1
|
Sharma A, Mannan A, Singh TG. Rethinking Parkinson's: The role of proteostasis networks and autophagy in disease progression. Mol Cell Neurosci 2025:104023. [PMID: 40490236 DOI: 10.1016/j.mcn.2025.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/19/2025] [Accepted: 06/03/2025] [Indexed: 06/11/2025] Open
Abstract
Protein dyshomeostasis is identified as the hallmark of many age-related NDDs including Parkinson's disease (PD). PD is a progressive neurodegenerative disorder (NDD) characterized by the accumulation of misfolded proteins, particularly α-synuclein (α-syn) leading to formation of Lewy bodies and cause degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Disruption of the cell's normal protein balance, which occurs when cells experience stress, plays a key role in causing the formation of harmful protein clumps. Functional proteostasis relies on coordinated mechanisms involving posttranslational modifications (PTMs), molecular chaperones, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and the autophagy-lysosome pathway (ALP). These networks maintain proper synthesis, folding, confirmation and degradation of protein such as α-syn protein in PD. These approaches include enhancing lysosomal function, promoting autophagy and modulating the unfolded protein response. Understanding the complex interactions between these pathways is essential for developing effective treatments. This review synthesizes current knowledge of various genes and molecular mechanisms underlying proteostasis disruption in PD and evaluates emerging therapeutic strategies that target multiple genes and pathways simultaneously. The finding highlights the potential of integrated approaches to restore protein homeostasis and prevent neurodegeneration, offering new directions for PD treatment development.
Collapse
Affiliation(s)
- Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | |
Collapse
|
2
|
Li J, Li Y, Chen Z, Yang L, Zhao L, Li J. PINK1 activation by MTK458 ameliorates neurological impairments and pyroptosis after intracerebral hemorrhage in mice. Brain Res 2025; 1861:149700. [PMID: 40368226 DOI: 10.1016/j.brainres.2025.149700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Intracerebral hemorrhage (ICH) is often linked to severe neurological impairments, including cognitive deficits and anxiety-like behaviors. This study aimed to evaluate the therapeutic potential of PTEN-induced kinase 1 (PINK1), which is activated during ICH, as a target for mitigating these effects. C57/BL6 wild-type mice underwent ICH induction through an intrastriatal injection of autologous blood. The PINK1 activator, MTK458, was administered daily doses of 10-50 mg/kg starting one week before ICH induction and continuing for three days post-surgery. The modified neurological severity score (mNSS) was used to assess neurological deficits, while brain edema was measured through brain water content. The open field test and Y-maze test were used to evaluate anxiety-like behavior, and cognitive function respectively. The effects of ICH on cortical cell pyroptosis, Parkin/PINK1-mediated mitophagy, and the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome were analyzed via Western blotting, ELISA, and qRT-PCR. MTK458 effectively reduced brain water content in the basal ganglia, ipsilateral cortex, and cerebellum, with improvements in mNSS extending to 14 days post-injury. Additionally, MTK458 alleviated both neurological deficits and anxiety-like behavior in ICH mouse models. It also reversed ICH-induced cortical cell pyroptosis by promoting Parkin/PINK1-mediated mitophagy and inhibiting NLRP3 inflammasome activation, as well as the expression of IL-1β and IL-18. These results suggest that MTK458 effectively reduces neurological impairments, brain edema, and anxiety-related behaviors in mice following ICH, highlighting PINK1 activation as a promising therapeutic strategy for ICH-induced neurological deficits.
Collapse
Affiliation(s)
- Jianliang Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215 Hepingxi Road, Shijiazhuang 050000 Hebei, China
| | - Yincheng Li
- Department of Emergency Medicine, the First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang 050000 Hebei, China
| | - Zhe Chen
- Department of Cardiovascular Medicine, the Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang 050000 Hebei, China
| | - Liang Yang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215 Hepingxi Road, Shijiazhuang 050000 Hebei, China
| | - Lin Zhao
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215 Hepingxi Road, Shijiazhuang 050000 Hebei, China
| | - Jingchen Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215 Hepingxi Road, Shijiazhuang 050000 Hebei, China.
| |
Collapse
|
3
|
Wang W, Zhao W, Song X, Wang H, Gu L. Zhongfeng decoction attenuates cerebral ischemia-reperfusion injury by inhibiting autophagy via regulating the AGE-RAGE signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118718. [PMID: 39179056 DOI: 10.1016/j.jep.2024.118718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tackling phlegm and improving blood circulation is vital in the treatment of ischemic stroke (IS), culminating in the development of Zhongfeng Decoction (ZFD), a method grounded in this approach and serving as an effective therapy for IS. Nonetheless, the defensive mechanism of the ZFD in preventing cerebral ischemia-reperfusion damage remains ambiguous. AIM OF THE STUDY Determine the active ingredients in ZFD that have neuroprotective effects, and identify its mechanism of action against IS. MATERIALS AND METHODS A cerebral ischemia model in rats was developed, utilizing TTC, Nissl staining, and an oxidative stress kit to evaluate the neuroprotective impact of ZFD on this rat model. Following this, an amalgamation of LC-MS and network pharmacology techniques was employed to pinpoint potential active components, primary targets, and crucial action mechanisms of ZFD in treating IS. Finally, key targets and signaling pathways were detected using qRT-PCR, ELISA, Western blotting, electron microscopy, and other methods. RESULTS Through LC-MS and network analysis, 15 active ingredients and 6 hub targets were identified from ZFD. Analysis of pathway enrichment revealed that ZFD predominantly engages in the AGE-RAGE signaling route. Kaempferol, quercetin, luteolin, baicalein, and nobiletin in ZFD are the main active ingredients for treating IS. In vivo validation showed that ZFD can improve nerve damage in cerebral ischemic rats, reduce the mRNA expression of IL6, SERPINE1, CCL2, and TGFB1 related to inflammation. Furthermore, we also confirmed that ZFD can inhibit the protein expression of AGEs, RAGE, p-IKBα/IKBα, p-NF-κB p65/NF-κB p65, reduce autophagy levels, and thus decrease neuronal apoptosis. CONCLUSIONS The mechanism of action of ZFD in treating IS primarily includes inflammation suppression, oxidative stress response alleviation, post-stroke cell autophagy and apoptosis regulation, and potential mediation of the AGE-RAGE signaling pathway. This study elucidates how ZFD functions in treating IS, establishing a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Weitao Wang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, Guangxi, China.
| | - Wanshen Zhao
- Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoxiao Song
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Honghai Wang
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Lian Gu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China.
| |
Collapse
|
4
|
Kumar A, Yap KCH, BharathwajChetty B, Lyu J, Hegde M, Abbas M, Alqahtani MS, Khadlikar S, Zarrabi A, Khosravi A, Kumar AP, Kunnumakkara AB. Regulating the regulators: long non-coding RNAs as autophagic controllers in chronic disease management. J Biomed Sci 2024; 31:105. [PMID: 39716252 DOI: 10.1186/s12929-024-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/23/2024] [Indexed: 12/25/2024] Open
Abstract
The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understanding of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumulation of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, leading to overall decline in quality of intracellular components. Such deregulation has been implicated in a wide range of pathological conditions such as cancer, cardiovascular, inflammatory, and neurological disorders. This review explores the role of long non-coding RNAs (lncRNAs) as modulators of transcriptional and post-transcriptional gene expression, regulating diverse physiological process like proliferation, development, immunity, and metabolism. Moreover, lncRNAs are known to sequester autophagy related microRNAs by functioning as competing endogenous RNAs (ceRNAs), thereby regulating this vital process. In the present review, we delineate the multitiered regulation of lncRNAs in the autophagic dysfunction of various pathological diseases. Moreover, by highlighting recent findings on the modulation of lncRNAs in different stages of autophagy, and the emerging clinical landscape that recognizes lncRNAs in disease diagnosis and therapy, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in clinical settings of different stages of autophagic process by regulating ATG and its target genes. This focus on lncRNAs could lead to breakthroughs in personalized medicine, offering new avenues for diagnosis and treatment of complex diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Soham Khadlikar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959, Istanbul, Türkiye
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
5
|
Guo Y, Tian Y, Xia P, Zhou X, Hu X, Guo Z, Ji P, Yuan X, Fu D, Yin K, Shen R, Wang D. Exploring the Function of OPTN From Multiple Dimensions. Cell Biochem Funct 2024; 42:e70029. [PMID: 39670654 DOI: 10.1002/cbf.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is an essential intracellular degradation system responsible for delivering cytoplasmic components to lysosomes. Within this intricate process, optineurin (OPTN), an autophagy receptor, has attracted extensive attention due to its multifaceted roles in the autophagy process. OPTN is regulated by various posttranslational modifications and actively participates in numerous signaling pathways and cellular processes. By exploring the regulatory mechanism of OPTN posttranslational modification, we can further understand the critical role of protein posttranslational modification in biological progress, such as autophagy. Additionally, OPTN is implicated in many human diseases, including rheumatoid arthritis, osteoporosis, and infectious diseases. And we delve into the inflammatory pathways regulated by OPTN and clarify how it regulates inflammatory diseases and cancer. We aim to enhance the understanding of OPTN's multifaceted functions in cellular processes and its implications in the pathogenesis of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yixiao Tian
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyue Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Daosen Fu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Keyu Yin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Ma W, Lu Y, Jin X, Lin N, Zhang L, Song Y. Targeting selective autophagy and beyond: From underlying mechanisms to potential therapies. J Adv Res 2024; 65:297-327. [PMID: 38750694 PMCID: PMC11518956 DOI: 10.1016/j.jare.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Jin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Na Lin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yaowen Song
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
7
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
8
|
Barmaki H, Nourazarian A, Shademan B, Khaki-Khatibi F. The autophagy paradox: A new hypothesis in neurodegenerative disorders. Neurochem Int 2024; 179:105827. [PMID: 39111406 DOI: 10.1016/j.neuint.2024.105827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
A recent study showed that while autophagy is usually tied to protein and organelle turnover, it can also play dual roles in neurodegenerative diseases. Traditionally, autophagy was seen as protective since it removes damaged proteins and organelles. but new data suggests autophagy can sometimes promote neuron death. and This review tackles autophagy's seemingly contradictory effects in neurodegeneration, or the "autophagy paradox. " It offers a framework for understanding autophagy in neurodegenerative research and the cellular processes involved. In short, our data uncovers a harmful autophagy role in certain situations, conflicting the view that it's always beneficial. We describe the distinct, disease-specific autophagy pathways functioning in various neurodegenerative diseases. Part two concerns potential therapeutic implications of manipulating autophagy and current strategies targeting the autophagic system, suggesting interesting areas for future research into tailored modulators. This could eventually enable activating or controlling specific autophagy pathways and aid in developing more effective treatments. Researchers believe more molecular-level research is needed so patient-tailored autophagy-modulating therapeutics can be developed given this dilemma. Moreover, research must translate faster into effective neurodegenerative disease treatment options. This article aims to provide a wholly new perspective on autophagy's classically described role in these severe diseases, challenging current dogma and opening new therapeutic avenue options.
Collapse
Affiliation(s)
- Haleh Barmaki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran; Student Research Committee, Khoy University of Medical Sciences, Khoy, Iran.
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Khan I, Kaur S, Rishi AK, Boire B, Aare M, Singh M. Cannabidiol and Beta-Caryophyllene Combination Attenuates Diabetic Neuropathy by Inhibiting NLRP3 Inflammasome/NFκB through the AMPK/sirT3/Nrf2 Axis. Biomedicines 2024; 12:1442. [PMID: 39062016 PMCID: PMC11274582 DOI: 10.3390/biomedicines12071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In this study, we investigated in detail the role of cannabidiol (CBD), beta-caryophyllene (BC), or their combinations in diabetic peripheral neuropathy (DN). The key factors that contribute to DN include mitochondrial dysfunction, inflammation, and oxidative stress. METHODS Briefly, streptozotocin (STZ) (55 mg/kg) was injected intraperitoneally to induce DN in Sprague-Dawley rats, and we performed procedures involving Randall Sellito calipers, a Von Frey aesthesiometer, a hot plate, and cold plate methods to determine mechanical and thermal hyperalgesia in vivo. The blood flow to the nerves was assessed using a laser Doppler device. Schwann cells were exposed to high glucose (HG) at a dose of 30 mM to induce hyperglycemia and DCFDA, and JC1 and Mitosox staining were performed to determine mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides in vitro. The rats were administered BC (30 mg/kg), CBD (15 mg/kg), or combination via i.p. injections, while Schwann cells were treated with 3.65 µM CBD, 75 µM BC, or combination to assess their role in DN amelioration. RESULTS Our results revealed that exposure to BC and CBD diminished HG-induced hyperglycemia in Schwann cells, in part by reducing mitochondrial membrane potential, reactive oxygen species, and mitochondrial superoxides. Furthermore, the BC and CBD combination treatment in vivo could prevent the deterioration of the mitochondrial quality control system by promoting autophagy and mitochondrial biogenesis while improving blood flow. CBD and BC treatments also reduced pain hypersensitivity to hyperalgesia and allodynia, with increased antioxidant and anti-inflammatory action in diabetic rats. These in vivo effects were attributed to significant upregulation of AMPK, sirT3, Nrf2, PINK1, PARKIN, LC3B, Beclin1, and TFAM functions, while downregulation of NLRP3 inflammasome, NFκB, COX2, and p62 activity was noted using Western blotting. CONCLUSIONS the present study demonstrated that STZ and HG-induced oxidative and nitrosative stress play a crucial role in the pathogenesis of diabetic neuropathy. We find, for the first time, that a CBD and BC combination ameliorates DN by modulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Islauddin Khan
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Arun K. Rishi
- John D. Dingell Veterans Affairs Medical Center, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Breana Boire
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (I.K.); (S.K.); (B.B.); (M.A.)
| |
Collapse
|
10
|
Li YY, Qin ZH, Sheng R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci Bull 2024; 40:363-382. [PMID: 37856037 PMCID: PMC10912456 DOI: 10.1007/s12264-023-01120-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
11
|
Yu Y, Tan Y, Liao X, Yu L, Lai H, Li X, Wang C, Wu S, Feng D, Liu C. HIF-1A regulates cognitive deficits of post-stroke depressive rats. Behav Brain Res 2024; 458:114685. [PMID: 37776955 DOI: 10.1016/j.bbr.2023.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Post-stroke depression (PSD) is a serious neuropsychiatric complication post stroke and leads to cognitive deficits. This study was conducted to explore the molecular mechanism of hypoxia-inducible factor-1α (HIF-1A) in cognitive dysfunction in rats with PSD. The rat model of PSD was established by middle cerebral artery occlusion, followed by 3 weeks of treatment with chronic unpredictable mild stress. The levels of miR-582-5p, HIF-1A, and neighbor of Brca1 gene (NBR1) in brain tissues were determined using RT-qPCR. The behaviors and cognitive capacity of rats were evaluated by various behavioral tests. PSD rats were injected with HIF-1A/miR-582-5p lowexpression vectors or NBR1 overexpression vectors via stereotactic method. The binding of HIF-1A to NBR1 or miR-582-5p was analyzed by chromatin immunoprecipitation and dual-luciferase assay. HIF-1A and NBR1 were highly expressed while miR-582-5p was poorly expressed in the brain of PSD rats. HIF-1A inhibition alleviated cognitive dysfunction of PSD rats. miR-582-5p was the upstream miRNA of HIF-1A, and HIF-1A specifically interacted with the NBR1 promoter to enhance NBR1 expression. miR-582-5p downregulation and NBR1 upregulation reversed the alleviative role of HIF-1A inhibition in cognitive dysfunction of PSD rats. In summary, HIF-1A inhibition may be a therapeutic target for cognitive dysfunction post PSD.
Collapse
Affiliation(s)
- Yongjia Yu
- Department of neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yafu Tan
- Department of neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xingsheng Liao
- Department of neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liang Yu
- Department of neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Haiyan Lai
- Department of neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiuchan Li
- Department of neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chunxi Wang
- Department of neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Song Wu
- Department of neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Daqing Feng
- Department of neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Chang Liu
- Department of neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
12
|
Khan S, Wang T, Cobo ER, Liang B, Khan MA, Xu M, Qu W, Gao J, Barkema HW, Kastelic JP, Liu G, Han B. Antioxidative Sirt1 and the Keap1-Nrf2 Signaling Pathway Impair Inflammation and Positively Regulate Autophagy in Murine Mammary Epithelial Cells or Mammary Glands Infected with Streptococcus uberis. Antioxidants (Basel) 2024; 13:171. [PMID: 38397769 PMCID: PMC10886112 DOI: 10.3390/antiox13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus uberis mastitis in cattle infects mammary epithelial cells. Although oxidative responses often remove intracellular microbes, S. uberis survives, but the mechanisms are not well understood. Herein, we aimed to elucidate antioxidative mechanisms during pathogenesis of S. uberis after isolation from clinical bovine mastitis milk samples. S. uberis's in vitro pathomorphology, oxidative stress biological activities, transcription of antioxidative factors, inflammatory response cytokines, autophagosome and autophagy functions were evaluated, and in vivo S. uberis was injected into the fourth mammary gland nipple of each mouse to assess the infectiousness of S. uberis potential molecular mechanisms. The results showed that infection with S. uberis induced early oxidative stress and increased reactive oxygen species (ROS). However, over time, ROS concentrations decreased due to increased antioxidative activity, including total superoxide dismutase (T-SOD) and malondialdehyde (MDA) enzymes, plus transcription of antioxidative factors (Sirt1, Keap1, Nrf2, HO-1). Treatment with a ROS scavenger (N-acetyl cysteine, NAC) before infection with S. uberis reduced antioxidative responses and the inflammatory response, including the cytokines IL-6 and TNF-α, and the formation of the Atg5-LC3II/LC3I autophagosome. Synthesis of antioxidants determined autophagy functions, with Sirt1/Nrf2 activating autophagy in the presence of S. uberis. This study demonstrated the evasive mechanisms of S. uberis in mastitis, including suppressing inflammatory and ROS defenses by stimulating antioxidative pathways.
Collapse
Affiliation(s)
- Sohrab Khan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.K.); (T.W.); (B.L.); (M.A.K.); (M.X.); (J.G.)
| | - Tian Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.K.); (T.W.); (B.L.); (M.A.K.); (M.X.); (J.G.)
| | - Eduardo R. Cobo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (E.R.C.); (H.W.B.); (J.P.K.)
| | - Bingchun Liang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.K.); (T.W.); (B.L.); (M.A.K.); (M.X.); (J.G.)
| | - Muhammad Asfandyar Khan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.K.); (T.W.); (B.L.); (M.A.K.); (M.X.); (J.G.)
| | - Maolin Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.K.); (T.W.); (B.L.); (M.A.K.); (M.X.); (J.G.)
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China;
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.K.); (T.W.); (B.L.); (M.A.K.); (M.X.); (J.G.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (E.R.C.); (H.W.B.); (J.P.K.)
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (E.R.C.); (H.W.B.); (J.P.K.)
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.K.); (T.W.); (B.L.); (M.A.K.); (M.X.); (J.G.)
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.K.); (T.W.); (B.L.); (M.A.K.); (M.X.); (J.G.)
| |
Collapse
|
13
|
Kim E, Kim H, Jedrychowski MP, Bakiasi G, Park J, Kruskop J, Choi Y, Kwak SS, Quinti L, Kim DY, Wrann CD, Spiegelman BM, Tanzi RE, Choi SH. Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling. Neuron 2023; 111:3619-3633.e8. [PMID: 37689059 PMCID: PMC10840702 DOI: 10.1016/j.neuron.2023.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) protein in the brain. Physical exercise has been shown to reduce Aβ burden in various AD mouse models, but the underlying mechanisms have not been elucidated. Irisin, an exercise-induced hormone, is the secreted form of fibronectin type-III-domain-containing 5 (FNDC5). Here, using a three-dimensional (3D) cell culture model of AD, we show that irisin significantly reduces Aβ pathology by increasing astrocytic release of the Aβ-degrading enzyme neprilysin (NEP). This is mediated by downregulation of ERK-STAT3 signaling. Finally, we show that integrin αV/β5 acts as the irisin receptor on astrocytes required for irisin-induced release of astrocytic NEP, leading to clearance of Aβ. Our findings reveal for the first time a cellular and molecular mechanism by which exercise-induced irisin attenuates Aβ pathology, suggesting a new target pathway for therapies aimed at the prevention and treatment of AD.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyeonwoo Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA; Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Grisilda Bakiasi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph Park
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jane Kruskop
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Younjung Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sang Su Kwak
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luisa Quinti
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christiane D Wrann
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Cai Y, Yu Z, Yang X, Luo W, Hu E, Li T, Zhu W, Wang Y, Tang T, Luo J. Integrative transcriptomic and network pharmacology analysis reveals the neuroprotective role of BYHWD through enhancing autophagy by inhibiting Ctsb in intracerebral hemorrhage mice. Chin Med 2023; 18:150. [PMID: 37957754 PMCID: PMC10642062 DOI: 10.1186/s13020-023-00852-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND In this study, we aimed to combine transcriptomic and network pharmacology to explore the crucial mRNAs and specific regulatory molecules of Buyang Huanwu Decoction (BYHWD) in intracerebral hemorrhage (ICH) treatment. METHODS C57BL/6 mice were randomly divided into three groups: sham, ICH, and BYHWD. BYHWD (43.29 g/kg) was administered once a day for 7 days. An equal volume of double-distilled water was used as a control. Behavioural and histopathological experiments were conducted to confirm the neuroprotective effects of BYHWD. Brain tissues were collected for transcriptomic detection. Bioinformatics analysis were performed to illustrate the target gene functions. Network pharmacology was used to predict potential targets for BYHWD. Next, transcriptomic assays were combined with network pharmacology to identify the potential differentially expressed mRNAs. Immunofluorescence staining, real-time polymerase chain reaction, western blotting, and transmission electron microscopy were performed to elucidate the underlying mechanisms. RESULTS BYHWD intervention in ICH reduced neurological deficits. Network pharmacology analysis identified 203 potential therapeutic targets for ICH, whereas transcriptomic assay revealed 109 differentially expressed mRNAs post-ICH. Among these, cathepsin B, ATP binding cassette subfamily B member 1, toll-like receptor 4, chemokine (C-C motif) ligand 12, and baculoviral IAP repeat-containing 5 were identified as potential target mRNAs through the integration of transcriptomics and network pharmacology approaches. Bioinformatics analysis suggested that the beneficial effects of BYHWD in ICH may be associated with apoptosis, animal autophagy signal pathways, and PI3K-Akt and mTOR biological processes. Furthermore, BYHWD intervention decreased Ctsb expression levels and increased autophagy levels in ICH. CONCLUSIONS Animal experiments in combination with bioinformatics analysis confirmed that BYHWD plays a neuroprotective role in ICH by regulating Ctsb to enhance autophagy.
Collapse
Affiliation(s)
- Yiqing Cai
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xueping Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weikang Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Wenxin Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jiekun Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Regional Center for Neurological Diseases, Xiangya Hospital, Central South University Jiangxi, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
15
|
Khan S, Yang J, Cobo ER, Wang Y, Xu M, Wang T, Shi Y, Liu G, Han B. Streptococcus uberis induced expressions of pro-inflammatory IL-6, TNF-α, and IFN-γ in bovine mammary epithelial cells associated with inhibited autophagy and autophagy flux formation. Microb Pathog 2023; 183:106270. [PMID: 37499842 DOI: 10.1016/j.micpath.2023.106270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Autophagy is a highly conserved cellular defensive mechanism that can eliminate bacterial pathogens such as Streptococcus uberis, that causes mastitis in cows. However, S. uberis induced autophagy is still unclear. In this study, we tested if certain inflammatory cytokines such as IL-6, TNF-α, and IFN-γ, critical in mastitis due to S. uberis infection, regulate autophagy activation in bovine mammary epithelial cells (bMECs). Using Western blot and laser scanning confocal microscope in bMECs challenged by S. uberis, showed that the expression of IL-6, TNF-α, IFN-γ oscillated with the expressions of autophagic Atg5, ULK1, PTEN, P62, and LC3ӀӀ/LC3Ӏ. S. uberis infection induced autophagosomes and LC3 puncta in bMECs with upregulation of Atg5, ULK1, PTEN, LC3ӀӀ/LC3Ӏ, and downregulation of P62. The levels of IL-6, TNF-α, and IFN-γ increased during autophagy flux formation to decrease during autophagy induction. Autophagy inhibition increased the expression of IL-6, TNF-α, and IFN-γ and increased S. uberis burden. This study indicates autophagy is induced during S. uberis infection and IL-6, TNF-α, and IFN-γ contribute to autophagy and autophagy flux formation.
Collapse
Affiliation(s)
- Sohrab Khan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yue Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Maolin Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Tian Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
16
|
Zhang H, Chen S, Xu S, Li X. COTE1 Facilitates Intrahepatic Cholangiocarcinoma Progression via Beclin1-Dependent Autophagy Inhibition. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5491682. [PMID: 37780485 PMCID: PMC10541304 DOI: 10.1155/2023/5491682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023]
Abstract
COTE1 was recently described as an oncogene in hepatocellular carcinoma and gastric cancer. However, the roles of COTE1 in intrahepatic cholangiocarcinoma (ICC) are little known. Our study is aimed at clarifying novel functions of COTE1 in ICC progression, including proliferation, invasion, and autophagy. By using quantitative real-time PCR, immunohistochemistry staining, and western blotting, we found that COTE1 expression was frequently upregulated in ICC tissues, compared to paracarcinoma tissues. High COTE1 expression was significantly correlated with aggressive clinical features and predicted poor prognosis of ICC patients. Functional experiments revealed that ectopic COTE1 expression promoted ICC cell proliferation, colony formation, cellular invasion, migration, and in vivo tumorigenicity; in contrast, COTE1 knockdown resulted in the opposite effects. At molecular mechanism in vitro and vivo, our study revealed that COTE1 overexpression suppressed autophagy via Beclin1 transcription inhibition; conversely, COTE1 silencing facilitated autophagy through promoting Beclin1 expression. Furthermore, the suppression of COTE1 knockdown on cellular growth and invasion was rescued/aggravated by Beclin1 inhibition/accumulation. Our data, for the first time, illustrate that COTE1 is an oncogene in ICC pathogenesis, and the ectopic COTE1 expression promotes ICC proliferation and invasion via Beclin1-dependent autophagy inhibition.
Collapse
Affiliation(s)
- Hai Zhang
- Key Laboratory on Living Donor Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Shu Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Sanrong Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiangcheng Li
- Key Laboratory on Living Donor Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
17
|
Xu J, Zheng B, Ma Y, Zhang X, Cheng J, Yang J, Li P, Zhang J, Jing L, Xu F. PI3K-AKT-mTOR signaling pathway regulates autophagy of hippocampal neurons in diabetic rats with chronic unpredictable mild stress. Behav Brain Res 2023; 452:114558. [PMID: 37390967 DOI: 10.1016/j.bbr.2023.114558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
It is reported that the co-morbidities of diabetes and depression will be a new challenge for humanity. However, the underlying mechanism is not clear. The present study investigated the histopathology, autophagy of hippocampal neurons, and the PI3K-AKT- mTOR signaling pathway in type 2 diabetes with depression(T2DD) rats. The results showed that, the chronic unpredictable mild stress (CUMS), Type 2 diabetes mellitus (T2DM) and T2DD in rats were induced successfully. Compared with the CUMS and T2DM groups, the T2DD group performed significantly fewer autonomic activities in the open-field test, and longer immobile in the force swimming test, and increasing of Corticosterone (CORT) in blood. The number of pyknotic neurons at cornu ammonis 1 (CA1) and dentate gyrus (DG) of the hippocampus in T2DD was significantly increased compared with CUMS and T2DM groups. Moreover, compared with the CUMS and T2DM groups, the mitochondrial autophagosomes were most abundant in the T2DD group. As shown in western blot and immunofluorescence, compared with the control group, in the CUMS, T2DM and T2DD groups, significantly increased expression of Beclin-1 and LC3B and decreased P62 were detected. In the PC12 cells, the relative amount of parkin and LC3B in the CORT+HG group was significantly higher than that in the CORT and HG groups. Compared with the control group, p-AKT/AKT and p-mTOR/mTOR in CUMS, T2DM and T2DD groups were significantly decreased. Compared with the CUMS group, p-AKT/AKT, p-PI3K/PI3K and p-mTOR/mTOR in the T2DD group exhibited further decrease. Similar results were obtained in PC12 cells in vitro. It is suggests that memory and cognitive impairment in rats with co-morbidities of diabetes and depression might be related with hippocampal neuronal damage and autophagy increase, which was involved in the PI3K-AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China; Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Bowen Zheng
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Yanmei Ma
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Xiaopeng Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Jianhua Cheng
- Department of Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Yang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Peng Li
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Jianzhong Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China.
| | - Li Jing
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China.
| | - Fang Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Key Laboratory of Reproduction and Genetics, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
18
|
Sun J, Bian Y, Ma Y, Ali W, Wang T, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Melatonin alleviates cadmium-induced nonalcoholic fatty liver disease in ducks by alleviating autophagic flow arrest via PPAR-α and reducing oxidative stress. Poult Sci 2023; 102:102835. [PMID: 37343350 PMCID: PMC10404762 DOI: 10.1016/j.psj.2023.102835] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Cadmium (Cd) is an important environmental pollutant that causes liver damage and induces nonalcoholic fatty liver disease (NAFLD). NAFLD is a fat accumulation disease and has significant effects on the body. Melatonin (Mel) is an endogenous protective molecule with antioxidant, anti-inflammatory, antiobesity, and antiaging effects. However, whether Mel can alleviate Cd-induced NAFLD and its mechanism remains unclear. First, in vivo, we found that Mel maintained mitochondrial structure and function, inhibited oxidative stress, and reduced Cd-induced liver injury. In addition, Mel alleviated lipid accumulation in the liver induced by Cd. In this process, Mel inhibits fatty acid production and promotes fatty acid oxidation. Interestingly, Mel regulated PPAR-α expression and alleviated Cd-induced autophagy blockade. In vitro model, the oil Red O staining, and WB results showed that Mel alleviated Cd-induced lipid accumulation. In addition, RAPA was used to activate autophagy to alleviate Cd-induced lipid accumulation, and TG was used to block autophagy flux to aggravate Cd-induced autophagy accumulation. After knocking down PPAR-α, the autophagosome fusion with lysosomes, and autophagic flux was inhibited and increased Cd-induced lipid accumulation. Mel alleviates mitochondrial damage and oxidative stress, and attenuates Cd-induced NAFLD by restoring the expression of PPAR-α and restoring autophagy flux.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yusheng Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
19
|
Miceli C, Leri M, Stefani M, Bucciantini M. Autophagy-related proteins: Potential diagnostic and prognostic biomarkers of aging-related diseases. Ageing Res Rev 2023; 89:101967. [PMID: 37270146 DOI: 10.1016/j.arr.2023.101967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Autophagy plays a key role in cellular, tissue and organismal homeostasis and in the production of the energy load needed at critical times during development and in response to nutrient shortage. Autophagy is generally considered as a pro-survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy efficiency declines with age, thus contributing to many different pathophysiological conditions, such as cancer, cardiomyopathy, diabetes, liver disease, autoimmune diseases, infections, and neurodegeneration. Accordingly, it has been proposed that the maintenance of a proper autophagic activity contributes to the extension of the lifespan in different organisms. A better understanding of the interplay between autophagy and risk of age-related pathologies is important to propose nutritional and life-style habits favouring disease prevention as well as possible clinical applications aimed at promoting long-term health.
Collapse
Affiliation(s)
- Caterina Miceli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
20
|
Yu Q, Zhang R, Li T, Yang L, Zhou Z, Hou L, Wu W, Zhao R, Chen X, Yao Y, Huang S, Chen L. Mitochondrial Hydrogen Peroxide Activates PTEN and Inactivates Akt Leading to Autophagy Inhibition-Dependent Cell Death in Neuronal Models of Parkinson's Disease. Mol Neurobiol 2023; 60:3345-3364. [PMID: 36853430 PMCID: PMC10924433 DOI: 10.1007/s12035-023-03286-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023]
Abstract
Defective autophagy relates to the pathogenesis of Parkinson's disease (PD), a typical neurodegenerative disease. Our recent study has demonstrated that PD toxins (6-OHDA, MPP+, or rotenone) induce neuronal apoptosis by impeding the AMPK/Akt-mTOR signaling. Here, we show that treatment with 6-OHDA, MPP+, or rotenone triggered decreases of ATG5/LC3-II and autophagosome formation with a concomitant increase of p62 in PC12, SH-SY5Y cells, and primary neurons, suggesting inhibition of autophagy. Interestingly, overexpression of wild-type ATG5 attenuated the inhibitory effect of PD toxins on autophagy, reducing neuronal apoptosis. The effects of PD toxins on autophagy and apoptosis were found to be associated with activation of PTEN and inactivation of Akt. Overexpression of dominant negative PTEN, constitutively active Akt and/or pretreatment with rapamycin rescued the cells from PD toxins-induced downregulation of ATG5/LC3-II and upregulation of p62, as well as consequential autophagosome diminishment and apoptosis in the cells. The effects of PD toxins on autophagy and apoptosis linked to excessive intracellular and mitochondrial hydrogen peroxide (H2O2) production, as evidenced by using a H2O2-scavenging enzyme catalase, a mitochondrial superoxide indicator MitoSOX and a mitochondria-selective superoxide scavenger Mito-TEMPO. Furthermore, we observed that treatment with PD toxins reduced the protein level of Parkin in the cells. Knockdown of Parkin alleviated the effects of PD toxins on H2O2 production, PTEN/Akt activity, autophagy, and apoptosis in the cells, whereas overexpression of wild-type Parkin exacerbated these effects of PD toxins, implying the involvement of Parkin in the PD toxins-induced oxidative stress. Taken together, the results indicate that PD toxins can elicit mitochondrial H2O2, which can activate PTEN and inactivate Akt leading to autophagy inhibition-dependent neuronal apoptosis, and Parkin plays a critical role in this process. Our findings suggest that co-manipulation of the PTEN/Akt/autophagy signaling by antioxidants may be exploited for the prevention of neuronal loss in PD.
Collapse
Affiliation(s)
- Qianyun Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- Department of Biological Sciences, College of Science and Technology, Xinyang University, Xinyang, 464000, People's Republic of China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- College of Life Sciences, Anhui Medical University, Anhui, 230032, People's Republic of China
| | - Tianjing Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Liu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Long Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Wen Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Yajie Yao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA.
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
21
|
Semikasev E, Ahlemeyer B, Acker T, Schänzer A, Baumgart-Vogt E. Rise and fall of peroxisomes during Alzheimer´s disease: a pilot study in human brains. Acta Neuropathol Commun 2023; 11:80. [PMID: 37170361 PMCID: PMC10176950 DOI: 10.1186/s40478-023-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Peroxisomes are eukaryotic organelles that rapidly change in number depending on the metabolic requirement of distinct cell types and tissues. In the brain, these organelles are essential for neuronal migration and myelination during development and their dysfunction is associated with age-related neurodegenerative diseases. Except for one study analysing ABCD3-positive peroxisomes in neurons of the frontal neocortex of Alzheimer disease (AD) patients, no data on other brain regions or peroxisomal proteins are available. In the present morphometric study, we quantified peroxisomes labelled with PEX14, a metabolism-independent peroxisome marker, in 13 different brain areas of 8 patients each either with low, intermediate or high AD neuropathological changes compared to 10 control patients. Classification of patient samples was based on the official ABC score. During AD-stage progression, the peroxisome density decreased in the area entorhinalis, parietal/occipital neocortex and cerebellum, it increased and in later AD-stage patients decreased in the subiculum and hippocampal CA3 region, frontal neocortex and pontine gray and it remained unchanged in the gyrus dentatus, temporal neocortex, striatum and inferior olive. Moreover, we investigated the density of catalase-positive peroxisomes in a subset of patients (> 80 years), focussing on regions with significant alterations of PEX14-positive peroxisomes. In hippocampal neurons, only one third of all peroxisomes contained detectable levels of catalase exhibiting constant density at all AD stages. Whereas the density of all peroxisomes in neocortical neurons was only half of the one of the hippocampus, two thirds of them were catalase-positive exhibiting increased levels at higher ABC scores. In conclusion, we observed spatiotemporal differences in the response of peroxisomes to different stages of AD-associated pathologies.
Collapse
Affiliation(s)
- Eugen Semikasev
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany
- Department of Neurosurgery, University Hospital of Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Barbara Ahlemeyer
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| | - Till Acker
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
22
|
Duan R, Hong CG, Chen ML, Wang X, Pang ZL, Xie H, Liu ZZ. Targeting autophagy receptors OPTN and SQSTM1 as a novel therapeutic strategy for osteoporosis complicated with Alzheimer's disease. Chem Biol Interact 2023; 377:110462. [PMID: 36958424 DOI: 10.1016/j.cbi.2023.110462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
Alzheimer's disease (AD) is a common degenerative disease among the elderly population. In addition to cognitive impairment, AD is often accompanied by behavioral manifestations. However, little attention has been paid to changes in bone metabolism and related mechanisms in patients with AD. We found that AD mice (APPswe/PS1dE9) had reduced bone density, weakened bone strength, and amyloid beta (Aβ) deposition in the bone tissue. It was further found that targeting autophagy receptors Optineurin (OPTN) and Sequestosome 1 (SQSTM1) increased bone density and bone strength in AD mice, promoted the clearance of Aβ in the bone tissue, and maintained bone homeostasis. Our study suggests that abnormal Aβ deposition may be the co-pathogenesis of AD and osteoporosis (OP). Targeting OPTN and SQSTM1 has a dual-functional effect of alleviating both AD and OP through selective autophagy that specifically targets Aβ for clearance. Therapeutic strategies targeting autophagy may help guide the treatment of patients with AD complicated with OP.
Collapse
Affiliation(s)
- Ran Duan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Meng-Lu Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhi-Lin Pang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zheng-Zhao Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
23
|
Alim Al-Bari A, Ito Y, Thomes PG, Menon MB, García-Macia M, Fadel R, Stadlin A, Peake N, Faris ME, Eid N, Klionsky DJ. Emerging mechanistic insights of selective autophagy in hepatic diseases. Front Pharmacol 2023; 14:1149809. [PMID: 37007026 PMCID: PMC10060854 DOI: 10.3389/fphar.2023.1149809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens via the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria (via mitophagy), and lipid droplets (LDs; via lipophagy) or eliminates specialized intracellular pathogenic microorganisms such as hepatitis B virus (HBV) and coronaviruses (via virophagy). Selective autophagy, particularly mitophagy, plays a key role in the preservation of healthy liver physiology, and its dysfunction is connected to the pathogenesis of a wide variety of liver diseases. For example, lipophagy has emerged as a defensive mechanism against chronic liver diseases. There is a prominent role for mitophagy and lipophagy in hepatic pathologies including non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and drug-induced liver injury. Moreover, these selective autophagy pathways including virophagy are being investigated in the context of viral hepatitis and, more recently, the coronavirus disease 2019 (COVID-19)-associated hepatic pathologies. The interplay between diverse types of selective autophagy and its impact on liver diseases is briefly addressed. Thus, modulating selective autophagy (e.g., mitophagy) would seem to be effective in improving liver diseases. Considering the prominence of selective autophagy in liver physiology, this review summarizes the current understanding of the molecular mechanisms and functions of selective autophagy (mainly mitophagy and lipophagy) in liver physiology and pathophysiology. This may help in finding therapeutic interventions targeting hepatic diseases via manipulation of selective autophagy.
Collapse
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Paul G. Thomes
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Manoj B. Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Marina García-Macia
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca-CSIC, Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Raouf Fadel
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Al Manama, Bahrain
| | - Alfreda Stadlin
- Basic Medical Sciences Department, College of Medicine, Ajman university, Ajman, United Arab Emirates
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - MoezAlIslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of MI, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
25
|
Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L, Yan J. Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci 2023; 16:1036313. [PMID: 36726453 PMCID: PMC9884704 DOI: 10.3389/fncel.2022.1036313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is the second-largest stroke subtype and has a high mortality and disability rate. Secondary brain injury (SBI) is delayed after ICH. The main contributors to SBI are inflammation, oxidative stress, and excitotoxicity. Harmful substances from blood and hemolysis, such as hemoglobin, thrombin, and iron, induce SBI. When cells suffer stress, a critical protective mechanism called "autophagy" help to maintain the homeostasis of damaged cells, remove harmful substances or damaged organelles, and recycle them. Autophagy plays a critical role in the pathology of ICH, and its function remains controversial. Several lines of evidence demonstrate a pro-survival role for autophagy in ICH by facilitating the removal of damaged proteins and organelles. However, many studies have found that heme and iron can aggravate SBI by enhancing autophagy. Autophagy and inflammation are essential culprits in the progression of brain injury. It is a fascinating hypothesis that autophagy regulates inflammation in ICH-induced SBI. Autophagy could degrade and clear pro-IL-1β and apoptosis-associated speck-like protein containing a CARD (ASC) to antagonize NLRP3-mediated inflammation. In addition, mitophagy can remove endogenous activators of inflammasomes, such as reactive oxygen species (ROS), inflammatory components, and cytokines, in damaged mitochondria. However, many studies support the idea that autophagy activates microglia and aggravates microglial inflammation via the toll-like receptor 4 (TLR4) pathway. In addition, autophagy can promote ICH-induced SBI through inflammasome-dependent NLRP6-mediated inflammation. Moreover, some resident cells in the brain are involved in autophagy in regulating inflammation after ICH. Some compounds or therapeutic targets that regulate inflammation by autophagy may represent promising candidates for the treatment of ICH-induced SBI. In conclusion, the mutual regulation of autophagy and inflammation in ICH is worth exploring. The control of inflammation by autophagy will hopefully prove to be an essential treatment target for ICH.
Collapse
Affiliation(s)
- Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,Ligen Mo,
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,*Correspondence: Jun Yan,
| |
Collapse
|
26
|
Xu J, Gou S, Huang X, Zhang J, Zhou X, Gong X, Xiong J, Chi H, Yang G. Uncovering the Impact of Aggrephagy in the Development of Alzheimer's Disease: Insights Into Diagnostic and Therapeutic Approaches from Machine Learning Analysis. Curr Alzheimer Res 2023; 20:618-635. [PMID: 38141185 DOI: 10.2174/0115672050280894231214063023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) stands as a widespread neurodegenerative disorder marked by the gradual onset of memory impairment, predominantly impacting the elderly. With projections indicating a substantial surge in AD diagnoses, exceeding 13.8 million individuals by 2050, there arises an urgent imperative to discern novel biomarkers for AD. METHODS To accomplish these objectives, we explored immune cell infiltration and the expression patterns of immune cells and immune function-related genes of AD patients. Furthermore, we utilized the consensus clustering method combined with aggrephagy-related genes (ARGs) for typing AD patients and categorized AD specimens into distinct clusters (C1, C2). A total of 272 candidate genes were meticulously identified through a combination of differential analysis and Weighted Gene Co-Expression Network Analysis (WGCNA). Subsequently, we applied three machine learning algorithms-namely random forest (RF), support vector machine (SVM), and generalized linear model (GLM)-to pinpoint a pathogenic signature comprising five genes associated with AD. To validate the predictive accuracy of these identified genes in discerning AD progression, we constructed nomograms. RESULTS Our analyses uncovered that cluster C2 exhibits a higher immune expression than C1. Based on the ROC(0.956). We identified five characteristic genes (PFKFB4, PDK3, KIAA0319L, CEBPD, and PHC2T) associated with AD immune cells and function. The nomograms constructed on the basis of these five diagnostic genes demonstrated effectiveness. In the validation group, the ROC values were found to be 0.760 and 0.838, respectively. These results validate the robustness and reliability of the diagnostic model, affirming its potential for accurate identification of AD. CONCLUSION Our findings not only contribute to a deeper understanding of the molecular mechanisms underlying AD but also offer valuable insights for drug development and clinical analysis. The limitation of our study is the limited sample size, and although AD-related genes were identified and some of the mechanisms elucidated, further experiments are needed to elucidate the more in-depth mechanisms of these characterized genes in the disease.
Collapse
Affiliation(s)
- Jiayu Xu
- School of Science, Minzu University of China, Beijing, China
| | - Siqi Gou
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xueyuan Huang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuancheng Zhou
- Department of Psychiatry, Southwest Medical University, Luzhou, China
| | - Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
27
|
Peng J, Ghosh D, Zhang F, Yang L, Wu J, Pang J, Zhang L, Yin S, Jiang Y. Advancement of epigenetics in stroke. Front Neurosci 2022; 16:981726. [PMID: 36312038 PMCID: PMC9610114 DOI: 10.3389/fnins.2022.981726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2023] Open
Abstract
A wide plethora of intervention procedures, tissue plasminogen activators, mechanical thrombectomy, and several neuroprotective drugs were reported in stroke research over the last decennium. However, against this vivid background of newly emerging pieces of evidence, there is little to no advancement in the overall functional outcomes. With the advancement of epigenetic tools and technologies associated with intervention medicine, stroke research has entered a new fertile. The stroke involves an overabundance of inflammatory responses arising in part due to the body's immune response to brain injury. Neuroinflammation contributes to significant neuronal cell death and the development of functional impairment and even death in stroke patients. Recent studies have demonstrated that epigenetics plays a key role in post-stroke conditions, leading to inflammatory responses and alteration of the microenvironment within the injured tissue. In this review, we summarize the progress of epigenetics which provides an overview of recent advancements on the emerging key role of secondary brain injury in stroke. We also discuss potential epigenetic therapies related to clinical practice.
Collapse
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dipritu Ghosh
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Li KR, Wu AG, Tang Y, He XP, Yu CL, Wu JM, Hu GQ, Yu L. The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review. Mol Neurobiol 2022; 59:5935-5954. [PMID: 35829831 DOI: 10.1007/s12035-022-02944-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.
Collapse
Affiliation(s)
- Ke-Ru Li
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Peng He
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Guang-Qiang Hu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
29
|
Cell Autophagy in NASH and NASH-Related Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23147734. [PMID: 35887082 PMCID: PMC9322157 DOI: 10.3390/ijms23147734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a cellular self-digestion process, involves the degradation of targeted cell components such as damaged organelles, unfolded proteins, and intracellular pathogens by lysosomes. It is a major quality control system of the cell and plays an important role in cell differentiation, survival, development, and homeostasis. Alterations in the cell autophagic machinery have been implicated in several disease conditions, including neurodegeneration, autoimmunity, cancer, infection, inflammatory diseases, and aging. In non-alcoholic fatty liver disease, including its inflammatory form, non-alcoholic steatohepatitis (NASH), a decrease in cell autophagic activity, has been implicated in the initial development and progression of steatosis to NASH and hepatocellular carcinoma (HCC). We present an overview of autophagy as it occurs in mammalian cells with an insight into the emerging understanding of the role of autophagy in NASH and NASH-related HCC.
Collapse
|
30
|
Liu M, Zhou X, Li Y, Ma S, Pan L, Zhang X, Zheng W, Wu Z, Wang K, Ahsan A, Wu J, Jiang L, Lu Y, Hu W, Qin Z, Chen Z, Zhang X. TIGAR alleviates oxidative stress in brain with extended ischemia via a pentose phosphate pathway-independent manner. Redox Biol 2022; 53:102323. [PMID: 35576689 PMCID: PMC9118922 DOI: 10.1016/j.redox.2022.102323] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 01/18/2023] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) alleviates oxidative stress and protects against ischemic neuronal injury by shifting glucose metabolism into the pentose phosphate pathway (PPP). However, the brain alters glucose metabolism from PPP to glycolysis during prolonged ischemia. It is still unknown whether and how TIGAR exerts the antioxidant activity and neuroprotection in prolonged ischemic brains. Here, we determined the significant upregulation of TIGAR that was proportional to the duration of ischemia. However, TIGAR failed to upregulate the NADPH level but still alleviated oxidative stress in neuronal cells with prolonged oxygen glucose-deprivation (OGD). Furthermore, inhibiting PPP activity, either by the expression of mutant TIGAR (which lacks enzymatic activity) or by silencing Glucose 6-phosphate dehydrogenase, still retained antioxidant effects and neuroprotection of TIGAR with prolonged OGD. Intriguingly, TIGAR-induced autophagy alleviated oxidative stress, contributing to neuron survival. Further experiments indicated that TIGAR-induced autophagy neutralized oxidative stress by activating Nrf2, which was cancelled by ML385 or Nrf2 knockdown. Remarkably, either Atg7 deletion or Nrf2 silencing abolished the neuroprotection of TIGAR in mice with prolonged ischemia. Taken together, we found a PPP-independent pathway in which TIGAR alleviates oxidative stress. TIGAR induces autophagy and, thus, activates Nrf2, offering sustainable antioxidant defense in brains with extended ischemia. This previously unexplored mechanism of TIGAR may serve as a critical compensation for antioxidant activity caused by the lack of glucose in ischemic stroke. We identified a PPP-independent mechanism of TIGAR to neutralize ROS in neurons with extended ischemia. In neuronal cells with prolonged ischemia, TIGAR-induced autophagy alleviated oxidative stress. TIGAR-induced autophagy activated Nrf2, which compensated for the poor NADPH generation with prolonged ischemia.
Collapse
|
31
|
Novel Therapeutic Strategies for Ischemic Stroke: Recent Insights into Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3450207. [PMID: 35720192 PMCID: PMC9200548 DOI: 10.1155/2022/3450207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Stroke is one of the leading causes of death and disability worldwide. Autophagy is a conserved cellular catabolic pathway that maintains cellular homeostasis by removal of damaged proteins and organelles, which is critical for the maintenance of energy and function homeostasis of cells. Accumulating evidence demonstrates that autophagy plays important roles in pathophysiological mechanisms under ischemic stroke. Previous investigations show that autophagy serves as a “double-edged sword” in ischemic stroke as it can either promote the survival of neuronal cells or induce cell death in special conditions. Following ischemic stroke, autophagy is activated or inhibited in several cell types in brain, including neurons, astrocytes, and microglia, as well as microvascular endothelial cells, which involves in inflammatory activation, modulation of microglial phenotypes, and blood-brain barrier permeability. However, the exact mechanisms of underlying the role of autophagy in ischemic stroke are not fully understood. This review focuses on the recent advances regarding potential molecular mechanisms of autophagy in different cell types. The focus is also on discussing the “double-edged sword” effect of autophagy in ischemic stroke and its possible underlying mechanisms. In addition, potential therapeutic strategies for ischemic stroke targeting autophagy are also reviewed.
Collapse
|
32
|
Wei W, Pan Y, Yang X, Chen Z, Heng Y, Yang B, Pu M, Zuo J, Lai Z, Tang Y, Xin W. The Emerging Role of the Interaction of Extracellular Vesicle and Autophagy-Novel Insights into Neurological Disorders. J Inflamm Res 2022; 15:3395-3407. [PMID: 35706531 PMCID: PMC9191200 DOI: 10.2147/jir.s362865] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells release different types of extracellular vesicles (EVs), including exosomes, apoptotic bodies and microvesicles. EVs carry proteins, lipids and nucleic acids specific to cells and cell states. Autophagy is an intracellular degradation process, which, along with EVs, can significantly affect the development and progression of neurological diseases and, therefore, has been the hotspot. Generally, EVs and autophagy are closely associated. EVs and autophagy can interact with each other. On the one hand, the level of autophagy in target cells is closely related to the secretion and transport of EVs. In another, the application of EVs provides a great opportunity for adjuvant treatment of neurological disorders, for which autophagy is an excellent target. EVs can release their cargos into target cells, which, in turn, regulate the autophagic level of target cells through autophagy-related proteins directly and the non-coding RNA, signal transducer and activator of transcription 3 (STAT3), phosphodiesterase enzyme (PDE) 1-B, etc. signaling pathways indirectly, thus regulating the development of related neurological disorders.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Zhonglun Chen
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Yue Heng
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Bufan Yang
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Mingjun Pu
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Jiacai Zuo
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Zhuhong Lai
- Department of Cardiology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Yufeng Tang
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
33
|
Transcutaneous Electrical Acupoint Stimulation Ameliorates Cognitive Function through PINK1/Parkin Mediated Mitophagy in VD Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2810794. [PMID: 35692579 PMCID: PMC9187477 DOI: 10.1155/2022/2810794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
In this study, we investigated whether transcutaneous electrical acupoint stimulation (TEAS) could improve cognitive function in VD rats by regulating PINK1/Parkin-mediated mitophagy. VD rat model was prepared by modified 2-vessel occlusion (2-VO) and randomly divided into four groups: Sham group (Sham), Model group (Model), TEAS group (TEAS), and TEAS + 3-MA group (T +3 -MA). In the T +3 -MA group, autophagy inhibitor (3-MA) was injected into the lateral ventricle. After modeling, Y maze (YM), new object recognition test (NORT), Morris water maze (MWM), immunofluorescence, and Western blot were used to observe the effects of TEAS on VD rats. Behavioral experiments revealed that TEAS effectively improved the learning and memory ability of VD rats. Immunofluorescence results showed that TEAS could upregulate LC3 expression. Western blot results showed that TEAS upregulated the expression of PINK1, Parkin, and LC3-II, and downregulated the expression of LC3-I and p62 in VD rats. T +3 -MA group shows the opposite trend to TEAS group. This study demonstrates that TEAS ameliorates cognitive function through PINK1/Parkin-mediated mitophagy in VD rats.
Collapse
|
34
|
Qin Q, Gu Z, Li F, Pan Y, Zhang T, Fang Y, Zhang L. A Diagnostic Model for Alzheimer’s Disease Based on Blood Levels of Autophagy-Related Genes. Front Aging Neurosci 2022; 14:881890. [PMID: 35645767 PMCID: PMC9133665 DOI: 10.3389/fnagi.2022.881890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disease. The major problems that exist in the diagnosis of AD include the costly examinations and the high-invasive sampling tissue. Therefore, it would be advantageous to develop blood biomarkers. Because AD’s pathological process is considered tightly related to autophagy; thus, a diagnostic model for AD based on ATGs may have more predictive accuracy than other models. We obtained GSE63060 dataset from the GEO database, ATGs from the HADb and screened 64 differentially expressed autophagy-related genes (DE-ATGs). We then applied them to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses as well as DisGeNET and PaGenBase enrichment analyses. By using the univariate analysis, least absolute shrinkage and selection operator (LASSO) regression method and the multivariable logistic regression, nine DE-ATGs were identified as biomarkers, which are ATG16L2, BAK1, CAPN10, CASP1, RAB24, RGS19, RPS6KB1, ULK2, and WDFY3. We combined them with sex and age to establish a nomogram model. To evaluate the model’s distinguishability, consistency, and clinical applicability, we applied the receiver operating characteristic (ROC) curve, C-index, calibration curve, and on the validation datasets GSE63061, GSE54536, GSE22255, and GSE151371 from GEO database. The results show that our model demonstrates good prediction performance. This AD diagnosis model may benefit both clinical work and mechanistic research.
Collapse
Affiliation(s)
- Qiangqiang Qin
- Second Institute of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Zhanfeng Gu
- Second Institute of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Fei Li
- Second Institute of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yanbing Pan
- Second Institute of Clinical Medicine, Anhui Medical University, Hefei, China
| | - TianXiang Zhang
- Second Institute of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yang Fang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Lesha Zhang, , orcid.org/0000-0002-8602-8156
| |
Collapse
|
35
|
Rahman MA, Rahman MDH, Mamun-Or-Rashid ANM, Hwang H, Chung S, Kim B, Rhim H. Autophagy Modulation in Aggresome Formation: Emerging Implications and Treatments of Alzheimer's Disease. Biomedicines 2022; 10:1027. [PMID: 35625764 PMCID: PMC9138936 DOI: 10.3390/biomedicines10051027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative diseases in the world, which is characterized by memory dysfunction and the formation of tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The formation of senile plaques involving tau hyperphosphorylation, fibrillar Aβ, and neurofibrillary tangles (NFTs) is used as a pathological marker of AD and eventually produces aggregation or misfolded protein. Importantly, it has been found that the failure to degrade these aggregate-prone proteins leads to pathological consequences, such as synaptic impairment, cytotoxicity, neuronal atrophy, and memory deficits associated with AD. Recently, increasing evidence has suggested that the autophagy pathway plays a role as a central cellular protection system to prevent the toxicity induced by aggregation or misfolded proteins. Moreover, it has also been revealed that AD-related protein aggresomes could be selectively degraded by autophagosome and lysosomal fusion through the autophagy pathway, which is known as aggrephagy. Therefore, the regulation of autophagy serve as a useful approach to modulate the formation of aggresomes associated with AD. This review focuses on the recent improvements in the application of natural compounds and small molecules as a potential therapeutic approach for AD prevention and treatment via aggrephagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - M D Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - A N M Mamun-Or-Rashid
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 602-8566, Japan
| | - Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Sooyoung Chung
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| |
Collapse
|
36
|
Qinlin F, Bingqiao W, Linlin H, Peixia S, Lexing X, Lijun Y, Qingwu Y. miR-129-5p targets FEZ1/SCOC/ULK1/NBR1 complex to restore neuronal function in mice with post-stroke depression. Bioengineered 2022; 13:9708-9728. [PMID: 35435132 PMCID: PMC9191875 DOI: 10.1080/21655979.2022.2059910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Post-stroke depression (PSD) seriously affects the normal life of patients. Based on the previous sequencing results, this study selected miR-129-5p as the research object, which was significantly reduced in the PSD model by screening. To clarify the regulatory role of miR-129-5p, this study overexpressed and interfered with miR-129-5p in neuronal cells cultured in vitro, tested its effect on neuronal cell autophagy, and determined expressions of fasciculation and elongation protein zeta-1 (FEZ1), short coiled-coil protein (SCOC), unc-51 like autophagy activating kinase 1 (ULK1) and autophagy cargo receptor (NBR1) autophagy-related proteins. The dual-luciferase reporter system and immunoprecipitation were applied to detect the molecular regulatory mechanism of miR-129-5 and FEZ1, SCOC, ULK1 and NBR1. Findings of the present study revealed that the autophagy of neuronal cells was markedly decreased by overexpressing miR-129-5p (p < 0.05), and expressions of FEZ1, SCOC, ULK1 and NBR1 were substantially reduced (p < 0.05). The dual-luciferase reporter system results indicated that FEZ1, SCOC, ULK1 and NBR1 were all miR-129-5p target genes. Furthermore, immunoprecipitation assay revealed that SCOC, ULK1 and NBR1 could directly bind to the FEZ1 protein. The experiments at an animal level demonstrated that miR-129-5p could effectively alleviate the behavioral indicators of PSD model mice. Taken together, this study testified that SCOC/ULK1/NBR1 proteins could directly bind to FEZ1 to form protein complex, and all of the four proteins FEZ1/SCOC/ULK1/NBR1 were miR-129-5p target genes. miR-129-5p overexpression could effectively restore the behavioral characteristics of model mice, and reduce the autophagy-related proteins FEZ1/SCOC/ULK1/NBR1.
Collapse
Affiliation(s)
- Fan Qinlin
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Wang Bingqiao
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Hu Linlin
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Shi Peixia
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Xie Lexing
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| | - Yang Lijun
- Department of General orthopedics, Chongqing Public Health Medical Treatment Center, Chongqing, China
| | - Yang Qingwu
- Department of Neurology, Second Affiliated Hospital of Army Medical UniversityChongqing, China
| |
Collapse
|
37
|
Plin5 Bidirectionally Regulates Lipid Metabolism in Oxidative Tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4594956. [PMID: 35401929 PMCID: PMC8989587 DOI: 10.1155/2022/4594956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022]
Abstract
Cytoplasmic lipid droplets (LDs) can store neutral lipids as an energy source when needed and also regulate the key metabolic processes of intracellular lipid accumulation, which is associated with several metabolic diseases. The perilipins (Plins) are a family of proteins that associate with the surface of LDs. As a member of Plins superfamily, perilipin 5 (Plin5) coats LDs in cardiomyocytes, which is significantly related to reactive oxygen species (ROS) production originated from mitochondria in the heart, consequently determining the progression of diabetic cardiomyopathy. Plin5 may play a bidirectional function in lipid metabolism which is in a state of dynamic balance. In the basic state, Plin5 inhibited the binding of comparative gene identification-58 (CGI-58) to adipose triglyceride lipase (ATGL) by binding CGI-58, thus inhibiting lipolysis. However, when the body is under stress (such as cold, fasting, exercise, and other stimuli), protein kinase A (PKA) phosphorylates and activates Plin5, which then causes Plin5 to release the binding site of CGI-58 and ATGL, prompting CGI-58 to bind to ATGL and activate ATGL activity, thus accelerating the lipolysis process, revealing the indispensable role of Plin5 in lipid turnover. Here, the purpose of this review is to summarize the present understanding of the bidirectional regulation role of Plin5 in oxidative tissues and to reveal its potential role in diabetic cardiomyopathy protection.
Collapse
|
38
|
Zhang H, Xie Q, Hu J. Neuroprotective Effect of Physical Activity in Ischemic Stroke: Focus on the Neurovascular Unit. Front Cell Neurosci 2022; 16:860573. [PMID: 35317197 PMCID: PMC8934401 DOI: 10.3389/fncel.2022.860573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is one of the major diseases associated with death or disability among patients. To date, there is a lack of effective treatments, with the exception of thrombolytic therapy that can be administered during the acute phase of ischemic stroke. Cerebral ischemia can cause a variety of pathological changes, including microvascular basal membrane matrix, endothelial cell activation, and astrocyte adhesion, which may affect signal transduction between the microvessels and neurons. Therefore, researchers put forward the concept of neurovascular unit, including neurons, axons, astrocytes, microvasculature (including endothelial cells, basal membrane matrix, and pericyte), and oligodendrocytes. Numerous studies have demonstrated that exercise can produce protective effects in cerebral ischemia, and that exercise may protect the integrity of the blood-brain barrier, promote neovascularization, reduce neuronal apoptosis, and eventually lead to an improvement in neurological function after cerebral ischemia. In this review, we summarized the potential mechanisms on the effect of exercise on cerebral ischemia, by mainly focusing on the neurovascular unit, with the aim of providing a novel therapeutic strategy for future treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hui Zhang
- School of Physical Education, Nanchang University, Nanchang, China
| | - Qi Xie
- Inpatient Department, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Juan Hu
- Yu Quan dao Health Center, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Juan Hu,
| |
Collapse
|
39
|
Role of Mitophagy in the Pathogenesis of Stroke: From Mechanism to Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6232902. [PMID: 35265262 PMCID: PMC8898771 DOI: 10.1155/2022/6232902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria can supply adenosine triphosphate (ATP) to the tissue, which can regulate metabolism during the pathologic process and is also involved in the pathophysiology of neuronal injury after stroke. Recent studies have suggested that selective autophagy could play important roles in the pathophysiological process of stroke, especially mitophagy. It is usually mediated by the PINK1/Parkin-independent pathway or PINK1/Parkin-dependent pathway. Moreover, mitophagy may be a potential target in the therapy of stroke because the control of mitophagy is neuroprotective in stroke in vitro and in vivo. In this review, we briefly summarize recent researches in mitophagy, introduce the role of mitophagy in the pathogenesis of stroke, then highlight the strategies targeting mitophagy in the treatment of stroke, and finally propose several issues in the treatment of stroke by targeting mitophagy.
Collapse
|
40
|
Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules 2022; 12:biom12030371. [PMID: 35327563 PMCID: PMC8945730 DOI: 10.3390/biom12030371] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s and Parkinson’s diseases are the two most common forms of neurodegenerative diseases. The exact etiology of these disorders is not well known; however, environmental, molecular, and genetic influences play a major role in the pathogenesis of these diseases. Using Alzheimer’s disease (AD) as the archetype, the pathological findings include the aggregation of Amyloid Beta (Aβ) peptides, mitochondrial dysfunction, synaptic degradation caused by inflammation, elevated reactive oxygen species (ROS), and cerebrovascular dysregulation. This review highlights the neuroinflammatory and neuroprotective role of epigallocatechin-3-gallate (EGCG): the medicinal component of green tea, a known nutraceutical that has shown promise in modulating AD progression due to its antioxidant, anti-inflammatory, and anti-aging abilities. This report also re-examines the current literature and provides innovative approaches for EGCG to be used as a preventive measure to alleviate AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashley Payne
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Samuel Nahashon
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA;
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
- Correspondence: ; Tel.: +1850-322-8788
| |
Collapse
|
41
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
42
|
Wang Z, Huang J, Yang SP, Weaver DF. Anti-Inflammatory Anthranilate Analogue Enhances Autophagy through mTOR and Promotes ER-Turnover through TEX264 during Alzheimer-Associated Neuroinflammation. ACS Chem Neurosci 2022; 13:406-422. [PMID: 35061945 DOI: 10.1021/acschemneuro.1c00818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy degrades impaired organelles and toxic proteins to maintain cellular homeostasis. Dysregulated autophagy is a pathogenic participant in Alzheimer's disease (AD) progression. In early-stage AD, autophagy is beneficially initiated by mild endoplasmic reticulum (ER) stress to alleviate cellular damage and inflammation. However, chronic overproduction of toxic Aβ oligomers eventually causes Ca2+ dysregulation in the ER, subsequently elevating ER-stress and impairing autophagy. Our previous work showed that a novel anthranilate analogue (SI-W052) inhibited lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 on microglia. To investigate its mechanism of action, herein, we postulate that SI-W052 exhibits anti-inflammatory activity through ER-stress-mediated autophagy. We initially demonstrate that autophagy inhibits inflammation, but it becomes impaired during acute inflammation. SI-W052 significantly induces the conversion ratio of LC3 II/I and inhibits LPS-upregulated p-mTOR, thereby restoring impaired autophagy to modulate inflammation. Our signaling study further indicates that SI-W052 inhibits the upregulation of ER-stress marker genes, including Atf4 and sXbp1/tXbp1, explaining compound activity against IL-6. This evidence encouraged us to evaluate ER-stress-triggered ER-phagy using TEX264. ER-phagy mediates ER-turnover by the degradation of ER fragments to maintain homeostasis. TEX264 is an important ER-phagy receptor involved in ATF4-mediated ER-phagy under ER-stress. In our study, elevated TEX264 degradation is identified during inflammation; SI-W052 enhances TEX264 expression, producing a positive effect in ER-turnover. Our knockdown experiment further verifies the important role of TEX264 in SI-W052 activity against IL-6 and ER-stress. In conclusion, this study demonstrates that an anthranilate analogue is a novel neuroinflammation agent functioning through ER-stress-mediated autophagy and ER-phagy mechanisms.
Collapse
Affiliation(s)
- Zhiyu Wang
- Krembil Research Institute, Toronto M5T 0S8, Canada
- Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Junbo Huang
- Krembil Research Institute, Toronto M5T 0S8, Canada
| | | | - Donald F. Weaver
- Krembil Research Institute, Toronto M5T 0S8, Canada
- Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toront M5S 3H6, Canada
| |
Collapse
|
43
|
Zheng Y, Yu Y, Chen XF, Yang SL, Tang XL, Xiang ZG. Intestinal Macrophage Autophagy and its Pharmacological Application in Inflammatory Bowel Disease. Front Pharmacol 2021; 12:803686. [PMID: 34899362 PMCID: PMC8652230 DOI: 10.3389/fphar.2021.803686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn’s disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory disorders. IBD is regarded as a severe healthcare problem worldwide, with high morbidity and lethality. So far, despite of numerous studies on this issue, the specific mechanisms of IBD still remain unclarified and ideal treatments are not available for IBD. The intestinal mucosal barrier is vital for maintaining the function of the intestinal self-defensive system. Among all of the components, macrophage is an important one in the intestinal self-defensive system, normally protecting the gut against exotic invasion. However, the over-activation of macrophages in pathological conditions leads to the overwhelming induction of intestinal inflammatory and immune reaction, thus damaging the intestinal functions. Autophagy is an important catabolic mechanism. It has been proven to participate the regulation of various kinds of inflammation- and immune-related disorders via the regulation of inflammation in related cells. Here in this paper, we will review the role and mechanism of intestinal macrophage autophagy in IBD. In addition, several well-studied kinds of agents taking advantage of intestinal macrophage autophagy for the treatment of IBD will also be discussed. We aim to bring novel insights in the development of therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Yang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xu-Feng Chen
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Sheng-Lan Yang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Xiao-Long Tang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Zheng-Guo Xiang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| |
Collapse
|
44
|
Zhang T, Li J, Zhao G. Quality Control Mechanisms of Mitochondria: Another Important Target for Treatment of Peripheral Neuropathy. DNA Cell Biol 2021; 40:1513-1527. [PMID: 34851723 DOI: 10.1089/dna.2021.0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria provide energy for various cellular activities and are involved in the regulating of several physiological and pathological processes. Mitochondria constitute a dynamic network regulated by numerous quality control mechanisms; for example, division is necessary for mitochondria to develop, and fusion dilutes toxins produced by the mitochondria. Mitophagy removes damaged mitochondria. The etiologies of peripheral neuropathy include congenital and acquired diseases, and the pathogenesis varies; however, oxidative stress caused by mitochondrial damage is the accepted pathogenesis of peripheral neuropathy. Regulation and control of mitochondrial quality might point the way toward potential treatments for peripheral neuropathy. This article will review mitochondrial quality control mechanisms, their involvement in peripheral nerve diseases, and their potential therapeutic role.
Collapse
Affiliation(s)
- Te Zhang
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Jiannan Li
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Guoqing Zhao
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
45
|
Cattelani C, Lesiak D, Liebscher G, Singer II, Stasyk T, Wallnöfer MH, Heberle AM, Corti C, Hess MW, Pfaller K, Kwiatkowski M, Pramstaller PP, Hicks AA, Thedieck K, Müller T, Huber LA, Eca Guimaraes de Araujo M. The SZT2 Interactome Unravels New Functions of the KICSTOR Complex. Cells 2021; 10:2711. [PMID: 34685691 PMCID: PMC8534408 DOI: 10.3390/cells10102711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Seizure threshold 2 (SZT2) is a component of the KICSTOR complex which, under catabolic conditions, functions as a negative regulator in the amino acid-sensing branch of mTORC1. Mutations in this gene cause a severe neurodevelopmental and epileptic encephalopathy whose main symptoms include epilepsy, intellectual disability, and macrocephaly. As SZT2 remains one of the least characterized regulators of mTORC1, in this work we performed a systematic interactome analysis under catabolic and anabolic conditions. Besides numerous mTORC1 and AMPK signaling components, we identified clusters of proteins related to autophagy, ciliogenesis regulation, neurogenesis, and neurodegenerative processes. Moreover, analysis of SZT2 ablated cells revealed increased mTORC1 signaling activation that could be reversed by Rapamycin or Torin treatments. Strikingly, SZT2 KO cells also exhibited higher levels of autophagic components, independent of the physiological conditions tested. These results are consistent with our interactome data, in which we detected an enriched pool of selective autophagy receptors/regulators. Moreover, preliminary analyses indicated that SZT2 alters ciliogenesis. Overall, the data presented form the basis to comprehensively investigate the physiological functions of SZT2 that could explain major molecular events in the pathophysiology of developmental and epileptic encephalopathy in patients with SZT2 mutations.
Collapse
Affiliation(s)
- Cecilia Cattelani
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.C.); (D.L.); (G.L.); (I.I.S.); (T.S.); (M.H.W.); (L.A.H.)
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy; (C.C.); (P.P.P.); (A.A.H.)
| | - Dominik Lesiak
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.C.); (D.L.); (G.L.); (I.I.S.); (T.S.); (M.H.W.); (L.A.H.)
| | - Gudrun Liebscher
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.C.); (D.L.); (G.L.); (I.I.S.); (T.S.); (M.H.W.); (L.A.H.)
| | - Isabel I. Singer
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.C.); (D.L.); (G.L.); (I.I.S.); (T.S.); (M.H.W.); (L.A.H.)
| | - Taras Stasyk
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.C.); (D.L.); (G.L.); (I.I.S.); (T.S.); (M.H.W.); (L.A.H.)
| | - Moritz H. Wallnöfer
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.C.); (D.L.); (G.L.); (I.I.S.); (T.S.); (M.H.W.); (L.A.H.)
| | - Alexander M. Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria; (A.M.H.); (M.K.); (K.T.)
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy; (C.C.); (P.P.P.); (A.A.H.)
| | - Michael W. Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.W.H.); (K.P.)
| | - Kristian Pfaller
- Institute of Histology and Embryology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.W.H.); (K.P.)
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria; (A.M.H.); (M.K.); (K.T.)
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy; (C.C.); (P.P.P.); (A.A.H.)
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy; (C.C.); (P.P.P.); (A.A.H.)
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria; (A.M.H.); (M.K.); (K.T.)
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Lukas A. Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.C.); (D.L.); (G.L.); (I.I.S.); (T.S.); (M.H.W.); (L.A.H.)
- Austrian Drug Screening Institute, ADSI, 6020 Innsbruck, Austria
| | - Mariana Eca Guimaraes de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.C.); (D.L.); (G.L.); (I.I.S.); (T.S.); (M.H.W.); (L.A.H.)
| |
Collapse
|
46
|
The Role of Autophagy in Anti-Cancer and Health Promoting Effects of Cordycepin. Molecules 2021; 26:molecules26164954. [PMID: 34443541 PMCID: PMC8400201 DOI: 10.3390/molecules26164954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Cordycepin is an adenosine derivative isolated from Cordyceps sinensis, which has been used as an herbal complementary and alternative medicine with various biological activities. The general anti-cancer mechanisms of cordycepin are regulated by the adenosine A3 receptor, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), and glycogen synthase kinase (GSK)-3β, leading to cell cycle arrest or apoptosis. Notably, cordycepin also induces autophagy to trigger cell death, inhibits tumor metastasis, and modulates the immune system. Since the dysregulation of autophagy is associated with cancers and neuron, immune, and kidney diseases, cordycepin is considered an alternative treatment because of the involvement of cordycepin in autophagic signaling. However, the profound mechanism of autophagy induction by cordycepin has never been reviewed in detail. Therefore, in this article, we reviewed the anti-cancer and health-promoting effects of cordycepin in the neurons, kidneys, and the immune system through diverse mechanisms, including autophagy induction. We also suggest that formulation changes for cordycepin could enhance its bioactivity and bioavailability and lower its toxicity for future applications. A comprehensive understanding of the autophagy mechanism would provide novel mechanistic insight into the anti-cancer and health-promoting effects of cordycepin.
Collapse
|
47
|
Yang B, Li Y, Ma Y, Zhang X, Yang L, Shen X, Zhang J, Jing L. Selenium attenuates ischemia/reperfusion injury‑induced damage to the blood‑brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway‑mediated autophagy inhibition. Int J Mol Med 2021; 48:178. [PMID: 34296284 PMCID: PMC8354314 DOI: 10.3892/ijmm.2021.5011] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and disability. Diabetes mellitus, characterized by hyperglycemia, is a common concomitant disease of ischemic stroke, which is associated with autophagy dysfunction and blood‑brain barrier (BBB) damage following cerebral ischemia/reperfusion (I/R) injury. At present, there is no effective treatment strategy for the disease. The purpose of the present study was to explore the molecular mechanisms underlying the protective effects of selenium on the BBB following I/R injury in hyperglycemic rats. Middle cerebral artery occlusion was performed in diabetic Sprague‑Dawley rats. Treatment with selenium and the autophagy inhibitor 3‑methyladenine significantly reduced cerebral infarct volume, brain water content and Evans blue leakage, while increasing the expression of tight junction (TJ) proteins and decreasing that of autophagy‑related proteins (P<0.05). In addition, selenium increased the phosphorylation levels of PI3K, AKT and mTOR (P<0.05). A mouse bEnd.3 brain microvascular endothelial cell line was co‑cultured in vitro with an MA‑h mouse astrocyte‑hippocampal cell line to simulate the BBB. The cells were then subjected to hyperglycemia, followed by oxygen‑glucose deprivation for 1 h and reoxygenation for 24 h. It was revealed that selenium increased TJ protein levels, reduced BBB permeability, decreased autophagy levels and enhanced the expression of phosphorylated (p)‑AKT/AKT and p‑mTOR/mTOR proteins (P<0.05). Treatment with wortmannin (an inhibitor of PI3K) significantly prevented the beneficial effects of selenium on the BBB, whereas insulin‑like growth factor 1 (a PI3K activator) mimicked the effects of selenium. In conclusion, the present findings indicated that selenium can inhibit autophagy by regulating the PI3K/AKT/mTOR signaling pathway, significantly preventing BBB damage following cerebral I/R injury in hyperglycemic conditions.
Collapse
Affiliation(s)
- Biao Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yaqiong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yanmei Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaopeng Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lan Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xilin Shen
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jianzhong Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Li Jing
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
48
|
Guo Q, Wang B, Wang X, Smith WW, Zhu Y, Liu Z. Activation of Nrf2 in Astrocytes Suppressed PD-Like Phenotypes via Antioxidant and Autophagy Pathways in Rat and Drosophila Models. Cells 2021; 10:1850. [PMID: 34440619 PMCID: PMC8394528 DOI: 10.3390/cells10081850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The oxidative-stress-induced impairment of autophagy plays a critical role in the pathogenesis of Parkinson's disease (PD). In this study, we investigated whether the alteration of Nrf2 in astrocytes protected against 6-OHDA (6-hydroxydopamine)- and rotenone-induced PD-like phenotypes, using 6-OHDA-induced rat PD and rotenone-induced Drosophila PD models. In the PD rat model, we found that Nrf2 expression was significantly higher in astrocytes than in neurons. CDDO-Me (CDDO methyl ester, an Nrf2 inducer) administration attenuated PD-like neurodegeneration mainly through Nrf2 activation in astrocytes by activating the antioxidant signaling pathway and enhancing autophagy in the substantia nigra and striatum. In the PD Drosophila model, the overexpression of Nrf2 in glial cells displayed more protective effects than such overexpression in neurons. Increased Nrf2 expression in glial cells significantly reduced oxidative stress and enhanced autophagy in the brain tissue. The administration of the Nrf2 inhibitor ML385 reduced the neuroprotective effect of Nrf2 through the inhibition of the antioxidant signaling pathway and autophagy pathway. The autophagy inhibitor 3-MA partially reduced the neuroprotective effect of Nrf2 through the inhibition of the autophagy pathway, but not the antioxidant signaling pathway. Moreover, Nrf2 knockdown caused neurodegeneration in flies. Treatment with CDDO-Me attenuated the Nrf2-knockdown-induced degeneration in the flies through the activation of the antioxidant signaling pathway and increased autophagy. An autophagy inducer, rapamycin, partially rescued the neurodegeneration in Nrf2-knockdown Drosophila by enhancing autophagy. Our results indicate that the activation of the Nrf2-linked signaling pathways in glial cells plays an important neuroprotective role in PD models. Our findings not only provide a novel insight into the mechanisms of Nrf2-antioxidant-autophagy signaling, but also provide potential targets for PD interventions.
Collapse
Affiliation(s)
- Qing Guo
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| | - Bing Wang
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| | - Xiaobo Wang
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| | - Wanli W. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Yi Zhu
- Department of Pharmacology, Medical School of Soochow University, Suzhou 215123, China
| | - Zhaohui Liu
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| |
Collapse
|
49
|
Whole Blood Transcriptome Characterization of 3xTg-AD Mouse and Its Modulation by Transcranial Direct Current Stimulation (tDCS). Int J Mol Sci 2021; 22:ijms22147629. [PMID: 34299250 PMCID: PMC8306644 DOI: 10.3390/ijms22147629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/05/2022] Open
Abstract
The 3xTg-AD mouse is a widely used model in the study of Alzheimer’s Disease (AD). It has been extensively characterized from both the anatomical and behavioral point of view, but poorly studied at the transcriptomic level. For the first time, we characterize the whole blood transcriptome of the 3xTg-AD mouse at three and six months of age and evaluate how its gene expression is modulated by transcranial direct current stimulation (tDCS). RNA-seq analysis revealed 183 differentially expressed genes (DEGs) that represent a direct signature of the genetic background of the mouse. Moreover, in the 6-month-old 3xTg-AD mice, we observed a high number of DEGs that could represent good peripheral biomarkers of AD symptomatology onset. Finally, tDCS was associated with gene expression changes in the 3xTg-AD, but not in the control mice. In conclusion, this study provides an in-depth molecular characterization of the 3xTg-AD mouse and suggests that blood gene expression can be used to identify new biomarkers of AD progression and treatment effects.
Collapse
|
50
|
Li M, Guo J, Wang H, Li Y. Involvement of Mitochondrial Dynamics and Mitophagy in Sevoflurane-Induced Cell Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685468. [PMID: 33728028 PMCID: PMC7937461 DOI: 10.1155/2021/6685468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
General anesthesia is a powerful and indispensable tool to ensure the accomplishment of surgical procedures or clinical examinations. Sevoflurane as an inhalational anesthetic without unpleasant odor is commonly used in clinical practice, especially for pediatric surgery. However, the toxicity caused by sevoflurane has gained growing attention. Mitochondria play a key role in maintaining cellular metabolism and survival. To maintain the stability of mitochondrial homeostasis, they are constantly going through fusion and fission. Also, damaged mitochondria need to be degraded by autophagy, termed as mitophagy. Accumulating evidence proves that sevoflurane exposure in young age could lead to cell toxicity by triggering the mitochondrial pathway of apoptosis, inducing the abnormalities of mitochondrial dynamics and mitophagy. In the present review, we focus on the current understanding of mitochondrial apoptosis, dynamics and mitophagy in cell function, the implications for cell toxicity in response to sevoflurane, and their underlying potential mechanisms.
Collapse
Affiliation(s)
- Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei Province, China
| | - Jiguang Guo
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei Province, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei Province, China
- Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
| | - Yuzhen Li
- Department of Pathophysiology, Graduate School of PLA General Hospital, Beijing, China
| |
Collapse
|