1
|
Méndez-García A, García-Mendoza MA, Zárate-Peralta CP, Flores-Perez FV, Carmona-Ramirez LF, Pathak S, Banerjee A, Duttaroy AK, Paul S. Mitochondrial microRNAs (mitomiRs) as emerging biomarkers and therapeutic targets for chronic human diseases. Front Genet 2025; 16:1555563. [PMID: 40352788 PMCID: PMC12061977 DOI: 10.3389/fgene.2025.1555563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
Mitochondria are membrane-bound cell organelles that undertake the majority of the energetic and metabolic processes within the cell. They are also responsible for mediating multiple apoptotic pathways, balancing redox charges, and scavenging reactive oxygen species. MicroRNAs, which are short, non-coding RNAs widely known for regulating gene expression at the post-transcriptional level, regulate many of these processes. The specific microRNAs that directly or indirectly control mitochondrial dynamics are called mitochondrial miRNAs (mitomiRs). The broadest classification of this type of ncRNA encompasses nuclear-encoded miRNAs that interact with cytoplasmatic mRNAs associated with mitochondrial activity. At the same time, a more specific subset comprises nuclear-encoded miRNAs that translocate into the mitochondria to interact with mRNAs inside of this organelle. Finally, the smallest group of mitomiRs includes those codified by mtDNA and can regulate endogenous mitochondrial transcripts or be transported into the cytoplasm to modulate circulating mRNAs. Regardless of the origin or action mechanism, mitomiRs have been recently recognized to have a key role in the progression of a variety of chronic disorders, such as neurodegenerative and cardiovascular diseases, diabetes, asthma, depression, and even cancer. All of these progressive pathologies have been tightly linked to mitochondrial dysregulation. They are further associated with an aberrant expression of specific miRNAs that regulate cellular metabolism, positioning mitomiRs as reliable biomarkers for diagnosing several chronic diseases. These molecular indicators have also provided insights into how these conditions progress, allowing for the development of different miRNA-based treatment strategies that target dysregulated mitochondrial-related genes, reestablishing their baseline activity and restricting further disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| |
Collapse
|
2
|
Akki AJ, Nanduri S, Patil SV, Das KK, Parvatikar P. Exploring the microRNA-mitochondrial nexus in hepatocellular carcinoma. Mitochondrion 2025; 84:102045. [PMID: 40286975 DOI: 10.1016/j.mito.2025.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) are double-edged swords in hepatocellular carcinoma (HCC) that play a dual role in disease progression and suppression. The pivotal role of miRNAs in gene regulation emphasizes their potential to disrupt critical cellular processes, including mitochondrial function. Given the indispensable role of mitochondria in energy production, apoptosis, and metabolic control, all of which are central to HCC progression, understanding the miRNA-mitochondria axis is crucial. MiRNAs emerge as pivotal regulators of mitochondrial function, exerting profound influence over HCC progression. This comprehensive review delves into the multifaceted roles of miRNAs in modulating mitochondrial biogenesis, dynamics, and apoptosis. MiRNA impacts key metabolic pathways, including energy metabolism, fatty acid metabolism, and oxidative stress. The intricate interplay between miRNAs and mitochondrial function extends to the regulation of mitophagy and ferroptosis. By exploring the microRNA-mitochondrial axis, this review offers insights for identifying novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Ali Jawad Akki
- Department of Biotechnology, School of Applied Science and Technology, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shankargouda V Patil
- Department of Biotechnology, School of Applied Science and Technology, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India; Department of Pediatrics, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India
| | - Kusal K Das
- Laboratory of Vascular Physiology & Medicine, Department of Physiology, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India
| | - Prachi Parvatikar
- Department of Biotechnology, School of Applied Science and Technology, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India.
| |
Collapse
|
3
|
Huang P, Tang X, Zhao S, Luo J, Tang Y, Wang B, Xie Z, Wu X, Xie S, Chen M, Chang K. DNA nanorobot for mitochondria-targeted microRNAs detection and tailored regulation. Theranostics 2025; 15:4638-4653. [PMID: 40225575 PMCID: PMC11984390 DOI: 10.7150/thno.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Rationale: Mitochondrial miRNAs (mitomiRs) are crucial regulators of mitochondrial functions and play pivotal roles in tumorigenesis and cancer progression. Nevertheless, direct monitoring mitomiRs and regulating mitochondrial function at the subcellular level remains challenging. Methods: In this study, we present a versatile DNA framework-based nanorobot for synchronous ultrasensitive detection of mitochondrial miRNAs (mitomiRs) and modulation of the mitochondria-associated apoptosis process. The DNA nanorobot features a tetrahedral nucleic acid framework as its structural body, two DNA hairpins (H1 and H2) as functional arms, and a mitochondria-targeting triphenylphosphine (TPP) group as the command center. The DNA nanorobot was comprehensively characterized for its morphological properties, mitochondria-targeting capacity, mitomiRs detection performance, DOX-loading and release behaviors, and antineoplastic effects both in vitro and in vivo. Results: Upon recognizing mitomiRs, the arms of the DNA nanorobot activate and trigger spatially restricted catalytic hairpin assembly (CHA) reactions with accelerated kinetics to generate amplified fluorescence signals. Additionally, the lipophilic anticancer drug doxorubicin (DOX) encapsulated within the DNA nanorobot induces reactive oxygen species (ROS) production, leading to mitochondria damage and promoting mitochondria-associated apoptosis in tumor cells. Conclusion: This newly developed DNA nanorobot provides a multifunctional platform for precise mitochondria-targeted diagnosis and enhanced therapeutic efficacy, advancing innovative strategies for mitochondria-focused tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Ping Huang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Jie Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Yu Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Zuowei Xie
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Xianlan Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Shuang Xie
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| |
Collapse
|
4
|
Wu B, Zhao J, Yu F, Li L, Zhao Y. Spatioselective Imaging of Noncoding RNAs in Mitochondria via an Organelle-Specific DNA Assembly Strategy. NANO LETTERS 2025; 25:1948-1955. [PMID: 39869396 DOI: 10.1021/acs.nanolett.4c05559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g., microRNA (miRNA)) in mitochondria via an organelle-specific DNA assembly strategy. The target miRNA-initiated assembly of DNA hairpins is inhibited by the block of toehold-mediated strand displacement reaction but can be exclusively activated by a mitochondria-encoded ribosomal RNA (rRNA) for hybridization chain reaction, enabling spatial control over miRNA imaging. We demonstrate that the conditionally controlled DNA assembly technology allows for minimization of nonspecific activation and thus improves the spatial precision of miRNA detection. In addition, the strategy is adaptable to visualizing other ncRNAs such as long noncoding RNAs in mitochondria, highlighting the universality of the approach. Overall, this work provides a useful tool for spatially selective imaging of ncRNAs and investigating the functions of organelle-located RNA.
Collapse
Affiliation(s)
- Bo Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
5
|
Chen CY, Wang YF, Lei L, Zhang Y. MicroRNA-specific targets for neuronal plasticity, neurotransmitters, neurotrophic factors, and gut microbes in the pathogenesis and therapeutics of depression. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111186. [PMID: 39521033 DOI: 10.1016/j.pnpbp.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Depression is of great concern because of the huge burden, and it is impacted by various epigenetic modifications, e.g., histone modification, covalent modifications in DNA, and silencing mechanisms of non-coding protein genes, e.g., microRNAs (miRNAs). MiRNAs are a class of endogenous non-coding RNAs. Alternations in specific miRNAs have been observed both in depressive patients and experimental animals. Also, miRNAs are highly expressed in the central nervous system and can be delivered to different tissues via tissue-specific exosomes. However, the mechanism of miRNAs' involvement in the pathological process of depression is not well understood. Therefore, we summarized and discussed the role of miRNAs in depression. Conclusively, miRNAs are involved in the pathology of depression by causing structural and functional changes in synapses, mediating neuronal regeneration, differentiation, and apoptosis, regulating the gut microbes and the expression of various neurotransmitters and BDNF, and mediating inflammatory and immune responses. Moreover, miRNAs can predict the efficacy of antidepressant medications and explain the mechanism of action of antidepressant drugs and aerobic exercise to prevent and assist in treating depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Rasulova K, Dilek B, Kavak DE, Pehlivan M, Kizildag S. Mitochondrial miRNAs and fibromyalgia: new biomarker candidates. Mol Biol Rep 2024; 52:16. [PMID: 39589649 DOI: 10.1007/s11033-024-10110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION / OBJECTIVE Fibromyalgia syndrome (FMS), affecting 3-10% of the population, presents a challenge due to its complex symptomatology. Mitochondrial miRNAs (mitomiRs) are highlighted for their significant role in metabolic disorders. This study aimed to assess demographic data in Primer FMS patients and explore potential targets through mitomiR profiling. METHODS In our study, we examined 17 FMS patients and 18 controls, chosen based on specific criteria. Mitochondria were isolated from PBMCs in patient/control blood samples using the MACS method. Mitochondrial purity was verified through RT-qPCR and Western Blot. Following this, we extracted microRNAs and analyzed the levels of 3 mitochondrial miRNAs linked to oxidative stress (mitomiR-145-5p, mitomiR-23a-3p, mitomiR-223-3p) using RT-qPCR. RESULTS It was found that pain (P < 0.0001), fatigue (P = 0.0005), sleep quality (P < 0.0001), and depression (P < 0.0001) scores were significantly different in the FMS patient group compared to the control group. But the average BMI values have no difference compared to the control group (p = 0.7473). For the first time, a significant increase in mitomiR-145-5p was observed in the PBMCs of FMS patients compared to the control group (p = 0.0010). There was no significant difference observed in the gene expression levels of mitomiR-223-3p (p = 0.1623) and mitomiR-23a-3p (p = 0.4897). CONCLUSION We demonstrated that mitomiR-145-5p plays a significant role in the progression of FMS pathology. Our study offers new insights, suggesting that mitochondrial miRNAs may have roles in FMS patients, which has not been previously investigated in the literature, thus providing a fresh perspective on the condition.
Collapse
Affiliation(s)
- Khayala Rasulova
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Banu Dilek
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Evrim Kavak
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, Diyarbakır, Turkey
| | - Melek Pehlivan
- Department of Medical Laboratory Techniques, School of Health Services, Izmir Katip Celebi University, Izmir, Turkey
| | - Sefa Kizildag
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
7
|
Kumar A, Choudhary A, Munshi A. Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. J Physiol Biochem 2024; 80:727-741. [PMID: 38865050 DOI: 10.1007/s13105-024-01032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
8
|
Yang Y, Ren S, Xue J, Dong W, He W, Luo J, Li X, Xu H, Zheng Z, Wang X, Wang L, Guan M, Jia Y, Xue Y. DeSUMOylation of RBMX regulates exosomal sorting of cargo to promote renal tubulointerstitial fibrosis in diabetic kidney disease. J Adv Res 2024:S2090-1232(24)00423-5. [PMID: 39341454 DOI: 10.1016/j.jare.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) has become the primary cause of chronic renal failure in China, and renal tubulointerstitial fibrosis plays a central role in DKD progression. Urinary exosomes, which reflect kidney changes, are largely influenced by RNA-binding proteins (RBPs) in their miRNA content. OBJECTIVES Our research aimed to determine the effect of the RNA-binding protein RBMX on exosomal miRNA in DKD. METHODS We introduced a higher level of Rbmx into diabetic mice using an adenoassociated virus and isolated exosomes from their kidney tissue through advanced centrifugation techniques and specialized kits. We then conducted a series of tests, including qRT-PCR, Western blot, MitoSOX, ATP luminescence, coimmunoprecipitation, SUMOylation assays, RNA immunoprecipitation, and confocal microscopy. RESULTS RBMX is found in higher levels in DKD and contributes to worsening kidney fibrosis, mitochondrial damage, and miRNA mismanagement in exosomes. It specifically binds with miR-26a, miR-23c, and miR-874 within the exosomes. This dysfunction may be linked to changes in RBMX SUMOylation. These miRNAs seem to protect against mitochondrial damage in kidney cells by targeting CERS6. CONCLUSION DeSUMOylation of RBMX plays a crucial role in determining the makeup of miRNAs in kidney cell exosomes, impacting the protective miRNAs which regulate mitochondrial damage through their interaction with CERS6 mRNA, ultimately affecting mitochondrial health in DKD.
Collapse
Affiliation(s)
- Yanlin Yang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology & Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shijing Ren
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, China
| | - Wenhui Dong
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei He
- Department of Neurosurgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiayi Luo
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haibin Xu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongji Zheng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyu Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Jia
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yaoming Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y, on behalf of EU-CardioRNA COST Action CA17129, AtheroNET COST Action CA21153. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Yu F, Li X, Sheng C, Li L. DNA Nanotechnology Targeting Mitochondria: From Subcellular Molecular Imaging to Tailor-Made Therapeutics. Angew Chem Int Ed Engl 2024; 63:e202409351. [PMID: 38872505 DOI: 10.1002/anie.202409351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria, one of the most important organelles, represent a crucial subcellular target for fundamental research and biomedical applications. Despite significant advances in the design of DNA nanotechnologies for a variety of bio-applications, the dearth of strategies that enable mitochondria targeting for subcellular molecular imaging and therapy remains an outstanding challenge in this field. In this Minireview, we summarize the recent progresses on the emerging design and application of DNA nanotechnology for mitochondria-targeted molecular imaging and tumor treatment. We first highlight the engineering of mitochondria-localized DNA nanosensors for in situ detection and imaging of diverse key molecules that are essential to maintain mitochondrial functions, including mitochondrial DNA and microRNA, enzymes, small molecules, and metal ions. Then, we compile the developments of DNA nanotechnologies for mitochondria-targeted anti-tumor therapy, including modularly designed DNA nanodevices for subcellular delivery of therapeutic agents, and programmed DNA assembly for mitochondrial interference. We will place an emphasis on clarification of the chemical principles of how DNA nanobiotechnology can be designed to target mitochondria for various biomedical applications. Finally, the remaining challenges and future directions in this emerging field will be discussed, hoping to inspire further development of advanced DNA toolkits for both academic and clinical research regarding mitochondria.
Collapse
Affiliation(s)
- Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangfei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
12
|
Izadifard M, Ahmadvand M, Pashaiefar H, Alimoghadam K, Kasaeian A, Barkhordar M, Seghatoleslami G, Vaezi M, Ghavamzadeh A, Yaghmaie M. Diagnosis of Cutaneous Acute Graft‑Versus‑Host Disease Through Circulating Plasma miR-638, miR-6511b-5p, miR-3613-5p, miR-455-3p, miR-5787, and miR-548a-3p as Prospective Noninvasive Biomarkers Following Allogeneic Hematopoietic Stem Cell Transplantation. Clin Transplant 2024; 38:e15371. [PMID: 39031894 DOI: 10.1111/ctr.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND There are currently no laboratory tests that can accurately predict the likelihood of developing acute graft-versus-host disease (aGVHD), a patient's response to treatment, or their survival chance. This research aimed to establish circulating miRNAs as diagnostic, prognostic, or predictive biomarkers of aGVHD. METHODS In a prospective cohort, we studied the incidence of cutaneous aGVHD in AML patients undergoing allo-HSCT at Shariati Hospital in Tehran, Iran during 2020-2023. Patients with cutaneous aGVHD were labeled as the case group, while patients without cutaneous aGVHD were selected as the control group. Accordingly, the expression levels of six significant miRNAs (miR-638, miR-6511b-5p, miR-3613-5p, miR-455-3p, miR-5787, miR-548a-3p) were evaluated by quantitative reverse transcription-polymerase chain reaction (RTqPCR) in three different time-points: before transplantation, on day 14 and day 21 after transplantation. RESULTS The levels of plasma miR-455-3p, miR-5787, miR-638, and miR-3613-5p were significantly downregulated, while miR-548a-3p, and miR-6511b-5p were significantly upregulated in individuals with cutaneous aGVHD in comparison to patients without GVHD. Additionally, the possibility for great diagnostic accuracy for cutaneous aGVHD was revealed by ROC curve analysis of differentially expressed miRNAs (DEMs). CONCLUSION The study findings encourage us to hypothesize that the aforementioned miRNAs may contribute to the predominance of aGVHD, particularly low-grade cutaneous aGVHD.
Collapse
Affiliation(s)
- Marzieh Izadifard
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Pashaiefar
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghadam
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kasaeian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Vaezi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ichegiri A, Kodolikar K, Bagade V, Selukar M, Dey T. Mitochondria: A source of potential biomarkers for non-communicable diseases. Adv Clin Chem 2024; 121:334-365. [PMID: 38797544 DOI: 10.1016/bs.acc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.
Collapse
Affiliation(s)
- Amulya Ichegiri
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Kshitij Kodolikar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vaibhavi Bagade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Mrunal Selukar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
14
|
Du J, Su J, Xing Y, Zhao Y, Tian M, Dai W, Dong H. Charge-Reversal NaCl/G-Quartets for Aggregation-Induced Mitochondrial MicroRNA Imaging and Ion-Interference Therapy. Anal Chem 2024; 96:5922-5930. [PMID: 38575388 DOI: 10.1021/acs.analchem.3c05977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Mitochondrial therapy is a promising new strategy that offers the potential to achieve precise disease diagnosis or maximum therapeutic response. However, versatile mitochondrial theranostic platforms that integrate biomarker detection and therapy have rarely been exploited. Here, we report a charge-reversal nanomedicine activated by an acidic microenvironment for mitochondrial microRNA (mitomiR) detection and ion-interference therapy. The transporter liposome (DD-DC) was constructed from a pH-responsive polymer and a positively charged phospholipid, encapsulating NaCl nanoparticles with coloading of the aggregation-induced emission (AIE) fluorogens AIEgen-DNA/G-quadruplexes precursor and brequinar (NAB@DD-DC). The negatively charged nanomedicine ensured good blood stability and high tumor accumulation, while the charge-reversal to positive in response to the acidic pH in the tumor microenvironment (TME) and lysosomes enhanced the uptake by tumor cells and lysosome escape, achieving accumulation in mitochondria. The subsequently released Na+ in mitochondria not only contributed to the formation of mitomiR-494 induced G-quadruplexes for AIE imaging diagnosis but also led to an osmolarity surge that was enhanced by brequinar to achieve effective ion-interference therapy.
Collapse
Affiliation(s)
- Jinya Du
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Pharmaron-Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yanming Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Meng Tian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
15
|
Pearce WJ. Mitochondrial influences on smooth muscle phenotype. Am J Physiol Cell Physiol 2024; 326:C442-C448. [PMID: 38009196 PMCID: PMC11932527 DOI: 10.1152/ajpcell.00354.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Smooth muscle cells transition reversibly between contractile and noncontractile phenotypes in response to diverse influences, including many from mitochondria. Numerous molecules including myocardin, procontractile miRNAs, and the mitochondrial protein prohibitin-2 promote contractile differentiation; this is opposed by mitochondrial reactive oxygen species (mtROS), high lactate concentrations, and metabolic reprogramming induced by mitophagy and/or mitochondrial fission. A major pathway through which vascular pathologies such as oncogenic transformation, pulmonary hypertension, and atherosclerosis cause loss of vascular contractility is by enhancing mitophagy and mitochondrial fission with secondary effects on smooth muscle phenotype. Proproliferative miRNAs and the mitochondrial translocase TOMM40 also attenuate contractile differentiation. Hypoxia can initiate loss of contractility by enhancing mtROS and lactate production while simultaneously depressing mitochondrial respiration. Mitochondria can reduce cytosolic calcium by moving it across the inner mitochondrial membrane via the mitochondrial calcium uniporter, and then through mitochondria-associated membranes to and from calcium stores in the sarcoplasmic/endoplasmic reticulum. Through these effects on calcium, mitochondria can influence multiple calcium-sensitive nuclear transcription factors and genes, some of which govern smooth muscle phenotype, and possibly also the production of genomically encoded mitochondrial proteins and miRNAs (mitoMirs) that target the mitochondria. In turn, mitochondria also can influence nuclear transcription and mRNA processing through mitochondrial retrograde signaling, which is currently a topic of intensive investigation. Mitochondria also can signal to adjacent cells by contributing to the content of exosomes. Considering these and other mechanisms, it is becoming increasingly clear that mitochondria contribute significantly to the regulation of smooth muscle phenotype and differentiation.
Collapse
Affiliation(s)
- William J Pearce
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, United States
| |
Collapse
|
16
|
Holmannova D, Borsky P, Parova H, Stverakova T, Vosmik M, Hruska L, Fiala Z, Borska L. Non-Genomic Hallmarks of Aging-The Review. Int J Mol Sci 2023; 24:15468. [PMID: 37895144 PMCID: PMC10607657 DOI: 10.3390/ijms242015468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a natural, gradual, and inevitable process associated with a series of changes at the molecular, cellular, and tissue levels that can lead to an increased risk of many diseases, including cancer. The most significant changes at the genomic level (DNA damage, telomere shortening, epigenetic changes) and non-genomic changes are referred to as hallmarks of aging. The hallmarks of aging and cancer are intertwined. Many studies have focused on genomic hallmarks, but non-genomic hallmarks are also important and may additionally cause genomic damage and increase the expression of genomic hallmarks. Understanding the non-genomic hallmarks of aging and cancer, and how they are intertwined, may lead to the development of approaches that could influence these hallmarks and thus function not only to slow aging but also to prevent cancer. In this review, we focus on non-genomic changes. We discuss cell senescence, disruption of proteostasis, deregualation of nutrient sensing, dysregulation of immune system function, intercellular communication, mitochondrial dysfunction, stem cell exhaustion and dysbiosis.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Milan Vosmik
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Libor Hruska
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| |
Collapse
|
17
|
Gaitanou M. Mitochondrial microRNAs (mitomiRs) in human ageing and diseases. Mech Ageing Dev 2023; 215:111873. [PMID: 37708983 DOI: 10.1016/j.mad.2023.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Greece.
| |
Collapse
|
18
|
Wen Y, Liu WY, Wang JH, Yu YL, Chen S. Simultaneous Imaging of Multiple miRNAs in Mitochondria Controlled by Fluorescently Encoded Upconversion Optical Switches for Drug Resistance Studies. Anal Chem 2023; 95:12152-12160. [PMID: 37535000 DOI: 10.1021/acs.analchem.3c02403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Mitochondrial miRNAs (mitomiRs) are essential regulators of biological processes by influencing mitochondrial gene expression and function. To comprehensively understand related pathological processes and treatments, simultaneous imaging of multiple mitomiRs is crucial. In this study, we present a technique that enables simultaneous monitoring of multiple mitomiRs in living cells using a near-infrared (NIR) photoactivated controlled detection probe (PD-mFleU) with a fluorescence-encoded error correction module and a nonsupervised machine learning data-processing algorithm. This method allows controlled sensing imaging of mitomiRs with a DNA reporter probe that can be activated by NIR light after targeted mitochondrial localization. Multilayer upconversion nanoparticles (UCNPs) are used for encoding probes and error correction. Additionally, the density-based spatial clustering of applications with the noise (DBSCAN) algorithm is used to process and analyze the image. Using this technique, we achieved rapid in situ imaging of the abnormal expression of three mitomiRs (miR-149, miR-590, and miR-671) related to mt-ND1 in drug-resistant cells. Furthermore, upregulating the three mitomiRs simultaneously efficiently reverted drug-resistant cells to sensitive cells. Our study provides an analytical strategy for multiplex imaging of mitomiRs in living cells with potential clinical applications.
Collapse
Affiliation(s)
- Yun Wen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wen-Ye Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
19
|
Roiz-Valle D, Caravia XM, López-Otín C. Mechanisms of mitochondrial microRNA regulation in cardiovascular diseases. Mech Ageing Dev 2023; 212:111822. [PMID: 37182718 DOI: 10.1016/j.mad.2023.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
In the past years, microRNAs (miRNAs) have emerged as important biomarkers and essential regulators of many pathophysiological processes. Several studies have focused on the importance of these noncoding RNAs (ncRNAs) in maintaining mitochondrial function, introducing the term mitochondrial microRNAs (mitomiRs) to refer to those miRNAs controlling mitochondrial activity, either by targeting cytoplasmatic messenger RNAs (mRNAs) or by acting inside the mitochondria. Mitochondrial homeostasis is paramount in the cardiovascular system, where an important energy supply is needed to maintain the homeostasis of tissues, such as the myocardium. In this review, we will address the relevance of mitomiRs in cardiovascular pathologies by dissecting and categorizing their effect in mitochondrial function in order to provide a robust framework for new mitomiR-based therapeutical approaches to this group of diseases.
Collapse
Affiliation(s)
- David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo.
| | - Xurde M Caravia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| |
Collapse
|
20
|
Patel D, Thankachan S, Abu Fawaz PP, Venkatesh T, Prasada Kabekkodu S, Suresh PS. Deciphering the role of MitomiRs in cancer: A comprehensive review. Mitochondrion 2023; 70:118-130. [PMID: 37120081 DOI: 10.1016/j.mito.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/01/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate many metabolic and signal transduction pathways. The role of miRNAs, usually found in the cytoplasm, in regulating gene expression and cancer progression has been extensively studied in the last few decades. However, very recently, miRNAs were found to localize in the mitochondria. MiRNAs that specifically localize in the mitochondria and the cytoplasmic miRNAs associated with mitochondria that directly or indirectly modulate specific mitochondrial functions are termed as "mitomiRs". Although it is not clear about the origin of mitomiRs that are situated within mitochondria (nuclear or mitochondrial origin), it is evident that they have specific functions in modulating gene expression and regulating important mitochondrial metabolic pathways. Through this review, we aim to delineate the mechanisms by which mitomiRs alter mitochondrial metabolic pathways and influence the initiation and progression of cancer. We further discuss the functions of particular mitomiRs, which have been widely studied in the context of mitochondrial metabolism and oncogenic signaling pathways. Based on the current knowledge, we can conclude that mitomiRs contribute significantly to mitochondrial function and metabolic regulation, and that dysregulation of mitomiRs can aid the proliferation of cancer cells. Therefore, the less explored area of mitomiRs' biology can be an important topic of research investigation in the future for targeting cancer cells.
Collapse
Affiliation(s)
- Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India
| | - Sanu Thankachan
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India
| | - P P Abu Fawaz
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipa1-576104, Karnataka, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipa1-576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut-673601, Kerala, India.
| |
Collapse
|
21
|
Olagunju AS, Ahammad F, Alagbe AA, Otenaike TA, Teibo JO, Mohammad F, Alsaiari AA, Omotoso O, Talukder MEK. Mitochondrial dysfunction: A notable contributor to the progression of Alzheimer's and Parkinson's disease. Heliyon 2023; 9:e14387. [PMID: 36942213 PMCID: PMC10024096 DOI: 10.1016/j.heliyon.2023.e14387] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/14/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Mitochondrial dysfunction remains a pivotal mechanism in manifold neurodegenerative diseases. Mitochondrial homeostasis within the cell is an essential aspect of cell biology. Mitochondria, the power-generating organelle of the cell, have a dominant role in several processes associated with genomic integrity and cellular equilibrium. They are involved in maintaining optimal cell functioning and ensuring guidance against possible DNA damage, which could lead to mutations and the onset of diseases. Conversely, system perturbations, which could be due to environmental factors or senescence, induce changes in the physiological balance and result in mitochondrial function impairment. As a result, we present a general overview of the pathological pathways involved in Alzheimer's and Parkinson's diseases caused by changes in mitochondrial homeostasis. The focal point of this review is on mitochondrial dysfunction being a significant condition in the onset of neuronal disintegration. We explain the pathways associated with the dysfunction of the mitochondria, which are common among the most recurring neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Are mitochondrial dysfunctions an early event in the progression of neuropathological processes? We discovered that mtDNA mutation is a major contributor to the metabolic pathology of most neurological disorders, causing changes in genes important for physiological homeostasis. As a result, genetic changes in presenilin, Amyloid-, ABAD, DJ-1, PINK-1, PARKIN, alpha-synuclein, and other important controlling genes occur. Therefore, we suggest possible therapeutic solutions.
Collapse
Affiliation(s)
- Abolaji Samson Olagunju
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
- Corresponding author.
| | - Foysal Ahammad
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Titilayomi Ayomide Otenaike
- Department of Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP-Brazil, Av Bandeirantes, 3900, 14049- 900, Ribeirão Preto, SP, Brazil
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Corresponding author.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Olabode Omotoso
- Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
22
|
Rosolen D, Nunes-Souza E, Marchi R, Tofolo MV, Antunes VC, Berti FCB, Fonseca AS, Cavalli LR. MiRNAs Action and Impact on Mitochondria Function, Metabolic Reprogramming and Chemoresistance of Cancer Cells: A Systematic Review. Biomedicines 2023; 11:biomedicines11030693. [PMID: 36979672 PMCID: PMC10045760 DOI: 10.3390/biomedicines11030693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/30/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the regulation of mitochondrial function and homeostasis, and in the modulation of cell metabolism, by targeting known oncogenes and tumor suppressor genes of metabolic-related signaling pathways involved in the hallmarks of cancer. This systematic review focuses on articles describing the role, association, and/or involvement of miRNAs in regulating the mitochondrial function and metabolic reprogramming of cancer cells. Following the PRISMA guidelines, the articles reviewed were published from January 2010 to September 2022, with the search terms "mitochondrial microRNA" and its synonyms (mitochondrial microRNA, mitochondrial miRNA, mito microRNA, or mitomiR), "reprogramming metabolism," and "cancer" in the title or abstract). Thirty-six original research articles were selected, revealing 51 miRNAs with altered expression in 12 cancers: bladder, breast, cervical, colon, colorectal, liver, lung, melanoma, osteosarcoma, pancreatic, prostate, and tongue. The actions of miRNAs and their corresponding target genes have been reported mainly in cell metabolic processes, mitochondrial dynamics, mitophagy, apoptosis, redox signaling, and resistance to chemotherapeutic agents. Altogether, these studies support the role of miRNAs in the metabolic reprogramming hallmark of cancer cells and highlight their potential as predictive molecular markers of treatment response and/or targets that can be used for therapeutic intervention.
Collapse
Affiliation(s)
- Daiane Rosolen
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Rafael Marchi
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Maria Vitoria Tofolo
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Valquíria C Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Fernanda C B Berti
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Aline S Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Luciane R Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, WA 20057, USA
| |
Collapse
|
23
|
Wei W, Lu H, Dai W, Zheng X, Dong H. Multiplexed Organelles Portrait Barcodes for Subcellular MicroRNA Array Detection in Living Cells. ACS NANO 2022; 16:20329-20339. [PMID: 36410732 DOI: 10.1021/acsnano.2c06252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiplexed profiling of microRNAs' subcellular expression and distribution is essential to understand their spatiotemporal function information, but it remains a crucial challenge. Herein, we report an encoding approach that leverages combinational fluorescent dye barcodes, organelle targeting elements, and an independent quantification signal, termed Multiplexed Organelles Portrait Barcodes (MOPB), for high-throughput profiling of miRNAs from organelles. The MOPB barcodes consist of heterochromatic fluorescent dye-loaded shell-core mesoporous silica nanoparticles modified with organelle targeting peptides and molecular beacon detection probes. Using mitochondria and endoplasmic reticulum as models, we encoded four Cy3/AMCA ER-MOPB and four Cy5/AMCA Mito-MOPB by varying the Cy3 and Cy5 intensity for distinguishing eight organelles' miRNAs. Significantly, the MOPB strategy successfully and accurately profiled eight subcellular organelle miRNAs' alterations in the drug-induced Ca2+ homeostasis breakdown. The approach should allow more widespread application of subcellular miRNAs and multiplexed subcellular protein biomarkers' monitoring for drug discovery, cellular metabolism, signaling transduction, and gene expression regulation readout.
Collapse
Affiliation(s)
- Wei Wei
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Xiaonan Zheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
| |
Collapse
|
24
|
Bai J, Wu L, Wang X, Wang Y, Shang Z, Jiang E, Shao Z. Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe? Cancers (Basel) 2022; 14:cancers14235723. [PMID: 36497206 PMCID: PMC9738284 DOI: 10.3390/cancers14235723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) therapy is unsatisfactory, and the prevalence of the disease is increasing. The role of mitochondria in OSCC therapy has recently attracted increasing attention, however, many mechanisms remain unclear. Therefore, we elaborate upon relative studies in this review to achieve a better therapeutic effect of OSCC treatment in the future. Interestingly, we found that mitochondria not only contribute to OSCC therapy but also promote resistance, and targeting the mitochondria of OSCC via nanoparticles is a promising way to treat OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Luping Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Xinmiao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Yifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| |
Collapse
|
25
|
Zhao X, Na N, Ouyang J. CRISPR/Cas9-based coronal nanostructures for targeted mitochondria single molecule imaging. Chem Sci 2022; 13:11433-11441. [PMID: 36320584 PMCID: PMC9533423 DOI: 10.1039/d2sc03329a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 02/12/2024] Open
Abstract
The biological state at the subcellular level is highly relevant to many diseases, and the monitoring of organelles such as mitochondria is crucial based on this. However, most DNA and protein based nanoprobes used for the detection of mitochondrial RNAs (mitomiRs) lack spatial selectivity, which leads to inefficiencies in probe delivery and signal turn-on. Herein, we constructed a novel DNA nanoprobe named protein delivery nano-corona (PDNC) to improve the delivery efficiency of Cas protein, for spatially selective imaging of mitomiRs in living cells switched on by a CRISPR/Cas system. Combined with a single-molecule counting method, this strategy enables highly sensitive detection of low-abundance mitomiR. Therefore, the strategy in this work opens up new opportunities for cell identification, early clinical diagnosis, and research in biological behaviour at the subcellular level.
Collapse
Affiliation(s)
- Xuan Zhao
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
26
|
Erturk E, Enes Onur O, Akgun O, Tuna G, Yildiz Y, Ari F. Mitochondrial miRNAs (MitomiRs): Their potential roles in breast and other cancers. Mitochondrion 2022; 66:74-81. [PMID: 35963496 DOI: 10.1016/j.mito.2022.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Breast cancer is the most common cancer in women worldwide. MicroRNAs (miRNAs) are non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. Although miRNAs mainly act in the cytoplasm, they can be found in the mitochondrial compartment of the cell. These miRNAs called "MitomiR", they can change mitochondrial functions by regulating proteins at the mitochondrial level and cause cancer. In this review, we have aimed to explain miRNA biogenesis, transport pathways to mitochondria, and summarize mitomiRs that have been shown to play an important role in mitochondrial function, especially in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Elif Erturk
- Bursa Uludag University, Vocational School of Health Services, 16059, Bursa, Turkey
| | - Omer Enes Onur
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Oguzhan Akgun
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Gonca Tuna
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Yaren Yildiz
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Ferda Ari
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey.
| |
Collapse
|
27
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022; 61:e202204277. [DOI: 10.1002/anie.202204277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
28
|
Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. BIOLOGY 2022; 11:1151. [PMID: 36009778 PMCID: PMC9405439 DOI: 10.3390/biology11081151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The past years have seen an increasing concern about frailty, owing to the growing number of elderly people and the major impact of this syndrome on health and social care. The identification of frail people passes through the use of different tests and biomarkers, whose concerted analysis helps to stratify the populations of patients according to their risk profile. However, their efficiency in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed. Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in different organismal districts. Changes in miRNAs expression have been described in biological processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while considering its complex nature, we revised the current literature on the field, for uncovering miRNAs shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis of frailty in the elderly population.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.I.); (G.P.); (G.R.)
| | | | | | | | | |
Collapse
|
29
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian Zhao
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Zhenghan Di
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Lele Li
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety 11 ZhongGuanCun BeiYiTiao, Haidian District 100190 Beijing CHINA
| |
Collapse
|
30
|
Advances of microRNAs in regulating mitochondrial function: new potential application in NAFLD treatment. Mol Biol Rep 2022; 49:9841-9853. [PMID: 35612781 DOI: 10.1007/s11033-022-07503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases and closely associated with lipid disorder. Mitochondrion has been recognized to play a key role in lipid metabolism as the main site of energy metabolism in cells, and its dysfunction is involved in the progression of NAFLD. MicroRNAs (miRNAs), one of regulators in the pathogenesis of NAFLD, are discovered to modulate mitochondrial function by targeting mitochondrial proteins or mitochondrial-related factors, thereby improving or deteriorating NAFLD-associated pathologies. This review summarizes the differentially expressed miRNAs from clinical and experimental models of NAFLD with abilities in regulating mitochondrial function, expounds their underlying molecular mechanism and discusses their prospect and future research direction.
Collapse
|
31
|
Medini H, Zirman A, Mishmar D. Immune system cells from COVID-19 patients display compromised mitochondrial-nuclear expression co-regulation and rewiring toward glycolysis. iScience 2021; 24:103471. [PMID: 34812416 PMCID: PMC8599136 DOI: 10.1016/j.isci.2021.103471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/15/2021] [Accepted: 11/14/2021] [Indexed: 01/06/2023] Open
Abstract
Mitochondria are pivotal for bioenergetics, as well as in cellular response to viral infections. Nevertheless, their role in COVID-19 was largely overlooked. Here, we analyzed available bulk RNA-seq datasets from COVID-19 patients and corresponding healthy controls (three blood datasets, N = 48 healthy, 119 patients; two respiratory tract datasets, N = 157 healthy, 524 patients). We found significantly reduced mtDNA gene expression in blood, but not in respiratory tract samples from patients. Next, analysis of eight single-cells RNA-seq datasets from peripheral blood mononuclear cells, nasopharyngeal samples, and Bronchoalveolar lavage fluid (N = 1,192,243 cells), revealed significantly reduced mtDNA gene expression especially in immune system cells from patients. This is associated with elevated expression of nuclear DNA-encoded OXPHOS subunits, suggesting compromised mitochondrial-nuclear co-regulation. This, together with elevated expression of ROS-response genes and glycolysis enzymes in patients, suggest rewiring toward glycolysis, thus generating beneficial conditions for SARS-CoV-2 replication. Our findings underline the centrality of mitochondrial dysfunction in COVID-19. mtDNA gene expression is downregulated in COVID-19 blood, but not in respiratory tract Decreased mtDNA gene expression disrupts mito-nuclear coordination mtDNA is downregulated and rewired toward glycolysis especially in immune system cells Mitochondrial dysfunction is central to the etiology of COVID19
Collapse
Affiliation(s)
- Hadar Medini
- Department of Life Sciences, Ben-Gurion University of the Negev, Building 40, Room 009, Beer-Sheva 84105, Israel
| | - Amit Zirman
- Department of Life Sciences, Ben-Gurion University of the Negev, Building 40, Room 009, Beer-Sheva 84105, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Building 40, Room 009, Beer-Sheva 84105, Israel
| |
Collapse
|
32
|
Zhao J, Li Z, Shao Y, Hu W, Li L. Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021; 60:17937-17941. [PMID: 34117823 DOI: 10.1002/anie.202105696] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) functions are tightly regulated by their sub-compartmental location in living cells, and the ability to imaging of mitochondrial miRNAs (mitomiRs) is essential for understanding of the related pathological processes. However, most existing DNA-based methods could not be used for this purpose. Here, we report the development of a DNA nanoreporter technology for imaging of mitomiRs in living cells through near-infrared (NIR) light-controlled DNA strand displacement reactions. The sensing function of the DNA nanoreporters are silent (OFF) during the delivery process, but can be photoactivated (ON) with NIR light after targeted mitochondrial localization, enabling spatially-restricted imaging of two types of cancer-related mitomiRs with improved detection accuracy. Furthermore, we demonstrate imaging of mitomiRs in vivo through spatiotemporally-controlled delivery and activation. Therefore, this study illustrates a simple methodology that may be broadly applicable for investigating the mitomiRs-associated physiological events.
Collapse
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
33
|
Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
35
|
Paul S, Bravo Vázquez LA, Uribe SP, Manzanero Cárdenas LA, Ruíz Aguilar MF, Chakraborty S, Sharma A. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie 2021; 187:83-93. [PMID: 34082043 DOI: 10.1016/j.biochi.2021.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21 nucleotides), endogenous, non-coding RNA molecules implicated in the post-transcriptional gene regulation performed through target mRNA cleavage or translational inhibition. In recent years, several investigations have demonstrated that miRNAs are involved in regulating both carbohydrate and lipid homeostasis in humans and other organisms. Moreover, it has been observed that the dysregulation of these metabolism-related miRNAs leads to the development of several metabolic disorders, such as type 2 diabetes, obesity, nonalcoholic fatty liver, insulin resistance, and hyperlipidemia. Hence, in this current review, with the aim to impulse the research arena of the micro-transcriptome implications in vital metabolic pathways as well as to highlight the remarkable potential of miRNAs as therapeutic targets for metabolic disorders in humans, we provide an overview of the regulatory roles of metabolism-associated miRNAs in humans and murine models.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Samantha Pérez Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Luis Aarón Manzanero Cárdenas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - María Fernanda Ruíz Aguilar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, 02115, USA
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
36
|
Advances in Understanding Mitochondrial MicroRNAs (mitomiRs) on the Pathogenesis of Triple-Negative Breast Cancer (TNBC). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5517777. [PMID: 33824695 PMCID: PMC8007369 DOI: 10.1155/2021/5517777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by poor outcome and the most challenging breast cancer type to treat worldwide. TNBC manifests distinct profile of mitochondrial functions, which dictates reprogrammed metabolism, fosters tumor progression, and notably serves as therapeutic targets. Mitochondrial microRNAs (mitomiRs) are a group of microRNAs that critically modulate mitochondrial homeostasis. By a pathway-centric manner, mitomiRs tightly orchestrate metabolic reprogramming, redox status, cell apoptosis, mitochondrial dynamics, mitophagy, mitochondrial DNA (mtDNA) maintenance, and calcium balance, leading to an emerging field of study in various cancer types, including TNBC. We herein review the recent insights into the roles and mechanism of mitomiRs in TNBC and highlight its clinical value in diagnosis and prognosis as well as vital advances on therapeutics of preclinical and clinical studies.
Collapse
|
37
|
Rodrigues SC, Cardoso RMS, Duarte FV. Mitochondrial microRNAs: A Putative Role in Tissue Regeneration. BIOLOGY 2020; 9:biology9120486. [PMID: 33371511 PMCID: PMC7767490 DOI: 10.3390/biology9120486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.
Collapse
Affiliation(s)
- Sílvia C. Rodrigues
- Exogenus Therapeutics, 3060-197 Cantanhede, Portugal;
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Filipe V. Duarte
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence:
| |
Collapse
|