1
|
Nasoni MG, Benedetti S, Bargagni E, Burattini S, Osman R, Battistelli M, Luchetti F. The Activity of Phytotherapic Extracts Combined in a Unique Formulation Alleviates Oxidative Stress and Protects Mitochondria Against Atorvastatin-Induced Cardiomyopathy. Int J Mol Sci 2025; 26:4917. [PMID: 40430054 PMCID: PMC12112680 DOI: 10.3390/ijms26104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Statins, in addition to their main beneficial lipid-lowering effects (lowering cholesterol and LDL levels), have many additional adverse effects. Among them, the most common is skeletal myopathy. Mitochondria not only play a pivotal role in statin-induced adverse skeletal muscle effects but also seem to be involved in the adverse effects of statins on human cardiac function. However, given that similar oxidative phosphorylation pathways are relevant in skeletal and cardiac muscles, whether long-term statin treatment may alter cardiac muscle is currently unknown. Natural products have been widely employed in skeletal muscle disorders thanks to their antioxidant and anti-inflammatory properties. The purpose of this study was to evaluate the effects of a novel phytotherapic formulation (PF) composed of Curcuma and Boswellia essential oils, Harpagophytum procumbens root, and Bromelain on the human AC16 cell line in an in vitro model of atorvastatin-induced cardiomyopathy. Our results showed that atorvastatin decreased cell viability by approximately 50% and induced ROS production and mitochondrial structural damage. Interestingly, supplementation of cells with PF reduced oxidative stress by 20%, improved mitochondrial reshape and function, and restored the expression of the Nrf2/HO-1/GPX4 axis. These results provide new insights into statin-induced cardiomyopathy and suggest the employment of PF as a promising agent in the recovery of cardiac function.
Collapse
Affiliation(s)
- Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.B.); (E.B.); (S.B.); (F.L.)
| | | | | | | | | | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.B.); (E.B.); (S.B.); (F.L.)
| | | |
Collapse
|
2
|
Polat MS, Nadaroglu H. Utilizing Copper Nanoclusters as a Fluorescent Probe for Quantitative Monitoring of Doxorubicin Anticancer Drug. J Fluoresc 2025; 35:3507-3518. [PMID: 38842793 DOI: 10.1007/s10895-024-03779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
Monitoring the amount of chemotherapeutic drugs in biological fluids is extremely important for dose adjustment or control of side effects during the treatment process. In this study, copper nanoclusters (Cu NCs) were synthesized via a one-pot method using ammonium citrate as the reducing agent. Cu NCs exhibited bright blue fluorescence, good optical properties and outstanding photostability. The produced Cu NCs were characterized in detail by UV‒vis absorption, fluorescence spectroscopy and transmission electron microscopy (TEM). The produced Cu NCs showed a high quantum yield of 0.97. A fluorescence system was used for doxorubicin (DOX) determination using Cu NCs as a nanoprobe. The presence of DOX decreased the fluorescence intensity of the CuNCs at 445 nm but increased the fluorescence intensity of the CuNCs at 619 nm. As a result, quantitative detection of DOX can be achieved by measuring the ratio of fluorescence intensities at 445 and 619 nm (F619/F445). The fluorescence quenching activity of the Cu NCs was determined to have a linear relationship with the amount of DOX anticancer drug in the range of 1-15 ppb, and the usability of the Cu NCs as a sensor for detection in biological fluids was demonstrated. It was determined that this method can be used to measure the amount of DOX in biological samples effectively.
Collapse
Affiliation(s)
- Muhammed Seyid Polat
- Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, Erzurum, 25240, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, Erzurum, 25240, Turkey.
- Department of Food Technology, Erzurum Vocational College of Technical Sciences, Ataturk University, Erzurum, 25240, Turkey.
| |
Collapse
|
3
|
Alam H, Bailing W, Zhao F, Ullah H, Ullah I, Ali M, Ullah I, Tuerhong R, Zhang L, Shi L. An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Isoquercitrin in Doxorubicin-Induced Cardiotoxicity: Identification of Novel Genes. Cardiovasc Toxicol 2025; 25:541-558. [PMID: 39964600 DOI: 10.1007/s12012-025-09968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/27/2025] [Indexed: 03/15/2025]
Abstract
Cardiotoxicity, a severe side effect of cytotoxic drugs like doxorubicin (DOX), can lead to cardiomyopathy and heart failure, significantly impacting patient prognosis. This study investigates the molecular mechanisms of DOX-induced cardiotoxicity and explores isoquercitrin (IQC) as a potential therapeutic agent. RNA-sequencing analysis revealed 7855 dysregulated genes in DOX vs. Control and 3853 in DOX + IQC vs. DOX groups. Functional enrichment analysis of upregulated genes in the DOX vs. Control group highlighted cytokine-cytokine receptor interaction and calcium signaling pathways as significant immune-related KEGG pathways. Immune genes were shortlisted based on inflammatory functions, followed by protein-protein interaction analysis and hub gene identification. This process revealed IL6, IL1B, IL10, CCL19, CD27, CSF1R, ADRB2, GDF15, TNFRSF10B, and PADI4 as the top 10 interacting immune hub genes. Validation in the DOX + IQC vs. DOX group showed that IQC downregulated CCL19, IL10, PADI4, and CSF1R genes. Computational drug design techniques, including virtual screening and molecular dynamic simulations, identified promising targets for IQC. These targets were experimentally validated using RT-qPCR in AC16 cell lines under four conditions: control, DOX, low dose DOX + IQC, and high dose DOX + IQC. The study demonstrates that IQC significantly reduces inflammation and oxidative stress in human AC16 cardiomyocyte cell line by downregulating inflammatory and stress pathways induced by DOX. It concludes that CCL19 and PADI4 are crucial immune biomarkers for treating DOX-induced cardiotoxicity using IQC, providing insights into potential therapeutic strategies using plant-based compounds to mitigate the cardiotoxic effects of DOX in cancer treatment.
Collapse
Affiliation(s)
- Habib Alam
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Wei Bailing
- College of Pharmacy, Hainan University, Ankang Rd, Hainan, China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Hayan Ullah
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Inam Ullah
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Muhsin Ali
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Ijaz Ullah
- Comparative Medicine, Department of Research and Teaching, Dalian Medical University, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Reyisha Tuerhong
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Luying Zhang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lvshun Road, Dalian, 116044, China.
| |
Collapse
|
4
|
Ding YN, Wang HY, Chen XF, Tang X, Chen HZ. Roles of Sirtuins in Cardiovascular Diseases: Mechanisms and Therapeutics. Circ Res 2025; 136:524-550. [PMID: 40014680 DOI: 10.1161/circresaha.124.325440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Cardiovascular diseases (CVDs) are experiencing a rapid surge and are widely recognized as the leading cause of mortality in the current aging society. Given the multifactorial etiology of CVDs, understanding the intricate molecular and cellular mechanisms is imperative. Over the past 2 decades, many scientists have focused on Sirtuins, a family of nicotinamide adenine dinucleotide-dependent deacylases. Sirtuins are highly conserved across species, from yeasts to primates, and play a crucial role in linking aging and diseases. Sirtuins participate in nearly all key physiological and pathological processes, ranging from embryogenic development to stress response and aging. Abnormal expression and activity of Sirtuins exist in many aging-related diseases, while their activation has shown efficacy in mitigating these diseases (eg, CVDs). In terms of research, this field has maintained fast, sustained growth in recent years, from fundamental studies to clinical trials. In this review, we present a comprehensive, up-to-date discussion on the biological functions of Sirtuins and their roles in regulating cardiovascular biology and CVDs. Furthermore, we highlight the latest advancements in utilizing Sirtuin-activating compounds and nicotinamide adenine dinucleotide boosters as potential pharmacological targets for preventing and treating CVDs. The key unresolved issues in the field-from the chemicobiological regulation of Sirtuins to Sirtuin-targeted CVD investigations-are also discussed. This timely review could be critical in understanding the updated knowledge of Sirtuin biology in CVDs and facilitating the clinical accessibility of Sirtuin-targeting interventions.
Collapse
Affiliation(s)
- Yang-Nan Ding
- Department of Laboratory Medicine, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, The Third Affiliated Hospital of Zhengzhou University, China (Y.-N.D.)
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.-Y.W., H.-Z.C.)
| | - Hui-Yu Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.-Y.W., H.-Z.C.)
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing (H.-Y.W., H.-Z.C.)
| | - Xiao-Feng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, China (X.-F.C.)
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu (X.T.)
| | - Hou-Zao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.-Y.W., H.-Z.C.)
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing (H.-Y.W., H.-Z.C.)
| |
Collapse
|
5
|
Li Z, Ran Q, Qu C, Hu S, Cui S, Zhou Y, Shen B, Yang B. Sigma-1 receptor activation attenuates DOX-induced cardiotoxicity by alleviating endoplasmic reticulum stress and mitochondrial calcium overload via PERK and IP3R-VDAC1-MCU signaling pathways. Biol Direct 2025; 20:23. [PMID: 40001213 PMCID: PMC11853590 DOI: 10.1186/s13062-025-00617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an anthracycline with potent antitumor properties and rare yet serious cardiotoxic side effects that limit its clinical application. The sigma-1 receptor is a stress-triggered chaperone often dysregulated in diseases and has known cardioprotective effects. Although its anti-oxidative stress and anti-apoptotic effects have been demonstrated, its effectiveness in DOX-induced cardiotoxicity has never been explored. This study investigated the potential role of the activated sigma-1 receptor in a DOX-induced murine cardiotoxicity model to elucidate the receptor's mechanism of action. METHODS We established the model in C57BL/6 mice by daily intraperitoneal injections of fluvoxamine (Flv) for 4 consecutive weeks to activate the receptor and by weekly intraperitoneal injections of DOX at 5 mg/kg for 3 weeks. We performed in vitro experiments using cardiomyocytes of neonatal Sprague-Dawley rats to verify the protective effect of the sigma-1 receptor. RESULTS We found that sigma-1 expression in the heart decreased in the DOX-treated mice, and activating the receptor with Flv improved cardiac function. Moreover, Flv pretreatment inhibited cardiomyocyte apoptosis and endoplasmic reticulum stress and increased the expression of the Bcl2 apoptosis regulator (Bcl2), effectively alleviating the pathophysiological manifestations in mice. In addition, activating the receptor exerted cardioprotective effects by modulating endoplasmic reticulum stress through the PRKR-like endoplasmic reticulum kinase (PERK) signaling pathway. It also reduced mitochondrial and endoplasmic reticulum contact and alleviated mitochondrial calcium overload through the IP3R-VDAC1-MCU signaling pathway. CONCLUSION In conclusion, our study emphasizes the therapeutic potential of activating sigma-1 receptors against DOX-induced cardiotoxicity, suggesting sigma-1 receptors as potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Qian Ran
- Department of Cardiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - You Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
6
|
Rezgui A, Tachour RA, Layaida H, Derguine R, Hab FZ, Benmanseur A, Matougui B, Agred R, Sobhi W. Doxorubicin inhibits SIRT2 and NF-kB p65 phosphorylation in Brest cell-line cancer. Biochem Biophys Res Commun 2025; 743:151162. [PMID: 39689645 DOI: 10.1016/j.bbrc.2024.151162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Doxorubicin (DOXO) is a widely used anti-cancer agent, yet the precise mechanism underlying the induction of tumor cell death remains unclear. This study aimed to elucidate new mechanisms by which doxorubicin induces apoptosis in the EMT6 mouse breast carcinoma cell line. The role of doxorubicin was assessed using the XTT assay. The assessment of oxidative stress markers, alongside the analysis of SIRT2 and NF-κB p65 (RelA) phosphorylation inhibition, was conducted. In silico studies, including density functional theory (DFT) calculations and molecular docking simulations, were employed to characterize the molecular interactions between doxorubicin and SIRT2. Additionally, doxorubicin was assessed for its capacity to modulate gene expression and associated pathways using multiple bioinformatics tools and web-based platforms. Our finding indicates that Doxorubicin induced apoptosis in EMT6 cells with an IC50 of 8,32 μM. At lower concentrations, doxorubicin enhances the oxidative balance and promotes cell viability. At high concentrations, doxorubicin inhibits SIRT2. Furthermore, an experimental investigation revealed that doxorubicin inhibits RelA phosphorylation. The results also showed that doxorubicin modulated the expression of 19 genes involved in different pathways and several transcription factors. The results of implementing the gene set with SIRT2 and RELA consolidated the experimental results. In conclusion, Doxorubicin was observed to induce EMT6 apoptosis through the inhibition of SIRT2 and RelA proteins. The outcomes of both experimental and bioinformatic studies provide a novel perspective on the biological effects of doxorubicin and underscore the potential of inhibiting the SIRT2-RelA axis as a promising biological target for cancer therapy.
Collapse
Affiliation(s)
- Abdelmalek Rezgui
- Biotechnology Research Center (CRBt), Ali Mendjli, Constantine, 25000, Algeria
| | - Rechda Amel Tachour
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, 6000, Algeria
| | - Houdhaifa Layaida
- Laboratoire d'Electrochimie des Matériaux Moléulaires et des Complexes (LEMMC), Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Setif, Algeria
| | - Rania Derguine
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Ferhat Abbas Setif-1, Setif, 19000, Algeria
| | - Fatma Zahra Hab
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, 6000, Algeria
| | - Anfel Benmanseur
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, 6000, Algeria
| | - Brahim Matougui
- Biotechnology Research Center (CRBt), Ali Mendjli, Constantine, 25000, Algeria
| | - Rym Agred
- Biotechnology Research Center (CRBt), Ali Mendjli, Constantine, 25000, Algeria
| | - Widad Sobhi
- Biotechnology Research Center (CRBt), Ali Mendjli, Constantine, 25000, Algeria.
| |
Collapse
|
7
|
Wang Q, Liu M, Liu T, Li L, Wang C, Wang X, Rong S, Zhou X. Alterations in the gut microbiome and metabolism with doxorubicin-induced heart failure severity. Front Microbiol 2024; 15:1348403. [PMID: 39777147 PMCID: PMC11703658 DOI: 10.3389/fmicb.2024.1348403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/14/2024] [Indexed: 01/11/2025] Open
Abstract
Objective This study aimed to explore the changes in gut microbiota and its metabolites in different pathophysiological stages of doxorubicin (DOX)-induced heart failure (DIHF) and the relationship between gut microbiota and metabolites in various degrees of DIHF. Materials and methods C57BL/6 J mice were injected intraperitoneally with 5 mg/kg of DOX once a week for 5 consecutive weeks. At different times after injection, the cardiac function and histopathological analysis was conducted, the serum levels of creatine kinase (CK), CK-MB, lactic dehydrogenase, and cardiac troponin T were determined. 16S rRNA gene sequencing of feces and the nontargeted metabolomics analysis of serum were performed. Multi-omics analyses were used to explore the correlation between gut microbiota and serum metabolites. Results The results showed that DOX caused cardiac contractile dysfunction and left ventricular (LV) dilation. The levels of myocardial enzymes significantly increase in 3 and 5 weeks after DOX injection. DOX-treated mice showed significant differences in the composition and abundance of gut microorganisms, and the levels of serum metabolites at different times of treatment. Multi-omics analyses showed that intestinal bacteria were significantly correlated with the differential metabolites. Some bacteria and metabolites can be used as biomarkers of DIHF (AUC > 0.8). KEGG analyses showed the involvement of different metabolic pathways in various degrees of DIHF. Conclusion Marked differences were found in the composition and abundance of gut microorganisms, the levels of serum metabolites and metabolic pathways in different degrees of DIHF. The intestinal bacteria were significantly correlated with differential metabolites in different degrees of DIHF. The gut microbiota may serve as new targets for the treatment of DIHF.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Meihua Liu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, The Shanxi Medical University, Taiyuan, China
| | - Tianpei Liu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, The Shanxi Medical University, Taiyuan, China
| | - Long Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenyang Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaolin Wang
- Department of Neonatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuling Rong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Podyacheva E, Snezhkova J, Onopchenko A, Dyachuk V, Toropova Y. The Role of MicroRNAs in the Pathogenesis of Doxorubicin-Induced Vascular Remodeling. Int J Mol Sci 2024; 25:13335. [PMID: 39769102 PMCID: PMC11728060 DOI: 10.3390/ijms252413335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/14/2025] Open
Abstract
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity. miRNAs, such as miR-21, miR-22, miR-25, miR-126, miR-140-5p, miR-330-5p, miR-146, miR-143, miR-375, miR-125b, miR-451, miR-34a-5p, and miR-9, influence signaling pathways like TGF-β/Smad, AMPKa/SIRT, NF-κB, mTOR, VEGF, and PI3K/AKT/Nrf2, impacting vascular homeostasis, angiogenesis, and endothelial-to-mesenchymal transition. Despite existing studies, gaps remain in understanding the full spectrum of miRNAs involved and their downstream effects on vascular remodeling. This review synthesizes the current knowledge on miRNA dysregulation during DOX exposure, focusing on their dual roles in cardiovascular pathology and tumor progression. Strategies to reduce DOX cardiotoxicity include modulating miRNA expression to restore signaling balance, targeting pro-inflammatory and pro-fibrotic pathways, and leveraging miRNA inhibitors or mimics. This review aims to organize and integrate the existing knowledge on the role of miRNAs in vascular remodeling, particularly in the contexts of DOX treatment and the progression of various cardiovascular diseases, including their potential involvement in tumor growth.
Collapse
Affiliation(s)
| | | | | | | | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia or (E.P.); (J.S.); (A.O.); (V.D.)
| |
Collapse
|
9
|
Nasr MM, Wahdan SA, El-Naga RN, Salama RM. Neuroprotective effect of empagliflozin against doxorubicin-induced chemobrain in rats: Interplay between SIRT-1/MuRF-1/PARP-1/NLRP3 signaling pathways and enhanced expression of miRNA-34a and LncRNA HOTAIR. Neurotoxicology 2024; 105:216-230. [PMID: 39426736 DOI: 10.1016/j.neuro.2024.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Chemobrain, a challenging side effect of doxorubicin (DOX)-based chemotherapy, impairs cognitive abilities in cancer survivors. DOX triggers chemobrain via oxidative stress, leading to inflammation and apoptosis. Empagliflozin (EMPA), a sodium glucose co-transporter-2 inhibitor, demonstrated neuroprotective effects by reducing reactive oxygen species (ROS) and inflammation, but its protective mechanisms against DOX-induced chemobrain is not fully known. Thus, this study aimed to investigate EMPA's neuroprotective effects on DOX-induced chemobrain in rats and to uncover the underlying protective mechanisms. Fifty male Wistar rats were divided into control, EMPA, DOX (2 mg/kg, IP, once/week for 4 weeks), and two treated groups (DOX+ EMPA 5 and 10 mg/kg/day, PO, for 4 weeks). Behavioral tests showed improved memory, motor performance, and reduced anxiety in EMPA-treated groups compared to DOX, with superior results at the higher dose. Histopathological analysis revealed increased intact neurons in the cortex and hippocampus in EMPA-treated groups, with 346.4 % increase in CA3 (p < 0.0001), 19.1 % in dentate gyrus (p = 0.0006), and 362.6 % in cortex (p < 0.0001) in the high-dose EMPA group. Biochemical investigations of the high-dose EMPA group revealed significant decreases in inflammatory and apoptotic markers (JNK/PARP-1/NLRP3/MuRF-1/FOXO-1), increased SIRT-1 protein expression by 389.9 % (p < 0.0001), and reduced miRNA-34a and LncRNA HOTAIR gene expression (50.4 % and 53.4 % respectively, p < 0.0001) relative to DOX group. Conclusively, EMPA demonstrated superior behavioral and histopathological outcomes particularly at higher dose, positioning it as a promising neuroprotective candidate against DOX-induced chemobrain, possibly through modulating SIRT-1, NF-κb, NLRP3, and oxidative stress pathways.
Collapse
Affiliation(s)
- Merihane M Nasr
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
10
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Fasting: A Complex, Double-Edged Blade in the Battle Against Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:1395-1409. [PMID: 39354217 DOI: 10.1007/s12012-024-09925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
In recent years, there has been a surge in the popularity of fasting as a method to enhance one's health and overall well-being. Fasting is a customary practice characterized by voluntary refraining from consuming food and beverages for a specified duration, ranging from a few hours to several days. The potential advantages of fasting, including enhanced insulin sensitivity, decreased inflammation, and better cellular repair mechanisms, have been well documented. However, the effects of fasting on cancer therapy have been the focus of recent scholarly investigations. Doxorubicin (Dox) is one of the most widely used chemotherapy medications for cancer treatment. Unfortunately, cardiotoxicity, which may lead to heart failure and other cardiovascular issues, has been linked to Dox usage. This study aims to comprehensively examine the possible advantages and disadvantages of fasting concerning Dox-induced cardiotoxicity. Researchers have investigated the potential benefits of fasting in lowering the risk of Dox-induced cardiac damage to solve this problem. Nevertheless, new studies indicate that prolonged alternate-day fasting may adversely affect the heart's capacity to manage the cardiotoxic properties of Dox. Though fasting may benefit overall health, it is essential to proceed cautiously and consider the potential risks in certain circumstances.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tao Yu
- Department of Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
11
|
Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Xu H, Zhu S, Wang Y. Doxorubicin-Induced Cardiotoxicity Through SIRT1 Loss Potentiates Overproduction of Exosomes in Cardiomyocytes. Int J Mol Sci 2024; 25:12376. [PMID: 39596439 PMCID: PMC11594621 DOI: 10.3390/ijms252212376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Mutual interaction between doxorubicin (DOX) and cardiomyocytes is crucial for cardiotoxicity progression. Cardiomyocyte injury is an important pathological feature of DOX-induced cardiomyopathy, and its molecular pathogenesis is multifaceted. In addition to the direct toxic effects of DOX on cardiomyocytes, DOX-induced exosomes in the extracellular microenvironment also regulate the pathophysiological states of cardiomyocytes. However, the mechanisms by which DOX regulates exosome secretion and subsequent pathogenesis remain incompletely understood. Here, we found that DOX significantly increased exosome secretion from cardiomyocytes, and inhibiting this release could alleviate cardiomyocyte injury. DOX promoted exosome secretion by reducing cardiomyocyte silencing information regulator 1 (SIRT1) expression, exacerbating cardiotoxicity. DOX impaired lysosomal acidification in cardiomyocytes, reducing the degradation of intracellular multivesicular bodies (MVBs), resulting in an increase in MVB volume before fusing with the plasma membrane to release their contents. Mechanistically, SIRT1 loss inhibited lysosomal acidification by reducing the expression of the ATP6V1A subunit of the lysosomal vacuolar-type H+ ATPase (V-ATPase) proton pump. Overexpressing SIRT1 increased ATP6V1A expression, improved lysosomal acidification, inhibited exosome secretion, and thereby alleviated DOX-induced cardiotoxicity. Interestingly, DOX also induced mitochondrial-derived vesicle formation in cardiomyocytes, which may further increase the abundance of MVBs and promote exosome release. Collectively, this study identified SIRT1-mediated impairment of lysosomal acidification as a key mechanism underlying the increased exosome secretion from cardiomyocytes induced by DOX, providing new insights into DOX-induced cardiotoxicity pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine, Soochow University, Suzhou 215123, China; (S.Z.)
| |
Collapse
|
12
|
Safaie N, Idari G, Ghasemi D, Hajiabbasi M, Alivirdiloo V, Masoumi S, Zavvar M, Majidi Z, Faridvand Y. AMPK activation; a potential strategy to mitigate TKI-induced cardiovascular toxicity. Arch Physiol Biochem 2024:1-13. [PMID: 39526616 DOI: 10.1080/13813455.2024.2426494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The introduction of Tyrosine Kinase Inhibitors (TKIs) has revolutionised cancer treatment, yet concerns regarding cardiovascular toxicity have surfaced. This piece delves into the interplay between AMP-activated protein kinase (AMPK) signalling and TKI-induced cardiovascular toxicity. The study unravels the intricate relationship between AMPK activation and TKI-induced cardiovascular toxicity, aiming to ascertain whether AMPK can play a strategic role in mitigating adverse effects. Beyond unravelling mechanistic insights, the research sets the stage for future therapeutic approaches, envisioning AMPK activation as a pivotal connection for balancing effective cancer treatment with cardiovascular well-being. As research advances, the potential of AMPK activation not only addresses challenges in TKI-induced cardiovascular toxicity but also shapes the future landscape of personalised anticancer therapies. The article explores the mechanisms of TKI-induced toxicity, AMPK's impact on cardiovascular health, and the potential therapeutic implications of AMPK activation in alleviating TKI-associated toxicities.
Collapse
Affiliation(s)
- Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Idari
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Diba Ghasemi
- Stem Cell research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramasr, Iran
| | - Shahab Masoumi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Vanderbilt University of Medical center, Nashville, TN, USA
| | - Mahdi Zavvar
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Gawrys O, Jíchová Š, Miklovič M, Husková Z, Kikerlová S, Sadowski J, Kollárová P, Lenčová-Popelova O, Hošková L, Imig JD, Mazurova Y, Kolář F, Melenovský V, Štěrba M, Červenka L. Characterization of a new model of chemotherapy-induced heart failure with reduced ejection fraction and nephrotic syndrome in Ren-2 transgenic rats. Hypertens Res 2024; 47:3126-3146. [PMID: 39245782 PMCID: PMC11534684 DOI: 10.1038/s41440-024-01865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
All anthracyclines, including doxorubicin (DOXO), the most common and still indispensable drug, exhibit cardiotoxicity with inherent risk of irreversible cardiomyopathy leading to heart failure with reduced ejection fraction (HFrEF). Current pharmacological strategies are clearly less effective for this type of HFrEF, hence an urgent need for new therapeutic approaches. The prerequisite for success is thorough understanding of pathophysiology of this HFrEF form, which requires an appropriate animal model of the disease. The aim of this study was to comprehensively characterise a novel model of HF with cardiorenal syndrome, i.e. DOXO-induced HFrEF with nephrotic syndrome, in which DOXO was administered to Ren-2 transgenic rats (TGR) via five intravenous injections in a cumulative dose of 10 mg/kg of body weight (BW). Our analysis included survival, echocardiography, as well as histological examination of the heart and kidneys, blood pressure, but also a broad spectrum of biomarkers to evaluate cardiac remodelling, fibrosis, apoptosis, oxidative stress and more. We have shown that the new model adequately mimics the cardiac remodelling described as "eccentric chamber atrophy" and myocardial damage typical for DOXO-related cardiotoxicity, without major damage of the peritoneum, lungs and liver. This pattern corresponds well to a clinical situation of cancer patients receiving anthracyclines, where HF develops with some delay after the anticancer therapy. Therefore, this study may serve as a comprehensive reference for all types of research on DOXO-related cardiotoxicity, proving especially useful in the search for new therapeutic strategies.
Collapse
Affiliation(s)
- Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Šárka Jíchová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Matúš Miklovič
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janusz Sadowski
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Kollárová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Olga Lenčová-Popelova
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Hošková
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - John D Imig
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yvona Mazurova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
| | - František Kolář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
14
|
Chen Y, Tu Y, Cao J, Wang Y, Ren Y. Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis. Cardiovasc Toxicol 2024; 24:1139-1150. [PMID: 39240427 DOI: 10.1007/s12012-024-09917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein-Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.
Collapse
Affiliation(s)
- Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Jin Cao
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yigang Wang
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
15
|
AlMotwaa SM, Al-Otaibi WA. Nano-emulsion based on Santolina chamaecyparissus essential oil potentiates the cytotoxic and apoptotic effects of Doxorubicin: an in vitro study. J Microencapsul 2024; 41:503-518. [PMID: 39092777 DOI: 10.1080/02652048.2024.2386287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
AIM This study was aimed at investigating the cytotoxic effect of a novel combination of doxorubicin (DOX) and nano-formulation of Santolina chamaecyparissus L. essential oil (SCEO-NANO) on hepatic (HepG2) and colon (HT29) cancer cell lines. METHODS A nano-emulsion was prepared by high-pressure homogenisation, then analysed by zetasizer and Fourier transform infrared spectroscopy. HepG2 and HT29 cells were used in in vitro tests for apoptosis detection. RESULTS Formulated droplet size increased in DOX@SCEO-NANO/DOX to 11.54 ± 0.02 with uniform distribution (PDI = 0.13 ± 0.01), when compared with SCEO-NANO (size: 8.91 ± 0.02 nm; PDI = 0.1 ± 0.02). In both cells, DOX@SCEO-NANO/DOX led to a considerable reduction in colony formation. Compared to DOX, apoprotein proteins were overexpressed in HepG2 cells, showing increases of 8.66-fold for caspase-3 and 4.24-fold for the Bax/Bcl-2 ratio. In HT29 cells, ROS-dependent necrosis and apoptosis were seen. Comparing DOX@SCEO-NANO/DOX versus DOX, greater levels of caspase-3 and the Bax/Bcl-2 ratio were observed. CONCLUSION The DOX@SCEO-NANO/DOX formulation showed potential for targeted eradication of colon adenocarcinoma and hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Sahar M AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Waad A Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
16
|
Jang J, Jung H, Jeong J, Jeon J, Lee K, Jang HR, Han JW, Lee J. Modeling doxorubicin-induced-cardiotoxicity through breast cancer patient specific iPSC-derived heart organoid. Heliyon 2024; 10:e38714. [PMID: 39640743 PMCID: PMC11620051 DOI: 10.1016/j.heliyon.2024.e38714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Heart organoid (HO) technology has successfully overcome the limitations of two-dimensional (2D) disease modeling and drug testing, thereby emerging as a valuable tool in drug discovery for assessing toxicity and efficacy. However, its ability to distinguish drug responses among individuals remain unclear, which is crucial for developing predictive models. We addressed this gap by comparing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with human induced pluripotent stem cell-derived heart organoids (hiPSC-HOs) in the context of doxorubicin-induced cardiotoxicity (DIC). For this study, we utilized hiPSCs generated from breast cancer patients who had previously been treated with doxorubicin. By comparing groups with and without DIC, we examined various parameters, including cell viability, mRNA expression, protein expression and electrophysiological variations. The results of our analysis revealed significant differences between these groups, providing insights into hiPSC-HOs as a potential platform for testing differences in drug responses among patients.
Collapse
Affiliation(s)
- Jiye Jang
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyewon Jung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaekyun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
17
|
Li W, Xu K, Lan M, Gao J, Dou L, Yang Y, Wang Q, Yan M, Li S, Ma Q, Tian W, Chen B, Cui J, Zhang X, Cai J, Wang H, Sun L, Li J, Huang X, Shen T. The dual functions of the pentacyclic triterpenoid madecassic acid in ameliorating doxorubicin-induced cardiotoxicity and enhancing the antitumor efficacy of doxorubicin. Int J Biol Sci 2024; 20:5396-5414. [PMID: 39494326 PMCID: PMC11528453 DOI: 10.7150/ijbs.97418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Doxorubicin (DOX) is an anthracycline that has excellent anticancer effects during tumor chemotherapy, but it can cause cardiotoxic effects and its clinical use has been limited. Therefore, finding new drugs or methods to prevent or reverse the cardiac damage caused by DOX therapy in cancer patients is essential. Previous studies have identified potential cardioprotective effects of Centella asiatica (C. asiatica), and madecassic acid (MA) is a pentacyclic triterpenoid derived from C. asiatica. However, the pharmacological effects of MA on the heart and tumors during tumor chemotherapy are not fully understood. The aim of this study was to investigate the pharmacological function and molecular mechanisms of MA in the heart and tumor during chemotherapy. In a DOX-induced acute heart failure mouse model and a cardiomyocyte injury model, MA reduced cardiomyocyte oxidative stress and the inflammatory response, improved mitochondrial function, and attenuated autophagic flux blockade and apoptosis. Interestingly, MA significantly increased the expression and activity of SIRT1. When SIRT1 was knocked down, the protective effect of MA on cardiomyocytes was significantly inhibited, suggesting that MA may exert cardioprotective effects through the SIRT1 pathway. Interestingly, in contrast to its cardioprotective effect, MA could synergize with DOX and significantly contribute to the anticancer chemotherapeutic effect of DOX by inhibiting proliferation, migration and invasion; promoting apoptosis; and suppressing tumor progression by inhibiting the expression of the DDX5 pathway in tumor cells. Here, we identified the pharmacological functions of the pentacyclic triterpenoid MA in ameliorating DOX-induced cardiotoxicity and enhancing the antitumor efficacy of DOX.
Collapse
Affiliation(s)
- Wenlin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ming Lan
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Junpeng Gao
- Biomedical Pioneering lnnovation Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Yao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Que Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
| | - Sainan Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qinan Ma
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Weimeng Tian
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiyue Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Hua Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
| |
Collapse
|
18
|
Li Y, Yan J, Yang P. The mechanism and therapeutic strategies in doxorubicin-induced cardiotoxicity: Role of programmed cell death. Cell Stress Chaperones 2024; 29:666-680. [PMID: 39343295 PMCID: PMC11490929 DOI: 10.1016/j.cstres.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Doxorubicin (DOX) is the most commonly used anthracycline anticancer agent, while its clinical utility is limited by harmful side effects like cardiotoxicity. Numerous studies have elucidated that programmed cell death plays a significant role in DOX-induced cardiotoxicity (DIC). This review summarizes several kinds of programmed cell death, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, oxidative stress, inflammation, and mitochondrial dysfunction are also important factors in the molecular mechanisms of DIC. Besides, a comprehensive understanding of specific signal pathways of DIC can be helpful to its treatment. Therefore, the related signal pathways are elucidated in this review, including sirtuin deacetylase (silent information regulator 2 [Sir2]) 1 (SIRT1)/nuclear factor erythroid 2-related factor 2, SIRT1/Klotho, SIRT1/Recombinant Sestrin 2, adenosine monophosphate-activated protein kinase, AKT, and peroxisome proliferator-activated receptor. Heat shock proteins function as chaperones, which play an important role in various stressful situations, especially in the heart. Thus, some of heat shock proteins involved in DIC are also included. Hence, the last part of this review focuses on the therapeutic research based on the mechanisms above.
Collapse
Affiliation(s)
- Yanzhao Li
- Department of Second Clinical Medical College, Southern Medical University, Guangzhou, China.
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Mohammad SIS, Vasudevan A, Enwa FO, Bansal J, Chahar M, Eldesoqui M, Ullah MI, Gardanova ZR, Hulail HM, Zwamel AH. The Sirt1/Nrf2 pathway is a key factor for drug therapy in chemotherapy-induced cardiotoxicity: a Mini-Review. Med Oncol 2024; 41:244. [PMID: 39259412 DOI: 10.1007/s12032-024-02494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
The likelihood of survival for cancer patients has greatly improved due to chemotherapy medicines. However, these antitumor agents might also have unfavorable effects on the cardiovascular system, which could result in sudden or gradual cardiac failure. The production of free radicals that result in oxidative stress appears to be the key mechanism by which chemotherapy-induced cardiotoxicity (CIC) happens. Reports suggest that the Sirtuin-1 (Sirt1)/Nuclear factor E2-associated factor 2 (Nrf2) signaling pathway has been considered an alternative path for counteracting cardiotoxicity by suppressing oxidative stress, inflammation, and apoptosis. This review concludes recent knowledge about CIC with a special focus on the anti-oxidative regulation properties of the Sirt1/Nrf2 pathway.
Collapse
Affiliation(s)
- Suleiman Ibrahim Shelash Mohammad
- Research Follower, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia.
- Department of Business Administration, Business School, Al Al-Bayt University, Al-Mafraq, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Felix Oghenemaro Enwa
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Jaya Bansal
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, 72388, Sakaka, Aljouf, Saudi Arabia
| | - Zhanna R Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
- Department of Fundamental Disciplines, Independent Non-Profit Organization of Higher Education, "Medical University MGIMO-MED", Moscow, Russia
| | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
20
|
Fath AR, Aglan M, Aglan A, Chilton RJ, Trakhtenbroit A, Al-Shammary OA, Oppong-Nkrumah O, Lenihan DJ, Dent SF, Otchere P. Cardioprotective Potential of Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Cancer Treated With Anthracyclines: An Observational Study. Am J Cardiol 2024; 222:175-182. [PMID: 38692401 DOI: 10.1016/j.amjcard.2024.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Anthracyclines are pivotal in cancer treatment, yet their clinical utility is hindered by the risk of cardiotoxicity. Preclinical studies highlight the effectiveness of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in mitigating anthracycline-induced cardiotoxicity. Nonetheless, the translation of these findings to clinical practice remains uncertain. This study aims to evaluate the safety and potential of SGLT2i for preventing cardiotoxicity in patients with cancer, without preexisting heart failure (HF), receiving anthracyclines therapy. Using the TriNetX Global Research Network, patients with cancer, without previous HF diagnosis, receiving anthracycline therapy were identified and classified into 2 groups based on SGLT2i usage. A 1:1 propensity score matching was used to control for baseline characteristics between the 2 groups. Patients were followed for 2 years. The primary end point was new-onset HF, and the secondary end points were HF exacerbation, new-onset arrhythmia, myocardial infarction, all-cause mortality, and all-cause hospitalization. Safety outcomes included acute renal failure and creatinine levels. A total of 79,074 patients were identified, and 1,412 were included post-matching (706 in each group). They comprised 53% females, 62% White, with a mean age of 62.5 ± 11.4 years. Over the 2-year follow-up period, patients on SGLT2i had lower rates of new-onset HF (hazard ratio 0.147, 95% confidence interval 0.073 to 0.294) and arrhythmia (hazard ratio 0.397, 95% confidence interval 0.227 to 0.692) compared with those not on SGLT2i. The incidence of all-cause mortality, myocardial infarction, all-cause hospitalization, and safety outcomes were similar between both groups. In conclusion, among patients with cancer receiving anthracycline therapy without preexisting HF, SGLT2i use demonstrates both safety and effectiveness in reducing anthracycline-induced cardiotoxicity, with a decreased incidence of new-onset HF, HF exacerbation, and arrhythmias.
Collapse
Affiliation(s)
- Ayman R Fath
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas.
| | - Mostafa Aglan
- Internal Medicine Department, Lahey Hospital and Medical Center, Burlington Massachusetts
| | - Amro Aglan
- Internal Medicine Department, Lahey Hospital and Medical Center, Burlington Massachusetts
| | - Robert J Chilton
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Anatole Trakhtenbroit
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Odaye A Al-Shammary
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Oduro Oppong-Nkrumah
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Daniel J Lenihan
- Cardiology Department, Saint Francis Healthcare System, Cape Girardeau, Missouri
| | - Susan F Dent
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Prince Otchere
- Cardiology Department, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
21
|
Berlanga-Acosta J, Cibrian D, Valiente-Mustelier J, Suárez-Alba J, García-Ojalvo A, Falcón-Cama V, Jiang B, Wang L, Guillén-Nieto G. Growth hormone releasing peptide-6 (GHRP-6) prevents doxorubicin-induced myocardial and extra-myocardial damages by activating prosurvival mechanisms. Front Pharmacol 2024; 15:1402138. [PMID: 38873418 PMCID: PMC11169835 DOI: 10.3389/fphar.2024.1402138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction: Dilated cardiomyopathy (DCM) is a fatal myocardial condition with ventricular structural changes and functional deficits, leading to systolic dysfunction and heart failure (HF). DCM is a frequent complication in oncologic patients receiving Doxorubicin (Dox). Dox is a highly cardiotoxic drug, whereas its damaging spectrum affects most of the organs by multiple pathogenic cascades. Experimentally reproduced DCM/HF through Dox administrations has shed light on the pathogenic drivers of cardiotoxicity. Growth hormone (GH) releasing peptide 6 (GHRP-6) is a GH secretagogue with expanding and promising cardioprotective pharmacological properties. Here we examined whether GHRP-6 administration concomitant to Dox prevented the onset of DCM/HF and multiple organs damages in otherwise healthy rats. Methods: Myocardial changes were sequentially evaluated by transthoracic echocardiography. Autopsy was conducted at the end of the administration period when ventricular dilation was established. Semiquantitative histopathologic study included heart and other internal organs samples. Myocardial tissue fragments were also addressed for electron microscopy study, and characterization of the transcriptional expression ratio between Bcl-2 and Bax. Serum samples were destined for REDOX system balance assessment. Results and discussion: GHRP-6 administration in parallel to Dox prevented myocardial fibers consumption and ventricular dilation, accounting for an effective preservation of the LV systolic function. GHRP-6 also attenuated extracardiac toxicity preserving epithelial organs integrity, inhibiting interstitial fibrosis, and ultimately reducing morbidity and mortality. Mechanistically, GHRP-6 proved to sustain cellular antioxidant defense, upregulate prosurvival gene Bcl-2, and preserve cardiomyocyte mitochondrial integrity. These evidences contribute to pave potential avenues for the clinical use of GHRP-6 in Dox-treated subjects.
Collapse
Affiliation(s)
| | - Danay Cibrian
- Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | | | | | | | | | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linlin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
22
|
Jin X, Sun X, Ma X, Qin Z, Gao X, Kang X, Li H, Sun H. SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1. Cell Mol Life Sci 2024; 81:204. [PMID: 38700532 PMCID: PMC11072260 DOI: 10.1007/s00018-023-05043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 11/07/2023] [Indexed: 05/24/2024]
Abstract
The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xulei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao Ma
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zixuan Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongzhi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
23
|
Gao T, Wang J, Xiao M, Wang J, Wang S, Tang Y, Zhang J, Lu G, Guo H, Guo Y, Liu Q, Li J, Gu J. SESN2-Mediated AKT/GSK-3β/NRF2 Activation to Ameliorate Adriamycin Cardiotoxicity in High-Fat Diet-Induced Obese Mice. Antioxid Redox Signal 2024; 40:598-615. [PMID: 37265150 DOI: 10.1089/ars.2022.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aims: Obese patients are highly sensitive to adriamycin (ADR)-induced cardiotoxicity. However, the potential mechanism of superimposed toxicity remains to be elucidated. Sestrin 2 (SESN2), a potential antioxidant, could attenuate stress-induced cardiomyopathy; therefore, this study aims to explore whether SESN2 enhances cardiac resistance to ADR-induced oxidative damage in high-fat diet (HFD)-induced obese mice. Results: The results revealed that obesity decreased SESN2 expression in ADR-exposed heart. And, HFD mice may predispose to ADR-induced cardiotoxicity, which was probably associated with inhibiting protein kinase B (AKT), glycogen synthase kinase-3 beta (GSK-3β) phosphorylation and subsequently blocking nuclear localization of nuclear factor erythroid-2 related factor 2 (NRF2), ultimately resulting in cardiac oxidative damage. However, these destructive cascades and cardiac oxidative damage effects induced by HFD/sodium palmitate combined with ADR were blocked by overexpression of SESN2. Moreover, the antioxidant effect of SESN2 could be largely abolished by sh-Nrf2 or wortmannin. And sulforaphane, an NRF2 agonist, could remarkably reverse cardiac pathological and functional abnormalities caused by ADR in obese mice. Innovation and Conclusion: This study demonstrated that SESN2 might be a promising therapeutic target for improving anthracycline-related cardiotoxicity in obesity by upregulating activity of NRF2 via AKT/GSK-3β/Src family tyrosine kinase signaling pathway. Antioxid. Redox Signal. 40, 598-615.
Collapse
Affiliation(s)
- Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Shenyang, China
- Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Guo
- Department of Nursing, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
24
|
Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:159-182. [PMID: 38774006 PMCID: PMC11103046 DOI: 10.1016/j.jaccao.2024.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 05/24/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for type 2 diabetes mellitus, have demonstrated efficacy in reducing cardiovascular events, particularly heart failure, in patients with and without diabetes. An intriguing research area involves exploring the potential application of SGLT2 inhibitors in cardio-oncology, aiming to mitigate the cardiovascular adverse events associated with anticancer treatments. These inhibitors present a unique dual nature, offering both cardioprotective effects and anticancer properties, conferring a double benefit for cardio-oncology patients. In this review, the authors first examine the established cardioprotective effects of SGLT2 inhibitors in heart failure and subsequently explore the existing body of evidence, including both preclinical and clinical studies, that supports the use of SGLT2 inhibitors in the context of cardio-oncology. The authors further discuss the mechanisms through which SGLT2 inhibitors protect against cardiovascular toxicity secondary to cancer treatment. Finally, they explore the potential anticancer effects of SGLT2 inhibitors along with their proposed mechanisms.
Collapse
Affiliation(s)
- Mohamed S. Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y. George
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mary R. Daniel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne H. Blaes
- Division of Hematology/Oncology/Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
25
|
Belger C, Abrahams C, Imamdin A, Lecour S. Doxorubicin-induced cardiotoxicity and risk factors. IJC HEART & VASCULATURE 2024; 50:101332. [PMID: 38222069 PMCID: PMC10784684 DOI: 10.1016/j.ijcha.2023.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic widely used as a chemotherapeutic agent to treat solid tumours and hematologic malignancies. Although useful in the treatment of cancers, the benefit of DOX is limited due to its cardiotoxic effect that is observed in a large number of patients. In the literature, there is evidence that the presence of various factors may increase the risk of developing DOX-induced cardiotoxicity. A better understanding of the role of these different factors in DOX-induced cardiotoxicity may facilitate the choice of the therapeutic approach in cancer patients suffering from various cardiovascular risk factors. In this review, we therefore discuss the latest findings in both preclinical and clinical research suggesting a link between DOX-induced cardiotoxicity and various risk factors including sex, age, ethnicity, diabetes, dyslipidaemia, obesity, hypertension, cardiovascular disease and co-medications.
Collapse
Affiliation(s)
| | | | - Aqeela Imamdin
- Cardioprotection Group, Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Sun Y, Guo D, Yue S, Zhou M, Wang D, Chen F, Wang L. Afzelin protects against doxorubicin-induced cardiotoxicity by promoting the AMPKα/SIRT1 signaling pathway. Toxicol Appl Pharmacol 2023; 477:116687. [PMID: 37703929 DOI: 10.1016/j.taap.2023.116687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Doxorubicin (DOX), a chemotherapeutic drug, could relieve the progressions of various diseases. However, its clinical application is limited due to its cardiotoxicity. This study aimed to investigate the effects of afzelin (a flavonol glycoside found in Houttuynia cordata) on the cardiotoxicity induced by DOX. METHODS In ex-vivo, H9C2 cells were incubated with 20, 40, or 80 μM afzelin for 12 h, followed by the treatment with 1 μM DOX for 12 h. In vivo, C57BL/6 J mice were intraperitoneally injected with 4 mg/kg/day DOX on days 1, 7, and 14. Meanwhile, starting from day 1, mice were intragastrically administrated with 5 mg/kg/day or 10 mg/kg/day afzelin for 20 days. The cardiac function of mice was evaluated by detecting hemodynamic parameters using the M-mode echocardiography. RESULTS DOX decreased the cell survival rate, and elevated apoptotic rate, as well as induced the oxidative stress and mitochondrial dysfunction in H9C2 cells. All these changes were alleviated by afzelin treatment in a concentration-dependent manner. The results were further proven by the mitigation of cardiac injury in vivo, as evidenced by the elevation of fractional shortening, heart weight/tibia length, and the rate of the increase/decrease of left ventricular pressure in mice subjected to DOX-induced cardiotoxicity. Furthermore, afzelin upregulated the expression of p-AMP-activated protein kinase alpha (AMPKα) and sirtuin1 (SIRT1). Dorsomorphin (an AMPKα inhibitor) abrogated the anti-cardiotoxicity effects of afzelin in H9C2 cells induced by DOX. CONCLUSION Afzelin protected against DOX-induced cardiotoxicity by promoting the AMPKα/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Danyang Guo
- Department of Ultrasound, the Sixth Affiliated Hospital of Harbin Medical University, 57 Youyi Road, Daoli District, Harbin 150076, Heilongjiang, China
| | - Saiding Yue
- Department of Nephrology, Harbin Jing-En Nephrology Hospital, 11 Xiangbin Road, Xiangfang District, Harbin 150036, Heilongjiang, China
| | - Mingyan Zhou
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Dongxu Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Fengjiao Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Lingling Wang
- Department of Ultrasound, the Sixth Affiliated Hospital of Harbin Medical University, 998 Aiying Avenue, Songbei District, Harbin 150027, Heilongjiang, China.
| |
Collapse
|
27
|
Xiong D, Yang J, Li D, Wang J. Exploration of Key Immune-Related Transcriptomes Associated with Doxorubicin-Induced Cardiotoxicity in Patients with Breast Cancer. Cardiovasc Toxicol 2023; 23:329-348. [PMID: 37684436 PMCID: PMC10514147 DOI: 10.1007/s12012-023-09806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Based on a few studies, heart failure patients with breast cancer were assessed to find potential biomarkers for doxorubicin-induced cardiotoxicity. However, key immune-related transcriptional markers linked to doxorubicin-induced cardiotoxicity in breast cancer patients have not been thoroughly investigated. We used GSE40447, GSE76314, and TCGA BRCA cohorts to perform this study. Then, we performed various bioinformatics approaches to identify the key immune-related transcriptional markers and their association with doxorubicin-induced cardiotoxicity in patients with breast cancer. We found 255 upregulated genes and 286 downregulated genes in patients with doxorubicin-induced heart failure in breast cancer. We discovered that in patients with breast cancer comorbidity doxorubicin-induced cardiotoxicity, the 58 immunological genes are elevated (such as CPA3, VSIG4, GATA2, RFX2, IL3RA, and LRP1), and the 60 genes are significantly suppressed (such as MS4A1, FCRL1, CD200, FCRLA, FCRL2, and CD79A). Furthermore, we revealed that the immune-related differentially expressed genes (DEGs) are substantially associated with the enrichment of KEGG pathways, including B-cell receptor signaling pathway, primary immunodeficiency, chemokine signaling pathway, hematopoietic cell lineage, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, MAPK signaling pathway, focal adhesion, dilated cardiomyopathy, cell adhesion molecule, etc. Moreover, we discovered that the doxorubicin-induced immune-related genes are crucially involved in the protein-protein interaction and gene clusters. The immune-related genes, including IFIT5, XCL1, SPIB, BTLA, MS4A1, CD19, TCL1A, CD83, CD200, FCRLA, CD79A, BIRC3, and IGF2R are significantly associated with a poor survival prognosis of breast cancer patients and showed diagnostic efficacy in patients with breast cancer and heart failure. Molecular docking revealed that the survival-associated genes interact with the doxorubicin with appreciable binding affinity. Finally, we validated the expression level of immune-related genes in breast cancer patients-derived cardiomyocytes with doxorubicin-induced cardiotoxicity and found that the level of RAD9A, HSPA1B, GATA2, IGF2R, CD200, ERCC8, and BCL11A genes are consistently dysregulated. Our findings offered a basis for understanding the mechanism and pathogenesis of the cardiotoxicity caused by doxorubicin in breast cancer patients and predicted the interaction of immune-related potential biomarkers with doxorubicin.
Collapse
Affiliation(s)
- Daiqin Xiong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Dongfeng Li
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jie Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
28
|
Sun Q, Liang J, Lin Y, Zhang Y, Yan F, Wu W. Preparation of nano-sized multi-vesicular vesicles (MVVs) and its application in co-delivery of doxorubicin and curcumin. Colloids Surf B Biointerfaces 2023; 229:113471. [PMID: 37523805 DOI: 10.1016/j.colsurfb.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Multi-vesicular vesicles (MVVs) offer structural advantages in terms of drug encapsulation and physiological stability. In this study, we address the challenge of preparing small-sized MVVs for drug delivery. The nano-sized MVVs (∼120 nm) loaded with doxorubicin (DOX) and curcumin (CUR) (DOX/CUR@MVVs) were successfully prepared using a glass bead combined with a thin film dispersion method. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the independent non-homocentric vesicle structures of DOX/CUR@MVVs with homogeneous particle sizes. The experimental results showed high encapsulation rates of DOX and CUR in DOX/CUR@MVVs, reaching 82.5 ± 0.75 % and 85.9 ± 0.69 %, respectively. Moreover, the MVVs exhibited good biosafety and sustained release properties. Notably, the bioavailability of DOX and CUR in DOX/CUR@MVVs was enhanced compared to free DOX and CUR, with increases of 4.2 and 2.1 times, respectively. And the half-life of DOX and CUR was extended by 10 times in DOX/CUR@MVVs. In vivo antitumor experiments demonstrated that nano-sized DOX/CUR@MVVs significantly improved the antitumor activity while reducing the toxic side effects of DOX. Overall, the successful preparation of nano-sized DOX/CUR@MVVs and their potent and low-toxic antitumor effects provide a critical experimental reference for the combined antitumor therapy of MVVs and liposomes.
Collapse
Affiliation(s)
- Qiankun Sun
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ju Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yang Lin
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yunyun Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Fuqing Yan
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenlan Wu
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
29
|
Basak M, Das K, Mahata T, Kumar D, Nagar N, Poluri KM, Kumar P, Das P, Stewart A, Maity B. RGS7 balances acetylation/de-acetylation of p65 to control chemotherapy-dependent cardiac inflammation. Cell Mol Life Sci 2023; 80:255. [PMID: 37589751 PMCID: PMC11071981 DOI: 10.1007/s00018-023-04895-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Cardiotoxicity remains a major limitation in the clinical utility of anthracycline chemotherapeutics. Regulator of G-protein Signaling 7 (RGS7) and inflammatory markers are up-regulated in the hearts of patients with a history of chemotherapy particularly those with reduced left-ventricular function. RGS7 knockdown in either the murine myocardium or isolated murine ventricular cardiac myocytes (VCM) or cultured human VCM provided marked protection against doxorubicin-dependent oxidative stress, NF-κB activation, inflammatory cytokine production, and cell death. In exploring possible mechanisms causally linking RGS7 to pro-inflammatory signaling cascades, we found that RGS7 forms a complex with acetylase Tip60 and deacetylase sirtuin 1 (SIRT1) and controls the acetylation status of the p65 subunit of NF-κB. In VCM, the detrimental impact of RGS7 could be mitigated by inhibiting Tip60 or activating SIRT1, indicating that the ability of RGS7 to modulate cellular acetylation capacity is critical for its pro-inflammatory actions. Further, RGS7-driven, Tip60/SIRT1-dependent cytokines released from ventricular cardiac myocytes and transplanted onto cardiac fibroblasts increased oxidative stress, markers of transdifferentiation, and activity of extracellular matrix remodelers emphasizing the importance of the RGS7-Tip60-SIRT1 complex in paracrine signaling in the myocardium. Importantly, while RGS7 overexpression in heart resulted in sterile inflammation, fibrotic remodeling, and compromised left-ventricular function, activation of SIRT1 counteracted the detrimental impact of RGS7 in heart confirming that RGS7 increases acetylation of SIRT1 substrates and thereby drives cardiac dysfunction. Together, our data identify RGS7 as an amplifier of inflammatory signaling in heart and possible therapeutic target in chemotherapeutic drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Madhuri Basak
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Kiran Das
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Tarun Mahata
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pranesh Kumar
- Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow, Uttar Pradesh, 226025, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, 603203, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| | - Biswanath Maity
- Centre of Biomedical Research (CBMR), SGPGI, SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
30
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
31
|
Ferrera A, Fiorentini V, Reale S, Solfanelli G, Tini G, Barbato E, Volpe M, Battistoni A. Anthracyclines-Induced Cardiac Dysfunction: What Every Clinician Should Know. Rev Cardiovasc Med 2023; 24:148. [PMID: 39076747 PMCID: PMC11273047 DOI: 10.31083/j.rcm2405148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 07/31/2024] Open
Abstract
Chemotherapies have changed the prognosis of patients affected by cancer over the last 20 years, with a significant increase in survival rates. However, they can cause serious adverse effects that may limit their use. In particular, anthracyclines, widely used to treat both hematologic cancers and solid cancers, may cause cardiac toxicity, leading to the development of heart failure in some cases. This review aims to explore current evidence with regards to anthracyclines' cardiotoxicity, with particular focus on the classifications and underlying molecular mechanisms, in order to provide an overview on the current methods of its diagnosis, treatment, and prevention. An attentive approach and a prompt management of patients undergoing treatment with anthracyclines is imperative to avoid preventable antineoplastic drug discontinuation and is conducive to improving both short-term and long-term cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Armando Ferrera
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Vincenzo Fiorentini
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Simone Reale
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Giorgio Solfanelli
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Giacomo Tini
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Emanuele Barbato
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Massimo Volpe
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
- IRCCS San Raffaele, 00163 Rome, Italy
| | - Allegra Battistoni
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| |
Collapse
|
32
|
Li C, Guo Z, Liu F, An P, Wang M, Yang D, Tang Q. PCSK6 attenuates cardiac dysfunction in doxorubicin-induced cardiotoxicity by regulating autophagy. Free Radic Biol Med 2023; 203:114-128. [PMID: 37061139 DOI: 10.1016/j.freeradbiomed.2023.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used in the field of cancer, but its side effects on the heart hinder its clinical application. In cardiac injury caused by DOX, apoptosis and oxidative stress are both involved in cardiac damage, and autophagy is also one of the key responses. Both apoptosis and oxidative stress interact with autophagy. Proper promotion of autophagy effectively protects the myocardium and blocks cardiac injury. DOX mainly acts downstream of the autophagic flow and hinders the degradation process of autophagolysosomes, resulting in abnormal accumulation of autophagolysosomes in cells, which can prevent the timely removal of harmful substances and disrupt the normal function of cells. Proprotein convertase subtilisin/kexin type 6 (PCSK6) is involved in the occurrence and development of various cardiovascular diseases, blood pressure regulation and the inflammatory response, but its role in DOX is still unclear. Here, we constructed cardiac PCSK6-overexpressing mice by injecting AAV9-PCSK6. Both in vivo and in vitro experiments confirmed that overexpression of PCSK6 effectively protected cardiac function, inhibited apoptosis and oxidative stress. We focused on the effect of PCSK6 overexpression on autophagy. We have detected an increase in autophagosomes production and a decrease in autophagolysosomes accumulation. This suggests that PCSK6 promotes the level of autophagy, while possibly acting on the sites where DOX inhibits degradation, so that the autophagic flux inhibited by DOX is restored and the degradation process of autophagolysosomes is restored. The effect of PCSK6 was dependent on FOXO3a, which promoted the nuclear translocation of Forkhead box O3 (FOXO3a), and Sirtuin 1 (SIRT1) regulated the expression of FOXO3a. When SIRT1 was inhibited, the protective effect of PCSK6 was diminished. In conclusion, overexpression of PCSK6 exerts a protective effect through SIRT1/FOXO3a in cardiac injury induced by DOX, suggesting that PCSK6 may be a therapeutic target for DOX cardiomyopathy.
Collapse
Affiliation(s)
- Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| | - Fangyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
33
|
Zhang W, Wang X, Tang Y, Huang C. Melatonin alleviates doxorubicin-induced cardiotoxicity via inhibiting oxidative stress, pyroptosis and apoptosis by activating Sirt1/Nrf2 pathway. Biomed Pharmacother 2023; 162:114591. [PMID: 36965257 DOI: 10.1016/j.biopha.2023.114591] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Melatonin confers cardioprotective effects on multiple cardiovascular diseases, including doxorubicin-induced cardiomyopathy. The effectiveness of melatonin in mitigating myocardial injuries caused by Doxorubicin through enhancement of mitochondrial function is already established, however, the role of melatonin in regulating the Sirtuin-1 (Sirt1)/Nuclear factor E2-associated factor 2 (Nrf2) pathway in lessening the onset of Doxorubicin-induced cardiomyopathy is yet to be elucidated. To address this, H9C2 cardiomyocytes and C57BL/6 mice were employed to construct in vitro and in vivo models of Dox-induced myocardial impairments, respectively. Results showed that Dox markedly evoked oxidative stress, pyroptosis and apoptosis both in vitro and in vivo, which were significantly alleviated by melatonin administration. Mechanistically, melatonin attenuated Dox-induced downregulation of Sirt1 and Nrf2, and both inhibition of Sirt1 and Nrf2 significantly reversed the cardioprotective effects of melatonin. In conclusion, our studies suggest that the activation of the Sirt1/Nrf2 pathway is the underlying mechanism behind melatonin's ability to curtail oxidative stress, pyroptosis, and apoptosis in Dox-induced cardiomyopathy. These promising results demonstrated the potential application of melatonin as a treatment for doxorubicin-induced cardiac injury.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
34
|
IgD/FcδR is involved in T-cell acute lymphoblastic leukemia and regulated by IgD-Fc-Ig fusion protein. Pharmacol Res 2023; 189:106686. [PMID: 36746360 DOI: 10.1016/j.phrs.2023.106686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis as a result of severe immunosuppression and rapid tumor progression with resistance to conventional chemotherapy. Excessive IgD may play a role in T cell activation via IgD Fc receptor (FcδR). Here we aimed to investigate the effects of IgD in T-ALL and demonstrated the potential benefit by targeting IgD/FcδR in T-ALL patients with IgD-Fc-Ig fusion protein. In T-ALL patients' blood samples and cell lines, the level of IgD, the percentage of FcδR expressing cells and the binding affinity were determined by flow cytometry. T cell viability, proliferation and apoptosis were analyzed. A mouse xenograft model was used to evaluate the in vivo effect of IgD-Fc-Ig, an IgD-FcδR blocker. The levels of serum IgD and FcδR were abnormally increased in part of T-ALL patients and IgD could induce over-proliferation and inhibit apoptosis of T-ALL cells in vitro. FcδR was constitutively expressed on T-ALL cells. IgD-Fc-Ig showed similar binding affinity to FcδR and selectively blocked the stimulation effect of IgD on T-ALL cells in vitro. In vivo study exhibited that IgD-Fc-Ig may also have therapeutic benefit. IgD-Fc-Ig administration inhibited human T-ALL growth and extended survival in xenograft T-ALL mice. In conclusion, this work supports the idea of targeting IgD/FcδR in T-ALL patients with excessive IgD. IgD-Fc-Ig fusion protein might be a potential biological drug with high selectivity for T-ALL treatment.
Collapse
|
35
|
Avagimyan A, Gvianishvili T, Gogiashvili L, Kakturskiy L, Sarrafzadegan N, Aznauryan A. Chemotherapy, hypothyroidism and oral dysbiosis as a novel risk factor of cardiovascular pathology development. Curr Probl Cardiol 2023; 48:101051. [PMID: 34800544 DOI: 10.1016/j.cpcardiol.2021.101051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/01/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in the population, as well as the economic burden of the health care system. Currently, CVDs account for more than 17.6 million deaths a year and are projected to exceed 23.6 million by 2030. Unstable atheroma, and its rupture, underlies the pathology of most cardiovascular complications, particularly acute coronary syndrome, mortality from which, compared with other CV events, remains the leading one. Despite numerous efforts by WHO, national health systems, and medical authorities, the incidence and mortality from cardiovascular events remain critically high. Thus, the search for new risk factors for the development of CV pathology looks very relevant. Our working group decided to amalgamate our research data, which reflects the study of modern risk factors from the Armenian, Russian, Georgian, and Iranian medical schools. In particular, the aspects of cardiotoxic effects of chemotherapy, hypothyroidism, and oral dysbiosis are discussed.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Lecturer of Anatomical Pathology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Republic of Armenia
| | - Tamuna Gvianishvili
- Ivane Javakhishvili Tbilisi State University, Researcher of Department of Clinical and Experimental Pathology, Alexandre Natishvili Institute of Morphology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Liana Gogiashvili
- Head of Department of Clinical and Experimental Pathology, Alexandre Natishvili Institute of Morphology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Lev Kakturskiy
- Scientific Director of FSBI Research Institute of Human Morphology, President of Russian Society of Pathology, Moscow, Russia
| | - Nizal Sarrafzadegan
- Director of Isfahan Cardiovascular Research Institute, Isfahan University of Medical Science, Isfahan, Iran
| | - Artashes Aznauryan
- Histology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Republic of Armenia
| |
Collapse
|
36
|
Feng J, Wu Y. Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity. Am J Cardiovasc Drugs 2023; 23:231-246. [PMID: 36841924 DOI: 10.1007/s40256-023-00573-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
The use of chemotherapeutic agents is becoming more frequent as the proportion of new oncology patients increases worldwide, with prolonged survival after treatment. As one of the most popular chemotherapy drugs, doxorubicin plays a substantial role in the treatment of tumors. Unfortunately, the use of doxorubicin is associated with several adverse effects, particularly severe cardiotoxicity that can be life-threatening, which greatly limits its clinical use. For decades, scientists have tried to explore many cardioprotective agents and therapeutic approaches, but their efficacy remains controversial, and some drugs have even brought about significant adverse effects. The concrete molecular mechanism of doxorubicin-induced cardiotoxicity is still to be unraveled, yet endothelial damage is gradually being identified as an important mechanism triggering the development and progression of doxorubicin-induced cardiotoxicity. Endothelial-to-mesenchymal transition (EndMT), a fundamental process regulating morphogenesis in multicellular organisms, is recognized to be associated with endothelial damage repair and acts as an important factor in the progression of cardiovascular diseases, tumors, and rheumatic immune diseases. Mounting evidence suggests that endothelial-mesenchymal transition may play a non-negligible role in doxorubicin-induced cardiotoxicity. In this paper, we reviewed the molecular mechanisms and signaling pathways of EndMT and outlined the molecular mechanisms of doxorubicin-induced cardiotoxicity and the current therapeutic advances. Furthermore, we summarized the basic principles of doxorubicin-induced endothelial-mesenchymal transition that lead to endothelial dysfunction and cardiotoxicity, aiming to provide suggestions or new ideas for the prevention and treatment of doxorubicin-induced endothelial and cardiac injury.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
37
|
Jin H, Xu J, Sui Z, Wang L. Risk factors from Framingham risk score for anthracyclines cardiotoxicity in breast cancer: A systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:1101585. [PMID: 36742068 PMCID: PMC9892715 DOI: 10.3389/fcvm.2023.1101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Background Framingham risk score (FRS) is an effective tool for evaluating the 10-year risk of cardiovascular diseases. However, the sensitivity of FRS for anthracycline-induced cardiotoxicity is unclear. This meta-analysis aims to evaluate the correlation between risk factors (hypertension, hyperlipidemia, diabetes, smoking, and obesity) in FRS and anthracycline-induced cardiotoxicity in breast cancer. Methods We searched PubMed, EMBASE, and Cochrane Library for studies published from inception to January 2022 which reported cardiotoxicity due to anthracycline. Cardiotoxicity defined as any cardiac events were used as the primary endpoint. A total of 33 studies involving 55,708 breast cancer patients treated with anthracyclines were included in this meta-analysis. Results At least one risk factor was identified at baseline for the 55,708 breast cancer patients treated with anthracycline. Hypertension [I 2 = 45%, Fixed, RR (95% CI) = 1.40 (1.22, 1.60), p < 0.00001], hyperlipidemia [I 2 = 0%, Fixed, RR (95% CI): 1.35 (1.12, 1.62), p = 0.002], diabetes [I 2 = 0%, Fixed, RR (95% CI): 1.29 (1.05, 1.57), p = 0.01], and obesity [I 2 = 0%, Fixed, RR (95% CI): 1.32 (1.05, 1.67), p = 0.02] were associated with increased risks of cardiac events. In addition, smoking was also associated with reduced left ventricular ejection fraction (LVEF) during anthracycline chemotherapy [I 2 = 0%, Fixed, OR (95% CI): 1.91 (1.24, 2.95), p = 0.003] in studies that recorded only the odds ratio (OR). Conclusion Hypertension, hyperlipidemia, diabetes, smoking, and obesity are associated with increased risks of anthracycline-induced cardiotoxicity. Therefore, corresponding measures should be used to manage cardiovascular risk factors in breast cancer during and after anthracycline treatment.
Collapse
Affiliation(s)
- Hao Jin
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jianfeng Xu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zheng Sui
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lili Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
38
|
Xiao D, Li J, Liu Y, Wang T, Niu C, Zhuang R, Liu B, Ma L, Li M, Zhang L. Emerging trends and hotspots evolution in cardiotoxicity: A bibliometric and knowledge-Map analysis From 2010 to 2022. Front Cardiovasc Med 2023; 10:1089916. [PMID: 36960468 PMCID: PMC10029978 DOI: 10.3389/fcvm.2023.1089916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Background There is growing emphasis on the cardiotoxicity research over the past 12 years. To look for the hotspots evolution and to explore the emerging trends in the field of cardiotoxicity, publications related to cardiotoxicity were acquired from the Web of Science Core Collection on August 2, 2022. Methods We used the CiteSpace 5.8 R3 and VOSviewer 1.6.18 to perform bibliometric and knowledge-map analysis. Results A total of 8,074 studies by 39,071 authors from 6,530 institutions in 124 countries or regions were published in different academic journals. The most productive country was absolutely the United States, and the University of Texas MD Anderson Cancer Center was the institution with the largest output. Zhang, Yun published the most articles, and the author who had the most frequent co-citations was Moslehi, Javid. New England Journal of Medicine was the most frequently cited journals in this field. Mechanisms of cardiotoxicity have received the most attention and was the main research directions in the field. The disease of cardiotoxicity together with the related risk factors are potential research hotspots. Immune checkpoint inhibitor and myocarditis are two recently discussed and rapidly expanding research topic in the areas of cardiotoxicity. Conclusions This bibliometric analysis provided a thorough analysis of the cardiotoxicity, which would provide crucial sources of information and concepts for academics studying this area. As a rapidly expanding field in cardiology, the related field of cardiotoxicity will continue to be a focus of research.
Collapse
Affiliation(s)
- Di Xiao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingen Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Liu
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tangshun Wang
- Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chaofeng Niu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhuang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Birong Liu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liyong Ma
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Lijing Zhang Meng Li
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Lijing Zhang Meng Li
| |
Collapse
|
39
|
Elmorsi RM, Kabel AM, El Saadany AA, Abou El-Seoud SH. The protective effects of topiramate and spirulina against doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol 2023; 42:9603271231198624. [PMID: 37644674 DOI: 10.1177/09603271231198624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Doxorubicin (DOX) is a widely used chemotherapy drug that can cause significant cardiotoxicity, limiting its clinical application. This study aimed to investigate the potential protective effects of topiramate (TPM) and spirulina (SP), either alone or in combination, in preventing DOX-induced cardiotoxicity. Adult Sprague Dawley rats were divided into five groups, including a normal control group and groups receiving DOX alone, DOX with TPM, DOX with SP, or DOX with a combination of TPM and SP. Cardiotoxicity was induced by administering DOX intraperitoneally at a cumulative dose of 16 mg/kg over 4 weeks. TPM and/or SP administration started 1 week before DOX treatment and continued for 35 days. Body weight, serum markers of cardiac damage, oxidative stress and inflammatory parameters were assessed. Histopathological and immunohistochemical examinations were performed on cardiac tissues. Results showed that TPM and SP monotherapy led to significant improvements in serum levels of cardiac markers, decreased oxidative stress, reduced fibrosis-related growth factor levels, increased antioxidant levels, and improved histopathological features. SP demonstrated more prominent effects in comparison to TPM, and the combination of TPM and SP exhibited even more pronounced effects. In conclusion, TPM and SP, either alone or in combination, hold promise as therapeutic interventions for mitigating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Radwa M Elmorsi
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
40
|
Podyacheva E, Shmakova T, Kushnareva E, Onopchenko A, Martynov M, Andreeva D, Toropov R, Cheburkin Y, Levchuk K, Goldaeva A, Toropova Y. Modeling Doxorubicin-Induced Cardiomyopathy With Fibrotic Myocardial Damage in Wistar Rats. Cardiol Res 2022; 13:339-356. [PMID: 36660062 PMCID: PMC9822674 DOI: 10.14740/cr1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
Background Cardiovascular complications, arising after anthracycline chemotherapy, cause a significant deterioration in the life quality and expectancy of those patients who were previously successfully treated for malignant neoplasms. A number of clinical studies have demonstrated that patients with cardiotoxicity manifested during anthracyclines therapy also have extensive fibrotic changes in the cardiac muscle in the long term. Given the lack of an unambiguous understanding of the mechanisms of fibrotic changes formation under doxorubicin treatment in the myocardium, there is the obvious necessity to create a relevant experimental model of chronic doxorubicin-induced cardiomyopathy with fibrotic myocardial lesions and delayed development of diastolic dysfunction. Methods The study was divided into two stages: first stage (creation of acute doxorubicin cardiomyopathy) - 35 male Wistar rats; second stage (creation of chronic doxorubicin cardiomyopathy) - 40 male Wistar rats. The animals were split into eight groups (two control ones and six experimental ones), which determined the doxorubicin dose (first stage: 25, 20.4, 15 mg/kg; second stage: 5, 10, 15 mg/kg, intraperitoneally) and the frequency of injection. Echocardiographic, hematological, histological, and molecular methods were used to confirm the successful modeling of acute and chronic doxorubicin-induced cardiomyopathy with fibrotic lesions. Results A model of administration six times every other day with a cumulative dose of doxorubicin 20 mg/kg is suitable for evaluation of acute cardiotoxicity. The 15 mg/kg doxorubicin dose is highly cardiotoxic; what's more, it correlates with progressive deterioration of the clinical condition of the animals after 2 months. The optimal cumulative dose of doxorubicin leads to clinical manifestations confirmed by echocardiographic, histological, molecular changes associated with the development of chronic doxorubicin-induced cardiomyopathy with fibrotic lesions of the left ventricular of the cardiac muscle and ensure long-term survival of animals is 10 mg/kg doxorubicin. A dose of 5 mg/kg of the doxorubicin does not ensure the development of fibrous changes formation. Conclusion We assume that cumulative dose of 10 mg/kg with a frequency of administration of six times in 2 days can be used to study the mechanisms of anthracycline cardiomyopathy development.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation,Corresponding Author: Ekaterina Podyacheva, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation.
| | - Tatiana Shmakova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Ekaterina Kushnareva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Anatoliya Onopchenko
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Mikhail Martynov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Daria Andreeva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Roman Toropov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Yuri Cheburkin
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Ksenia Levchuk
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Alexandra Goldaeva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| |
Collapse
|
41
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
42
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
43
|
Protecting glomerulus: role of angiotensin-II type 2 receptor. Clin Sci (Lond) 2022; 136:1467-1470. [DOI: 10.1042/cs20220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Podocyte injury due to either drug, toxin, infection, or metabolic abnormality is a great concern as it increases the risk of developing focal segmental glomerulosclerosis (FSGS) and proteinuric kidney diseases. The direct podocyte injury due to doxorubicin is associated with an increase in proinflammatory cytokines and induction of cathepsin L. The increased activity of cathepsin L in turn may degrade the glomerular slit diaphragm resulting in proteinuric kidney injury. The angiotensin-II type 2 receptor (AT2R) has earlier been reported to be associated with the preservation of slit diaphragm proteins and prevention of proteinuria. Recent in vivo findings by Zhang and colleagues further support the anti-proteinuric role of AT2R in preventing podocyte injury via down-regulating cytokines ccl2, and hence, cathepsin L, thereby, limiting the progression of FSGS.
Collapse
|
44
|
Resveratrol and FGF1 Synergistically Ameliorates Doxorubicin-Induced Cardiotoxicity via Activation of SIRT1-NRF2 Pathway. Nutrients 2022; 14:nu14194017. [PMID: 36235670 PMCID: PMC9572068 DOI: 10.3390/nu14194017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Doxorubicin (DOX) has received attention due to dose-dependent cardiotoxicity through abnormal redox cycling. Native fibroblast growth factor 1 (FGF1) is known for its anti-oxidative benefits in cardiovascular diseases, but possesses a potential tumorigenic risk. Coincidentally, the anti-proliferative properties of resveratrol (RES) have attracted attention as alternatives or auxiliary therapy when combined with other chemotherapeutic drugs. Therefore, the purpose of this study is to explore the therapeutic potential and underlying mechanisms of co-treatment of RES and FGF1 in a DOX-treated model. Here, various cancer cells were applied to determine whether RES could antagonize the oncogenesis effect of FGF1. In addition, C57BL/6J mice and H9c2 cells were used to testify the therapeutic potential of a co-treatment of RES and FGF1 against DOX-induced cardiotoxicity. We found RES could reduce the growth-promoting activity of FGF1. Additionally, the co-treatment of RES and FGF1 exhibits a more powerful cardio-antioxidative capacity in a DOX-treated model. The inhibition of SIRT1/NRF2 abolished RES in combination with FGF1 on cardioprotective action. Further mechanism analysis demonstrated that SIRT1 and NRF2 might form a positive feedback loop to perform the protective effect on DOX-induced cardiotoxicity. These favorable anti-oxidative activities and reduced proliferative properties of the co-treatment of RES and FGF1 provided a promising therapy for anthracycline cardiotoxicity during chemotherapy.
Collapse
|
45
|
Qian J, Wan W, Fan M. HMOX1 silencing prevents doxorubicin-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis by downregulating CTGF. Gen Thorac Cardiovasc Surg 2022; 71:280-290. [PMID: 36008747 DOI: 10.1007/s11748-022-01867-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Doxorubicin is a type of effective antitumor drug but can contribute to cardiomyocyte injuries. We aimed to dissect the mechanism of the HMOX1/CTGF axis in DOX-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis. METHODS Bioinformatics analysis was conducted to retrieve differentially expressed genes in a DOX-induced mouse model. Mouse cardiomyocytes, HL-1 cells, were induced with l µM DOX, after which gain- or loss-of-function assays were applied. CCK-8, fluorescent probe assay, flow cytometry, and corresponding kits were employed to detect cell viability, ROS levels, mitochondrial membrane potential and cell apoptosis, and GSH and Fe2+ contents, respectively. qRT-PCR or Western blot assay was adopted to test HMOX1, CTGF, BCL-2, Caspase3, Cleaved-Caspase3, and GPX4 expression. RESULTS Bioinformatics analysis showed that HMOX1 and CTGF were highly expressed in DOX-induced mice and correlated with each other. Also, HMOX1 and CTGF expression was high in HL-1 cells after DOX treatment, along with an obvious decrease in cell viability and GSH and GPX4 expression, an increase in ROS levels, apoptosis, and Fe2+ contents, and mitochondrial membrane potential dysfunction or loss. HMOX1 or CTGF silencing diminished cell apoptosis, Cleaved-Caspase3 expression, Fe2+ contents, and ROS levels, enhanced cell viability and the expression of GSH, GPX4, and BCL-2, and recovered mitochondrial membrane potential in DOX-induced HL-1 cells. Nevertheless, the effects of HMOX1 silencing on the viability, apoptosis, ferroptosis, and mitochondrial dysfunction of DOX-induced HL-1 cells were counteracted by CTGF overexpression. CONCLUSIONS In conclusion, HMOX1 silencing decreased CTGF expression to alleviate DOX-induced injury, mitochondrial dysfunction, and ferroptosis of mouse cardiomyocytes.
Collapse
Affiliation(s)
- Jia Qian
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Wenting Wan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Min Fan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China.
| |
Collapse
|
46
|
Gongora CA, Drobni ZD, Quinaglia Araujo Costa Silva T, Zafar A, Gong J, Zlotoff DA, Gilman HK, Hartmann SE, Sama S, Nikolaidou S, Suero-Abreu GA, Jacobsen E, Abramson JS, Hochberg E, Barnes J, Armand P, Thavendiranathan P, Nohria A, Neilan TG. Sodium-Glucose Co-Transporter-2 Inhibitors and Cardiac Outcomes Among Patients Treated With Anthracyclines. JACC. HEART FAILURE 2022; 10:559-567. [PMID: 35902159 PMCID: PMC9638993 DOI: 10.1016/j.jchf.2022.03.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Sodium-glucose co-transporter-2 (SGLT2) inhibitors improve outcomes among patients with established heart failure. Despite supportive basic science studies, there are no data on the value of SGLT2 inhibitors among patients treated with anthracyclines. OBJECTIVES This study sought to test the cardiac efficacy and overall safety of SGLT2 inhibitors in patients treated with anthracyclines. METHODS This study identified 3,033 patients with diabetes mellitus (DM) and cancer who were treated with anthracyclines. Cases were patients with cancer and DM who were on SGLT2 inhibitor therapy during anthracycline treatment (n = 32). Control participants (n = 96) were patients with cancer and DM who were also treated with anthracyclines, but were not on an SGLT2 inhibitor. The primary cardiac outcome was a composite of cardiac events (heart failure incidence, heart failure admissions, new cardiomyopathy [>10% decline in ejection fraction to <53%], and clinically significant arrhythmias). The primary safety outcome was overall mortality. RESULTS Age, sex, ethnicity, cancer type, cancer stage, and other cardiac risk factors were similar between groups. There were 20 cardiac events over a median follow-up period of 1.5 years. The cardiac event incidence was lower among case patients in comparison to control participants (3% vs 20%; P = 0.025). Case patients also experienced lower overall mortality when compared with control participants (9% vs 43%; P < 0.001) and a lower composite of sepsis and neutropenic fever (16% vs 40%; P = 0.013). CONCLUSIONS SGLT2 inhibitors were associated with lower rate of cardiac events among patients with cancer and DM who were treated with anthracyclines. Additionally, SGLT2 inhibitors appeared to be safe. These data support the conducting of a randomized clinical trial testing SGLT2 inhibitors in patients at high cardiac risk treated with anthracyclines.
Collapse
Affiliation(s)
- Carlos A Gongora
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zsofia D Drobni
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Amna Zafar
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jingyi Gong
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel A Zlotoff
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah K Gilman
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah E Hartmann
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Supraja Sama
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sofia Nikolaidou
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric Jacobsen
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jeremy S Abramson
- Center for Lymphoma, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ephraim Hochberg
- Center for Lymphoma, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Barnes
- Center for Lymphoma, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philippe Armand
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paaladinesh Thavendiranathan
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Anju Nohria
- Department of Cardiology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tomas G Neilan
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
47
|
Zhang J, Xie B, Tang Y, Zhou B, Wang Q, Ge Q, Zhou Y, Gu T. Downregulation of miR-34c-5p alleviates chronic intermittent hypoxia-induced myocardial damage by targeting sirtuin 1. J Biochem Mol Toxicol 2022; 36:e23164. [PMID: 35848756 DOI: 10.1002/jbt.23164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/28/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Numerous microRNAs (miRs) are abnormally expressed in response to hypoxia-induced myocardial damage. Herein, miR-34c-5p as a potential pharmaco-target was investigated in a mouse model of chronic intermittent hypoxia (CIH)-induced myocardial damage. A mouse model of myocardial damage was established using CIH with 7% or 21% O2 alternating 60 s for 12 h/day, 21% O2 for 12 h/day. AntagomiR-34c-5p (20 nM/0.1 ml; once a week for 12 weeks) was used as a miR-34c-5p inhibitor in a mouse model with tail-vein injection. In another experiment, mice were administrated with Sirt1 activator SRT1720 (50 mg/kg/day) by intraperitoneal injection. Gene Expression Omnibus database showed a significant upregulation of miR-34c-5p expression in the ischemic myocardium of male mice. In CIH-stimulated mice, miR-34c-5p expression was also significantly increased compared with normal mice. Treatment of antagomiR-34c-5p significantly restrained CIH-triggered myocardial apoptosis. After administration of antagomiR-34c-5p or Sirt1 activator SRT1720, cardiac hypertrophy and oxidative stress were attenuated in CIH-stimulated mice. We also found sirtuin 1 (Sirt1) as a direct target of miR-34c-5p, which was able to mediate Sirt1 protein expression in cardiomyocytes. AntagomiR-34c-5p injection markedly elevated Sirt1 protein expression in CIH-stimulated mice. AntagomiR-34c-5p or Sirt1 activator SRT1720 administration exhibited the antioxidative activity and cardioprotective roles in CIH-stimulated mice.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Bo Xie
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Yanrong Tang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Bo Zhou
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Qiong Wang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Qing Ge
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Yufei Zhou
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Tongqing Gu
- School of Foreign Languages, Chengdu University of Information Technology, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Doxorubicin induced cardio toxicity through sirtuins mediated mitochondrial disruption. Chem Biol Interact 2022; 365:110028. [DOI: 10.1016/j.cbi.2022.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 12/06/2022]
|
49
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
50
|
Cardiac SIRT1 ameliorates doxorubicin-induced cardiotoxicity by targeting sestrin 2. Redox Biol 2022; 52:102310. [PMID: 35452917 PMCID: PMC9043985 DOI: 10.1016/j.redox.2022.102310] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Although it is known that the expression and activity of sirtuin 1 (SIRT1) significantly decrease in doxorubicin (DOX)-induced cardiomyopathy, the role of interaction between SIRT1 and sestrin 2 (SESN2) is largely unknown. In this study, we investigated whether SESN2 could be a crucial target of SIRT1 and the effect of their regulatory interaction and mechanism on DOX-induced cardiac injury. Here, using DOX-treated cardiomyocytes and cardiac-specific Sirt1 knockout mice models, we found SIRT1 deficiency aggravated DOX-induced cardiac structural abnormalities and dysfunction, whereas the activation of SIRT1 by resveratrol (RES) treatment or SIRT1 overexpression possessed cardiac protective effects. Further studies indicated that SIRT1 exerted these beneficial effects by markedly attenuating DOX-induced oxidative damage and apoptosis in a SESN2-dependent manner. Knockdown of Sesn2 impaired RES/SIRT1-mediated protective effects, while upregulation of SESN2 efficiently rescued DOX-induced oxidative damage and apoptosis. Most importantly, SIRT1 activation could reduce DOX-induced SESN2 ubiquitination possibly through reducing the interaction of SESN2 with mouse double minute 2 (MDM2). The recovery of SESN2 stability in DOX-impaired primary cardiomyocytes by SIRT1 was confirmed by Mdm2-siRNA transfection. Taken together, our findings indicate that disrupting the interaction between SESN2 and MDM2 by SIRT1 to reduce the ubiquitination of SESN2 is a novel regulatory mechanism for protecting hearts from DOX-induced cardiotoxicity and suggest that the activation of SIRT1-SESN2 axis has potential as a therapeutic approach to prevent DOX-induced cardiotoxicity.
Collapse
|