medium, and the need of multi-step culture systems. The development of a culture system that maintains bidirectional communication between the oocyte and granulosa cells and that meets the metabolic demands of each stage of follicle growth is the key to sustain an extended culture period. This review discusses the physiological and molecular mechanisms that determine acquisition of oocyte competence in vitro, like oocyte transcriptional activity, follicle and oocyte sizes, and length and regulation of follicular development in murine, human, and domestic animal species. The state of art of in vitro follicular development and the challenges to have complete follicular development in vitro are also highlighted.
Collapse
Affiliation(s)
- Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ellen V da Cunha
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil.
| |
Collapse
|
19
|
Liu X, Zhang Y, Li W, Zhou X. Lactylation, an emerging hallmark of metabolic reprogramming: Current progress and open challenges. Front Cell Dev Biol 2022; 10:972020. [PMID: 36092712 PMCID: PMC9462419 DOI: 10.3389/fcell.2022.972020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Lactate, the end product of glycolysis, efficiently functions as the carbon source, signaling molecules and immune regulators. Lactylation, being regulated by lactate, has recently been confirmed as a novel contributor to epigenetic landscape, not only opening a new era for in-depth exploration of lactate metabolism but also offering key breakpoints for further functional and mechanistic research. Several studies have identified the pivotal role of protein lactylation in cell fate determination, embryonic development, inflammation, cancer, and neuropsychiatric disorders. This review summarized recent advances with respect to the discovery, the derivation, the cross-species landscape, and the diverse functions of lactylation. Further, we thoroughly discussed the discrepancies and limitations in available studies, providing optimal perspectives for future research.
Collapse
Affiliation(s)
- Xuelian Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Wei Li, ; Xin Zhou,
| | - Xin Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, China
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Wei Li, ; Xin Zhou,
| |
Collapse
|
20
|
Huang J, Ru G, Sun J, Sun L, Li Z. Elevated RIF1 participates in the epigenetic abnormalities of zygotes by regulating histone modifications on MuERV-L in obese mice. Mol Med 2022; 28:17. [PMID: 35123389 PMCID: PMC8818203 DOI: 10.1186/s10020-022-00446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Maternal obesity impairs embryonic developmental potential and significantly increases the risks of metabolic disorders in offspring. However, the epigenetic transmission mechanism of maternal metabolic abnormalities is still poorly understood. METHODS We established an obesity model in female mice by high-fat diet (HFD) feeding. The effects of the HFD on the developmental potential of oocytes and embryos, the metabolic phenotype, and epigenetic modifications were investigated. The efficacy of metformin administration was assessed. Finally, the regulatory pathway of epigenetic remodeling during zygotic genome activation (ZGA) was explored. RESULTS Maternal HFD consumption significantly impaired glucose tolerance and increased the risk of metabolic disorders in F0 and F1 mice. Maternal HFD consumption also decreased embryonic developmental potential, increased reactive oxygen species (ROS) and γH2AX levels, and reduced the mitochondrial membrane potential (MMP) within oocytes, causing high levels of oxidative stress damage and DNA damage. Starting with this clue, we observed significantly increased RIF1 levels and shortened telomeres in obese mice. Moreover, significant abnormal DNA methylation and histone modification remodeling were observed during ZGA in obese mice, which may be coregulated by RIF1 and the ZGA marker gene MuERV-L. Metformin treatment reduced RIF1 levels, and partially improved ZGA activation status by rescuing epigenetic modification remodeling in oocytes and preimplantation embryos of obese mice. RIF1 knockdown experiments employing Trim-Away methods showed that RIF1 degradation altered the H3K4me3 and H3K9me3 enrichment and then triggered the MuERV-L transcriptional activation. Moreover, ChIP-seq data analysis of RIF1 knockouts also showed that RIF1 mediates the transcriptional regulation of MuERV-L by changing the enrichment of H3K4me3 and H3K9me3 rather than by altered DNA methylation. CONCLUSION Elevated RIF1 in oocytes caused by maternal obesity may mediate abnormal embryonic epigenetic remodeling and increase metabolic risk in offspring by regulating histone modifications on MuERV-L, which can be partially rescued by metformin treatment.
Collapse
Affiliation(s)
- Jiliang Huang
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Jinping District, Shantou, Guangdong, 515041, People's Republic of China
| | - Gaizhen Ru
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Jinping District, Shantou, Guangdong, 515041, People's Republic of China
| | - Jiajia Sun
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Jinping District, Shantou, Guangdong, 515041, People's Republic of China
| | - Luying Sun
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Jinping District, Shantou, Guangdong, 515041, People's Republic of China
| | - Zhiling Li
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Jinping District, Shantou, Guangdong, 515041, People's Republic of China
| |
Collapse
|
21
|
Yang W, Wang P, Cao P, Wang S, Yang Y, Su H, Nashun B. Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice. Epigenetics Chromatin 2021; 14:57. [PMID: 34930415 PMCID: PMC8691063 DOI: 10.1186/s13072-021-00431-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dynamic changes of histone posttranslational modifications are important contexts of epigenetic reprograming after fertilization in pre-implantation embryos. Recently, lactylation has been reported as a novel epigenetic modification that regulates various cellular processes, but its role during early embryogenesis has not been elucidated. RESULTS We examined nuclear accumulation of H3K23la, H3K18la and pan histone lactylation in mouse oocytes and pre-implantation embryos by immunofluorescence with specific antibodies. All of the three modifications were abundant in GV stage oocytes, and both H3K23la and pan histone lactylation could be detected on the condensed chromosomes of the MII oocytes, while H3K18la were not detected. After fertilization, the nuclear staining of H3K23la, H3K18la and pan histone lactylation was faint in zygotes but homogeneously stained both of the parental pronuclei. The signal remained weak in the early cleavage stage embryos and increased remarkably in the blastocyst stage embryos. Comparison of the embryos cultured in four different conditions with varying concentrations of oxygen found that H3K23la, H3K18la and pan histone lactylation showed similar and comparable staining pattern in embryos cultured in atmospheric oxygen concentration (20% O2), gradient oxygen concentration (5% O2 to 2% O2) and embryos obtained from in vivo, but the modifications were greatly reduced in embryos cultured in hypoxic condition (2% O2). In contrast, nuclear accumulation of H3K18ac or H3K23ac was not significantly affected under hypoxic condition. Moreover, the developmental rate of in vitro cultured embryo was significantly reduced by low oxygen concentration and small molecule inhibition of LDHA activity led to decreased lactate production, as well as reduced histone lactylation and compromised developmental rate. CONCLUSIONS We provided for the first time the dynamic landscape of H3K23la, H3K18la and pan histone lactylation in oocytes and pre-implantation embryos in mice. Our data suggested that histone lactylation is subjected to oxygen concentration in the culture environment and hypoxic in vitro culture reduces histone lactylation, which in turn compromises developmental potential of pre-implantation embryos in mice.
Collapse
Affiliation(s)
- Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shuang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuxiao Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Huimin Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
22
|
Rengaraj D, Won S, Han JW, Yoo D, Kim H, Han JY. Whole-Transcriptome Sequencing-Based Analysis of DAZL and Its Interacting Genes during Germ Cells Specification and Zygotic Genome Activation in Chickens. Int J Mol Sci 2020; 21:ijms21218170. [PMID: 33142918 PMCID: PMC7672628 DOI: 10.3390/ijms21218170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022] Open
Abstract
The deleted in azoospermia like (DAZL) is required for germ cells development and maintenance. In chickens, the mRNA and protein of DAZL, a representative maternally inherited germ plasm factor, are detected in the germ plasm of oocyte, zygote, and all stages of the intrauterine embryos. However, it is still insufficient to explain the origin and specification process of chicken germ cells, because the stage at which the zygotic transcription of DAZL occurs and the stage at which the maternal DAZL RNA/protein clears have not yet been fully identified. Moreover, a comprehensive understanding of the expression of DAZL interacting genes during the germ cells specification and development and zygotic genome activation (ZGA) is lacking in chickens. In this study, we identified a set of DAZL interacting genes in chickens using in silico prediction method. Then, we analyzed the whole-transcriptome sequencing (WTS)-based expression of DAZL and its interacting genes in the chicken oocyte, zygote, and Eyal-Giladi and Kochav (EGK) stage embryos (EGK.I to EGK.X). In the results, DAZL transcripts are increased in the zygote (onset of transcription), maintained the increased level until EGK.VI, and decreased from EGK.VIII (possible clearance of maternal RNAs). Among the DAZL interacting genes, most of them are increased either at 1st ZGA or 2nd ZGA, indicating their involvement in germ cells specification and development.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (D.R.); (J.W.H.); (H.K.)
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (S.W.); (D.Y.)
| | - Jong Won Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (D.R.); (J.W.H.); (H.K.)
| | - DongAhn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (S.W.); (D.Y.)
| | - Heebal Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (D.R.); (J.W.H.); (H.K.)
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (S.W.); (D.Y.)
- C&K Genomics, Seoul 05836, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (D.R.); (J.W.H.); (H.K.)
- Correspondence: ; Tel.: +82-2-880-4810
| |
Collapse
|
23
|
Sha QQ, Zheng W, Wu YW, Li S, Guo L, Zhang S, Lin G, Ou XH, Fan HY. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat Commun 2020; 11:4917. [PMID: 33004802 PMCID: PMC7530992 DOI: 10.1038/s41467-020-18680-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/03/2020] [Indexed: 01/29/2023] Open
Abstract
Maternal mRNA clearance is an essential process that occurs during maternal-to-zygotic transition (MZT). However, the dynamics, functional importance, and pathological relevance of maternal mRNA decay in human preimplantation embryos have not yet been analyzed. Here we report the zygotic genome activation (ZGA)-dependent and -independent maternal mRNA clearance processes during human MZT and demonstrate that subgroups of human maternal transcripts are sequentially removed by maternal (M)- and zygotic (Z)-decay pathways before and after ZGA. Key factors regulating M-decay and Z-decay pathways in mouse have similar expression pattern during human MZT, suggesting that YAP1-TEAD4 transcription activators, TUT4/7-mediated mRNA 3ʹ-oligouridylation, and BTG4/CCR4-NOT-induced mRNA deadenylation may also be involved in the regulation of human maternal mRNA stability. Decreased expression of these factors and abnormal accumulation of maternal transcripts are observed in the development-arrested embryos of patients who seek assisted reproduction. Defects of M-decay and Z-decay are detected with high incidence in embryos that are arrested at the zygote and 8-cell stages, respectively. In addition, M-decay is not found to be affected by maternal TUBB8 mutations, although these mutations cause meiotic cell division defects and zygotic arrest, which indicates that mRNA decay is regulated independent of meiotic spindle assembly. Considering the correlations between maternal mRNA decay defects and early developmental arrest of in vitro fertilized human embryos, M-decay and Z-decay pathway activities may contribute to the developmental potential of human preimplantation embryos. How maternal RNA clearance is regulated in human preimplantation embryos is unclear. Here, the authors show there is a potential correlation between maternal mRNA decay defects and early developmental arrest from in vitro fertilized human embryos, suggesting that M-decay and Z-decay pathways may regulate such early development.
Collapse
Affiliation(s)
- Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410008, Changsha, China.,College of Life Science, Hunan Normal University, 410006, Changsha, China
| | - Yun-Wen Wu
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Sen Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Lei Guo
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410008, Changsha, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410008, Changsha, China. .,Laboratory of Reproductive and Stem Cell Engineering, Key Laboratory of National Health and Family Planning Commission, Central South University, 410008, Changsha, China.
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China.
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
24
|
Wang X, Song X, Bhandari RK. Distinct expression patterns of seven crucial microRNAs during early embryonic development in medaka (Oryzias latipes). Gene Expr Patterns 2020; 37:119133. [PMID: 32800847 DOI: 10.1016/j.gep.2020.119133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/18/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (i.e. miRNAs) are small non-coding RNAs that play essential modulation roles in embryonic development in vertebrates. Paternal and maternal miRNAs contribute to the development of post-fertilization embryo and zygotic genome activation. The pattern of expression and their roles in embryonic development of medaka are not clearly understood. The present study, therefore, examined a temporal expression of seven miRNAs, ola-let-7a, ola-miR-202-3p, ola-miR-126-3p, ola-miR-122, ola-miR-92a, ola-miR-125a-3p and ola-miR-430a in sperm, oocytes, and embryos during early developmental stages. Three unique expression patterns of miRNAs were observed. ola-let7a, ola-miR-202-3p and ola-miR-126-3p showed both paternal and maternal expression, and ola-miR-122, ola-miR-92a, ola-miR-125a-3p showed maternal expression only. The expression of six out of seven miRNAs significantly decreased after maternal-zygotic transition (MZT), whereas ola-miR-430a expression initiated only after MZT. The temporal dynamic expression of these miRNAs suggests their potential roles in early embryogenesis and genome-zygotic activation in medaka.
Collapse
Affiliation(s)
- Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Xiaohong Song
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
25
|
Toralova T, Kinterova V, Chmelikova E, Kanka J. The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 2020; 77:3177-3194. [PMID: 32095869 PMCID: PMC11104927 DOI: 10.1007/s00018-020-03482-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
The degradation of maternally provided molecules is a very important process during early embryogenesis. However, the vast majority of studies deals with mRNA degradation and protein degradation is only a very little explored process yet. The aim of this article was to summarize current knowledge about the protein degradation during embryogenesis of mammals. In addition to resuming of known data concerning mammalian embryogenesis, we tried to fill the gaps in knowledge by comparison with facts known about protein degradation in early embryos of non-mammalian species. Maternal protein degradation seems to be driven by very strict rules in terms of specificity and timing. The degradation of some maternal proteins is certainly necessary for the normal course of embryonic genome activation (EGA) and several concrete proteins that need to be degraded before major EGA have been already found. Nevertheless, the most important period seems to take place even before preimplantation development-during oocyte maturation. The defects arisen during this period seems to be later irreparable.
Collapse
Affiliation(s)
- Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic.
| | - Eva Chmelikova
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
26
|
Kinterova V, Kanka J, Petruskova V, Toralova T. Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos†. Biol Reprod 2020; 100:896-906. [PMID: 30535233 DOI: 10.1093/biolre/ioy254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
The mechanism of maternal protein degradation during preimplantation development has not been clarified yet. It is thought that a lot of maternal proteins are degraded by the ubiquitin-proteasome system. In this study, we focused on the role of the SCF (Skp1-Cullin-F-box) complexes during early bovine embryogenesis. We inhibited them using MLN4924, an inhibitor of SCF complex ligases controlled by neddylation. Oocytes maturated in MLN4924 could be fertilized, but we found no cumulus cell expansion and a high number of polyspermy after in vitro fertilization. We also found a statistically significant deterioration of development after MLN4924 treatment. After treatment with MLN4924 from the four-cell to late eight-cell stage, we found a statistically significant delay in their development; some of the treated embryos were, however, able to reach the blastocyst stage later. We found reduced levels of mRNA of EGA markers PAPOLA and U2AF1A, which can be related to this developmental delay. The cultivation with MLN4924 caused a significant increase in protein levels in MLN4924-treated oocytes and embryos; no such change was found in cumulus cells. To detect the proteins affected by MLN4924 treatment, we performed a Western blot analysis of selected proteins (SMAD4, ribosomal protein S6, centromeric protein E, P27, NFKB inhibitor alpha, RNA-binding motif protein 19). No statistically significant increase in protein levels was detected in either treated embryos or oocytes. In summary, our study shows that SCF ligases are necessary for the correct maturation of oocytes, cumulus cell expansion, fertilization, and early preimplantation development of cattle.
Collapse
Affiliation(s)
- Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| | - Veronika Petruskova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| |
Collapse
|
27
|
Rong Y, Ji SY, Zhu YZ, Wu YW, Shen L, Fan HY. ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation. Nucleic Acids Res 2020; 47:11387-11402. [PMID: 31598710 PMCID: PMC6868374 DOI: 10.1093/nar/gkz863] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 01/01/2023] Open
Abstract
Zar1 was one of the earliest mammalian maternal-effect genes to be identified. Embryos derived from Zar1-null female mice are blocked before zygotic genome activation; however, the underlying mechanism remains unclear. By knocking out Zar1 and its homolog Zar2 in mice, we revealed a novel function of these genes in oocyte meiotic maturation. Zar1/2-deleted oocytes displayed delayed meiotic resumption and polar body-1 emission and a higher incidence of abnormal meiotic spindle formation and chromosome aneuploidy. The grown oocytes of Zar1/2-null mice contained decreased levels of many maternal mRNAs and displayed a reduced level of protein synthesis. Key maturation-associated changes failed to occur in the Zar1/2-null oocytes, including the translational activation of maternal mRNAs encoding the cell-cycle proteins cyclin B1 and WEE2, as well as maternal-to-zygotic transition (MZT) licensing factor BTG4. Consequently, maternal mRNA decay was impaired and MZT was abolished. ZAR1/2 bound mRNAs to regulate the translational activity of their 3′-UTRs and interacted with other oocyte proteins, including mRNA-stabilizing protein MSY2 and cytoplasmic lattice components. These results countered the traditional view that ZAR1 only functions after fertilization and highlight a previously unrecognized role of ZAR1/2 in regulating the maternal transcriptome and translational activation in maturing oocytes.
Collapse
Affiliation(s)
- Yan Rong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shu-Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
28
|
Kipryushina YO, Yakovlev KV. Maternal control of early patterning in sea urchin embryos. Differentiation 2020; 113:28-37. [PMID: 32371341 DOI: 10.1016/j.diff.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Sea urchin development has been studied extensively for more than a century and considered regulative since the first experimental evidence. Further investigations have repeatedly supported this standpoint by revealing the presence of inductive mechanisms that alter cell fate decisions at early cleavage stages and flexibility of development in response to environmental conditions. Some features indicate that sea urchin development is not completely regulative, but actually includes determinative events. In 16-cell embryos, mesomeres and macromeres represent multipotency, while the cell fate of most vegetal micromeres is restricted. It is known that the mature sea urchin eggs are polarized by the asymmetrical distribution of some maternal mRNAs and proteins. Spatially-distributed maternal factors are necessary for the orientation of the primary animal-vegetal axis, which is established by both maternal and zygotic mechanisms later in development. The secondary dorsal-ventral axis is conditionally specified later in development. Dorsal-ventral polarity is very liable during the early cleavages, though more recent data argue that its direction may be oriented by maternal asymmetry. In this review, we focus on the role of maternal factors in initial embryonic patterning during the first cleavages of sea urchin embryos before activation of the embryonic genome.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
29
|
Rengaraj D, Hwang YS, Lee HC, Han JY. Zygotic genome activation in the chicken: a comparative review. Cell Mol Life Sci 2020; 77:1879-1891. [PMID: 31728579 PMCID: PMC11104987 DOI: 10.1007/s00018-019-03360-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Maternal RNAs and proteins in the oocyte contribute to early embryonic development. After fertilization, these maternal factors are cleared and embryonic development is determined by an individual's own RNAs and proteins, in a process called the maternal-to-zygotic transition. Zygotic transcription is initially inactive, but is eventually activated by maternal transcription factors. The timing and molecular mechanisms involved in zygotic genome activation (ZGA) have been well-described in many species. Among birds, a transcriptome-based understanding of ZGA has only been explored in chickens by RNA sequencing of intrauterine embryos. RNA sequencing of chicken intrauterine embryos, including oocytes, zygotes, and Eyal-Giladi and Kochav (EGK) stages I-X has enabled the identification of differentially expressed genes between consecutive stages. These studies have revealed that there are two waves of ZGA: a minor wave at the one-cell stage (shortly after fertilization) and a major wave between EGK.III and EGK.VI (during cellularization). In the chicken, the maternal genome is activated during minor ZGA and the paternal genome is quiescent until major ZGA to avoid transcription from supernumerary sperm nuclei. In this review, we provide a detailed overview of events in intrauterine embryonic development in birds (and particularly in chickens), as well as a transcriptome-based analysis of ZGA.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyung Chul Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
30
|
Petri T, Dankert D, Demond H, Wennemuth G, Horsthemke B, Grümmer R. In vitro postovulatory oocyte aging affects H3K9 trimethylation in two-cell embryos after IVF. Ann Anat 2019; 227:151424. [PMID: 31610252 DOI: 10.1016/j.aanat.2019.151424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The physiological time axis of oocyte maturation comprises highly sensitive processes. A prolonged time span between ovulation and fertilization may impair oocyte developmental competence and subsequent embryo development, possibly due to epigenetic modifications. Since post-translational histone modifications can modify chromatin activity, and trimethylation of H3K9 (H3K9me3) has been shown to increase in the murine oocyte during maturation, here the effect of postovulatory oocyte aging on H3K9me3 was analyzed. METHODS The competence of murine oocytes which were aged for 2, 4, 6 and 8 h in vitro after oocyte retrieval to develop to the two-cell and blastocyst stage was determined. Degree of H3K9me3 was analyzed in the postovulatory aged oocytes as well as in the resulting two-cell embryos after IVF. RESULTS The current study shows that postovulatory aging of oocytes for up to eight hours after oocyte retrieval exhibited no effect on two-cell embryo and blastocyst rate; however, changes in H3K9me3 in the resulting two-cell embryos were observed. CONCLUSION Prolonged postovulatory oocyte aging leads to epigenetic modifications of H3K9. Such modifications may affect the developmental capacity of embryos at post-implantation developmental stages.
Collapse
Affiliation(s)
- Theresa Petri
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Debora Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gunther Wennemuth
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
31
|
Histone Methylation Participates in Gene Expression Control during the Early Development of the Pacific Oyster Crassostrea gigas. Genes (Basel) 2019; 10:genes10090695. [PMID: 31509985 PMCID: PMC6771004 DOI: 10.3390/genes10090695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Histone methylation patterns are important epigenetic regulators of mammalian development, notably through stem cell identity maintenance by chromatin remodeling and transcriptional control of pluripotency genes. But, the implications of histone marks are poorly understood in distant groups outside vertebrates and ecdysozoan models. However, the development of the Pacific oyster Crassostrea gigas is under the strong epigenetic influence of DNA methylation, and Jumonji histone-demethylase orthologues are highly expressed during C. gigas early life. This suggests a physiological relevance of histone methylation regulation in oyster development, raising the question of functional conservation of this epigenetic pathway in lophotrochozoan. Quantification of histone methylation using fluorescent ELISAs during oyster early life indicated significant variations in monomethyl histone H3 lysine 4 (H3K4me), an overall decrease in H3K9 mono- and tri-methylations, and in H3K36 methylations, respectively, whereas no significant modification could be detected in H3K27 methylation. Early in vivo treatment with the JmjC-specific inhibitor Methylstat induced hypermethylation of all the examined histone H3 lysines and developmental alterations as revealed by scanning electronic microscopy. Using microarrays, we identified 376 genes that were differentially expressed under methylstat treatment, which expression patterns could discriminate between samples as indicated by principal component analysis. Furthermore, Gene Ontology revealed that these genes were related to processes potentially important for embryonic stages such as binding, cell differentiation and development. These results suggest an important physiological significance of histone methylation in the oyster embryonic and larval life, providing, to our knowledge, the first insights into epigenetic regulation by histone methylation in lophotrochozoan development.
Collapse
|
32
|
Yatsenko SA, Rajkovic A. Genetics of human female infertility†. Biol Reprod 2019; 101:549-566. [PMID: 31077289 PMCID: PMC8127036 DOI: 10.1093/biolre/ioz084] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
About 10% of women of reproductive age are unable to conceive or carry a pregnancy to term. Female factors alone account for at least 35% of all infertility cases and comprise a wide range of causes affecting ovarian development, maturation of oocytes, and fertilization competence, as well as the potential of a fertilized egg for preimplantation development, implantation, and fetal growth. Genetic abnormalities leading to infertility in females comprise large chromosome abnormalities, submicroscopic chromosome deletion and duplications, and DNA sequence variations in the genes that control numerous biological processes implicated in oogenesis, maintenance of ovarian reserve, hormonal signaling, and anatomical and functional development of female reproductive organs. Despite the great number of genes implicated in reproductive physiology by the study of animal models, only a subset of these genes is associated with human infertility. In this review, we mainly focus on genetic alterations identified in humans and summarize recent knowledge on the molecular pathways of oocyte development and maturation, the crucial role of maternal-effect factors during embryogenesis, and genetic conditions associated with ovarian dysgenesis, primary ovarian insufficiency, early embryonic lethality, and infertility.
Collapse
Affiliation(s)
- Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA
| |
Collapse
|
33
|
Zolini AM, Negrón-Pérez VM, Hansen PJ. Importance of prostate androgen-regulated mucin-like protein 1 in development of the bovine blastocyst. BMC DEVELOPMENTAL BIOLOGY 2019; 19:15. [PMID: 31277570 PMCID: PMC6612098 DOI: 10.1186/s12861-019-0195-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
Background Prostate androgen-regulated mucin-like protein 1 (PARM1) is a pro-proliferative and anti-apoptotic glycoprotein involved in the endoplasmic reticulum (ER) stress response. A single nucleotide polymorphism in the coding region of PARM1 has been associated with competence of bovine embryos to develop to the blastocyst stage. Here we tested the importance of PARM1 for development by evaluating consequences of reducing PARM1 mRNA abundance on embryonic development and differentiation, gene expression and resistance to ER stress. Results Knockdown of PARM1 using an anti-PARM1 GapmeR did not affect competence of embryos to develop into blastocysts but decreased the number of trophectoderm (TE) cells in the blastocyst and tended to increase the number of cells in the blastocyst inner cell mass (ICM). Treatment of embryos with anti-PARM1 GapmeR affected expression of 4 and 3 of 90 genes evaluated at the compact-morula and blastocyst stage of development at days 5.5 and 7.5 after fertilization, respectively. In morulae, treatment increased expression of DAB2, INADL, and STAT3 and decreased expression of CCR2. At the blastocyst stage, knockdown of PARM1 increased expression of PECAM and TEAD4 and decreased expression of CCR7. The potential role of PARM1 in ER stress response was determined by evaluating effects of knockdown of PARM1 on development of embryos after exposure to heat shock or tunicamycin and on expression of ATF6, DDIT3 and EIF2AK3 at the compact morula and blastocyst stages. Both heat shock and tunicamycin reduced the percent of embryos becoming a blastocyst but response was unaffected by PARM1 knockdown. Similarly, there was no effect of knockdown on steady-state amounts of ATF6, DDIT3 or EIF2AK3. Conclusion PARM1 participates in formation of TE and ICM cells in early embryonic development but there is no evidence for the role of PARM1 in the ER stress response. Electronic supplementary material The online version of this article (10.1186/s12861-019-0195-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana M Zolini
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, Florida, 32611-0910, USA.,Present address: Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Verónica M Negrón-Pérez
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, Florida, 32611-0910, USA.,Present address: Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, Florida, 32611-0910, USA.
| |
Collapse
|
34
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
35
|
VPA selectively regulates pluripotency gene expression on donor cell and improve SCNT embryo development. In Vitro Cell Dev Biol Anim 2018; 54:496-504. [PMID: 29943354 DOI: 10.1007/s11626-018-0272-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 01/21/2023]
Abstract
SCNT technology has been successfully used to clone a variety of mammals, but the cloning efficiency is very low. This low efficiency is likely due to the incomplete reprogramming of SCNT embryos. Histone modification and DNA methylation may participate in these events. Thus, it would be interesting to attempt to improve the efficiency of SCNT by using a HDACi VPA. In order to guarantee the effect of VPA and reduce its cytotoxicity, a comprehensive analysis of the cell proliferation and histone modification was performed. The results showed that 0.5 and 1 mM VPA treatment for 24 h were the optimal condition. According to the results, H3K4me3 was increased in 0.5 and 1 mM VPA groups, whereas H3K9me2 was significantly decreased. These are the signals of gene-activation. In addition, VPA treatment led to the overexpression of Oct4 and Nanog. These indicated that VPA-treated cells had similar patterns of histone to zygotic embryos, and may be more favorable for reprograming. A total of 833 cloned embryos were produced from the experimental replicates of VPA-treated donor cells. In 1 mM treatment group, the blastocyst rates were significantly increased compared with control. At the same time, our findings demonstrated the interrelation between DNA methylation and histone modifications.
Collapse
|