1
|
Stilgenbauer L, Chen Q, Pungi D, James N, Jayarathne H, Koshko L, Scofield S, Zhang K, Sadagurski M. Microglial ER stress response via IRE1α regulates diet-induced metabolic imbalance and obesity in mice. Mol Metab 2025; 95:102128. [PMID: 40120978 PMCID: PMC11994337 DOI: 10.1016/j.molmet.2025.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Chronic high-fat diet (HFD) feeding triggers hypothalamic inflammation and systemic metabolic dysfunction associated with endoplasmic reticulum (ER) stress. Glial cells, specifically microglia and astrocytes, are central mediators of hypothalamic inflammation. However, the role of Inositol-Requiring Enzyme 1α (IRE1α), a primary ER stress sensor, in glial cells and its contributions to metabolic dysfunction remains elusive. OBJECTIVES To investigate the role of IRE1α in microglia in mediating HFD-induced metabolic dysfunction. METHODS Using novel conditional knockout mouse models (CX3CR1GFPΔIRE1 and TMEM119ERΔIRE1), we deleted IRE1α in immune cells or exclusively in microglia and studied its impact on metabolic health and hypothalamic transcriptional changes in mice fed with HFD for 16 weeks. RESULTS Deleting IRE1α in microglia significantly reduced LPS-induced pro-inflammatory cytokine gene expression in vitro. IRE1α deletion in microglia protected male mice from HFD-induced obesity, glucose intolerance, and hypothalamic inflammation, with no metabolic benefits observed in female mice. RNA-sequencing revealed significant transcriptional reprogramming of the hypothalamus, including upregulation of genes related to mitochondrial fatty acid oxidation, metabolic adaptability, and anti-inflammatory responses. CONCLUSIONS Our findings reveal that IRE1α-mediated ER stress response in microglia significantly contributes to hypothalamic inflammation and systemic metabolic dysfunction in response to HFD, particularly in males, demonstrating an important role of microglial ER stress response in diet-induced obesity and metabolic diseases.
Collapse
Affiliation(s)
- L Stilgenbauer
- Department of Biological Sciences, Detroit, MI, USA; Institute of Environmental Health Sciences, Detroit, MI, USA
| | - Q Chen
- Center for Molecular Medicine and Genetics, School of Medine, Detroit, MI, USA
| | - D Pungi
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Detroit, MI, USA
| | - N James
- Institute of Environmental Health Sciences, Detroit, MI, USA
| | - H Jayarathne
- Department of Biological Sciences, Detroit, MI, USA
| | - L Koshko
- Department of Biological Sciences, Detroit, MI, USA; Institute of Environmental Health Sciences, Detroit, MI, USA
| | - S Scofield
- Department of Biological Sciences, Detroit, MI, USA; Institute of Environmental Health Sciences, Detroit, MI, USA
| | - K Zhang
- Center for Molecular Medicine and Genetics, School of Medine, Detroit, MI, USA.
| | - M Sadagurski
- Department of Biological Sciences, Detroit, MI, USA; Institute of Environmental Health Sciences, Detroit, MI, USA.
| |
Collapse
|
2
|
Qiao X, Wang C, Ma J. The role and function validation of P2RX4 as a novel cancer biomarker in pan-cancer analysis. Sci Rep 2025; 15:11507. [PMID: 40181033 PMCID: PMC11968906 DOI: 10.1038/s41598-025-95247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
Purinergic Receptor P2X4 (P2RX4) is implicated in the carcinogenesis of several cancers, but no extensive study on its role in different forms of cancer. Expression level, gene mutation, immune infiltration, pathway enrichment, and prognostic value analysis of P2RX4 were performed based on multiple publicly available databases such as TCGA, GTEx, GEO, TIMER2, cBioportal, and Metascape databases. Western blot and RT-qPCR were used to identify P2RX4 expression in liver hepatocellular carcinoma (LIHC) and paracancer samples. P2RX4 was knocked in glioblastoma cell line (U251) and prostate cancer cell line (PC3), and its effects on cell viability, apoptosis, migration and invasion were investigated through cell counting kit-8 assay, flow cytometry, wound healing and trasnwell assays, respectively. P2RX4 expression was elevated in most cancers, which predicted poor overall survival and disease-free survival. Mutations in P2RX4 were predominantly found in Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (> 4%). P2RX4 expression showed a positive correlation with the infiltration levels of cancer-associated fibroblasts and CD8 + cells in multiple tumor types. Functional enrichment analysis indicated that P2RX4 is closely related to autophagy, protein modification or intracellular trafficking. P2RX4 was highly expressed in LIHC compared to paracancerous tissues. Knockdown of P2RX4 suppressed cell viability, migration, invasion, and promoted cell apoptosis of U251 and PC3 cells. Overexpression of P2RX4 occurred in multi cancers, and was connected to an unfavorable prognosis. This pan-cancer analysis highlighted the predictive value and tumorigenic role of P2RX4.
Collapse
Affiliation(s)
- Xiaoyuan Qiao
- Department of Comprehensive Medicine, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, China
| | - Chunyan Wang
- Department of Laboratory Medicine, Cancer Hospital, Shanxi Cancer Hospital, Shanxi Medical University, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Taiyuan, China
| | - Jun Ma
- Department of General Surgery, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
3
|
Tever OK, Mentrup T, Chinn IK, Ishikuma H, Fluhrer R, Schmitz M, Wehner R, Behrendt R, Chinen J, Schröder B. The DNase TREX1 is a substrate of the intramembrane protease SPP with implications for disease pathogenesis. Cell Mol Life Sci 2025; 82:107. [PMID: 40072623 PMCID: PMC11904002 DOI: 10.1007/s00018-025-05645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Signal peptide peptidase (SPP) is an ER-resident aspartyl intramembrane protease cleaving proteins within type II-oriented transmembrane segments. Here, we identified the tail-anchored protein Three prime repair exonuclease 1 (TREX1) as a novel substrate of SPP. Based on its DNase activity, TREX1 removes cytosolic DNA acting as a negative regulator of the DNA-sensing cGAS/STING pathway. TREX1 loss-of-function variants cause Aicardi-Goutières syndrome (AGS), a type I interferonopathy. Cleavage of ER-bound TREX1 by SPP releases a cleavage product into the cytosol. Proteolysis depends on sequence determinants within the transmembrane segment and is modulated by different disease-associated TREX1 variants. The AGS-causing T303P variant greatly enhanced susceptibility of TREX1 to intramembrane cleavage accounting for increased degradation and reduced protein stability in AGS patients homozygous for this variant. Other variants within the TREX1 transmembrane segment, P290L, Y305C and G306A, associated with systemic lupus erythematosus variably modulated TREX1 proteolytic processing. Altogether, intramembrane proteolysis can act as a regulator of TREX1 both by controlling its cytosolic localization and mediating its turnover with implications for disease pathogenesis.
Collapse
Affiliation(s)
- Onur Kerem Tever
- Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Torben Mentrup
- Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Ivan Kingyue Chinn
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine and Texas Children's Hospital, Houston and The Woodlands, USA
| | - Hitoshi Ishikuma
- Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Augsburg, Germany
- Center for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Javier Chinen
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine and Texas Children's Hospital, Houston and The Woodlands, USA
| | - Bernd Schröder
- Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Qiao W, Xie X, Shi PY, Ooi YS, Carette JE. Druggable genome screens identify SPP as an antiviral host target for multiple flaviviruses. Proc Natl Acad Sci U S A 2025; 122:e2421573122. [PMID: 39969998 PMCID: PMC11874179 DOI: 10.1073/pnas.2421573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Mosquito-borne flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), West Nile virus, and yellow fever virus, pose significant public health threats globally. Extensive efforts have led to the development of promising highly active compounds against DENV targeting viral non-structural protein 4B (NS4B) protein. However, due to the cocirculation of flaviviruses and to prepare for emerging flaviviruses, there is a need for more broadly acting antivirals. Host-directed therapy where one targets a host factor required for viral replication may be active against multiple viruses that use similar replication strategies. Here, we used a CRISPR-Cas9 library that we designed to target the druggable genome and identified signal peptide peptidase (SPP, encoded by Histocompatibility Minor 13, HM13), as a critical host factor in DENV infection. Genetic knockout or introducing mutations that disrupt the proteolytic activity of SPP markedly reduced the replication of multiple flaviviruses. Although their substrates differ, SPP has structural homology with γ-secretase, which has been pursued as a pharmacological target for Alzheimer's disease. Notably, SPP-targeting compounds exhibited potent anti-DENV activity at low nanomolar concentrations across multiple primary and disease-relevant cell types, acting specifically through SPP inhibition rather than γ-secretase inhibition. Importantly, SPP inhibitors were active at low nanomolar concentrations against flaviviruses other than DENV including ZIKV while DENV NS4B inhibitors lost activity. This study emphasizes the strong potential of SPP as a pan-flaviviral target and provides a framework for identifying host druggable targets to screen for broad-spectrum antivirals.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Xuping Xie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX77555
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore138648, Singapore
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
5
|
Sharrouf K, Schlosser C, Mildenberger S, Fluhrer R, Hoeppner S. In vitro cleavage of tumor necrosis factor α (TNFα) by Signal-Peptide-Peptidase-like 2b (SPPL2b) resembles mechanistic principles observed in the cellular context. Chem Biol Interact 2024; 395:111006. [PMID: 38636792 DOI: 10.1016/j.cbi.2024.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Members of the Signal Peptide-Peptidase (SPP) and Signal Peptide-Peptidase-like (SPPL) family are intramembrane aspartyl-proteases like their well-studied homologs, the presenilins, which comprise the catalytically active subunit within the γ-secretase complex. The lack of in vitro cleavage assays for SPPL proteases limited their biochemical characterization as well as substrate identification and validation. So far, SPPL proteases have been analyzed exclusively in intact cells or membranes, restricting mechanistic analysis to co-expression of enzyme and substrate variants colocalizing in the same subcellular compartments. We describe the details of developing an in vitro cleavage assay for SPPL2b and its model substrate TNFα and analyzed the influence of phospholipids, detergent supplements, and cholesterol on the SPPL2b in vitro activity. SPPL2b in vitro activity resembles mechanistic principles that have been observed in a cellular context, such as cleavage sites and consecutive turnover of the TNFα transmembrane domain. The novel in vitro cleavage assay is functional with separately isolated protease and substrate and amenable to a high throughput plate-based readout overcoming previous limitations and providing the basis for studying enzyme kinetics, catalytic activity, substrate recognition, and the characteristics of small molecule inhibitors. As a proof of concept, we present the first biochemical in vitro characterization of the SPPL2a and SPPL2b specific small molecule inhibitor SPL-707.
Collapse
Affiliation(s)
- Kinda Sharrouf
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany
| | - Sandra Mildenberger
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany; Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55099, Mainz, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany; University of Augsburg, Center for Interdisciplinary Health Research, 86135, Augsburg, Germany
| | - Sabine Hoeppner
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, D-86159, Augsburg, Germany.
| |
Collapse
|
6
|
Maccioni R, Travisan C, Badman J, Zerial S, Wagener A, Andrade-Talavera Y, Picciau F, Grassi C, Chen G, Lemoine L, Fisahn A, Jiang R, Fluhrer R, Mentrup T, Schröder B, Nilsson P, Tambaro S. Signal peptide peptidase-like 2b modulates the amyloidogenic pathway and exhibits an Aβ-dependent expression in Alzheimer's disease. Prog Neurobiol 2024; 235:102585. [PMID: 38367747 DOI: 10.1016/j.pneurobio.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disorder driven by abnormal amyloid β-peptide (Aβ) levels. In this study, we investigated the role of presenilin-like signal peptide peptidase-like 2b (SPPL2b) in AD pathophysiology and its potential as a druggable target within the Aβ cascade. Exogenous Aβ42 influenced SPPL2b expression in human cell lines and acute mouse brain slices. SPPL2b and its AD-related substrate BRI2 were evaluated in the brains of AppNL-G-F knock-in AD mice and human postmortem AD brains. An early high cortical expression of SPPL2b was observed, followed by a downregulation in late AD pathology in AppNL-G-F mice, correlating with synaptic loss. To understand the consequences of pathophysiological SPPL2b dysregulation, we found that SPPL2b overexpression significantly increased APP cleavage, while genetic deletion reduced APP cleavage and Aβ production. Notably, postmortem AD brains showed higher levels of SPPL2b's BRI2 substrate compared to healthy control samples. These results strongly support the involvement of SPPL2b in AD pathology. The early Aβ-induced upregulation of SPPL2b may enhance Aβ production in a vicious cycle, further aggravating Aβ pathology. Therefore, SPPL2b emerges as a potential anti-Aβ drug target.
Collapse
Affiliation(s)
- Riccardo Maccioni
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States.
| | - Caterina Travisan
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; VIB-KU Leuven Center for Brain and Disease Research, Leuven 3001, Belgium.
| | - Jack Badman
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Stefania Zerial
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of life science, University of Trieste, Trieste 34127, Italy.
| | - Annika Wagener
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, 69117 Germany.
| | - Yuniesky Andrade-Talavera
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Federico Picciau
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Biomedical Sciences, Cytomorphology, University of Cagliari, Cagliari 09042, Italy.
| | - Caterina Grassi
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - Laetitia Lemoine
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - André Fisahn
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Richeng Jiang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159, Germany.
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| |
Collapse
|
7
|
Feng YT, Yang CY, Wu L, Wang YC, Shen GW, Lin P. BmSPP is a virus resistance gene in Bombyx mori. Front Immunol 2024; 15:1377270. [PMID: 38585268 PMCID: PMC10995218 DOI: 10.3389/fimmu.2024.1377270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Signal peptide peptidase (SPP) is an intramembrane protease involved in a variety of biological processes, it participates in the processing of signal peptides after the release of the nascent protein to regulate the endoplasmic reticulum associated degradation (ERAD) pathway, binds misfolded membrane proteins, and aids in their clearance process. Additionally, it regulates normal immune surveillance and assists in the processing of viral proteins. Although SPP is essential for many viral infections, its role in silkworms remains unclear. Studying its role in the silkworm, Bombyx mori , may be helpful in breeding virus-resistant silkworms. Methods First, we performed RT-qPCR to analyze the expression pattern of BmSPP. Subsequently, we inhibited BmSPP using the SPP inhibitor 1,3-di-(N-carboxybenzoyl-L-leucyl-L-leucylaminopropanone ((Z-LL)2-ketone) and downregulated the expression of BmSPP using CRISPR/Cas9 gene editing. Furthermore, we assessed the impact of these interventions on the proliferation of Bombyx mori nucleopolyhedrovirus (BmNPV). Results We observed a decreased in the expression of BmSPP during viral proliferation. It was found that higher concentration of the inhibitor resulted in greater inhibition of BmNPV proliferation. The down-regulation of BmSPP in both in vivo and in vitro was found to affect the proliferation of BmNPV. In comparison to wild type silkworm, BmSPPKO silkworms exhibited a 12.4% reduction in mortality rate. Discussion Collectively, this work demonstrates that BmSPP plays a negative regulatory role in silkworm resistance to BmNPV infection and is involved in virus proliferation and replication processes. This finding suggests that BmSPP servers as a target gene for BmNPV virus resistance in silkworms and can be utilized in resistance breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Thulasi Devendrakumar K, Peng TS, Pierdzig L, Jackson E, Lipka V, Li X. Signal Peptide Peptidase and PI4Kβ1/2 play opposite roles in plant ER stress response and immunity. STRESS BIOLOGY 2024; 4:20. [PMID: 38507026 PMCID: PMC10954597 DOI: 10.1007/s44154-024-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
The Arabidopsis pi4kβ1,2 mutant is mutated in the phosphatidylinositol 4-kinase (PI4K) β1 and PI4Kβ2 enzymes which are involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P), a minor membrane lipid with important signaling roles. pi4kβ1,2 plants display autoimmunity and shorter roots. Though the pi4kβ1,2 mutant has been extensively characterized, the source of its autoimmunity remains largely unknown. In this study, through a genetic suppressor screen, we identified multiple partial loss-of-function alleles of signal peptide peptidase (spp) that can suppress all the defects of pi4kβ1,2. SPP is an intramembrane cleaving aspartic protease. Interestingly, pi4kβ1,2 plants display enhanced ER stress response and mutations in SPP can suppress such phenotype. Furthermore, reduced ER stress responses were observed in the spp single mutants. Overall, our study reveals a previously unknown function of PI4Kβ and SPP in ER stress and plant immunity.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony ShengZhe Peng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Leon Pierdzig
- Department of Plant Cell Biology, Georg August Universität Göttingen, 37077, Göttingen, Lower Saxony, Germany
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Volker Lipka
- Department of Plant Cell Biology, Georg August Universität Göttingen, 37077, Göttingen, Lower Saxony, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
9
|
Mentrup T, Leinung N, Patel M, Fluhrer R, Schröder B. The role of SPP/SPPL intramembrane proteases in membrane protein homeostasis. FEBS J 2024; 291:25-44. [PMID: 37625440 DOI: 10.1111/febs.16941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Signal peptide peptidase (SPP) and the four SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 constitute a family of aspartyl intramembrane proteases with homology to presenilins. The different members reside in distinct cellular localisations within the secretory pathway and the endo-lysosomal system. Despite individual cleavage characteristics, they all cleave single-span transmembrane proteins with a type II orientation exhibiting a cytosolic N-terminus. Though the identification of substrates is not complete, SPP/SPPL-mediated proteolysis appears to be rather selective. Therefore, according to our current understanding cleavage by SPP/SPPL proteases rather seems to serve a regulatory function than being a bulk proteolytic pathway. In the present review, we will summarise our state of knowledge on SPP/SPPL proteases and in particular highlight recently identified substrates and the functional and/or (patho)-physiological implications of these cleavage events. Based on this, we aim to provide an overview of the current open questions in the field. These are connected to the regulation of these proteases at the cellular level but also in context of disease and patho-physiological processes. Furthermore, the interplay with other proteostatic systems capable of degrading membrane proteins is beginning to emerge.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Nadja Leinung
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Mehul Patel
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| |
Collapse
|
10
|
Höppner S, Schröder B, Fluhrer R. Structure and function of SPP/SPPL proteases: insights from biochemical evidence and predictive modeling. FEBS J 2023; 290:5456-5474. [PMID: 37786993 DOI: 10.1111/febs.16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
More than 20 years ago, signal peptide peptidase (SPP) and its homologues, the signal peptide peptidase-like (SPPL) proteases have been identified based on their sequence similarity to presenilins, a related family of intramembrane aspartyl proteases. Other than those for the presenilins, no high-resolution structures for the SPP/SPPL proteases are available. Despite this limitation, over the years bioinformatical and biochemical data have accumulated, which altogether have provided a picture of the overall structure and topology of these proteases, their localization in the cell, the process of substrate recognition, their cleavage mechanism, and their function. Recently, the artificial intelligence-based structure prediction tool AlphaFold has added high-confidence models of the expected fold of SPP/SPPL proteases. In this review, we summarize known structural aspects of the SPP/SPPL family as well as their substrates. Of particular interest are the emerging substrate recognition and catalytic mechanisms that might lead to the prediction and identification of more potential substrates and deeper insight into physiological and pathophysiological roles of proteolysis.
Collapse
Affiliation(s)
- Sabine Höppner
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| |
Collapse
|
11
|
Leinung N, Mentrup T, Patel M, Gallagher T, Schröder B. Dynamic association of the intramembrane proteases SPPL2a/b and their substrates with tetraspanin-enriched microdomains. iScience 2023; 26:107819. [PMID: 37736044 PMCID: PMC10509304 DOI: 10.1016/j.isci.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Signal peptide peptidase-like 2a and b (SPPL2a/b) are aspartyl intramembrane proteases and cleave tail-anchored proteins as well as N-terminal fragments (NTFs) derived from type II-oriented transmembrane proteins. How these proteases recruit substrates and cleavage is regulated, is still incompletely understood. We found that SPPL2a/b localize to detergent-resistant membrane (DRM) domains with the characteristics of tetraspanin-enriched microdomains (TEMs). Based on this, association with several tetraspanins was evaluated. We demonstrate that not only SPPL2a/b but also their substrates tumor necrosis factor (TNF) and CD74 associate with tetraspanins like CD9, CD81, and CD82 and/or TEMs and analyze the stability of these complexes in different detergents. CD9 and CD81 deficiency has protease- and substrate-selective effects on SPPL2a/b function. Our findings suggest that reciprocal interactions with tetraspanins may assist protease-substrate encounters of SPPL2a/b within the membrane. Beyond SPP/SPPL proteases, this supports previous concepts that tetraspanins facilitate membrane-embedded proteolytic processes.
Collapse
Affiliation(s)
- Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Mehul Patel
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods Mol Biol 2022; 2557:453-493. [PMID: 36512231 PMCID: PMC10178357 DOI: 10.1007/978-1-0716-2639-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we provide a detailed guide for the application of commonly used small molecules to study Golgi structure and function in vitro. Furthermore, we have curated a concise, validated list of endomembrane markers typically used in downstream assays to examine the consequent effect on the Golgi via microscopy and western blot after drug treatment. This chapter will be useful for researchers beginning their foray into the field of intracellular trafficking and Golgi biology.
Collapse
|
13
|
Papadopoulou AA, Stelzer W, Silber M, Schlosser C, Spitz C, Haug-Kröper M, Straub T, Müller SA, Lichtenthaler SF, Muhle-Goll C, Langosch D, Fluhrer R. Helical stability of the GnTV transmembrane domain impacts on SPPL3 dependent cleavage. Sci Rep 2022; 12:20987. [PMID: 36470941 PMCID: PMC9722940 DOI: 10.1038/s41598-022-24772-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Signal-Peptide Peptidase Like-3 (SPPL3) is an intramembrane cleaving aspartyl protease that causes secretion of extracellular domains from type-II transmembrane proteins. Numerous Golgi-localized glycosidases and glucosyltransferases have been identified as physiological SPPL3 substrates. By SPPL3 dependent processing, glycan-transferring enzymes are deactivated inside the cell, as their active site-containing domain is cleaved and secreted. Thus, SPPL3 impacts on glycan patterns of many cellular and secreted proteins and can regulate protein glycosylation. However, the characteristics that make a substrate a favourable candidate for SPPL3-dependent cleavage remain unknown. To gain insights into substrate requirements, we investigated the function of a GxxxG motif located in the transmembrane domain of N-acetylglucosaminyltransferase V (GnTV), a well-known SPPL3 substrate. SPPL3-dependent secretion of the substrate's ectodomain was affected by mutations disrupting the GxxxG motif. Using deuterium/hydrogen exchange and NMR spectroscopy, we studied the effect of these mutations on the helix flexibility of the GnTV transmembrane domain and observed that increased flexibility facilitates SPPL3-dependent shedding and vice versa. This study provides first insights into the characteristics of SPPL3 substrates, combining molecular biology, biochemistry, and biophysical techniques and its results will provide the basis for better understanding the characteristics of SPPL3 substrates with implications for the substrates of other intramembrane proteases.
Collapse
Affiliation(s)
- Alkmini A. Papadopoulou
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Walter Stelzer
- grid.6936.a0000000123222966Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Mara Silber
- grid.7892.40000 0001 0075 5874Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ,grid.7892.40000 0001 0075 5874Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Christine Schlosser
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Charlotte Spitz
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Martina Haug-Kröper
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Tobias Straub
- grid.5252.00000 0004 1936 973XCore Facility Bioinformatics, Biomedical Center, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Stephan A. Müller
- grid.424247.30000 0004 0438 0426DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Stefan F. Lichtenthaler
- grid.424247.30000 0004 0438 0426DZNE – German Center for Neurodegenerative Diseases, Munich, Germany ,grid.15474.330000 0004 0477 2438Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Claudia Muhle-Goll
- grid.7892.40000 0001 0075 5874Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ,grid.7892.40000 0001 0075 5874Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Dieter Langosch
- grid.6936.a0000000123222966Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Regina Fluhrer
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| |
Collapse
|
14
|
Truberg J, Hobohm L, Jochimsen A, Desel C, Schweizer M, Voss M. Endogenous tagging reveals a mid-Golgi localization of the glycosyltransferase-cleaving intramembrane protease SPPL3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119345. [PMID: 36007678 DOI: 10.1016/j.bbamcr.2022.119345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Numerous Golgi-resident enzymes implicated in glycosylation are regulated by the conserved intramembrane protease SPPL3. SPPL3-catalyzed endoproteolysis separates Golgi enzymes from their membrane anchors, enabling subsequent release from the Golgi and secretion. Experimentally altered SPPL3 expression changes glycosylation patterns, yet the regulation of SPPL3-mediated Golgi enzyme cleavage is not understood and conflicting results regarding the subcellular localization of SPPL3 have been reported. Here, we used precise genome editing to generate isogenic cell lines expressing N- or C-terminally tagged SPPL3 from its endogenous locus. Using these cells, we conducted co-localization analyses of tagged endogenous SPPL3 and Golgi markers under steady-state conditions and upon treatment with drugs disrupting Golgi organization. Our data demonstrate that endogenous SPPL3 is Golgi-resident and found predominantly in the mid-Golgi. We find that endogenous SPPL3 co-localizes with its substrates but similarly with non-substrate type II proteins, demonstrating that in addition to co-localization in the Golgi other substrate-intrinsic properties govern SPPL3-mediated intramembrane proteolysis. Given the prevalence of SPPL3-mediated cleavage among Golgi-resident proteins our results have important implications for the regulation of SPPL3 and its role in the organization of the Golgi glycosylation machinery.
Collapse
Affiliation(s)
- Jule Truberg
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Laura Hobohm
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Alexander Jochimsen
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Christine Desel
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), 20251 Hamburg, Germany
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118 Kiel, Germany.
| |
Collapse
|
15
|
Trávníčková K, Stříšovský K. On the track of intramembrane clippers: the
SPPL2a
/b proteases caught in the act in animal models. FEBS J 2022; 290:2306-2310. [PMID: 36310421 DOI: 10.1111/febs.16663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
In this issue, Ballin et al. report on their analysis of the substrate repertoire of SPPL2a and b intramembrane proteases. Based on the previous studies of their closest homologues, SPPL2c, SPPL3 and SPP, the authors hypothesized that SPPL2a/b proteases may cleave a subset of SNARE proteins. Indeed, four R-SNARE proteins, VAMP1, 2, 3 and 4, were cleaved by SPPL2a/b, both in overexpression assays and at endogenous levels. These findings have been validated by analysis of SPPL2a/b double knock-out mice tissues, which implicates these proteases in the regulation of SNARE protein turnover in vivo. The study of Ballin et al. also provides material for future studies of factors determining substrate specificity of SPPLs, as they cleave different subsets of the tail-anchored SNARE proteins. Comment on: https://doi.org/10.1111/febs.16610.
Collapse
Affiliation(s)
- Květa Trávníčková
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic Praha Czechia
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic Praha Czechia
| |
Collapse
|
16
|
Ballin M, Griep W, Patel M, Karl M, Mentrup T, Rivera‐Monroy J, Foo B, Schwappach B, Schröder B. The intramembrane proteases
SPPL2a
and
SPPL2b
regulate the homeostasis of selected
SNARE
proteins. FEBS J 2022; 290:2320-2337. [PMID: 36047592 DOI: 10.1111/febs.16610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Signal peptide peptidase (SPP) and SPP-like (SPPL) aspartyl intramembrane proteases are known to contribute to sequential processing of type II-oriented membrane proteins referred to as regulated intramembrane proteolysis. The ER-resident family members SPP and SPPL2c were shown to also cleave tail-anchored proteins, including selected SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins facilitating membrane fusion events. Here, we analysed whether the related SPPL2a and SPPL2b proteases, which localise to the endocytic or late secretory pathway, are also able to process SNARE proteins. Therefore, we screened 18 SNARE proteins for cleavage by SPPL2a and SPPL2b based on cellular co-expression assays, of which the proteins VAMP1, VAMP2, VAMP3 and VAMP4 were processed by SPPL2a/b demonstrating the capability of these two proteases to proteolyse tail-anchored proteins. Cleavage of the four SNARE proteins was scrutinised at the endogenous level upon SPPL2a/b inhibition in different cell lines as well as by analysing VAMP1-4 levels in tissues and primary cells of SPPL2a/b double-deficient (dKO) mice. Loss of SPPL2a/b activity resulted in an accumulation of VAMP1-4 in a cell type- and tissue-dependent manner, identifying these proteins as SPPL2a/b substrates validated in vivo. Therefore, we propose that SPPL2a/b control cellular levels of VAMP1-4 by initiating the degradation of these proteins, which might impact cellular trafficking.
Collapse
Affiliation(s)
- Moritz Ballin
- Biochemical Institute Christian Albrechts University Kiel Kiel Germany
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Wolfram Griep
- Biochemical Institute Christian Albrechts University Kiel Kiel Germany
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Mehul Patel
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Martin Karl
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| | - Jhon Rivera‐Monroy
- Department of Molecular Biology University Medical Center Göttingen Göttingen Germany
| | - Brian Foo
- Department of Molecular Biology University Medical Center Göttingen Göttingen Germany
| | - Blanche Schwappach
- Department of Molecular Biology University Medical Center Göttingen Göttingen Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry Technische Universität Dresden Dresden Germany
| |
Collapse
|
17
|
Liu J, Li W, Wu L. Pan-cancer analysis suggests histocompatibility minor 13 is an unfavorable prognostic biomarker promoting cell proliferation, migration, and invasion in hepatocellular carcinoma. Front Pharmacol 2022; 13:950156. [PMID: 36046831 PMCID: PMC9421072 DOI: 10.3389/fphar.2022.950156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Histocompatibility Minor 13 (HM13) encoding the signal peptide peptidase plays an important role in maintaining protein homeostasis but its role in tumors remains unclear. In this study, 33 tumor RNA-seq datasets were extracted from The Cancer Genome Atlas (TCGA) database, and the pan-cancer expression profile of HM13 was evaluated in combination with The Genotype-Tissue Expression (GTEx) datasets. The prognostic significance of abnormal HM13 pan-cancer expression was evaluated by univariate Cox regression and Kaplan-Meier analyses. Co-expression analysis was performed to examine the correlation between abnormal pan-cancer expression of HM13 and immune cell infiltration, immune checkpoint, molecules related to RNA modification, tumor mutational burden (TMB), microsatellite instability (MSI), and other related molecules. CellMiner database was used to evaluate the relationship between the expression of HM13 and drug sensitivity. The results showed overexpression of HM13 in almost all tumors except kidney chromophobe (KICH). Abnormally high expression of HM13 in adrenocortical carcinoma (ACC), kidney renal papillary cell carcinoma (KIRP), uveal melanoma (UVM), liver hepatocellular carcinoma (LIHC), brain lower grade glioma (LGG), head and neck squamous cell carcinoma (HNSC), and kidney renal clear cell carcinoma (KIRC) was associated with poor prognosis. Expression of HM13 correlated strongly with pan-cancer immune checkpoint gene expression and immune cell infiltration. Drug sensitivity analysis indicated that the expression of HM13 was an excellent predictor of drug sensitivity. We verified that both mRNA and protein levels of HM13 were abnormally upregulated in HCC tissues, and were independent risk factors for poor prognosis. Furthermore, interference with HM13 expression in Huh-7 and HCCLM3 cells significantly inhibited proliferation, migration, and invasion. Therefore, our findings demonstrate that HM13 is a potential pan-cancer prognostic marker, thus providing a new dimension for understanding tumor development.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Liangyin Wu
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
18
|
De Castro RE, Giménez MI, Cerletti M, Paggi RA, Costa MI. Proteolysis at the Archaeal Membrane: Advances on the Biological Function and Natural Targets of Membrane-Localized Proteases in Haloferax volcanii. Front Microbiol 2022; 13:940865. [PMID: 35814708 PMCID: PMC9263693 DOI: 10.3389/fmicb.2022.940865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Proteolysis plays a fundamental role in many processes that occur within the cellular membrane including protein quality control, protein export, cell signaling, biogenesis of the cell envelope among others. Archaea are a distinct and physiologically diverse group of prokaryotes found in all kinds of habitats, from the human and plant microbiomes to those with extreme salt concentration, pH and/or temperatures. Thus, these organisms provide an excellent opportunity to extend our current understanding on the biological functions that proteases exert in cell physiology including the adaptation to hostile environments. This revision describes the advances that were made on archaeal membrane proteases with regard to their biological function and potential natural targets focusing on the model haloarchaeon Haloferax volcanii.
Collapse
|
19
|
Mentrup T, Stumpff-Niggemann AY, Leinung N, Schlosser C, Schubert K, Wehner R, Tunger A, Schatz V, Neubert P, Gradtke AC, Wolf J, Rose-John S, Saftig P, Dalpke A, Jantsch J, Schmitz M, Fluhrer R, Jacobsen ID, Schröder B. Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis. Nat Commun 2022; 13:1880. [PMID: 35388002 PMCID: PMC8987071 DOI: 10.1038/s41467-022-29474-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sensing of pathogens by pattern recognition receptors (PRR) is critical to initiate protective host defence reactions. However, activation of the immune system has to be carefully titrated to avoid tissue damage necessitating mechanisms to control and terminate PRR signalling. Dectin-1 is a PRR for fungal β-glucans on immune cells that is rapidly internalised after ligand-binding. Here, we demonstrate that pathogen recognition by the Dectin-1a isoform results in the formation of a stable receptor fragment devoid of the ligand binding domain. This fragment persists in phagosomal membranes and contributes to signal transduction which is terminated by the intramembrane proteases Signal Peptide Peptidase-like (SPPL) 2a and 2b. Consequently, immune cells lacking SPPL2b demonstrate increased anti-fungal ROS production, killing capacity and cytokine responses. The identified mechanism allows to uncouple the PRR signalling response from delivery of the pathogen to degradative compartments and identifies intramembrane proteases as part of a regulatory circuit to control anti-fungal immune responses. Dectin-1 is a critical component of the innate sensing repertoire which is involved in pattern based recognition of fungal pathogens. Here the authors show that intramembrane proteolysis is involved in the regulation of the antifungal host response by termination of the phagosomal signalling of Dectin-1.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Nadja Leinung
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Katja Schubert
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Ann-Christine Gradtke
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janina Wolf
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Hobohm L, Koudelka T, Bahr FH, Truberg J, Kapell S, Schacht SS, Meisinger D, Mengel M, Jochimsen A, Hofmann A, Heintz L, Tholey A, Voss M. N-terminome analyses underscore the prevalence of SPPL3-mediated intramembrane proteolysis among Golgi-resident enzymes and its role in Golgi enzyme secretion. Cell Mol Life Sci 2022; 79:185. [PMID: 35279766 PMCID: PMC8918473 DOI: 10.1007/s00018-022-04163-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 12/17/2022]
Abstract
Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.
Collapse
Affiliation(s)
- Laura Hobohm
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Tomas Koudelka
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Fenja H Bahr
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Jule Truberg
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Sarah-Sophie Schacht
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute of Immunology, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Daniel Meisinger
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Marion Mengel
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Alexander Jochimsen
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Anna Hofmann
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
| | - Lukas Heintz
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany
- Institute for Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, 24118, Kiel, Germany.
| |
Collapse
|
21
|
Kulicke CA, De Zan E, Hein Z, Gonzalez-Lopez C, Ghanwat S, Veerapen N, Besra GS, Klenerman P, Christianson JC, Springer S, Nijman SM, Cerundolo V, Salio M. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J Biol Chem 2022; 298:101542. [PMID: 34968463 PMCID: PMC8808182 DOI: 10.1016/j.jbc.2021.101542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included β2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.
Collapse
Affiliation(s)
- Corinna A Kulicke
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Erica De Zan
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Claudia Gonzalez-Lopez
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Swapnil Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian M Nijman
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
22
|
De-Simone SG, Napoleão-Pêgo P, Gonçalves PS, Lechuga GC, Mandonado A, Graeff-Teixeira C, Provance DW. Angiostrongilus cantonensis an Atypical Presenilin: Epitope Mapping, Characterization, and Development of an ELISA Peptide Assay for Specific Diagnostic of Angiostrongyliasis. MEMBRANES 2022; 12:membranes12020108. [PMID: 35207030 PMCID: PMC8878667 DOI: 10.3390/membranes12020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/10/2022]
Abstract
Background: Angiostrongyliasis, the leading cause universal of eosinophilic meningitis, is an emergent disease due to Angiostrongylus cantonensis (rat lungworm) larvae, transmitted accidentally to humans. The diagnosis of human angiostrongyliasis is based on epidemiologic characteristics, clinical symptoms, medical history, and laboratory findings, particularly hypereosinophilia in blood and cerebrospinal fluid. Thus, the diagnosis is difficult and often confused with those produced by other parasitic diseases. Therefore, the development of a fast and specific diagnostic test for angiostrongyliasis is a challenge mainly due to the lack of specificity of the described tests, and therefore, the characterization of a new target is required. Material and Methods: Using bioinformatics tools, the putative presenilin (PS) protein C7BVX5-1 was characterized structurally and phylogenetically. A peptide microarray approach was employed to identify single and specific epitopes, and tetrameric epitope peptides were synthesized to evaluate their performance in an ELISA-peptide assay. Results: The data showed that the A. cantonensis PS protein presents nine transmembrane domains, the catalytic aspartyl domain [(XD (aa 241) and GLGD (aa 332–335)], between TM6 and TM7 and the absence of the PALP and other characteristics domains of the class A22 and homologous presenilin (PSH). These individualities make it an atypical sub-branch of the PS family, located in a separate subgroup along with the enzyme Haemogonchus contournus and separated from other worm subclasses. Twelve B-linear epitopes were identified by microarray of peptides and validated by ELISA using infected rat sera. In addition, their diagnostic performance was demonstrated by an ELISA-MAP4 peptide. Conclusions: Our data show that the putative AgPS is an atypical multi-pass transmembrane protein and indicate that the protein is an excellent immunological target with two (PsAg3 and PsAg9) A. costarisencis cross-reactive epitopes and eight (PsAg1, PsAg2, PsAg6, PsAg7, PsAg8, PsAg10, PsAg11, PsAg12) apparent unique A. cantonensis epitopes. These epitopes could be used in engineered receptacle proteins to develop a specific immunological diagnostic assay for angiostrongyliasis caused by A. cantonensis.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24220-900, RJ, Brazil
- Correspondence:
| | - Paloma Napoleão-Pêgo
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
| | - Priscila S. Gonçalves
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24220-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
| | - Arnaldo Mandonado
- Laboratory of Biology and Parasitology of Wild Mammals Reservoirs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Carlos Graeff-Teixeira
- Infectious Diseases Unit, Department of Pathology, Federal University of Espirito Santo, Vitória 29075-910, ES, Brazil;
| | - David W. Provance
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
| |
Collapse
|
23
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
24
|
Ectodomain shedding by ADAM proteases as a central regulator in kidney physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119165. [PMID: 34699872 DOI: 10.1016/j.bbamcr.2021.119165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
Besides its involvement in blood and bone physiology, the kidney's main function is to filter substances and thereby regulate the electrolyte composition of body fluids, acid-base balance and toxin removal. Depending on underlying conditions, the nephron must undergo remodeling and cellular adaptations. The proteolytic removal of cell surface proteins via ectodomain shedding by A Disintegrin and Metalloproteases (ADAMs) is of importance for the regulation of cell-cell and cell-matrix adhesion of renal cells. ADAM10 controls glomerular and tubule development in a Notch1 signaling-dependent manner and regulates brush border composition. ADAM17 regulates the renin angiotensin system and is together with ADAM10 involved in calcium phosphate homeostasis. In kidney disease ADAMs, especially ADAM17 contribute to inflammation through their involvement in IL-6 trans-signaling, Notch-, epithelial growth factor receptor-, and tumor necrosis factor α signaling. ADAMs are interesting drug targets to reduce the inflammatory burden, defective cell adhesion and impaired signaling pathways in kidney diseases.
Collapse
|
25
|
Mentrup T, Schröder B. Signal peptide peptidase-like 2 proteases: Regulatory switches or proteasome of the membrane? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119163. [PMID: 34673079 DOI: 10.1016/j.bbamcr.2021.119163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
Signal peptide peptidase-like 2 (SPPL) proteases constitute a subfamily of SPP/SPPL intramembrane proteases which are homologues of the presenilins, the catalytic core of the γ-secretase complex. The three SPPL2 proteases SPPL2a, SPPL2b and SPPL2c proteolyse single-span, type II-oriented transmembrane proteins and/or tail-anchored proteins within their hydrophobic transmembrane segments. We review recent progress in defining substrate spectra and in vivo functions of these proteases. Characterisation of the respective knockout mice has implicated SPPL2 proteases in immune cell differentiation and function, prevention of atherosclerotic plaque development and spermatogenesis. Mechanisms how substrates are selected by these enzymes are still incompletely understood. We will discuss current views on how selective SPPL2-mediated cleavage is or whether these proteases may exhibit a generalised role in the turnover of membrane proteins. This has been suggested previously for the mechanistically related γ-secretase for which the term "proteasome of the membrane" has been coined based on its broad substrate spectrum. With regard to individual substrates, potential signalling functions of the resulting cytosolic cleavage fragments remain a controversial aspect. However, it has been clearly shown that SPPL2 proteases can influence cellular signalling and membrane trafficking by controlling levels of their membrane-bound substrate proteins which highlights these enzymes as regulatory switches. Based on this, regulatory mechanisms controlling activity of SPPL2 proteases would need to be postulated, which are just beginning to emerge. These different questions, which are relevant for other families of intramembrane proteases in a similar way, will be critically discussed based on the current state of knowledge.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Technische Universität Dresden, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Fiedlerstraße 42, D-01307 Dresden, Germany.
| |
Collapse
|
26
|
Rudnik S, Damme M. The lysosomal membrane-export of metabolites and beyond. FEBS J 2021; 288:4168-4182. [PMID: 33067905 DOI: 10.1111/febs.15602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023]
Abstract
Lysosomes are degradative organelles in eukaryotic cells mediating the hydrolytic catabolism of various macromolecules to small basic building blocks. These low-molecular-weight metabolites are transported across the lysosomal membrane and reused in the cytoplasm and other organelles for biosynthetic pathways. Even though in the past 20 years our understanding of the lysosomal membrane regarding various transporters, other integral and peripheral membrane proteins, the lipid composition, but also its turnover has dramatically improved, there are still many unresolved questions concerning key aspects of the function of the lysosomal membrane. These include a possible function of lysosomes as a cellular storage compartment, yet unidentified transporters mediating the export such as various amino acids, mechanisms mediating the transport of lysosomal membrane proteins from the Golgi apparatus to lysosomes, and the turnover of lysosomal membrane proteins. Here, we review the current knowledge about the lysosomal membrane and identify some of the open questions that need to be solved in the future for a comprehensive and complete understanding of how lysosomes communicate with other organelles, cellular processes, and pathways.
Collapse
Affiliation(s)
- Sönke Rudnik
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
27
|
Mentrup T, Cabrera-Cabrera F, Schröder B. Proteolytic Regulation of the Lectin-Like Oxidized Lipoprotein Receptor LOX-1. Front Cardiovasc Med 2021; 7:594441. [PMID: 33553253 PMCID: PMC7856673 DOI: 10.3389/fcvm.2020.594441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The lectin-like oxidized-LDL (oxLDL) receptor LOX-1, which is broadly expressed in vascular cells, represents a key mediator of endothelial activation and dysfunction in atherosclerotic plaque development. Being a member of the C-type lectin receptor family, LOX-1 can bind different ligands, with oxLDL being the best characterized. LOX-1 mediates oxLDL uptake into vascular cells and by this means can promote foam cell formation. In addition, LOX-1 triggers multiple signaling pathways, which ultimately induce a pro-atherogenic and pro-fibrotic transcriptional program. However, the molecular mechanisms underlying this signal transduction remain incompletely understood. In this regard, proteolysis has recently emerged as a regulatory mechanism of LOX-1 function. Different proteolytic cleavages within the LOX-1 protein can initiate its turnover and control the cellular levels of this receptor. Thereby, cleavage products with individual biological functions and/or medical significance are produced. Ectodomain shedding leads to the release of a soluble form of the receptor (sLOX1) which has been suggested to have diagnostic potential as a biomarker. Removal of the ectodomain leaves behind a membrane-bound N-terminal fragment (NTF), which despite being devoid of the ligand-binding domain is actively involved in signal transduction. Degradation of this LOX-1 NTF, which represents an athero-protective mechanism, critically depends on the aspartyl intramembrane proteases Signal peptide peptidase-like 2a and b (SPPL2a/b). Here, we present an overview of the biology of LOX-1 focusing on how proteolytic cleavages directly modulate the function of this receptor and, what kind of pathophysiological implications this has in cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
28
|
Berlansky S, Humer C, Sallinger M, Frischauf I. More Than Just Simple Interaction between STIM and Orai Proteins: CRAC Channel Function Enabled by a Network of Interactions with Regulatory Proteins. Int J Mol Sci 2021; 22:E471. [PMID: 33466526 PMCID: PMC7796502 DOI: 10.3390/ijms22010471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
The calcium-release-activated calcium (CRAC) channel, activated by the release of Ca2+ from the endoplasmic reticulum (ER), is critical for Ca2+ homeostasis and active signal transduction in a plethora of cell types. Spurred by the long-sought decryption of the molecular nature of the CRAC channel, considerable scientific effort has been devoted to gaining insights into functional and structural mechanisms underlying this signalling cascade. Key players in CRAC channel function are the Stromal interaction molecule 1 (STIM1) and Orai1. STIM1 proteins span through the membrane of the ER, are competent in sensing luminal Ca2+ concentration, and in turn, are responsible for relaying the signal of Ca2+ store-depletion to pore-forming Orai1 proteins in the plasma membrane. A direct interaction of STIM1 and Orai1 allows for the re-entry of Ca2+ from the extracellular space. Although much is already known about the structure, function, and interaction of STIM1 and Orai1, there is growing evidence that CRAC under physiological conditions is dependent on additional proteins to function properly. Several auxiliary proteins have been shown to regulate CRAC channel activity by means of direct interactions with STIM1 and/or Orai1, promoting or hindering Ca2+ influx in a mechanistically diverse manner. Various proteins have also been identified to exert a modulatory role on the CRAC signalling cascade although inherently lacking an affinity for both STIM1 and Orai1. Apart from ubiquitously expressed representatives, a subset of such regulatory mechanisms seems to allow for a cell-type-specific control of CRAC channel function, considering the rather restricted expression patterns of the specific proteins. Given the high functional and clinical relevance of both generic and cell-type-specific interacting networks, the following review shall provide a comprehensive summary of regulators of the multilayered CRAC channel signalling cascade. It also includes proteins expressed in a narrow spectrum of cells and tissues that are often disregarded in other reviews of similar topics.
Collapse
Affiliation(s)
| | | | | | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (S.B.); (C.H.); (M.S.)
| |
Collapse
|
29
|
Papadopoulou AA, Fluhrer R. Signaling Functions of Intramembrane Aspartyl-Proteases. Front Cardiovasc Med 2020; 7:591787. [PMID: 33381526 PMCID: PMC7768045 DOI: 10.3389/fcvm.2020.591787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Intramembrane proteolysis is more than a mechanism to "clean" the membranes from proteins no longer needed. By non-reversibly modifying transmembrane proteins, intramembrane cleaving proteases hold key roles in multiple signaling pathways and often distinguish physiological from pathological conditions. Signal peptide peptidase (SPP) and signal peptide peptidase-like proteases (SPPLs) recently have been associated with multiple functions in the field of signal transduction. SPP/SPPLs together with presenilins (PSs) are the only two families of intramembrane cleaving aspartyl proteases known in mammals. PS1 or PS2 comprise the catalytic center of the γ-secretase complex, which is well-studied in the context of Alzheimer's disease. The mammalian SPP/SPPL family of intramembrane cleaving proteases consists of five members: SPP and its homologous proteins SPPL2a, SPPL2b, SPPL2c, and SPPL3. Although these proteases were discovered due to their homology to PSs, it became evident in the past two decades that no physiological functions are shared between these two families. Based on studies in cell culture models various substrates of SPP/SPPL proteases have been identified in the past years and recently-developed mouse lines lacking individual members of this protease family, will help to further clarify the physiological functions of these proteases. In this review we concentrate on signaling roles of mammalian intramembrane cleaving aspartyl proteases. In particular, we will highlight the signaling roles of PS via its substrates NOTCH, VEGF, and others, mainly focusing on its involvement in vasculature. Delineating also signaling pathways that are affected and/or controlled by SPP/SPPL proteases. From SPP's participation in tumor progression and survival, to SPPL3's regulation of protein glycosylation and SPPL2c's control over cellular calcium stores, various crossovers between proteolytic activity of intramembrane proteases and cell signaling will be described.
Collapse
Affiliation(s)
- Alkmini A. Papadopoulou
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|