1
|
Wu J, Yang Y, Lin D, Wang Z, Ma J. SIRT3 and RORα are two prospective targets against mitophagy during simulated ischemia/reperfusion injury in H9c2 cells. Heliyon 2024; 10:e30568. [PMID: 38784556 PMCID: PMC11112282 DOI: 10.1016/j.heliyon.2024.e30568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy during myocardial ischemia/reperfusion (MI/R) exacerbates cardiomyocyte injury. Melatonin (Mel) alleviates myocardial damage by regulating mitochondrial function and mitophagy, but the role of mitophagy in melatonin-induced cardioprotection remains unclear. This study aimed to explore the roles of sirtuin3 (SIRT3) and retinoid-related orphan nuclear receptor-α (RORα) in mitophagy during simulated ischemia reperfusion (SIR) in H9c2 cells. Our data showed that mitophagy was excessively activated after SIR injury, which was consistent with reduced cell survival, enhanced oxidative responses and mitochondrial dysfunction in H9c2 myocytes. Melatonin greatly enhanced cell viability, reduced oxidative stress and improved mitochondrial function. The effects of melatonin protection were involved in excessive mitophagy inhibition, as demonstrated by the reduced levels of mitophagy-linked proteins, including Parkin, Beclin1, NIX and BNIP3, and the LC3 II/LC3 I ratio and elevations in p62. Additionally, the decreases in SIRT3 and RORα in H9c2 myocytes after SIR were reversed by melatonin, and the above effects of melatonin were eliminated by small interfering RNA (siRNA)-mediated knockdown of SIRT3 and RORα. In brief, SIRT3 and RORα are two prospective targets in the cardioprotection of melatonin against mitophagy during SIR in H9c2 myocytes.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| |
Collapse
|
2
|
Kim R, Kim M, Jeong S, Kim S, Moon H, Kim H, Lee MY, Kim J, Kim HS, Choi M, Shin K, Song BW, Chang W. Melatonin alleviates myocardial dysfunction through inhibition of endothelial-to-mesenchymal transition via the NF-κB pathway. J Pineal Res 2024; 76:e12958. [PMID: 38747060 DOI: 10.1111/jpi.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a complex biological process of cellular transdifferentiation by which endothelial cells (ECs) lose their characteristics and acquire mesenchymal properties, leading to cardiovascular remodeling and complications in the adult cardiovascular diseases environment. Melatonin is involved in numerous physiological and pathological processes, including aging, and has anti-inflammatory and antioxidant activities. This molecule is an effective therapeutic candidate for preventing oxidative stress, regulating endothelial function, and maintaining the EndMT balance to provide cardiovascular protection. Although recent studies have documented improved cardiac function by melatonin, the mechanism of action of melatonin on EndMT remains unclear. The present study investigated the effects of melatonin on induced EndMT by transforming growth factor-β2/interleukin-1β in both in vivo and in vitro models. The results revealed that melatonin reduced the migratory ability and reactive oxygen species levels of the cells and ameliorated mitochondrial dysfunction in vitro. Our findings indicate that melatonin prevents endothelial dysfunction and inhibits EndMT by activating related pathways, including nuclear factor kappa B and Smad. We also demonstrated that this molecule plays a crucial role in restoring cardiac function by regulating the EndMT process in the ischemic myocardial condition, both in vessel organoids and myocardial infarction (MI) animal models. In conclusion, melatonin is a promising agent that attenuates EC dysfunction and ameliorates cardiac damage compromising the EndMT process after MI.
Collapse
Affiliation(s)
- Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Minsuk Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Seongtae Jeong
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Sejin Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Hanbyeol Moon
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Hojin Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Kunyoo Shin
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| |
Collapse
|
3
|
Gu P, Wu Y, Lu W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 2024; 24:171-195. [PMID: 38436867 DOI: 10.1007/s40256-024-00631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.
Collapse
Affiliation(s)
- Pengchen Gu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Yuxin Wu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China.
| |
Collapse
|
4
|
Lu H, Gong J, Zhang T, Jiang Z, Dong W, Dai J, Ma F. Leonurine pretreatment protects the heart from myocardial ischemia-reperfusion injury. Exp Biol Med (Maywood) 2023; 248:1566-1578. [PMID: 37873701 PMCID: PMC10676124 DOI: 10.1177/15353702231198066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 10/25/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R), an important complication of reperfusion therapy for myocardial infarction, is characterized by hyperactive oxidative stress and inflammatory response. Leonurine (4-guanidino-n-butyl syringate, SCM-198), an alkaloid extracted from Herbaleonuri, was previously found to be highly cardioprotective both in vitro and in vivo. Our current study aimed to investigate the effect of SCM-198 preconditioning on myocardial I/R injury in vitro and in vivo, respectively, as well as to decipher the mechanism involved. Rats were pretreated with SCM-198 before subjected to 45 min of myocardial ischemia, which was followed by 24 h of reperfusion. Primary neonatal rat cardiac ventricular myocytes (NRCMs) were exposed to hypoxia (95% N2 + 5% CO2) for 12 h, and then to 12 h reoxygenation so as to mimic I/R. The enzymatic measurements demonstrated that SCM-198 reduced the release of infarction-related enzymes, and the hemodynamic and echocardiography measurements showed that SCM-198 restored cardiac functions, which suggested that SCM-198 could significantly reduce infarct size, maintaining cardiomyocyte morphology, and that SCM-198 pretreatment could significantly reduce cardiomyocytes apoptosis. Moreover, we demonstrated that SCM-198 could exert a cardioprotective effect by reducing reactive oxygen species (ROS) level and Akt phosphorylation while reducing the phosphorylation of p38 and JNK. In addition, the upregulation of p-Akt, Bcl-2/Bax induced by SCM-198 treatment were blocked by PI3K inhibitor LY294002, and the total protein level of Akt was not affected by SCM-198 pretreatment. Our experimental results indicated that SCM-198 could have a cardioprotective effect on I/R injury, which confirmed the utility of SCM-198 preconditioning as a strategy to prevent I/R injury.
Collapse
Affiliation(s)
- Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tongtong Zhang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhe Jiang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenmin Dong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang 050017, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
5
|
Barangi S, Ghodsi P, Mehrabi A, Mehri S, Hayes AW, Karimi G. Melatonin attenuates cardiopulmonary toxicity induced by benzo(a)pyrene in mice focusing on apoptosis and autophagy pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33113-33123. [PMID: 36474038 DOI: 10.1007/s11356-022-24546-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon and a serious environmental pollutant. BaP is formed by the incomplete combustion of organic matter at high temperatures. In addition, tobacco smoke and many foods, especially charbroiled food and grilled meats, contain BaP and can cause it to enter human body. Melatonin, a pineal gland hormone, has antioxidant, anti-apoptosis, and autophagy regulatory properties. The possible protective impact of melatonin on cardiopulmonary toxicity induced by BaP was investigated by examining the antioxidant effects and the apoptosis and autophagy properties of melatonin. Thirty male mice were divided into 5 groups and treated for 28 days as follows: (I) control (BaP and melatonin solvent), (II) BaP (75 mg/kg, oral gavage), (III and IV) BaP (75 mg/kg) + melatonin (10 and 20 mg/kg, intraperitoneally), (V) melatonin (20 mg/kg). The oxidative stress factors (MDA and GSH content) were assessed in the heart and lung tissues. The levels of apoptotic (Caspase-3 and the Bax/Bcl-2 ratio) and autophagic (the LC3 ӀӀ/Ӏ, Beclin-1, and Sirt1) proteins were examined by using western blot analysis. Following the administration of BaP, MDA, the Bax/Bcl-2 ratio, and the Caspase-3 proteins increased in the heart and lung tissues, while GSH, Sirt1, Beclin-1, and the LC3 II/I ratio diminished. The coadministration of melatonin along with BaP, MDA, and apoptotic proteins returned to the control values, while GSH and the autophagy proteins were enhanced in both the heart and lungs. Melatonin exhibited a protective effect against BaP-induced heart and lung injury through the suppression of oxidative stress and apoptosis and the induction of the Sirt1/autophagy pathway.
Collapse
Affiliation(s)
- Samira Barangi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pardis Ghodsi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adeleh Mehrabi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Liu ZF, Liu K, Liu ZQ, Cong L, Lei MY, Li J, Ma Z, Deng Y, Liu W, Xu B. Melatonin attenuates manganese-induced mitochondrial fragmentation by suppressing the Mst1/JNK signaling pathway in primary mouse neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157134. [PMID: 35792268 DOI: 10.1016/j.scitotenv.2022.157134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Manganese (Mn) toxicity is mainly caused by excessive Mn content in drinking water and occupational exposure. Moreover, overexposure to Mn can impair mental, cognitive, memory, and motor capacities. Although melatonin (Mel) can protect against Mn-induced neuronal damage and mitochondrial fragmentation, the underlying mechanism remains elusive. Here, we examined the related molecular mechanisms underlying Mel attenuating Mn-induced mitochondrial fragmentation through the mammalian sterile 20-like kinase-1 (Mst1)/JNK signaling path. To test the role of Mst1 in mitochondrial fragmentation, we treated mouse primary neurons overexpressing Mst1 with Mel and Mn stimulation. In normal neurons, 10 μM Mel reduced the effects of Mn (200 μM) on Mst1 expression at the mRNA and protein levels and on phosphorylation of JNK and Drp1, Drp1 mitochondrial translocation, and mitochondrial fragmentation. Conversely, overexpression of Mst1 hindered the protective effect of Mel (10 μM) against Mn-induced mitochondrial fragmentation. Anisomycin (ANI), an activator of JNK signaling, was similarly found to inhibit the protective effect of Mel on mitochondria, while Mst1 levels were not significantly changed. Thus, our results demonstrated that 10 μM Mel negatively regulated the Mst1-JNK pathway, thereby reducing excessive mitochondrial fission, maintaining the mitochondrial network, and alleviating Mn-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhuo-Fan Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Zhi-Qi Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Lin Cong
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Meng-Yu Lei
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Jing Li
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, China.
| |
Collapse
|
7
|
Singhanat K, Apaijai N, Sumneang N, Maneechote C, Arunsak B, Chunchai T, Chattipakorn SC, Chattipakorn N. Therapeutic potential of a single-dose melatonin in the attenuation of cardiac ischemia/reperfusion injury in prediabetic obese rats. Cell Mol Life Sci 2022; 79:300. [PMID: 35588335 PMCID: PMC11072751 DOI: 10.1007/s00018-022-04330-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/05/2023]
Abstract
Although acute melatonin treatment effectively reduces cardiac ischemia/reperfusion (I/R) injury in lean rats by modulating melatonin receptor 2 (MT2), there is no information regarding the temporal effects of melatonin administration during cardiac I/R injury in prediabetic obese rats. Prediabetic obese rats induced by chronic consumption of a high-fat diet (HFD) were used. The rats underwent a cardiac I/R surgical procedure (30-min of ischemia, followed by 120-min of reperfusion) and were randomly assigned to receive either vehicle or melatonin treatment. In the melatonin group, rats were divided into 3 different subgroups: (1) pretreatment, (2) treatment during ischemic period, (3) treatment at the reperfusion onset. In the pretreatment subgroup either a nonspecific MT blocker (Luzindole) or specific MT2 blocker (4-PPDOT) was also given to the rats prior to melatonin treatment. Pretreatment with melatonin (10 mg/kg) effectively reduced cardiac I/R injury by reducing infarct size, arrhythmia, and LV dysfunction. Reduction in impaired mitochondrial function, mitochondrial dynamic balance, oxidative stress, defective autophagy, and apoptosis were observed in rats pretreated with melatonin. Unfortunately, the cardioprotective benefits were not observed when 10-mg/kg of melatonin was acutely administered to the rats after cardiac ischemia. Thus, we increased the dose of melatonin to 20 mg/kg, and it was administered to the rats during ischemia or at the onset of reperfusion. The results showed that 20-mg/kg of melatonin effectively reduced cardiac I/R injury to a similar extent to the 10-mg/kg pretreatment regimen. The MT2 blocker inhibited the protective effects of melatonin. Acute melatonin treatment during cardiac I/R injury exerted protective effects in prediabetic obese rats. However, a higher dose of melatonin is required when given after the onset of cardiac ischemia. These effects of melatonin were mainly mediated through activation of MT2.
Collapse
Affiliation(s)
- Kodchanan Singhanat
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natticha Sumneang
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
8
|
Immunomodulation of Oxidative Stress during Organ Donation Process: Preliminary Results. Healthcare (Basel) 2022; 10:healthcare10050762. [PMID: 35627899 PMCID: PMC9141959 DOI: 10.3390/healthcare10050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The objective was to quantify oxidative stress resulting from ischemia during the donation process, using malondialdehyde (MDA) measurement, and its modulation by the administration of melatonin. We designed a triple-blind clinical trial with donors randomized to melatonin or placebo. We collected donors by donation after brain death (DBD) and controlled donation after circulatory death (DCD), the latter maintained by normothermic regional perfusion (NRP). Melatonin or placebo was administered prior to donation or following limitation of therapeutic effort (LTE). Demographic variables and medical history were collected. We also collected serial measurements of MDA, at 60 and 90 min after melatonin or placebo administration. A total of 53 donors were included (32 from DBD and 21 from DCD). In the DBD group, 17 donors received melatonin, and 15 placebo. Eight DCD donors were randomized to melatonin and 13 to placebo. Medical history and cause for LTE were similar between groups. Although MDA values did not differ in the DBD group, statistical differences were observed in DCD donors during the 0–60 min interval: −4.296 (−6.752; −2.336) in the melatonin group and −1.612 (−2.886; −0.7445) in controls. Given the antioxidant effect of melatonin, its use could reduce the production of oxidative stress in controlled DCD.
Collapse
|
9
|
Role of the Antioxidant Activity of Melatonin in Myocardial Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:antiox11040627. [PMID: 35453312 PMCID: PMC9032762 DOI: 10.3390/antiox11040627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemia-reperfusion injury is a common problem in the age of interventional cardiology; it is primarily mediated by oxidative stress and reactive agents. Melatonin has antioxidative properties that make its use promising for treating ischemia-reperfusion injury. Multiple experimental studies in murine and porcine models have been performed with good results. Clinical trials have also been conducted but given their heterogeneity, no conclusive results can be made. Melatonin pharmacokinetic properties are not ideal; therefore, many analogs have been proposed with improved characteristics, and some studies have evaluated their efficacy in animal models, but clinical trials are needed to recommend their use. In this review, we expose the results of the most impactful studies regarding melatonin use in ischemia-reperfusion injury.
Collapse
|
10
|
Drapkina OM, Kontsevaya AV, Budnevsky AV, Ovsyannikov ES, Drobysheva ES, Bolotskih VI, Makeeva AV, Lushchik MV. Melatonin and cardiovascular disease: from mechanisms of action to potential clinical use (literature review). КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2021-2892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cardiovascular disease remains the most relevant public health problem. Most cardiovascular diseases are associated with an atherosclerosis, the development of which is associated with inflammation and endothelial dysfunction. Melatonin is a neurohormone that is synthesized mainly in the pineal gland and plays a central role in the regulation of sleep and some other body cyclic processes. For a long time, melatonin was perceived as a substance that is effective in the treatment of circadian cycle impairments. At the same time, a large number of studies have accumulated recently that demonstrate a wider range of its biological effects, including anti-inflammatory, antioxidant, antihypertensive and, possibly, hypolipidemic. The review includes current data from experimental and clinical studies demonstrating the cardioprotective effects of melatonin in atherosclerosis, myocardial ischemia, and heart failure.
Collapse
Affiliation(s)
- O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. V. Kontsevaya
- National Medical Research Center for Therapy and Preventive Medicine
| | | | | | | | | | | | | |
Collapse
|
11
|
Bai Y, Yang Y, Cui B, Lin D, Wang Z, Ma J. Temporal Effect of Melatonin Posttreatment on Anoxia/Reoxygenation Injury in H9c2 Cells. Cell Biol Int 2022; 46:637-648. [PMID: 34989460 DOI: 10.1002/cbin.11759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/06/2021] [Accepted: 01/01/2022] [Indexed: 11/07/2022]
Abstract
Melatonin has been proven to reduce myocardial ischemia-reperfusion (MI/R) injury. However, in most studies, melatonin was administered prior to MI/R, thus, the results lack clinical significance in patients with acute myocardial infarction. We hypothesize that melatonin posttreatment at different times has different curative effects. Administered of Melatonin (150 μM) at different times after the onset of reoxygenation (t=-15, 0, 5, 10, 15, 30 min). Cellular apoptosis, oxidative stress and mitochondrial function were assessed. Mitophagy-related protein levels, the mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) activity were also measured. A/R injury upregulated mitophagy, which was associated with increased cellular apoptosis, oxidative stress and mitochondrial dysfunction. Melatonin posttreatment (t= -15, 0, 5, 10, 15, 30 min) significantly inhibited excessive mitophagy after A/R injury, reduced cellular apoptosis and oxidative stress, restored mitochondrial function and MMP, and restrained mPTP opening. The therapeutic time window in which melatonin posttreatment protected H9c2 cells against A/R injury was large (from -15 to 30 min after the onset of reperfusion), but the earlier the melatonin administration was, the better its protective effect was. This mechanism is likely due to a reduction in mPTP activity and MMP collapse, which lead to the inhibition of mitophagy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Boqun Cui
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
12
|
Ma WY, Song RJ, Xu BB, Xu Y, Wang XX, Sun HY, Li SN, Liu SZ, Yu MX, Yang F, Ye DY, Gong R, Han ZB, Yu Y, Bamba D, Wang N, Pan ZW, Cai BZ. Melatonin promotes cardiomyocyte proliferation and heart repair in mice with myocardial infarction via miR-143-3p/Yap/Ctnnd1 signaling pathway. Acta Pharmacol Sin 2021; 42:921-931. [PMID: 32839503 PMCID: PMC8149448 DOI: 10.1038/s41401-020-0495-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/29/2020] [Indexed: 01/05/2023]
Abstract
The neonatal heart possesses the ability to proliferate and the capacity to regenerate after injury; however, the mechanisms underlying these processes are not fully understood. Melatonin has been shown to protect the heart against myocardial injury through mitigating oxidative stress, reducing apoptosis, inhibiting mitochondrial fission, etc. In this study, we investigated whether melatonin regulated cardiomyocyte proliferation and promoted cardiac repair in mice with myocardial infarction (MI), which was induced by ligation of the left anterior descending coronary artery. We showed that melatonin administration significantly improved the cardiac functions accompanied by markedly enhanced cardiomyocyte proliferation in MI mice. In neonatal mouse cardiomyocytes, treatment with melatonin (1 μM) greatly suppressed miR-143-3p levels. Silencing of miR-143-3p stimulated cardiomyocytes to re-enter the cell cycle. On the contrary, overexpression of miR-143-3p inhibited the mitosis of cardiomyocytes and abrogated cardiomyocyte mitosis induced by exposure to melatonin. Moreover, Yap and Ctnnd1 were identified as the target genes of miR-143-3p. In cardiomyocytes, inhibition of miR-143-3p increased the protein expression of Yap and Ctnnd1. Melatonin treatment also enhanced Yap and Ctnnd1 protein levels. Furthermore, Yap siRNA and Ctnnd1 siRNA attenuated melatonin-induced cell cycle re-entry of cardiomyocytes. We showed that the effect of melatonin on cardiomyocyte proliferation and cardiac regeneration was impeded by the melatonin receptor inhibitor luzindole. Silencing miR-143-3p abrogated the inhibition of luzindole on cardiomyocyte proliferation. In addition, both MT1 and MT2 siRNA could cancel the beneficial effects of melatonin on cardiomyocyte proliferation. Collectively, the results suggest that melatonin induces cardiomyocyte proliferation and heart regeneration after MI by regulating the miR-143-3p/Yap/Ctnnd1 signaling pathway, providing a new therapeutic strategy for cardiac regeneration.
Collapse
Affiliation(s)
- Wen-Ya Ma
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Rui-Jie Song
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Bin-Bin Xu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Yan Xu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Xiu-Xiu Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Hong-Yue Sun
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Shuai-Nan Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Shen-Zhen Liu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Mei-Xi Yu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Fan Yang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Dan-Yu Ye
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Rui Gong
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Zhen-Bo Han
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Ying Yu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Djibril Bamba
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Ning Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Zhen-Wei Pan
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Ben-Zhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China.
- Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, 150086, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150086, China.
| |
Collapse
|
13
|
Bai Y, Yang Y, Gao Y, Lin D, Wang Z, Ma J. Melatonin postconditioning ameliorates anoxia/reoxygenation injury by regulating mitophagy and mitochondrial dynamics in a SIRT3-dependent manner. Eur J Pharmacol 2021; 904:174157. [PMID: 33971181 DOI: 10.1016/j.ejphar.2021.174157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Ischaemia/reperfusion (I/R) injury is accompanied by excessive mitochondrial autophagy (mitophagy) and an imbalance in mitochondrial dynamics. Melatonin has been reported to alleviate I/R injury by regulating mitophagy and mitochondrial dynamics. However, the underlying mechanism associated with this activity is not fully understood. The goal of the present study was to investigate whether and how melatonin administration at the beginning of reoxygenation exerts protective effects by regulating mitophagy and mitochondrial dynamics. H9c2 cells were transfected with sirtuin 3 (SIRT3)-targeting siRNA and then subjected to anoxia/reoxygenation (A/R) injury, with melatonin (150 μM) administered at the onset of reoxygenation. Biomarkers related to cellular apoptosis, oxidative stress, mitochondrial function, mitophagy and mitochondrial dynamics were assessed, and the expression and activity of SIRT3 was also measured. Mitochondrial fission and mitophagy were activated after A/R injury and were accompanied by cellular apoptosis, oxidative stress, and mitochondrial dysfunction. However, melatonin postconditioning inhibited excessive mitochondrial fission and mitophagy, promoted mitochondrial fusion, restored mitochondrial function and reduced cellular apoptosis, and the mitophagy inhibitor 3-methyladenine (3-MA) also attenuated A/R-induced apoptosis. Moreover, the A/R-induced decreases in SIRT3 and manganese superoxide dismutase (SOD2) activities were ameliorated by melatonin. However, SIRT3 silencing abolished the beneficial effects of melatonin, eliminated the inhibitory effects of melatonin on mitochondrial fission and mitophagy, and reversed the melatonin-induced increase in SOD2 activity. These results indicate that melatonin postconditioning protects H9c2 cells from A/R injury by inhibiting excessive mitophagy and maintaining the balance of mitochondrial fission and fusion in a SIRT3-dependent manner.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yafen Gao
- Department of Anesthesiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Huang X, Hou J, Huang S, Feng K, Yue Y, Li H, Huang S, Liang M, Chen G, Wu Z. Melatonin ameliorates myocardial injury by reducing apoptosis and autophagy of cardiomyocytes in a rat cardiopulmonary bypass model. PeerJ 2021; 9:e11264. [PMID: 33954056 PMCID: PMC8053380 DOI: 10.7717/peerj.11264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Myocardial injury is a frequent complication after cardiac surgery with cardiopulmonary bypass (CPB). This study aimed to test the hypothesis that melatonin could attenuate myocardial injury in a rat CPB model. Methods Eighteen male Sprague-Dawley rats were randomly divided into three groups, n = 6 for each group: the sham operation (SO) group, CPB group and melatonin group. Rats in the SO group underwent cannulation without CPB, rats in CPB group intraperitoneal injected an equal volume of vehicle daily for 7 days before being subjected to CPB and rats in melatonin group intraperitoneal injected 20 mg/kg of melatonin solution daily for 7 days before being subjected to CPB. After 120 min for CPB, the expression levels of plasma interleukin (IL) -6, IL-1β, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), creatine kinase (CK) -MB and cardiac troponin T (cTnT) were measured. Reactive oxygen species (ROS) were detected by dihydroethidium (DHE). Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Mitochondrial damage and autophagosomes were detected by electron microscopy. Apoptosis inducing factor (AIF) was detected by immunofluorescence. The expression of B cell lymphoma/leukemia2 associated X (Bax), B cell lymphoma/leukemia 2 (Bcl-2), cytochrome C (Cyto-C), cleaved caspase-9, AKT, p-AKT, signal transducer and activator of transcription 3 (STAT3), p-STAT3, LC3, P62, mechanistic target of rapamycin kinase (mTOR), p-mTOR and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were determined using western blotting. Results Melatonin significantly decreased the levels of IL-1β, IL-6, MDA, CK-MB and cTnT and increased the levels of SOD and GSH-Px, all of which were altered by CPB. Melatonin reduced cardiomyocyte superoxide production, the apoptosis index and autophagy in cardiomyocytes induced by CPB. The AKT, STAT3 and mTOR signaling pathways were activated by melatonin during CPB. Conclusion Melatonin may serve as a cardioprotective factor in CPB by inhibiting oxidative damage, apoptosis and autophagy. The AKT, STAT3 and mTOR signaling pathways were involved in this process.
Collapse
Affiliation(s)
- Xiaolin Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jian Hou
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Suiqing Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Kangni Feng
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Yue
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Huayang Li
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Shaojie Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Mengya Liang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Guangxian Chen
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Zhai Y, Yang J, Zhang J, Yang J, Li Q, Zheng T. Src-family Protein Tyrosine Kinases: A promising target for treating Cardiovascular Diseases. Int J Med Sci 2021; 18:1216-1224. [PMID: 33526983 PMCID: PMC7847615 DOI: 10.7150/ijms.49241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
The Src-family protein tyrosine kinases (SFKs), a subfamily of non-receptor tyrosine kinases, are ubiquitously expressed in various cell types. Numerous studies have suggested that SFKs are related to signal transduction in major cardiac physiological and pathological processes, it is the activity of SFKs that is connected with the maintenance of cardiovascular homeostasis. Upon stimulation of various injury factors or stress, the phosphorylation state of SFKs is changed, which has been found to modulate different cardiac pathological conditions, such as hypertension, coronary heart disease, ischemic heart disease, myocardial ischemia-reperfusion injury, arrhythmia and cardiomyopathy via regulating cell growth, differentiation, movement and function, electrophysiologic signals. This review summarizes the basic information about SFKs, updates its role in the different processes underlying the development of multiple cardiovascular diseases (CVDs), and highlights their potential role as disease biomarkers and therapeutic targets, which would help understand the pathophysiology of CVDs and promote the further potential clinical adhibition.
Collapse
Affiliation(s)
- Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China.,Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China.,Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
| | - Qi Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China.,Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Tao Zheng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China.,Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| |
Collapse
|
16
|
Dong Y, Zhao J, Zhu Q, Liu H, Wang J, Lu W. Melatonin inhibits the apoptosis of rooster Leydig cells by suppressing oxidative stress via AKT-Nrf2 pathway activation. Free Radic Biol Med 2020; 160:1-12. [PMID: 32758663 DOI: 10.1016/j.freeradbiomed.2020.06.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been described as a key driver of Leydig cell apoptosis. Melatonin has antioxidative and antiapoptotic effects, but the potential effects and mechanism of melatonin on oxidative stress and apoptosis in rooster Leydig cells remain unclear. Our results showed that melatonin biosynthetic enzymes and melatonin receptors were expressed in rooster Leydig cells and their expression were locally inhibited as rooster sexual maturation. We found that melatonin inhibited H2O2-induced apoptosis of rooster Leydig cell by activating the melatonin receptors Mel-1a and Mel-1b. Additionally, melatonin protects mitochondria from damage by reducing the level of oxidative stress in Leydig cells. Melatonin relieved H2O2-induced oxidative stress by significantly reducing intracellular ROS, MDA and 8-OHdG levels and increasing SOD and GSH-Px activities. Simultaneously, melatonin significantly reduced H2O2-induced depolarization of ΔΨm and decreased the release of Cytochrome C and Ca2+. We also observed that melatonin activated the Nrf2 pathway, while Nrf2 silencing abrogated the anti-oxidative and anti-apoptotic effects of melatonin in rooster Leydig cells. Furthermore, melatonin promoted the phosphorylation of AKT, while AKT inhibitor suppressed the Nrf2 pathway activated by melatonin and alleviated the inhibitory effects of melatonin on apoptosis and oxidative stress. In conclusion, melatonin could inhibit apoptosis in rooster Leydig cells by suppressing oxidative stress via activation of the AKT-Nrf2 pathway.
Collapse
Affiliation(s)
- Yangyunyi Dong
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qingyu Zhu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
17
|
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020; 10:biom10091211. [PMID: 32825327 PMCID: PMC7563541 DOI: 10.3390/biom10091211] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.
Collapse
Affiliation(s)
- Diana Maria Chitimus
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Mihaela Roxana Popescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania;
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania;
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
- Correspondence:
| |
Collapse
|
18
|
Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front Physiol 2020; 11:366. [PMID: 32411013 PMCID: PMC7201093 DOI: 10.3389/fphys.2020.00366] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic, indole secreted, and synthesized by the human pineal gland. Melatonin has biological effects including anti-apoptosis, protecting mitochondria, anti-oxidation, anti-inflammation, and stimulating target cells to secrete cytokines. Its protective effect on cardiomyocytes in acute myocardial infarction (AMI) has caused widespread interest in the actions of this molecule. The effects of melatonin against oxidative stress, promoting autophagic repair of cells, regulating immune and inflammatory responses, enhancing mitochondrial function, and relieving endoplasmic reticulum stress, play crucial roles in protecting cardiomyocytes from infarction. Mitochondrial apoptosis and dysfunction are common occurrence in cardiomyocyte injury after myocardial infarction. This review focuses on the targets of melatonin in protecting cardiomyocytes in AMI, the main molecular signaling pathways that melatonin influences in its endogenous protective role in myocardial infarction, and the developmental prospect of melatonin in myocardial infarction treatment.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Jiao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jihang Wang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingzhi Shen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
- San Antonio Cellular Therapeutics Institute, Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Qi X, Wang J. Melatonin improves mitochondrial biogenesis through the AMPK/PGC1α pathway to attenuate ischemia/reperfusion-induced myocardial damage. Aging (Albany NY) 2020; 12:7299-7312. [PMID: 32305957 PMCID: PMC7202489 DOI: 10.18632/aging.103078] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Cardiac ischemia/reperfusion injury is associated with reduced mitochondrial turnover and regeneration. There is currently no effective approach to stimulate mitochondrial biogenesis in the reperfused myocardium. In this study, we investigated whether melatonin could increase mitochondrial biogenesis and thus promote mitochondrial homeostasis in cardiomyocytes. Cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) injury with or without melatonin treatment, and various mitochondrial functions were measured. H/R injury repressed mitochondrial biogenesis in cardiomyocytes, whereas melatonin treatment restored mitochondrial biogenesis through the 5’ adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) pathway. Melatonin enhanced mitochondrial metabolism, inhibited mitochondrial oxidative stress, induced mitochondrial fusion and prevented mitochondrial apoptosis in cardiomyocytes subjected to H/R injury. The melatonin-induced improvement in mitochondrial biogenesis was associated with increased cardiomyocyte survival during H/R injury. On the other hand, silencing of PGC1α attenuated the protective effects of melatonin on cardiomyocyte viability, thereby impairing mitochondrial bioenergetics, disrupting the mitochondrial morphology, and activating mitochondrial apoptosis. Thus, H/R injury suppressed mitochondrial biogenesis, while melatonin activated the AMPK/PGC1α pathway and restored mitochondrial biogenesis, ultimately protecting the reperfused heart.
Collapse
Affiliation(s)
- Xueyan Qi
- Department of Cardiology, Tianjin First Central Hospital, Tianjing 300192, China
| | - Jin Wang
- Department of Cardiology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
20
|
Reperfusion Arrhythmias Increase after Superior Cervical Ganglionectomy Due to Conduction Disorders and Changes in Repolarization. Int J Mol Sci 2020; 21:ijms21051804. [PMID: 32155697 PMCID: PMC7084297 DOI: 10.3390/ijms21051804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 01/15/2023] Open
Abstract
Pharmacological concentrations of melatonin reduce reperfusion arrhythmias, but less is known about the antiarrhythmic protection of the physiological circadian rhythm of melatonin. Bilateral surgical removal of the superior cervical ganglia irreversibly suppresses melatonin rhythmicity. This study aimed to analyze the cardiac electrophysiological effects of the loss of melatonin circadian oscillation and the role played by myocardial melatonin membrane receptors, SERCA2A, TNFα, nitrotyrosine, TGFβ, KATP channels, and connexin 43. Three weeks after bilateral removal of the superior cervical ganglia or sham surgery, the hearts were isolated and submitted to ten minutes of regional ischemia followed by ten minutes of reperfusion. Arrhythmias, mainly ventricular tachycardia, increased during reperfusion in the ganglionectomy group. These hearts also suffered an epicardial electrical activation delay that increased during ischemia, action potential alternants, triggered activity, and dispersion of action potential duration. Hearts from ganglionectomized rats showed a reduction of the cardioprotective MT2 receptors, the MT1 receptors, and SERCA2A. Markers of nitroxidative stress (nitrotyrosine), inflammation (TNFα), and fibrosis (TGFβ and vimentin) did not change between groups. Connexin 43 lateralization and the pore-forming subunit (Kir6.1) of KATP channels increased in the experimental group. We conclude that the loss of the circadian rhythm of melatonin predisposes the heart to suffer cardiac arrhythmias, mainly ventricular tachycardia, due to conduction disorders and changes in repolarization.
Collapse
|
21
|
Ke X, Li M, Wang X, Liang J, Wang X, Wu S, Long M, Hu C. An injectable chitosan/dextran/β -glycerophosphate hydrogel as cell delivery carrier for therapy of myocardial infarction. Carbohydr Polym 2020; 229:115516. [DOI: 10.1016/j.carbpol.2019.115516] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
22
|
Tan HY, Ng KY, Koh RY, Chye SM. Pharmacological Effects of Melatonin as Neuroprotectant in Rodent Model: A Review on the Current Biological Evidence. Cell Mol Neurobiol 2020; 40:25-51. [PMID: 31435851 PMCID: PMC11448813 DOI: 10.1007/s10571-019-00724-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.
Collapse
Affiliation(s)
- Hui Ying Tan
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia.
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Bozkurt M, Sezgic M, Karakol P, Uslu C, Balikci T. The Effect of Antioxidants on Ischemia-Reperfusion Injury in Flap Surgery. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.85500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Han D, Wang Y, Chen J, Zhang J, Yu P, Zhang R, Li S, Tao B, Wang Y, Qiu Y, Xu M, Gao E, Cao F. Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin-conferred cardioprotection against myocardial ischemia/reperfusion injury. J Pineal Res 2019; 67:e12571. [PMID: 30903623 DOI: 10.1111/jpi.12571] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022]
Abstract
Accumulated pieces of evidence have proved the beneficial effects of melatonin on myocardial ischemia/reperfusion (MI/R) injury, and these effects were largely dependent on melatonin membrane receptor activation. In humans and other mammals, there are two types of melatonin receptors, including the melatonin receptor 1 (MT1, melatonin receptor 1a or MTNR1A) and melatonin receptor 1 (MT2, melatonin receptor 1b or MTNR1B) receptor subtypes. However, which receptor mediates melatonin-conferred cardioprotection remains unclear. In this study, we employed both loss-of-function and gain-of-function approaches to reveal the answer. Mice (wild-type; MT1 or MT2 silencing by in vivo minicircle vector; and those overexpressing MT1 or MT2 by in vivo AAV9 vector) were exposed to MI/R injury. Both MT1 and MT2 were present in wild-type myocardium. MT2, but not MT1, was essentially upregulated after MI/R Melatonin administration significantly reduced myocardial injury and improved cardiac function after MI/R Mechanistically, melatonin treatment suppressed MI/R-initiated myocardial oxidative stress and nitrative stress, alleviated endoplasmic reticulum stress and mitochondrial injury, and inhibited myocardial apoptosis. These beneficial actions of melatonin were absent in MT2-silenced heart, but not the MT1 subtype. Furthermore, AAV9-mediated cardiomyocyte-specific overexpression of MT2, but not MT1, mitigated MI/R injury and improved cardiac dysfunction, which was accompanied by significant amelioration of oxidative stress, endoplasmic reticulum stress, and mitochondrial dysfunction. Mechanistically, MT2 protected primary cardiomyocytes against hypoxia/reoxygenation injury via MT2/Notch1/Hes1/RORα signaling. Our study presents the first direct evidence that the MT2 subtype, but not MT1, is a novel endogenous cardiac protective receptor against MI/R injury. Medications specifically targeting MT2 may hold promise in fighting ischemic heart disease.
Collapse
MESH Headings
- Animals
- Apoptosis
- Disease Models, Animal
- Endoplasmic Reticulum Stress/genetics
- Humans
- Male
- Mice
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/genetics
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangwei Chen
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jibin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ran Zhang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuang Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Bo Tao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ya Qiu
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Xu
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Agathokleous E, Kitao M, Calabrese EJ. New insights into the role of melatonin in plants and animals. Chem Biol Interact 2018; 299:163-167. [PMID: 30553720 DOI: 10.1016/j.cbi.2018.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Melatonin is a hormone produced in animals by the pineal gland and in plants under stress. Melatonin research has expanded rapidly, affecting an impressive enhancement in the understanding of its functions in plants and animals. However, far less focus has been directed to clarifying the nature of melatonin dose-response relationships. Here, we provide substantial evidence of melatonin-induced biphasic dose-response relationships from a series of independent studies involving plant and animal models. The characteristics of these dose responses are similar to those of the broad toxicological and pharmacological hormesis literature. Our analysis suggests that melatonin, in coordination with the circadian rhythms, is involved in stress adaptive responses, and may act as a conditioning agent protecting organisms against subsequent health threats within an hormetic framework. Incorporation of melatonin-induced hormesis in research protocols has the potential to enhance the treatment of neuropsychiatric diseases, cancers, and other animal diseases, as well as protection against environmental stress and to increase plant productivity.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan.
| | - Mitsutoshi Kitao
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|