1
|
Lu Y, Wang X, Jia Y, Zhang S, Yang JK, Li Q, Li Y, Wang Y. PAD4 Inhibitor-Loaded Magnetic Fe 3O 4 Nanoparticles for Magnetic Targeted Chemotherapy and Magnetic Resonance Imaging of Lung Cancer. Int J Nanomedicine 2025; 20:3031-3044. [PMID: 40093545 PMCID: PMC11910961 DOI: 10.2147/ijn.s502814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Lung cancer is a major health concern worldwide owing to its high incidence and mortality rates. Therefore, identification of new therapeutic targets and strategies for lung cancer is critical for improving patient outcomes. Peptidyl arginine deiminase 4 (PAD4) promotes tumor growth and metastasis by catalyzing the citrullination of histones, making it a potential therapeutic target. Although PAD4 inhibitors have shown potential in the treatment of a variety of tumors, existing PAD4 inhibitors lack sufficient specificity and cause substantial systemic adverse reactions. To overcome these challenges, we developed novel YW403@Fe3O4-oxidized carboxymethyl chitosan (OCMC) magnetic nanoparticles (MNPs) that enabled magnetically targeted drug delivery by binding the PAD4 inhibitor YW403 to a ferric oxide magnetic carrier. Methods In vitro experiments were conducted using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, Transwell assays, and flow cytometry to evaluate the activity of the MNPs. In vivo experiments involved magnetic resonance imaging (MRI) assessments and inductively coupled plasma mass spectrometry (ICP-MS) analyses to confirm the tumor targeting and iron metabolism of MNPs. Additionally, immunofluorescence staining was employed to further validate the expression of citrullinated histone H3 (H3cit). Results The implementation of this approach enhanced the targeting efficiency of PAD4 inhibitors, consequently reducing the required dosage of chemotherapy and potentially facilitating MRI monitoring. In vitro experiments demonstrated that MNPs exhibited superior activity compared to free drugs when subjected to an applied magnetic field, due to increased uptake of MNPs by tumor cells. In vivo experiments revealed that the application of magnetic fields significantly improved the tumor targeting of MNPs without impacting iron metabolism. By suppressing the expression of citrullinated histone (H3cit), MNPs effectively inhibited tumor growth and metastasis. Discussion These findings provide new research ideas for the development of novel anti-tumor nanomaterials and are expected to yield breakthroughs in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Xin Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yijiang Jia
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Shuai Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People’s Republic of China
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People’s Republic of China
| | - Yuanming Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
2
|
Zhu X, Lu H, Jia H, Wei X, Xue J, Li W, Zhang J, Wang Y, Yan J, Sun H, Ge Y, Zhang Z. Ferrostatin-1 reduces the inflammatory response of rheumatoid arthritis by decreasing the antigen presenting function of fibroblast-like synoviocytes. J Transl Med 2025; 23:280. [PMID: 40050869 PMCID: PMC11884008 DOI: 10.1186/s12967-025-06300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/23/2025] [Indexed: 03/10/2025] Open
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoimmune disease with complex mechanism. Currently, ferroptosis is believed to play a role in it, but the specific mechanism is unknown, especially in immune response. In this study, we demonstrated that the high expression of major histocompatibility complex I (MHC-I) molecules in RA fibroblast-like synoviocytes (FLSs) is an antigen-presenting cell property and that this property is closely related to the increase in antigens after citrullination. Moreover, we detected higher levels of ferroptosis among FLSs from RA patient than among FLSs from OA patients. Ferroptosis can increase the expression of citrullinated histone H3 (cit-h3) by promoting the production of peptidyl arginine deiminase 4 (PAD4), which further promotes the expression of MHC-I molecules. We cocultured RA-FLSs treated with ferroptosis drugs with selected CD8 + T cells to assess the effect of ferroptosis on the endogenous antigen-presenting function of RA-FLSs. Ferroptosis promoted the proliferation of CD8 + T cells and the release of the inflammatory factors Tumor necrosis factor-α (TNF-α) and Interferon-gamma (IFN-γ), which enhanced the inflammatory effect. This phenomenon was also observed in a collagen-induced arthritis (CIA) mouse model. Finally, ferrostatin-1 (fer-1), a ferroptosis inhibitor, inhibited the above effects and reduced the release of inflammatory factors, indicating that ferroptosis may play a therapeutic role in RA and providing new ideas for the treatment of RA in the field of immunity.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanya Lu
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haonan Jia
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuemin Wei
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Xue
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Li
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Juan Zhang
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanli Wang
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyao Yan
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoyuan Sun
- Department of Osteology, Heilongjiang Provincial Hospital, Harbin, China
| | - Yanlei Ge
- Department of Respiratory Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhiyi Zhang
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Wang J, Miao J, Zhu P. Insights into the complexities of Citrullination: From immune regulation to autoimmune disease. Autoimmun Rev 2025; 24:103734. [PMID: 39719187 DOI: 10.1016/j.autrev.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Citrullination, a post-translational modification that changes arginine to citrulline in proteins, is vital for immune response modulation and cell signaling. Catalyzed by peptidyl arginine deiminases (PADs), citrullination is linked to various diseases, particularly autoimmune disorders like rheumatoid arthritis (RA). Citrullinated proteins can trigger the production of anti-citrullinated protein antibodies (ACPAs), included in RA classification criteria. The immune response to citrullination involves both innate and adaptive immunity, affecting monocytes/macrophages, neutrophils, dendritic cells, natural killer cells, B cells, and T cells. Citrullination contributes to disease development in RA and other conditions such as multiple sclerosis, sepsis, and cancer. Therapeutic strategies targeting citrullination and its effects are being explored, including B cell depletion therapies, T cell-directed approaches, PAD inhibitors, and citrullinated peptide-based vaccines. Understanding the interplay between citrullination and the immune system may lead to novel diagnostic tools and targeted therapies for autoimmune diseases and beyond.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
4
|
Zhu X, Lu H, Li W, Niu S, Xue J, Sun H, Zhang J, Zhang Z. Ferroptosis Induces gut microbiota and metabolic dysbiosis in Collagen-Induced arthritis mice via PAD4 enzyme. Gene 2025; 936:149106. [PMID: 39561902 DOI: 10.1016/j.gene.2024.149106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation and joint destruction, with emerging evidence implicating gut microbiota dysbiosis in its pathogenesis. The current study explores the role of ferroptosis, a form of regulated cell death driven by iron-dependent lipid peroxidation, in modulating gut microbiota and metabolic dysregulation through the enzyme peptidyl arginine deiminase 4 (PAD4) in collagen-induced arthritis (CIA) mouse model. Our findings demonstrate that ferroptosis exacerbates RA-related inflammatory responses and joint damage by upregulating PAD4 expression, which, in turn, influences the gut microbial composition and associated metabolite profiles. Erastin, a known ferroptosis agonist, significantly increased the relative abundance of pro-inflammatory bacteria such as Proteobacteria while reducing beneficial taxa like Firmicutes and Bacteroidetes. This microbial shift was associated with heightened oxidative stress and an imbalance in key metabolites, such as lysophosphatidyl ethanolamine 14:0 (LysoPE 14:0), further exacerbated by ferroptosis. Co-treatment with GSK484, a PAD4 inhibitor, reversed these effects, restoring microbial homeostasis and reducing joint inflammation. This study suggests that ferroptosis-mediated PAD4 activity contributes to RA pathogenesis by disrupting the gut-joint axis, providing novel insights into potential therapeutic targets for RA. Our results highlight the intricate interplay between immune-mediated cell death, gut microbiota, and systemic inflammation, emphasizing the importance of ferroptosis as a therapeutic target in mitigating RA progression.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hanya Lu
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Wenjing Li
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Sijia Niu
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiawei Xue
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Haoyuan Sun
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
5
|
Alghamdi MA, Bahlas SM, Alamry SA, Mattar EH, Redwan EM. Exploring Anticitrullinated Antibodies (ACPAs) and Serum-Derived Exosomes Cargoes. Antibodies (Basel) 2025; 14:10. [PMID: 39982225 PMCID: PMC11843936 DOI: 10.3390/antib14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Autoantibodies such as rheumatoid factor (RF) and anticitrullinated protein autoantibodies (ACPAs) are useful tools for rheumatoid arthritis (RA). The presence of ACPAs against citrullinated proteins (CPs), especially citrullinated fibrinogen (cFBG), seems to be a useful serological marker for diagnosing RA. RA patients' sera were found to be enriched in exosomes that can transmit many proteins. Exosomes have been found to express citrullinated protein such as cFBG. OBJECTIVE We conducted this study in two stages. In the first phase, we aimed to evaluate the association between autoantibodies and risk factors. In the next step, ACPA-positive serum samples from the first phase were subjected to exosomal studies to explore the presence of cFBG, which is a frequent target for ACPAs. METHODS We investigated the autoantibodies in one hundred and sixteen Saudi RA patients and correlated with host-related risk factors. Exosomes were extracted from patients' sera and examined for the presence of cFBG using monoclonal antibodies. RESULTS The study reported a high female-to-male ratio of 8:1, and seropositive RA (SPRA) was more frequent among included RA patients. The frequency and the levels of ACPAs were similar in both genders. Autoantibodies incidences have a direct correlations with patient age, while the average titers decreased as the age increased. Further, the highest incidence and levels of autoantibodies were reported in patients with RA duration between 5 and 10 years. Smoking and family history have no impact on autoantibody, except for ACPAs titers among smokers' RA. Our analysis of serum exosomes revealed that about 50% of SPRA patients expressed cFBG. CONCLUSIONS The female-to-male ratio is 8:1, which is higher than the global ratio. We can conclude that patients' age and disease duration contribute to the autoantibodies, particularly RF and anti-MCV, whereas smoking and family history had no effects on autoantibodies. We detected cFBG in all exosomes from SPRA patients; thus, we suggest that the precise mechanism of exosomes in RA pathogenesis can be investigated to develop effective treatment strategies.
Collapse
Affiliation(s)
- Mohammed A. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Sami M. Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elrashdy M. Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| |
Collapse
|
6
|
Tan H, Jiang Y, Shen L, Nuerhashi G, Wen C, Gu L, Wang Y, Qi H, Cao F, Huang T, Liu Y, Xie W, Deng W, Fan W. Cryoablation-induced neutrophil Ca 2+ elevation and NET formation exacerbate immune escape in colorectal cancer liver metastasis. J Exp Clin Cancer Res 2024; 43:319. [PMID: 39648199 PMCID: PMC11626751 DOI: 10.1186/s13046-024-03244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Liver metastasis poses a significant barrier to effective immunotherapy in patients with colorectal cancer. Cryoablation has emerged as a vital supplementary therapeutic approach for these patients. However, its impact on the tumor microenvironment following the ablation of liver metastases remains unclear. METHODS We acquired multi-omics time-series data at 1 day, 5 days, and 14 days post-cryoablation, based on tumor and peripheral blood samples from clinical patients, cell co-culture models, and a liver metastases mouse model built on the MC38 cell line in C57BL/6 J mice. This dataset included single-cell transcriptomic sequencing, bulk tissue transcriptomic sequencing, 4D-Label-Free proteomics, flow cytometry data, western blot data, and histological immunofluorescence staining of pathological specimens. RESULTS We found that a neutrophil-related inflammatory state persisted for at least 14 days post-cryoablation. During this period, neutrophils underwent phenotypic changes, shifting from the N1 to the N2 type. Cryoablation also caused a significant increase in intracellular Ca2+ concentration in neutrophils, which triggered the formation of PAD4-dependent neutrophil extracellular traps (NETs), further promoting immune evasion. Moreover, animal studies demonstrated that depleting or inhibiting the CXCL2-CXCR2 signaling axis within neutrophils, or degrading NETs, could effectively restore the host's anti-tumor immune response. CONCLUSIONS These findings underscore the critical role of neutrophils and their NETs in immune escape following cryoablation. Targeting the CXCL2-CXCR2-Ca2+-PAD4 axis could enhance the therapeutic response to PD-1 antibodies, providing a potential strategy to improve treatment outcomes for colorectal cancer with liver metastases.
Collapse
Affiliation(s)
- Hongtong Tan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yiquan Jiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lujun Shen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gulijiayina Nuerhashi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunyong Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling Gu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yujia Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Han Qi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weining Xie
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Weijun Fan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Byrnes LJ, Choi WY, Balbo P, Banker ME, Chang J, Chen S, Cheng X, Cong Y, Culp J, Di H, Griffor M, Hall J, Meng X, Morgan B, Mousseau JJ, Nicki J, O'Connell T, Ramsey S, Shaginian A, Shanker S, Trujillo J, Wan J, Vincent F, Wright SW, Vajdos F. Discovery, Characterization, and Structure of a Cell Active PAD2 Inhibitor Acting through a Novel Allosteric Mechanism. ACS Chem Biol 2024; 19:2186-2197. [PMID: 39316753 DOI: 10.1021/acschembio.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Peptidyl arginine deiminases (PADs) are important enzymes in many diseases, especially those involving inflammation and autoimmunity. Despite many years of effort, developing isoform-specific inhibitors has been a challenge. We describe herein the discovery of a potent, noncovalent PAD2 inhibitor, with selectivity over PAD3 and PAD4, from a DNA-encoded library. The biochemical and biophysical characterization of this inhibitor and two noninhibitory binders indicated a novel, Ca2+ competitive mechanism of inhibition. This was confirmed via X-ray crystallographic analysis. Finally, we demonstrate that this inhibitor selectively inhibits PAD2 in a cellular context.
Collapse
Affiliation(s)
- Laura J Byrnes
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Won Young Choi
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Paul Balbo
- Pfizer Worldwide Research and Development, 1 Portland St., Cambridge, Massachusetts 02139, United States
| | - Mary Ellen Banker
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jeanne Chang
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Shi Chen
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Xuemin Cheng
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Yang Cong
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jeff Culp
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Hongxia Di
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Matt Griffor
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Justin Hall
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Xiaoyun Meng
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Barry Morgan
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - James J Mousseau
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jennifer Nicki
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Thomas O'Connell
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Simeon Ramsey
- Pfizer Worldwide Research and Development, 1 Portland St., Cambridge, Massachusetts 02139, United States
| | - Alex Shaginian
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Suman Shanker
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - John Trujillo
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jinqiao Wan
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Fabien Vincent
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Stephen W Wright
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Felix Vajdos
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| |
Collapse
|
8
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
9
|
LI Y, ZHOU D, CHEN X, ZHAO J, GAO C, QIU X, TANG Z, DENG N, ZHAO W, BIAN Y. [Determination of the derivatization reactivity between α/β-dicarbonyl compounds and standard citrullinated peptides based on matrix-assisted laser desorption ionization-time-of-flight mass spectrometry]. Se Pu 2024; 42:711-720. [PMID: 38966979 PMCID: PMC11224938 DOI: 10.3724/sp.j.1123.2024.02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Indexed: 07/06/2024] Open
Abstract
Protein citrullination is an irreversible post-translational modification process regulated by peptidylarginine deiminases (PADs) in the presence of Ca2+. This process is closely related to the occurrence and development of autoimmune diseases, cancers, neurological disorders, cardiovascular and cerebrovascular diseases, and other major diseases. The analysis of protein citrullination by biomass spectrometry confronts great challenges owing to its low abundance, lack of affinity tags, small mass-to-charge ratio change, and susceptibility to isotopic and deamidation interferences. The methods commonly used to study the protein citrullination mainly involve the chemical derivatization of the urea group of the guanine side chain of the peptide to increase the mass-to-charge ratio difference of the citrullinated peptide. Affinity-enriched labels are then introduced to effectively improve the sensitivity and accuracy of protein citrullination by mass spectrometry. 2,3-Butanedione or phenylglyoxal compounds are often used as derivatization reagents to increase the mass-to-charge ratio difference of the citrullinated peptide, and the resulting derivatives have been observed to contain α-dicarbonyl structures. To date, however, no relevant studies on the reactivity of dicarbonyl compounds with citrullinated peptides have been reported. In this study, we determined whether six α-dicarbonyl and two β-dicarbonyl compounds undergo derivatization reactions with standard citrullinated peptides using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Among the α-dicarbonyl compounds, 2,3-butanedione and glyoxal reacted efficiently with several standard citrullinated peptides, but yielded a series of by-products. Phenylglyoxal, methylglyoxal, 1,2-cyclohexanedione, and 1,10-phenanthroline-5,6-dione also derivated efficiently with standard citrullinated peptides, generating a single derivative. Thus, a new derivatization method that could yield a single derivative was identified. Among the β-dicarbonyl compounds, 1,3-cyclohexanedione and 2,4-pentanedione successfully reacted with the standard citrullinated peptides, and generated a single derivative. However, their reaction efficiency was very low, indicating that the β-dicarbonyl compounds are unsuitable for the chemical derivatization of citrullinated peptides. The above results indicate that the α-dicarbonyl structure is necessary for realizing the efficient and specific chemical derivatization of citrullinated peptides. Moreover, the side chains of the α-dicarbonyl structure determine the structure of the derivatives, derivatization efficiency, and generation (or otherwise) of by-products. Therefore, the specific enrichment and precise identification of citrullinated peptides can be achieved by synthesizing α-dicarbonyl structured compounds containing affinity tags. The proposed method enables the identification of citrullinated proteins and their modified sites by MS, thereby providing a better understanding of the distribution of citrullinated proteins in different tissues. The findings will be beneficial for studies on the mechanism of action of citrullinated proteins in a variety of diseases.
Collapse
|
10
|
Wang X, Yuan W, Yang C, Wang Z, Zhang J, Xu D, Sun X, Sun W. Emerging role of gut microbiota in autoimmune diseases. Front Immunol 2024; 15:1365554. [PMID: 38765017 PMCID: PMC11099291 DOI: 10.3389/fimmu.2024.1365554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Accumulating studies have indicated that the gut microbiota plays a pivotal role in the onset of autoimmune diseases by engaging in complex interactions with the host. This review aims to provide a comprehensive overview of the existing literatures concerning the relationship between the gut microbiota and autoimmune diseases, shedding light on the complex interplay between the gut microbiota, the host and the immune system. Furthermore, we aim to summarize the impacts and potential mechanisms that underlie the interactions between the gut microbiota and the host in autoimmune diseases, primarily focusing on systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis. The present review will emphasize the clinical significance and potential applications of interventions based on the gut microbiota as innovative adjunctive therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chunjuan Yang
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Zhangxue Wang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Donghua Xu
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xicai Sun
- Department of Hospital Office, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Wenchang Sun
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
11
|
Peng T, Li B, Bi L, Zhang F. Iguratimod inhibits protein citrullination and inflammation by downregulating NBCe2 in patients with rheumatoid arthritis. Biomed Pharmacother 2024; 174:116551. [PMID: 38636399 DOI: 10.1016/j.biopha.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Bicarbonate has recently been identified as a crucial factor affecting peptidylarginine deiminase (PAD) activity; however, the mechanism underlying its role in rheumatoid arthritis (RA) remains unclear. Iguratimod (IGU), a small-molecule disease-modifying anti-rheumatic drug, requires further investigation. This study aimed to explore the mechanism by which bicarbonate affects citrullination and inflammation in RA and identify new targets for IGU. METHODS We enrolled 20 patients with RA in the study. Sodium bicarbonate cotransporter 2 (NBCe2) was detected in the peripheral blood neutrophils and peripheral blood mononuclear cells (PBMCs) of these patients. The effects of varying concentrations of IGU, methotrexate (MTX), dexamethasone (DXM), and S0859 (an NBCe2 inhibitor) on NBCe2, PAD2, PAD4, and citrullinated histone H3 (cit-H3) levels in, migration ability of, and cytokine production from neutrophils and PBMCs were examined. RESULTS Our findings showed that in patients with RA, citrullinated protein production by peripheral blood neutrophils instead of PBMCs, which showed higher NBCe2 expression levels, increased with an increase in the bicarbonate concentration. In addition, tumor necrosis factor-alpha (TNF-α) promoted NBCe2 expression in neutrophils from patients with RA. Furthermore, we revealed that the inhibitory effects of IGU on neutrophil NBCe2 and cit-H3 levels, degrees of inhibition of neutrophil and PBMC migration, and suppression of interleukin 6, TNF-α, and metalloproteinase-9 secretion from neutrophil-like differentiated HL-60 cells did not substantially differ from those of MTX, DXM, and S0859 at specific doses. CONCLUSIONS Bicarbonate promotes protein citrullination and inflammation in RA via NBCe2, and IGU can downregulate NBCe2.
Collapse
Affiliation(s)
- Tiane Peng
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Bingtong Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Fangze Zhang
- Department of Gastroenterology/Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
12
|
Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, Muhammad A, Zhang X, Lu J. Exploring Immune Redox Modulation in Bacterial Infections: Insights into Thioredoxin-Mediated Interactions and Implications for Understanding Host-Pathogen Dynamics. Antioxidants (Basel) 2024; 13:545. [PMID: 38790650 PMCID: PMC11117976 DOI: 10.3390/antiox13050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system in the initiation of immune reactions and regulation of inflammatory responses during bacterial infections. Downstream signaling pathways in various immune cells involve thiol-dependent redox regulation, highlighting the pivotal roles of thiol redox systems in defense mechanisms. Conversely, the survival and virulence of pathogenic bacteria are enhanced by their ability to counteract oxidative stress and immune attacks. This is achieved through the reduction of oxidized proteins and the modulation of redox-sensitive signaling pathways, which are functions of the Trx system, thereby fortifying bacterial resistance. Moreover, some selenium/sulfur-containing compounds could potentially be developed into targeted therapeutic interventions for pathogenic bacteria. Taken together, the Trx system is a key player in redox regulation during bacterial infection, and contributes to host-pathogen interactions, offering valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
- Omer M. A. Dagah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Billton Bryson Silaa
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Minghui Zhu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Qiu Pan
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Linlin Qi
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Xinyu Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Yuqi Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Wenjing Peng
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Zakir Ullah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Appolonia F. Yudas
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Amir Muhammad
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| |
Collapse
|
13
|
Mamulashvili N, Chikviladze M, Shanshiashvili L, Mikeladze D. Myelin basic proteins charge isomers interact differently with the peptidyl arginine deiminase-2. Neuroreport 2024; 35:185-190. [PMID: 38305106 DOI: 10.1097/wnr.0000000000002001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The deamination of arginine and its conversion to citrulline is a modification observed in positively charged proteins such as histones or myelin basic protein (MBP). This reaction is catalyzed by peptidyl arginine deiminase (PAD), whose abnormal activation is associated with autoimmune diseases like rheumatoid arthritis and multiple sclerosis. However, the mechanisms that trigger PAD activation and the pathophysiological processes involved in hypercitrullination remain unknown. In this study, we investigated the interaction between PAD and various charged isomers of MBP, each differing in the degree of post-translational modification. Immunoprecipitation experiments were conducted to examine the binding between PAD and the different charge isomers of MBP. Our findings revealed that the phosphorylated forms of MBP (C3 and C4) exhibited a higher affinity for PAD compared to the unmodified (C1) and fully citrullinated forms (C8). Additionally, we observed that only in the presence of the unmodified C1 isomer did PAD undergo autocitrullination, which was inhibited by the endogenous guanidine-containing component, creatine. In the presence of other isomers, PAD did not undergo autocitrullination. Furthermore, we found that the unmodified isomer of MBP-C1 contains methylated arginines, which were not affected by the pre-treatment with PAD. Based on our findings, we propose that the increased phosphorylation of central threonines in the original MBP may trigger PAD activation, leading to increased citrullination of the protein and subsequent disorganization of the myelin sheath. These insights contribute to a better understanding of the underlying mechanisms in autoimmune diseases associated with hypercitrullination, potentially opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Lali Shanshiashvili
- Institute of Chemical Biology, Ilia State University
- Department of Biochemistry, I.Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - David Mikeladze
- Institute of Chemical Biology, Ilia State University
- Department of Biochemistry, I.Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
14
|
Xu Q, Shi M, Ding L, Xia Y, Luo L, Lu X, Zhang X, Deng DYB. High expression of P-selectin induces neutrophil extracellular traps via the PSGL-1/Syk/Ca 2+/PAD4 pathway to exacerbate acute pancreatitis. Front Immunol 2023; 14:1265344. [PMID: 37841279 PMCID: PMC10568494 DOI: 10.3389/fimmu.2023.1265344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Excessive neutrophil extracellular traps (NETs) is involved in the progression of acute pancreatitis (AP) but the mechanisms controlling NETs formation in AP are not fully understood. Therefore, our study sought to investigate the mechanism of the highly expressed P-selectin stimulating the formation of NETs in AP. Methods NETs formation was detected by flow cytometry, immunofluorescence staining, and cf-DNA and MPO-DNA complexes were measured as biomarkers of NETs formation. Neutrophils treated with P-selectin and pharmacological inhibitors were examined by western blot, immunofluorescence staining and flow cytometry. Mouse model of AP was established by caerulein and the effect of inhibiting P-selectin by PSI-697 on the level of NETs and PAD4 in pancreatic tissue was observed. The severity of AP was evaluated by histopathological score and the detection of serum amylase and lipase. Results Patients with AP had elevated levels of NETs and P-selectin compared with healthy volunteers. Stimulation of P-selectin up-regulated the expression of PSGL-1, increased the phosphorylation of Syk, mediated intracellular calcium signal and led to the activation and expression of PAD4, which modulated NETs formation in neutrophils. Pretreament with PSI-697 blunted NETs formation and PAD4 expression in the pancreatic tissue, and ameliorated the severity of AP in mice. Conclusion Taken together, these results suggest that P-selectin induces NETs through PSGL-1 and its downstream Syk/Ca2+/PAD4 signaling pathway, and that targeting this pathway might be a promising strategy for the treatment of AP.
Collapse
Affiliation(s)
- Qi Xu
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ming Shi
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lu Ding
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yu Xia
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liang Luo
- Department of Critical Care Medicine, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaofang Lu
- Department of Pathology, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaoying Zhang
- Department of Health Management Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - David Y. B. Deng
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Critical Care Medicine, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
15
|
Rossetti DV, Muntiu A, Massimi L, Tamburrini G, Desiderio C. Citrullination Post-Translational Modification: State of the Art of Brain Tumor Investigations and Future Perspectives. Diagnostics (Basel) 2023; 13:2872. [PMID: 37761239 PMCID: PMC10529966 DOI: 10.3390/diagnostics13182872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
The present review aims to describe the state of the art of research studies investigating the citrullination post-translational modification in adult and pediatric brain tumors. After an introduction to the deimination reaction and its occurrence in proteins and polypeptide chains, the role of the citrullination post-translational modification in physiological as well as pathological states, including cancer, is summarized, and the recent literature and review papers on the topic are examined. A separate section deals with the specific focus of investigation of the citrullination post-translational modification in relation to brain tumors, examining the state of the art of the literature that mainly concerns adult and pediatric glioblastoma and posterior fossa pediatric tumors. We examined the literature on this emerging field of research, and we apologize in advance for any possible omission. Although only a few studies inspecting citrullination in brain tumors are currently available, the results interestingly highlighted different profiles of the citrullinome associated with different histotypes. The data outlined the importance of this post-translational modification in modulating cancer invasion and chemoresistance, influencing key factors involved in apoptosis, cancer cell communication through extracellular vesicle release, autophagy, and gene expression processes, which suggests the prospect of taking citrullination as a target of cancer treatment or as a source of potential diagnostic and prognostic biomarkers for potential clinical applications in the future.
Collapse
Affiliation(s)
- Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Alexandra Muntiu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Luca Massimi
- UOC Neurochirurgia Infantile, Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
| | - Gianpiero Tamburrini
- UOC Neurochirurgia Infantile, Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| |
Collapse
|
16
|
Zhang Y, Wan X, Qiu L, Zhou L, Huang Q, Wei M, Liu X, Liu S, Zhang B, Han J. Trim28 citrullination maintains mouse embryonic stem cell pluripotency via regulating Nanog and Klf4 transcription. SCIENCE CHINA. LIFE SCIENCES 2023; 66:545-562. [PMID: 36100837 DOI: 10.1007/s11427-022-2167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
Protein citrullination, including histone H1 and H3 citrullination, is important for transcriptional regulation, DNA damage response, and pluripotency of embryonic stem cells (ESCs). Tripartite motif containing 28 (Trim28), an embryonic development regulator involved in ESC self-renewal, has recently been identified as a novel substrate for citrullination by Padi4. However, the physiological functions of Trim28 citrullination and its role in regulating the chromatin structure and gene transcription of ESCs remain unknown. In this paper, we show that Trim28 is specifically citrullinated in mouse ESCs (mESCs), and that the loss of Trim28 citrullination induces loss of pluripotency. Mechanistically, Trim28 citrullination enhances the interaction of Trim28 with Smarcad1 and prevents chromatin condensation. Additionally, Trim28 citrullination regulates mESC pluripotency by promoting transcription of Nanog and Klf4 which it does by increasing the enrichment of H3K27ac and H3K4me3 and decreasing the enrichment of H3K9me3 in the transcriptional regulatory region. Thus, our findings suggest that Trim28 citrullination is the key for the epigenetic activation of pluripotency genes and pluripotency maintenance of ESCs. Together, these results uncover a role Trim28 citrullination plays in pluripotency regulation and provide novel insight into how citrullination of proteins other than histones regulates chromatin compaction.
Collapse
Affiliation(s)
- Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowen Wan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lian Zhou
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Huang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueqin Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sicheng Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Shen X, Gu X, Liu YY, Yang L, Zheng M, Jiang L. Association between dietary calcium and depression among American adults: National health and nutrition examination survey. Front Nutr 2023; 10:1042522. [PMID: 36845060 PMCID: PMC9948022 DOI: 10.3389/fnut.2023.1042522] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Background There is only limited evidence for an association between calcium (Ca) and depression, and the relationship was inconsistent. Therefore, the aim of this study was to assess the relationship between dietary Ca and the risk of depressive symptoms in individuals over the age of 18 in the US. Methods We extracted 14,971 participants from the US National Health and Nutrition Examination Survey (NHANES) 2007-2016 to probe their associations. Dietary Ca intake was measured through 24 h dietary recall method. Patients with the Patient Health Questionnaire-9 (PHQ-9) ≥ 10 scores were believed to have depressive symptoms. The association between dietary Ca and depressive symptoms was investigated using multivariate logistic regression, sensitivity analysis, and restricted cubic spline regression. Results In this study, 7.6% (1,144/14,971) of them had depressive symptoms. After adjusting for sex, age, race, poverty to income ratio (PIR), marital status, education, body mass index (BMI), caffeine intake, carbohydrates intake, total energy intake, smoking status, alcohol consumption, physical activity, diabetes, hypertension, severe cardiovascular disease (CVD), cancer, serum vitamin D, serum Ca, and Ca supplement, the adjusted ORs value [95% confidence interval (CI)] of depression for the lowest category (Q1 ≤ 534 mg/day) vs. Q2-Q4 of Ca intake were 0.83 (0.69-0.99), 0.97 (0.65-0.95), and 0.80 (0.63-0.98) with the p for trend (p = 0.014). The relationship between dietary Ca intake and depressive symptoms was linear (non-linear p = 0.148). None of the interactions were significant except among races (p for interaction = 0.001). Conclusion Association between dietary Ca and the prevalence of depressive symptoms in US adults. And Ca intake was negatively associated with the risk of depressive symptoms. As Ca intake increased, the prevalence of depressive symptoms decreased.
Collapse
Affiliation(s)
- Xia Shen
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xue Gu
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yuan-Yuan Liu
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Long Yang
- Department of Pediatric Cardiothoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Meng Zheng
- The Fifth Medical Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lei Jiang
- Department of Radiology, The Convalescent Hospital of East China, Wuxi, China,*Correspondence: Lei Jiang,
| |
Collapse
|
18
|
Song YH, Wang ZJ, Kang L, He ZX, Zhao SB, Fang X, Li ZS, Wang SL, Bai Y. PADs and NETs in digestive system: From physiology to pathology. Front Immunol 2023; 14:1077041. [PMID: 36761761 PMCID: PMC9902375 DOI: 10.3389/fimmu.2023.1077041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Peptidylarginine deiminases (PADs) are the only enzyme class known to deiminate arginine residues into citrulline in proteins, a process known as citrullination. This is an important post-translational modification that functions in several physiological and pathological processes. Neutrophil extracellular traps (NETs) are generated by NETosis, a novel cell death in neutrophils and a double-edged sword in inflammation. Excessive activation of PADs and NETs is critically implicated in their transformation from a physiological to a pathological state. Herein, we review the physiological and pathological functions of PADs and NETs, in particular, the involvement of PAD2 and PAD4 in the digestive system, from inflammatory to oncological diseases, along with related therapeutic prospects.
Collapse
Affiliation(s)
- Yi-Hang Song
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi-Jie Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zi-Xuan He
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xue Fang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
Zhu D, Lu Y, Wang Y, Wang Y. PAD4 and Its Inhibitors in Cancer Progression and Prognosis. Pharmaceutics 2022; 14:2414. [PMID: 36365233 PMCID: PMC9699117 DOI: 10.3390/pharmaceutics14112414] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 07/24/2023] Open
Abstract
The systemic spread of malignancies and the risk of cancer-associated thrombosis are major clinical challenges in cancer therapy worldwide. As an important post-translational modification enzyme, peptidyl arginine deiminase 4 (PAD4) could mediate the citrullination of protein in different components (including nucleus and cytoplasm, etc.) of a variety of cells (tumor cells, neutrophils, macrophages, etc.), thus participating in gene regulation, neutrophil extracellular trap (NET) and macrophage extracellular trap (MET). Thereby, PAD4 plays an important role in enhancing the growth of primary tumors and facilitating the distant metastasis of cancer cells. In addition, it is related to the formation of cancer-associated thrombosis. Therefore, the development of PAD4-specific inhibitors may be a promising strategy for treating cancer, and it may improve patient prognosis. In this review, we describe PAD4 involvement in gene regulation, protein citrullination, and NET formation. We also discuss its potential role in cancer and cancer-associated thrombosis, and we summarize the development and application of PAD4 inhibitors.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
20
|
D’Alessio S, Cheng H, Eaton L, Kraev I, Pamenter ME, Lange S. Acute Hypoxia Alters Extracellular Vesicle Signatures and the Brain Citrullinome of Naked Mole-Rats (Heterocephalus glaber). Int J Mol Sci 2022; 23:ijms23094683. [PMID: 35563075 PMCID: PMC9100269 DOI: 10.3390/ijms23094683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Peptidylarginine deiminases (PADs) and extracellular vesicles (EVs) may be indicative biomarkers of physiological and pathological status and adaptive responses, including to diseases and disorders of the central nervous system (CNS) and related to hypoxia. While these markers have been studied in hypoxia-intolerant mammals, in vivo investigations in hypoxia-tolerant species are lacking. Naked mole-rats (NMR) are among the most hypoxia-tolerant mammals and are thus a good model organism for understanding natural and beneficial adaptations to hypoxia. Thus, we aimed to reveal CNS related roles for PADs in hypoxia tolerance and identify whether circulating EV signatures may reveal a fingerprint for adaptive whole-body hypoxia responses in this species. We found that following in vivo acute hypoxia, NMR: (1) plasma-EVs were remodelled, (2) whole proteome EV cargo contained more protein hits (including citrullinated proteins) and a higher number of associated KEGG pathways relating to the total proteome of plasma-EVs Also, (3) brains had a trend for elevation in PAD1, PAD3 and PAD6 protein expression, while PAD2 and PAD4 were reduced, while (4) the brain citrullinome had a considerable increase in deiminated protein hits with hypoxia (1222 vs. 852 hits in normoxia). Our findings indicate that circulating EV signatures are modified and proteomic content is reduced in hypoxic conditions in naked mole-rats, including the circulating EV citrullinome, while the brain citrullinome is elevated and modulated in response to hypoxia. This was further reflected in elevation of some PADs in the brain tissue following acute hypoxia treatment. These findings indicate a possible selective role for PAD-isozymes in hypoxia response and tolerance.
Collapse
Affiliation(s)
- Stefania D’Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
| | - Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK;
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
- Correspondence: ; Tel.: +44-(0)-20-7911-5000 (ext. 64832)
| |
Collapse
|
21
|
Redwan EM, Alghamdi MF, El-Aziz TMA, Adadi P, Aljabali AAA, Attrish D, Azad GK, Baetas-da-Cruz W, Barh D, Bazan NG, Brufsky AM, Chauhan G, Hassan SKS, Kandimalla R, Lal A, Lundstrom K, Mishra YK, Choudhury PP, Palù G, Panda PK, Pizzol D, Rezaei N, Serrano-Aroca Á, Sherchan SP, Seyran M, Takayama K, Tambuwala MM, Uhal BD, Uversky VN. The mechanism behind flaring/triggering of autoimmunity disorders associated with COVID-19. Autoimmun Rev 2021; 20:102909. [PMID: 34274539 PMCID: PMC8282442 DOI: 10.1016/j.autrev.2021.102909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, 21934 Alexandria, Egypt.
| | - Mohammed F Alghamdi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia; Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia.
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229-3900, USA; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University-Faculty of Pharmacy, Irbid 566, Jordan.
| | - Diksha Attrish
- Dr. B R Ambedkar Center for Biomedical Research (ACBR), University of Delhi (North Camps), Delhi 110007, India
| | | | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur WB-721172, India; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Heath New Orleans, New Orleans 70112, USA.
| | - Adam M Brufsky
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico.
| | - S K Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka, Hyderabad 500007, Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana State, India
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yogendra Kumar Mishra
- University of Southern Denmark, Mads Clausen Institute, NanoSYD, Alsion 2, 6400 Sønderborg, Denmark.
| | - Pabitra Pal Choudhury
- Applied Statistics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121, Padova, Italy.
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden.
| | - Damiano Pizzol
- Italian Agency for Development Cooperation - Khartoum, Sudan Street 33, Al Amarat, Sudan
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001, Valencia, Spain.
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA.
| | - Murat Seyran
- Doctoral Student in Natural and Technical Sciences (SPL 44), University of Vienna, Währinger Straße, A-1090 Vienna, Austria; Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Austria.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8397, Japan.
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK.
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
22
|
Lu Y, Peng Z, Zhu D, Jia Y, Taledaohan A, Li Y, Liu J, Wang Y, Wang Y. RGD Peptide and PAD4 Inhibitor-Loaded Gold Nanorods for Chemo-Photothermal Combined Therapy to Inhibit Tumor Growth, Prevent Lung Metastasis and Improve Biosafety. Int J Nanomedicine 2021; 16:5565-5580. [PMID: 34429600 PMCID: PMC8379711 DOI: 10.2147/ijn.s319210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Purpose A targeted drug delivery system that combines protein-arginine deiminase type-4 (PAD4) inhibitors YW3-56 (356) with PTT of NPs is constructed to both decrease the accumulation of gold in metabolic organs and reduce the dose of chemotherapeutic agents. Patients and Methods In vitro cytotoxicity test and in vivo S180 tumor-bearing mice model were used to compare antitumor activity of 356-modified gold nanospheres and nanorods. The A549 tumor-bearing mice model was also exploited in antitumor assessment. In addition, ICP-MS, blood cell analyzer and blood biochemistry analyzer are applied for assessing the biosafety of NPs. Results Both 356-modified gold nanospheres and nanorods showed antitumor activity. However, 356-loaded gold nanorods are found to have better tumor inhibitory activity than 356-loaded gold nanospheres in the presence of laser and without laser irradiation. Thus, 356-loaded gold nanorods are selected to be applied for chemo-photothermal combined therapy on in vivo. We find that combination therapy could inhibit tumor growth and reduce lung tumor metastasis and inflammatory infiltration compared with individual therapy. It triggers apoptosis in tumor tissue observed by TUNEL assay and TEM pictures. Conclusion Thus, an RGD targeting and PAD4 inhibitor-loaded system are established based on chemo-photothermal combined therapy. It could inhibit tumor growth, prevent lung metastasis and improve biosafety.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Zidong Peng
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Yijiang Jia
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Yuanming Li
- Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Jiawang Liu
- Medicinal Chemistry Core, The University of Tennessee Health Science Center, 579 College of Pharmacy Building, Memphis, TN, 38163, USA
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| |
Collapse
|
23
|
Alghamdi MF, Redwan EM. Advances in the diagnosis of autoimmune diseases based on citrullinated peptides/proteins. Expert Rev Mol Diagn 2021; 21:685-702. [PMID: 34024239 DOI: 10.1080/14737159.2021.1933946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Autoimmune diseases are still one of the hard obstacles associated with humanity. There are many exogenous and endogenous etiological factors behind autoimmune diseases, which may be combined or dispersed to stimulate the autoimmune responses. Protein citrullination represents one of these factors. Harnessing specific citrullinated proteins/peptides could early predict and/or diagnose some of the autoimmune diseases. Many generations of diagnostic tools based on citrullinated peptides with comparable specificity/sensitivity are available worldwide.Areas covered: In this review, we discuss the deimination reaction behind the citrullination of most known autoantigens targeted, different generations of diagnostic tools based on citrullinated probes with specificity/sensitivity of each as well as newly developed assays. Furthermore, the most advanced molecular analytical tools to detect the citrullinated residues in the biological fluid and their performance are also evaluated, providing new avenues to early detect autoimmune diseases with high accuracy.Expert opinion: With the current specificity/sensitivity tools available for autoimmune disease detection, emphasis must be placed on developing more advance and effective, early, rapid, and simple diagnostic devices for autoimmune disease monitoring (similar to a portable device for sugar test at home). The molecular analytical devices with dual and/or multiplexe functions should be more simplified and invested in clinical laboratories.
Collapse
Affiliation(s)
- Mohammed F Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
24
|
He Q, Chen B, Chen S, Zhang M, Duan L, Feng X, Chen J, Zhou L, Chen L, Duan Y. MBP-activated autoimmunity plays a role in arsenic-induced peripheral neuropathy and the potential protective effect of mecobalamin. ENVIRONMENTAL TOXICOLOGY 2021; 36:1243-1253. [PMID: 33739591 DOI: 10.1002/tox.23122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Intake excessive arsenic (As) is related to the occurrence of peripheral neuropathy. However, both the underlying mechanism and the preventive approach remain largely unknown. In the present study, As treatment significantly decreased the mechanical withdrawal threshold and increased the titer of anti-myelin basic protein antibody in rats, accompanied with damaged BNB. The levels of inflammatory cytokines and proteolytic enzymes were also significantly upregulated. However, administration of MeCbl in As-treated rats significantly reversed the decline in hindfoot mechanical withdrawal threshold, as well as BNB failure and sciatic nerve inflammation. Repeated As treatment in athymic nude mice indicated that sciatic nerve inflammation and mechanical hyperalgesia were T cell-dependent. These data implicated that MBP-activated autoimmunity and the related neuroinflammation probably contributed to As-induced mechanical hyperalgesia and MeCbl exerted a protective role probably via maintenance the integrity of BNB and inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Qican He
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Bingzhi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shaoyi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Muyang Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lidan Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Experimental Center for Preventive Medicine, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lezhou Zhou
- Central Laboratory, Occupational Disease Prevention and Control Hospital of Hunan Province, Changsha, China
| | - Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
25
|
Alghamdi MA, Redwan EM. Interplay of Microbiota and Citrullination in the Immunopathogenesis of Rheumatoid Arthritis. Probiotics Antimicrob Proteins 2021; 14:99-113. [PMID: 34036479 DOI: 10.1007/s12602-021-09802-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/18/2022]
Abstract
Microbiota is a balanced ecosystem that has important functions to the host health including development, defense, digestion, and absorption of dietary fibers and minerals, vitamin synthesizes, protection, and training the host immune system. On the other hand, its dysbiosis is linked to many human diseases such as rheumatoid arthritis (RA). The RA is an inflammatory autoimmune disorder caused by genetic and environmental factors; microbiota may be considered as a risk environmental factor for it. Citrullination is a post-translation modification (PMT) that converts the amino acid arginine to amino acid citrulline in certain proteins. These citrullinated proteins are recognized as a foreign antigen by the immune system resulting in the upregulation of inflammatory action such as in RA. The current work highlights the effect of both gut and oral microbiota dysbiosis on the development of RA, as well as discusses how the alteration in microbiota composition leads to the overgrowth of some bacterial species that entangled in RA pathogenicity. The evidence suggested that some oral and gut microbial species such as Porphyromonas gingivalis and Prevotella copri, respectively, contribute to RA pathogenesis. During dysbiosis, these bacteria can mediate the citrullination of either human or bacteria proteins to trigger an immune response that leads to the generation of autoantibodies.
Collapse
Affiliation(s)
- Mohammed A Alghamdi
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, 21934, Egypt.
| |
Collapse
|
26
|
Lange S. Peptidylarginine deiminases and extracellular vesicles: prospective drug targets and biomarkers in central nervous system diseases and repair. Neural Regen Res 2021; 16:934-938. [PMID: 33229732 PMCID: PMC8178795 DOI: 10.4103/1673-5374.297058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peptidylarginine deiminases are a family of calcium-activated enzymes with multifaceted roles in physiological and pathological processes, including in the central nervous system. Peptidylarginine deiminases cause post-translational deimination/citrullination, leading to changes in structure and function of a wide range of target proteins. Deimination can facilitate protein moonlighting, modify protein-protein interaction, cause protein dysfunction and induce inflammatory responses. Peptidylarginine deiminases also regulate the biogenesis of extracellular vesicles, which play important roles in cellular communication through transfer of extracellular vesicle-cargo, e.g., proteins and genetic material. Both peptidylarginine deiminases and extracellular vesicles are linked to a number of pathologies, including in the central nervous system, and their modulation with pharmacological peptidylarginine deiminase inhibitors have shown great promise in several in vitro and in vivo central nervous system disease models. Furthermore, extracellular vesicles derived from mesenchymal stem cells have been assessed for their therapeutic application in central nervous system injury. As circulating extracellular vesicles can be used as non-invasive liquid biopsies, their specific cargo-signatures (including deiminated proteins and microRNAs) may allow for disease “fingerprinting” and aid early central nervous system disease diagnosis, inform disease progression and response to therapy. This mini-review discusses recent advances in the field of peptidylarginine deiminase and extracellular vesicle research in the central nervous system, focusing on several central nervous system acute injury, degeneration and cancer models.
Collapse
Affiliation(s)
- Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
27
|
Inhibition of Peptidyl Arginine Deiminase-4 Prevents Renal Ischemia-Reperfusion-Induced Remote Lung Injury. Mediators Inflamm 2020; 2020:1724206. [PMID: 33456369 PMCID: PMC7787741 DOI: 10.1155/2020/1724206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemia reperfusion (IR) can lead to acute kidney injury and can be complicated by acute lung injury, which is one of the leading causes of acute kidney injury-related death. Peptidyl arginine deiminase-4 (PAD4) is a member of the PAD enzyme family and plays a critical role in inflammatory reactions and neutrophil extracellular trap formation in a variety of pathological conditions. It has been reported that PAD4 inhibition can protect certain organs from ischemic injury. In this study, we aimed to understand the mode of action of PAD4 in renal ischemia-reperfusion-mediated acute lung injury. Bilateral renal pedicle occlusion was induced for 30 min followed by reperfusion for 24 h. A specific inhibitor of PAD4, GSK484, was delivered via intraperitoneal injection to alter the PAD4 activity. The pulmonary PAD4 expression, pulmonary impairment, neutrophil infiltration, Cit-H3 expression, neutrophil extracellular trap formation, inflammatory cytokine secretion, and pulmonary apoptosis were analyzed. We found that renal ischemia reperfusion was associated with pulmonary pathological changes and increases in neutrophil infiltration, neutrophil extracellular trap formation, and inflammatory cytokine secretion in the lungs of the recipient animals. Suppression of PAD4 by GSK484 reduced remote lung injury by mitigating neutrophil infiltration, neutrophil extracellular trap formation, apoptosis, and inflammatory factor secretion. Our findings demonstrate that specific PAD4 inhibition by GSK484 may be an effective strategy to attenuate distant lung injury complicating renal ischemia-reperfusion injury.
Collapse
|
28
|
Zhang Y, Yang Y, Hu X, Wang Z, Li L, Chen P. PADs in cancer: Current and future. Biochim Biophys Acta Rev Cancer 2020; 1875:188492. [PMID: 33321174 DOI: 10.1016/j.bbcan.2020.188492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Protein arginine deiminases (PADs), is a group of calcium-dependent enzymes, which play crucial roles in citrullination, and can catalyze arginine residues into citrulline. This chemical reaction induces citrullinated proteins formation with altered structure and function, leading to numerous pathological diseases, including inflammation and autoimmune diseases. To date, multiple studies have provided solid evidence that PADs are implicated in cancer progression. Nevertheless, the findings on PADs functions in tumors are too complex to understand due to its involvements in variable signaling pathways. The increasing interest in PADs has heightened the need for a comprehensive description for its role in cancer. The present study aims to identify the gaps in present knowledge, including its structures, biological substrates and tissue distribution. Since several irreversible inhibitors for PADs with good potency and selectivity have been explored, the mechanisms on the dysregulation in tumors remain poorly understood. The present study discusses the relationship between PADs and tumor apoptosis, EMT formation and metastasis as well as the implication of neutrophil extracellular traps (NETs) in tumorigenesis. In addition, the potential uses of citrullinated antigens for immunotherapy were proposed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yiqiong Yang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xiuxiu Hu
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zhi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Li Li
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
29
|
Current knowledge into the role of the peptidylarginine deiminase (PAD) enzyme family in cardiovascular disease. Eur J Pharmacol 2020; 891:173765. [PMID: 33249073 DOI: 10.1016/j.ejphar.2020.173765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Peptidylarginine deiminase (PAD) family members have a vital role in maintaining the stability of the extracellular matrix (ECM) during remodelling in several heart diseases. PAD-mediated deamination, or citrullination, has been studied in different physiological and pathological conditions in the body. However, the role of PAD isoforms has not been fully studied in cardiovascular system. Citrullination is a post-translational modification that involves conversion of peptidyl-based arginine to peptidyl-based citrulline by PAD family members in a calcium-dependent manner. Upregulation of PADs have been observed in various cardiovascular diseases, including venous thrombosis, cardiac fibrosis, heart failure, atherosclerosis, coronary heart disease and acute inflammation. In this review, experimental aspects of in vivo and in vitro studies related to the roles PAD isoforms in cardiovascular diseases including mechanisms, pathophysiological and therapeutic properties are discussed. Pharmacological strategies for targeting PAD family proteins in cardiac diseases have not yet been studied. Furthermore, the role played by PAD family members in the remodelling process during the progression of cardiovascular diseases is not fully understood.
Collapse
|
30
|
Zheng ZQ, Li ZX, Guan JL, Liu X, Li JY, Chen Y, Lin L, Kou J, Lv JW, Zhang LL, Zhou GQ, Liu RQ, Chen F, He XJ, Li YQ, Li F, Xu SS, Ma J, Liu N, Sun Y. Long Noncoding RNA TINCR-Mediated Regulation of Acetyl-CoA Metabolism Promotes Nasopharyngeal Carcinoma Progression and Chemoresistance. Cancer Res 2020; 80:5174-5188. [PMID: 33067266 DOI: 10.1158/0008-5472.can-19-3626] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 12/09/2022]
Abstract
Frontier evidence suggests that dysregulation of long noncoding RNAs (lncRNA) is ubiquitous in all human tumors, indicating that lncRNAs might have essential roles in tumorigenesis. Therefore, an in-depth study of the roles of lncRNA in nasopharyngeal carcinoma (NPC) carcinogenesis might be helpful to provide novel therapeutic targets. Here we report that lncRNA TINCR was significantly upregulated in NPC and was associated positively with poor survival. Silencing TINCR inhibited NPC progression and cisplatin resistance. Mechanistically, TINCR bound ACLY and protected it from ubiquitin degradation to maintain total cellular acetyl-CoA levels. Accumulation of cellular acetyl-CoA promoted de novo lipid biosynthesis and histone H3K27 acetylation, which ultimately regulated the peptidyl arginine deiminase 1 (PADI1)-MAPK-MMP2/9 pathway. In addition, insulin-like growth factor 2 mRNA-binding protein 3 interacted with TINCR and slowed its decay, which partially accounted for TINCR upregulation in NPC. These findings demonstrate that TINCR acts as a crucial driver of NPC progression and chemoresistance and highlights the newly identified TINCR-ACLY-PADI1-MAPK-MMP2/9 axis as a potential therapeutic target in NPC. SIGNIFICANCE: TINCR-mediated regulation of a PADI1-MAPK-MMP2/9 signaling pathway plays a critical role in NPC progression and chemoresistance, marking TINCR as a viable therapeutic target in this disease.
Collapse
Affiliation(s)
- Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Li Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Li Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia Kou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Wei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lu-Lu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Rui-Qi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - FoPing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Jun He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Feng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Si-Si Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
31
|
Yu HC, Tung CH, Huang KY, Huang HB, Lu MC. The Essential Role of Peptidylarginine Deiminases 2 for Cytokines Secretion, Apoptosis, and Cell Adhesion in Macrophage. Int J Mol Sci 2020; 21:ijms21165720. [PMID: 32785008 PMCID: PMC7460808 DOI: 10.3390/ijms21165720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: The study aims to investigate the functional roles of peptidylarginine deiminase 2 (PADI2) in macrophages. Methods: The clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein-9 nuclease (Cas9) system was used to knockout PADI2 in U937 cells. U937 cells were introduced to differentiate macrophages and were stimulated with lipopolysaccharides (LPS). The protein expression of PADI2, PADI4, and citrullinated proteins were analyzed by Western blotting. The mRNA and protein levels of interleukin 1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) were analyzed using RT-PCR and ELISA, respectively. Cell apoptosis was analyzed using flow cytometry. Cell adhesion assay was performed using a commercially available fibrinogen-coated plate. Results: PADI2 knockout could markedly suppress the PADI2 protein expression, but not the PADI4 protein expression. PADI2 knockout decreased the protein levels of citrullinated nuclear factor κB (NF-κB) p65, but not those of citrullinated histone 3, resulting in the decreased mRNA expression levels of IL-1β and TNF-α in the U937 cells and IL-1β and IL-6 in the differentiated macrophages and the macrophages stimulated with LPS. The cytokines levels of IL-1β, IL-6, and TNF-α were all dramatically decreased in the PADI2 knockout group compared with in the controls. PADI2 knockout prevented macrophages apoptosis via the decreased caspase-3, caspase-2, and caspase-9 activation. PADI2 knockout also impaired macrophages adhesion capacity through the decreased protein levels of focal adhesion kinase (FAK), phospho-FAK, paxillin, phospho-paxillin, and p21-activated kinase 1. Conclusion: This study showed that PADI2 could promote IL-1β, IL-6, and TNF-α production in macrophages, promote macrophage apoptosis through caspase-3, caspase-2, and caspase-9 activation and enhance cell adhesion via FAK, paxillin, and PAK1. Therefore, targeting PADI2 could be used as a novel strategy for controlling inflammation caused by macrophages.
Collapse
Affiliation(s)
- Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi 62130, Taiwan; (H.-C.Y.); (C.-H.T.); (K.-Y.H.)
| | - Chien-Hsueh Tung
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi 62130, Taiwan; (H.-C.Y.); (C.-H.T.); (K.-Y.H.)
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
| | - Kuang-Yung Huang
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi 62130, Taiwan; (H.-C.Y.); (C.-H.T.); (K.-Y.H.)
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
| | - Hsien-Bin Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Minxiong, Chiayi 62130, Taiwan;
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi 62130, Taiwan; (H.-C.Y.); (C.-H.T.); (K.-Y.H.)
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
- Correspondence: ; Tel.: +886-5-2648000 (ext. 3205); Fax: +886-5-2648006
| |
Collapse
|
32
|
Criscitiello MF, Kraev I, Petersen LH, Lange S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front Immunol 2020; 11:651. [PMID: 32411128 PMCID: PMC7198796 DOI: 10.3389/fimmu.2020.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, United Kingdom
| | - Lene H. Petersen
- Department of Marine Biology, Texas A&M University at Galvestone, Galveston, TX, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
33
|
Almutairi FM, Ajmal MR, Siddiqi MK, Majid N, Al-Alawy AIA, Abdelhameed AS, Khan RH. Biophysical insight into the interaction of levocabastine with human serum albumin: spectroscopy and molecular docking approach. J Biomol Struct Dyn 2020; 39:1525-1534. [PMID: 32308140 DOI: 10.1080/07391102.2020.1750486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interaction of levocabastine with human serum albumin (HSA) is investigated by applying fluorescence spectroscopy, circular dichroism spectroscopy and molecular docking methods. Levocabastine is an important drug in treatment of allergy and currently a target drug for drug repurposing to treat other diseases like vernal keratoconjuctivitis. Fluorescence quenching data revealed that levocabastine bind weakly to protein with binding constant in the order of 103 M-1. Förster resonance energy transfer results indicated the binding distance of 2.28 nm for levocabastine. Synchronous fluorescence result suggest slight blue shift for tryptophan upon levocabastine binding, binding of levocabastine impelled rise in α-helical structure in protein, while there are minimal changes in tertiary structure in protein. Moreover, docking results indicate levocabastine binds to pocket near to the drug site-I in HSA via hydrogen bonding and hydrophobic interactions. Understanding the interaction of levocabastine with HSA is significant for the advancement of therapeutic and diagnostic strategies for optimal treatment results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fahad M Almutairi
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Rehan Ajmal
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Adel Ibrahim Ahmad Al-Alawy
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
34
|
Méchin MC, Takahara H, Simon M. Deimination and Peptidylarginine Deiminases in Skin Physiology and Diseases. Int J Mol Sci 2020; 21:ijms21020566. [PMID: 31952341 PMCID: PMC7014782 DOI: 10.3390/ijms21020566] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/06/2023] Open
Abstract
Deimination, also known as citrullination, corresponds to the conversion of the amino acid arginine, within a peptide sequence, into the non-standard amino acid citrulline. This post-translational modification is catalyzed by a family of calcium-dependent enzymes called peptidylarginine deiminases (PADs). Deimination is implicated in a growing number of physiological processes (innate and adaptive immunity, gene regulation, embryonic development, etc.) and concerns several human diseases (rheumatoid arthritis, neurodegenerative diseases, female infertility, cancer, etc.). Here, we update the involvement of PADs in both the homeostasis of skin and skin diseases. We particularly focus on keratinocyte differentiation and the epidermal barrier function, and on hair follicles. Indeed, alteration of PAD activity in the hair shaft is responsible for two hair disorders, the uncombable hair syndrome and a particular form of inflammatory scarring alopecia, mainly affecting women of African ancestry.
Collapse
Affiliation(s)
- Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France;
| | - Hidenari Takahara
- University of Ibaraki, School of Agriculture, Ibaraki 300-0393, Japan;
| | - Michel Simon
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France;
- Correspondence: ; Tel.: +33-5-6115-8427
| |
Collapse
|
35
|
An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J Immunol Res 2019; 2019:7592851. [PMID: 31886309 PMCID: PMC6899306 DOI: 10.1155/2019/7592851] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/03/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
A protein undergoes many types of posttranslation modification. Citrullination is one of these modifications, where an arginine amino acid is converted to a citrulline amino acid. This process depends on catalytic enzymes such as peptidylarginine deiminase enzymes (PADs). This modification leads to a charge shift, which affects the protein structure, protein-protein interactions, and hydrogen bond formation, and it may cause protein denaturation. The irreversible citrullination reaction is not limited to a specific protein, cell, or tissue. It can target a wide range of proteins in the cell membrane, cytoplasm, nucleus, and mitochondria. Citrullination is a normal reaction during cell death. Apoptosis is normally accompanied with a clearance process via scavenger cells. A defect in the clearance system either in terms of efficiency or capacity may occur due to massive cell death, which may result in the accumulation and leakage of PAD enzymes and the citrullinated peptide from the necrotized cell which could be recognized by the immune system, where the immunological tolerance will be avoided and the autoimmune disorders will be subsequently triggered. The induction of autoimmune responses, autoantibody production, and cytokines involved in the major autoimmune diseases will be discussed.
Collapse
|