1
|
Choi S, Yoo SA, Ji KY, Jung DH, Lee S, Lee KG, Kim KM, Lee JY, Jung MA, Pyun BJ, Hur J, Choi JY, Rhee CK, Kim WU, Kim T. Asthma Alleviation by Ginsenoside Rb1 via Promotion of Treg Proliferation and Inflammatory T Cell Inhibition. Allergy 2025. [PMID: 40251907 DOI: 10.1111/all.16551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Regulatory T cells (Tregs) are living drugs with feasibility, tolerability, and therapeutic benefits. Although Tregs are linked to asthma prognosis through inflammation regulation, no therapeutic agents specifically designed to manage asthma by upregulating Tregs have been developed to date. METHODS We screened a library of 250 natural products using a cytometric bead array. Among the selected candidates, gRb1 was identified for further investigation. The effects of gRb1 on Treg and Th17 populations were evaluated in mouse asthma models and human PBMCs from both healthy donors and asthma patients using flow cytometry and cytokine analysis. RESULTS In inflammatory conditions, ginsenoside Rb1 (gRb1, a major ginseng component) increased IL-10- and TGF-β-expressing Treg populations and decreased the Th17 population; activated phospho-STAT5 and NFAT1 in Tregs; inhibited NFAT1 activation in conventional T cells (Tconvs); increased Treg proliferation and Tconv-Treg differentiation, inhibiting Tconv proliferation; and reduced inflammatory cytokine secretion by Tconvs. In asthma model mice, suppression of asthma symptoms by gRb1 was associated with elevated Treg and lower Th17, Th1, and Th2 counts. gRb1 treatment of stimulated PBMCs from patients with asthma and healthy donors increased IL-10- and TGF-β-expressing Treg populations and decreased IL-17A-, IL-22-, IFN-γ-, and TNF-α-expressing T-cell populations. CONCLUSIONS gRb1 alleviate asthma by shifting the Treg-inflammatory T cell balance. These findings suggest a strategy for enhancing Treg activity through treatment with gRb1. This may provide a novel therapeutic approach for asthma and related disorders.
Collapse
Affiliation(s)
- Susanna Choi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Seung-Ah Yoo
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Saseong Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang-Gu Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Myo Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Bo-Jeong Pyun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Wang K, Farrell A, Zhou E, Qin H, Zeng Z, Zhou K, Cunha E Rocha K, Zhang D, Wang G, Atakilit A, Sheppard D, Lu LF, Jin C, Ying W. ATF4 drives regulatory T cell functional specification in homeostasis and obesity. Sci Immunol 2025; 10:eadp7193. [PMID: 40085690 DOI: 10.1126/sciimmunol.adp7193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Regulatory T cells (Tregs) have diverse functional specification in homeostasis and disease. However, how liver Tregs function and are transcriptionally regulated in obesity is not well understood. Here, we identified that effector Tregs expressing activating transcription factor 4 (ATF4) were enriched in the livers of obese mice. ATF4 was critical for driving an effector Treg transcriptional program, and ATF4-expressing Tregs promoted the development of obesity-induced liver fibrosis by enhancing transforming growth factor-β activation via integrin αvβ8. Treg-specific deletion of Atf4 resulted in reduced liver Tregs and attenuation of obesity-induced liver abnormalities. Furthermore, ATF4 was required to promote the differentiation of nonlymphoid tissue Treg precursors under steady state. These findings demonstrate that ATF4 is important for regulating Treg functional specification in homeostasis and obesity.
Collapse
Affiliation(s)
- Ke Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrea Farrell
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enchen Zhou
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Houji Qin
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Zixuan Zeng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kailun Zhou
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Amha Atakilit
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Chunyu Jin
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Chowdhary K, Léon J, Mathis D, Benoist C. An integrated transcription factor framework for Treg identity and diversity. Proc Natl Acad Sci U S A 2024; 121:e2411301121. [PMID: 39196621 PMCID: PMC11388289 DOI: 10.1073/pnas.2411301121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Vertebrate cell identity depends on the combined activity of scores of transcription factors (TF). While TFs have often been studied in isolation, a systematic perspective on their integration has been missing. Focusing on FoxP3+ regulatory T cells (Tregs), key guardians of immune tolerance, we combined single-cell chromatin accessibility, machine learning, and high-density genetic variation, to resolve a validated framework of diverse Treg chromatin programs, each shaped by multi-TF inputs. This framework identified previously unrecognized Treg controllers (Smarcc1) and illuminated the mechanism of action of FoxP3, which amplified a pre-existing Treg identity, diversely activating or repressing distinct programs, dependent on different regulatory partners. Treg subpopulations in the colon relied variably on FoxP3, Helios+ Tregs being completely dependent, but RORγ+ Tregs largely independent. These differences were rooted in intrinsic biases decoded by the integrated framework. Moving beyond master regulators, this work unravels how overlapping TF activities coalesce into Treg identity and diversity.
Collapse
Affiliation(s)
| | - Juliette Léon
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- INSERM UMR 1163, Imagine Institute, University of Paris, Paris, France 75015
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
4
|
Wang Z, Lang T, Li Y, Zhang X, Abdur M, Mao M. Hypermethylation of the FOXP3 gene regulates Tregs immunodysregulation in chronic idiopathic thrombocytopenic purpura. Allergol Immunopathol (Madr) 2024; 52:30-37. [PMID: 38970262 DOI: 10.15586/aei.v52i4.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Chronic idiopathic thrombocytopenic purpura (ITP) is an autoimmune disease characterized by a breakdown of immune tolerance; in ITP, the body's immune system mistakenly attacks and destroys platelets. This study aims to investigate the role and underlying mechanisms of FOXP3 in chronic ITP. METHODS Flow cytometry was used to detect the proportion of CD4+CD25+FOXP3+ regulatory T cells (Tregs) in CD4+CD25+ T lymphocytes from 20 patients with chronic ITP (CITP), 20 acute ITP (AITP) controls, and 20 healthy individuals.CD4+CD25+ Treg cells were isolated from peripheral blood of patients with CITP using magnetic beads and then treated with phosphate-buffered saline solution or decitabine (a methylation inhibitor) for 48 h. The levels of interleukin-2 (IL-2), IL-10, and transforming growth factor-beta1 (TGF-β1) in the plasma and CD4+CD25+ Treg cells were assessed by Enzyme-linked-immunosorbent serologic assay and quantitative real-time polymerase chain reaction (qRT-PCR). FOXP3 level was measured by qRT-PCR and Western blot analysis. Methylation-specific PCR (MS-PCR) was adopted to detect the status of FOXP3 methylation. RESULTS The number of Treg cells and the contents of IL-2, IL-10, and TGF-β1 decreased in patients with CITP, compared to the AITP control group and normal group. FOXP3 expression was reduced and FOXP3 methylation increased in patients with CITP, compared to the AITP control group and normal group. Hypermethylation of FOXP3 promoter led to decrease in FOXP3 level in Treg cells. Inhibition of FOXP3 promoter hypermethylation promoted the secretion of IL-2, IL-10, and TGF-β1 in Treg cells. CONCLUSION The number of Treg cells in CITP patients decreased, and the hypermethylation of FOXP3 promoter led to reduction of its expression in Treg cells, thus affecting the immune functioning of Treg cells.
Collapse
Affiliation(s)
- Zengsheng Wang
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tao Lang
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan Li
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiaoyan Zhang
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Muhubair Abdur
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China;
| | - Min Mao
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
5
|
Xiao Y, Yang Y, Xiong H, Dong G. The implications of FASN in immune cell biology and related diseases. Cell Death Dis 2024; 15:88. [PMID: 38272906 PMCID: PMC10810964 DOI: 10.1038/s41419-024-06463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Fatty acid metabolism, particularly fatty acid synthesis, is a very important cellular physiological process in which nutrients are used for energy storage and biofilm synthesis. As a key enzyme in the fatty acid metabolism, fatty acid synthase (FASN) is receiving increasing attention. Although previous studies on FASN have mainly focused on various malignancies, many studies have recently reported that FASN regulates the survival, differentiation, and function of various immune cells, and subsequently participates in the occurrence and development of immune-related diseases. However, few studies to date systematically summarized the function and molecular mechanisms of FASN in immune cell biology and related diseases. In this review, we discuss the regulatory effect of FASN on immune cells, and the progress in research on the implications of FASN in immune-related diseases. Understanding the function of FASN in immune cell biology and related diseases can offer insights into novel treatment strategies for clinical diseases.
Collapse
Affiliation(s)
- Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272007, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
6
|
Zhu Y, He L, Zhu Y, Yao H, Jiang J, Lu H. IRF4 affects the protective effect of regulatory T cells on the pulmonary vasculature of a bronchopulmonary dysplasia mouse model by regulating FOXP3. Mol Med 2024; 30:6. [PMID: 38195465 PMCID: PMC10777489 DOI: 10.1186/s10020-023-00770-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in preterm infants, characterised by compromised alveolar development and pulmonary vascular abnormalities. Emerging evidence suggests that regulatory T cells (Tregs) may confer protective effects on the vasculature. Knockdown of their transcription factor, interferon regulatory factor 4 (IRF4), has been shown to promote vascular endothelial hyperplasia. However, the involvement of Tregs and IRF4 in the BPD pathogenesis remains unclear. This study aimed to investigate the regulation of Tregs by IRF4 and elucidate its potential role in pulmonary vasculature development in a BPD mouse model. METHODS The BPD model was established using 85% hyperoxia exposure, with air exposure as the normal control. Lung tissues were collected after 7 or 14 days of air or hyperoxia exposure, respectively. Haematoxylin-eosin staining was performed to assess lung tissue pathology. Immunohistochemistry was used to measure platelet endothelial cell adhesion molecule-1 (PECAM-1) level, flow cytometry to quantify Treg numbers, and Western blot to assess vascular endothelial growth factor (VEGFA), angiopoietin-1 (Ang-1), forkhead box protein P3 (FOXP3), and IRF4 protein levels. We also examined the co-expression of IRF4 and FOXP3 proteins using immunoprecipitation and immunofluorescence double staining. Furthermore, we employed CRISPR/Cas9 technology to knock down the IRF4 gene and observed changes in the aforementioned indicators to validate its effect on pulmonary vasculature development in mice. RESULTS Elevated IRF4 levels in BPD model mice led to FOXP3 downregulation, reduced Treg numbers, and impaired pulmonary vascular development. Knockdown of IRF4 resulted in improved pulmonary vascular development and upregulated FOXP3 level. CONCLUSION IRF4 may affect the protective role of Tregs in the proliferation of pulmonary vascular endothelial cells and pulmonary vascular development in BPD model mice by inhibiting the FOXP3 level.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Langyue He
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue Zhu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huici Yao
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jianfeng Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongyan Lu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
7
|
Harjacek M. Role of regulatory T cells in pathogenesis and therapeutics of spondyloarthritis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:165-196. [DOI: 10.1016/b978-0-443-13947-5.00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Rutkowska-Zapała M, Grabowska A, Lenart M, Kluczewska A, Szaflarska A, Kobylarz K, Pituch-Noworolska A, Siedlar M. Transcriptome profiling of regulatory T cells from children with transient hypogammaglobulinemia of infancy. Clin Exp Immunol 2023; 214:275-288. [PMID: 37936298 PMCID: PMC10719223 DOI: 10.1093/cei/uxad116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Transient hypogammaglobulinemia of infancy (THI) is one of the most common forms of hypogammaglobulinemia in the early childhood. THI is usually associated with chronic, recurrent bacterial and viral infections, life-threatening in some cases, yet its pathogenesis is still largely unknown. As our previous findings indicated the possible role of Treg cells in the pathomechanism of THI, the aim of the current study was to investigate gene expression profile of Treg cells isolated from THI patients. The transcriptome-wide gene profiling was performed using microarray technology on THI patients in two time-points: during (THI-1), and in resolution phase (THI-2) of hypogammaglobulinemia. As a result, a total of 1086 genes were differentially expressed in THI-1 patients, when compared to THI-2 as well as control group. Among them, 931 were up- and 155 downregulated, and part of them encodes genes important for Treg lymphocyte biology and function, i.e. transcription factors/cofactors that regulate FOXP3 expression. Thus, we postulate that Treg cells isolated from THI patients during hypogammaglobulinemia display enhanced suppressor transcriptome signature. Treg expression profile of THI children after normalization of Ig levels largely resembles the results obtained in healthy control group, suggesting THI Treg transcriptome seems to return to that observed in healthy children. Taken together, we suggest that THI pathomechanism is associated not only with transiently elevated Treg cell numbers, but also with their enhanced regulatory/inhibitory functions. These findings expand our knowledge of human Treg cells and may be useful for the future diagnosis or management of THI.
Collapse
Affiliation(s)
- Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Agnieszka Grabowska
- Department of Medical Genetics, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Krzysztof Kobylarz
- Department of Anesthesiology and Intensive Care, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| |
Collapse
|
9
|
Kiriyama Y, Nochi H. The Role of Gut Microbiota-Derived Lithocholic Acid, Deoxycholic Acid and Their Derivatives on the Function and Differentiation of Immune Cells. Microorganisms 2023; 11:2730. [PMID: 38004742 PMCID: PMC10672800 DOI: 10.3390/microorganisms11112730] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A wide variety and large number of bacterial species live in the gut, forming the gut microbiota. Gut microbiota not only coexist harmoniously with their hosts, but they also induce significant effects on each other. The composition of the gut microbiota can be changed due to environmental factors such as diet and antibiotic intake. In contrast, alterations in the composition of the gut microbiota have been reported in a variety of diseases, including intestinal, allergic, and autoimmune diseases and cancer. The gut microbiota metabolize exogenous dietary components ingested from outside the body to produce short-chain fatty acids (SCFAs) and amino acid metabolites. Unlike SCFAs and amino acid metabolites, the source of bile acids (BAs) produced by the gut microbiota is endogenous BAs from the liver. The gut microbiota metabolize BAs to generate secondary bile acids, such as lithocholic acid (LCA), deoxycholic acid (DCA), and their derivatives, which have recently been shown to play important roles in immune cells. This review focuses on current knowledge of the role of LCA, DCA, and their derivatives on immune cells.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan;
- Institute of Neuroscience, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan;
| |
Collapse
|
10
|
Ma Y, Xu X, Wang H, Liu Y, Piao H. Non-coding RNA in tumor-infiltrating regulatory T cells formation and associated immunotherapy. Front Immunol 2023; 14:1228331. [PMID: 37671150 PMCID: PMC10475737 DOI: 10.3389/fimmu.2023.1228331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer immunotherapy has exhibited promising antitumor effects in various tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment (TME) restrict protective immune surveillance, impede effective antitumor immune responses, and contribute to the formation of an immunosuppressive microenvironment. Selective depletion or functional attenuation of tumor-infiltrating Tregs, while eliciting effective T-cell responses, represents a potential approach for anti-tumor immunity. Furthermore, it does not disrupt the Treg-dependent immune homeostasis in healthy organs and does not induce autoimmunity. Yet, the shared cell surface molecules and signaling pathways between Tregs and multiple immune cell types pose challenges in this process. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate both cancer and immune cells and thus can potentially improve antitumor responses. Here, we review recent advances in research of tumor-infiltrating Tregs, with a focus on the functional roles of immune checkpoint and inhibitory Tregs receptors and the regulatory mechanisms of ncRNAs in Treg plasticity and functionality.
Collapse
Affiliation(s)
- Yue Ma
- Department of Gynecology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Xin Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huaitao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyan Piao
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| |
Collapse
|
11
|
Huang M, Chen W, Wang M, Huang Y, Liu H, Ming Y, Chen Y, Tang Z, Jia B. Advanced Delivery Strategies for Immunotherapy in Type I Diabetes Mellitus. BioDrugs 2023; 37:331-352. [PMID: 37178431 PMCID: PMC10182560 DOI: 10.1007/s40259-023-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been defined as an autoimmune disease characterised by immune-mediated destruction of the pancreatic β cells, leading to absolute insulin deficiency and hyperglycaemia. Current research has increasingly focused on immunotherapy based on immunosuppression and regulation to rescue T-cell-mediated β-cell destruction. Although T1DM immunotherapeutic drugs are constantly under clinical and preclinical development, several key challenges remain, including low response rates and difficulty in maintaining therapeutic effects. Advanced drug delivery strategies can effectively harness immunotherapies and improve their potency while reducing their adverse effects. In this review, we briefly introduce the mechanisms of T1DM immunotherapy and focus on the current research status of the integration of the delivery techniques in T1DM immunotherapy. Furthermore, we critically analyse the challenges and future directions of T1DM immunotherapy.
Collapse
Affiliation(s)
- Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Purzycka-Bohdan D, Nedoszytko B, Sobalska-Kwapis M, Zabłotna M, Żmijewski MA, Wierzbicka J, Gleń J, Strapagiel D, Szczerkowska-Dobosz A, Nowicki RJ. Assessment of the Potential Role of Selected Single Nucleotide Polymorphisms (SNPs) of Genes Related to the Functioning of Regulatory T Cells in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:ijms24076061. [PMID: 37047033 PMCID: PMC10094301 DOI: 10.3390/ijms24076061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Recent studies have indicated a key role of the impaired suppressive capacity of regulatory T cells (Tregs) in psoriasis (PsO) pathogenesis. However, the genetic background of Treg dysfunctions remains unknown. The aim of this study was to evaluate the association of PsO development with selected single nucleotide polymorphisms (SNPs) of genes in which protein products play a significant role in the regulation of differentiation and function of Tregs. There were three study groups in our research and each consisted of different unrelated patients and controls: 192 PsO patients and 5605 healthy volunteers in the microarray genotyping group, 150 PsO patients and 173 controls in the ARMS-PCR method group, and 6 PsO patients and 6 healthy volunteers in the expression analysis group. The DNA microarrays analysis (283 SNPs of 57 genes) and ARMS-PCR method (8 SNPs in 7 genes) were used to determine the frequency of occurrence of SNPs in selected genes. The mRNA expression of selected genes was determined in skin samples. There were statistically significant differences in the allele frequencies of four SNPs in three genes (TNF, IL12RB2, and IL12B) between early-onset PsO patients and controls. The lowest p-value was observed for rs3093662 (TNF), and the G allele carriers had a 2.73 times higher risk of developing early-onset PsO. Moreover, the study revealed significant differences in the frequency of SNPs and their influence on PsO development between early- and late-onset PsO. Based on the ARMS-PCR method, the association between some polymorphisms of four genes (IL4, IL10, TGFB1, and STAT3) and the risk of developing PsO was noticed. Psoriatic lesions were characterized with a lower mRNA expression of FOXP3, CTLA4, and IL2, and a higher expression of TNF and IL1A in comparison with unaffected skin. In conclusion, the genetic background associated with properly functioning Tregs seems to play a significant role in PsO pathogenesis and could have diagnostic value.
Collapse
Affiliation(s)
- Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
- Molecular Laboratory, Invicta Fertility and Reproductive Centre, 81-740 Sopot, Poland
| | - Marta Sobalska-Kwapis
- Biobank Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Monika Zabłotna
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Justyna Wierzbicka
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dominik Strapagiel
- Biobank Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Roman J Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
13
|
Dexmedetomidine alleviates acute lung injury by promoting Tregs differentiation via activation of AMPK/SIRT1 pathway. Inflammopharmacology 2023; 31:423-438. [PMID: 36534240 PMCID: PMC9762669 DOI: 10.1007/s10787-022-01117-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To explore the anti-inflammatory effect and the potential mechanism of dexmedetomidine in ARDS/ALI. MATERIALS AND METHODS C57BL/6 mice and EL-4 cells were used in this research. The ALI model was established by CLP. The level of inflammatory cytokines in the lung and blood, the severity of lung injury, the expression of Foxp3, and the proportion of Tregs were detected before and after dexmedetomidine treatment. The expression of the AMPK/SIRT1 after dexmedetomidine treatment was detected in vivo and in vitro. After blocking the AMPK/SIRT1 pathway or depleting Tregs in vivo, the level of the inflammatory response, tissue injury, and Tregs differentiation were detected again to clarify the effect of dexmedetomidine. RESULTS Dexmedetomidine significantly reduced systemic inflammation and lung injury in CLP mice. Dexmedetomidine enhanced the Foxp3 expression in the lungs and the frequency of Tregs in the spleen. Dexmedetomidine up-regulated the protein expression of p-AMPK and SIRT1 in lungs and EL-4 cells and facilitated the differentiation of naïve CD4+ T cells into Tregs in vitro. Meanwhile, DEX also increased the expression of Helios in Treg cells. CONCLUSIONS DEX could improve ARDS/ALI by facilitating the differentiation of Tregs from naïve CD4+ T cells via activating the AMPK/SIRT1 pathway.
Collapse
|
14
|
M2c Macrophages Protect Mice from Adriamycin-Induced Nephropathy by Upregulating CD62L in Tregs. Mediators Inflamm 2022; 2022:1153300. [PMID: 36262548 PMCID: PMC9576407 DOI: 10.1155/2022/1153300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Regulatory T cells (Tregs) and M2c macrophages have been shown to exert potentially synergistic therapeutic effects in animals with adriamycin-induced nephropathy (AN), a model chronic proteinuric renal disease. M2c macrophages may protect against renal injury by promoting an increase in the number of Tregs in the renal draining lymph nodes of AN mice, but how they do so is unclear. In this study, we used an AN mouse model to analyze how M2c macrophages induce the migration of Tregs. Using flow cytometry, we found that M2c macrophages promoted the migration of Tregs from the peripheral blood to the spleen, thymus, kidney, and renal draining lymph nodes. At the same time, M2c macrophages significantly upregulated chemokine receptors and adhesion molecule in Tregs, including CCR4, CCR5, CCR7, CXCR5, and CD62L. Treating AN mice with monoclonal anti-CD62L antibody inhibited the migration of M2c macrophages and Tregs to the spleen, thymus, kidney, and renal draining lymph nodes. Taken together, our results suggest that M2c macrophages upregulate CD62L in Tregs and thereby promote their migration to inflammatory sites, where they exert renoprotective effects. These insights may aid the development of treatments against chronic kidney disease.
Collapse
|
15
|
Chen N, Deng J, Zhang Z, Feng X, Wang H, Chen J, Li L, Cao Y, Jia C, Cao Y. Oxidative stress-triggered pyroptosis mediates Candida albicans susceptibility in diabetic foot. Microb Pathog 2022; 172:105765. [PMID: 36087690 DOI: 10.1016/j.micpath.2022.105765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
An accumulating trend of research demonstrates that diabetic patients are susceptible to skin infections with Candida albicans, but the mechanism still remains unclear. The intense oxidative stress (OS) responses were occurred in the lesion of diabetic mice footpads after C. albicans infection. Localised skin infections would lead to more severe complications while the severity of the condition worsens or the inadequate treatment. Notably, in this study, through the investigation of murine diabetic footpad C. albicans infection model and molecular biotechnology, including histopathological staining, immunofluorescence (IF) staining, quantitative real-time PCR (qPCR), western blot (WB), flow cytometry (FCM), sandwich enzyme-linked immunosorbent assay (ELISA) assays, we found that intense OS responses in the footpad tissue not only mediated the activation of NF-κB protein complex, but also triggered downstream pyroptosis and apoptosis through NLRP3 inflammasome, which is one of the potential reasons for the severe condition of infectious skin injuries in diabetic mice. Caspase-1, a classical signal pathway protein in pyroptosis, could promote pore formation on cell membranes and the release of the cytokine after NLRP3 inflammasome activation. With intense immune-inflammatory responses, the organism also stimulates immune organs such as the spleen and lymph nodes to produce negative feedback regulation and generate CD4+CD25+Foxp3+ Treg cells to rectify the process. Therefore, combined with the results of this work, it is possible to design and screen relevant drugs for NLRP3 inflammasomes as core targets to keep the OS response at a low level in the footpad tissues.
Collapse
Affiliation(s)
- Nan Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jie Deng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Zhihui Zhang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Xia Feng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Hongkang Wang
- Department of Physiology and Pharmacology,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Ling Li
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Yemin Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Chenglin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| | - Yongbing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| |
Collapse
|
16
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
17
|
Nicholls J, Cao B, Le Texier L, Xiong LY, Hunter CR, Llanes G, Aguliar EG, Schroder WA, Phipps S, Lynch JP, Cao H, Heazlewood SY, Williams B, Clouston AD, Nefzger CM, Polo JM, Nilsson SK, Blazar BR, MacDonald KPA. Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control. Front Cell Dev Biol 2021; 9:737880. [PMID: 34631716 PMCID: PMC8493124 DOI: 10.3389/fcell.2021.737880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.
Collapse
Affiliation(s)
- Jemma Nicholls
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Laetitia Le Texier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura Yan Xiong
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher R. Hunter
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Genesis Llanes
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ethan G. Aguliar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Wayne A. Schroder
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Simon Phipps
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason P. Lynch
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Huimin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Shen Y. Heazlewood
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | | | - Christian M. Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jose M. Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Susan K. Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Kelli P. A. MacDonald
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
18
|
The Potential of T Cell Factor 1 in Sustaining CD8 + T Lymphocyte-Directed Anti-Tumor Immunity. Cancers (Basel) 2021; 13:cancers13030515. [PMID: 33572793 PMCID: PMC7866257 DOI: 10.3390/cancers13030515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The transcription factor T cell factor 1 (TCF1), encoded by the TCF7 gene, is a key regulator of T-cell fate, which is known to promote T cell proliferation and establish T cell stemness. Importantly, increasing evidence has demonstrated that TCF1 is a critical determinant of the success of anti-tumor immunotherapy, implicating that TCF1 is a promising biomarker and therapeutic target in cancer. In recent years, new findings have emerged to provide a clearer view of TCF1 and its role in T cell biology. In this review, we aim to provide a comprehensive outline of the most recent literature on the role of TCF1 in T cell development and to discuss the potential of TCF1 in sustaining CD8+ T lymphocyte-directed anti-tumor immunity. Abstract T cell factor 1 (TCF1) is a transcription factor that has been highlighted to play a critical role in the promotion of T cell proliferation and maintenance of cell stemness in the embryonic and CD8+ T cell populations. The regulatory nature of TCF1 in CD8+ T cells is of great significance, especially within the context of T cell exhaustion, which is linked to the tumor and viral escape in pathological contexts. Indeed, inhibitory signals, such as programmed cell death 1 (PD-1) and cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), expressed on exhausted T lymphocytes (TEX), have become major therapeutic targets in immune checkpoint blockade (ICB) therapy. The significance of TCF1 in the sustenance of CTL-mediated immunity against pathogens and tumors, as well as its recently observed necessity for an effective anti-tumor immune response in ICB therapy, presents TCF1 as a potentially significant biomarker and/or therapeutic target for overcoming CD8+ T cell exhaustion and resistance to ICB therapy. In this review, we aim to outline the recent findings on the role of TCF1 in T cell development and discuss its implications in anti-tumor immunity.
Collapse
|
19
|
Stéphan P, Lautraite R, Voisin A, Grinberg-Bleyer Y. Transcriptional Control of Regulatory T Cells in Cancer: Toward Therapeutic Targeting? Cancers (Basel) 2020; 12:E3194. [PMID: 33143070 PMCID: PMC7693300 DOI: 10.3390/cancers12113194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Extensive research in the past decades has highlighted the tight link between immunity and cancer, leading to the development of immunotherapies that have revolutionized cancer care. However, only a fraction of patients display durable responses to these treatments, and a deeper understanding of the cellular and mechanisms orchestrating immune responses to tumors is mandatory for the discovery of novel therapeutic targets. Among the most scrutinized immune cells, Forkhead Box Protein P3 (Foxp3)+ Regulatory T cells (Treg cells) are central inhibitors of protective anti-tumor immunity. These tumor-promoting functions render Treg cells attractive immunotherapy targets, and multiple strategies are being developed to inhibit their recruitment, survival, and function in the tumor microenvironment. In this context, it is critical to decipher the complex and multi-layered molecular mechanisms that shape and stabilize the Treg cell transcriptome. Here, we provide a global view of the transcription factors, and their upstream signaling pathways, involved in the programming of Treg cell homeostasis and functions in cancer. We also evaluate the feasibility and safety of novel therapeutic approaches aiming at targeting specific transcriptional regulators.
Collapse
Affiliation(s)
| | | | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (R.L.); (A.V.)
| |
Collapse
|