1
|
Zhu S, Liu J, Xu K, Xu F, Jiang Y, Dai L, Pei T, Zhu Y, Liu D, Zhang X, Xu J, Yang J, Pan Z, Tao J, Hou Z. Comparative transcriptomic analyses of macrophages infected with Toxoplasma gondii strains of different virulence provide molecular insights into the response of macrophage in phagocytosis and polarization to infection. Mol Immunol 2025; 183:259-273. [PMID: 40414092 DOI: 10.1016/j.molimm.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025]
Abstract
Macrophages are essential for the proliferation and spread of Toxoplasma gondii. Modulating macrophage activation to improve the inflammatory environment is an effective approach for disease treatment. However, the molecular mechanism through which T. gondii alters macrophage function remain unknown. Based on transcriptomic data analysis of various macrophage types infected with T. gondii, current research revealed differences in the regulation of macrophage functions among strains with different virulence: RH was primarily involved in cell cycle regulation, ME49 was associated with cAMP signaling, and CEP mainly participated in ion channel activity. All three T. gondii strains were involved in regulating immune response activation, including leukocyte adhesion and the MAPK signaling pathway. Nineteen shared DEGs associated with macrophage phagocytosis or polarization were identified through the GeneCards database, and PPI analysis confirmed Il6 as the hub gene in the regulatory network. In vivo and in vitro experiments showed that the YZ-1 strain significantly regulated the expressions of eight DEGs (Il6, Rel, Cd83, Myc, Adora2b, Egr2, Gja1 and Nr4a2), and promoted macrophage phagocytic activity and induced M1 polarization, confirming a significant correlation with Il6. This study revealed the dissimilarities and commonalities in macrophage function regulated by T. gondii strains of different virulence, and identified key molecules involved in the regulation of macrophage phagocytosis and polarization during T. gondii infection. This is crucial for identifying potential drug targets against T. gondii and provides a new perspective on the etiopathogenesis and therapeutic approaches for toxoplasmosis.
Collapse
Affiliation(s)
- Shifan Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Jiantao Liu
- YEBIO Bioengineering Co., Ltd of QINGDAO, Qingdao 266113, PR China
| | - Kangzhi Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Fan Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Yuwei Jiang
- Lingkou Town Animal Epidemic Prevention Station, Danyang 212353, PR China
| | - Linwei Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Tianxu Pei
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Yuyang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Xinjun Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Jin Yang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, PR China.
| | - Zhiming Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China.
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, PR China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, PR China.
| |
Collapse
|
2
|
Rodriguez ME, Hassan A, Linaroudis N, Harryson-Oliveberg F, Ten Hoeve AL, Barragan A. ICAM-1/CD18-mediated sequestration of parasitized phagocytes in cortical capillaries promotes neuronal colonization by Toxoplasma gondii. Nat Commun 2025; 16:3529. [PMID: 40229286 PMCID: PMC11997185 DOI: 10.1038/s41467-025-58655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Microbial translocation across the blood-brain barrier (BBB) is a prerequisite for colonization of the central nervous system. The obligate intracellular parasite Toxoplasma gondii chronically infects the brain parenchyma of humans and animals, in a remarkably stealthy fashion. We investigated the mechanisms of BBB traversal by T. gondii (genotypes I, II, III) and T. gondii-infected leukocytes, using intracarotid arterial delivery into the cerebral circulation of mice. Unexpectedly, parasitized dendritic cells (DCs) and other peripheral blood mononuclear cells were found to persistently sequester within cortical capillaries. Post-replicative egress of T. gondii from sequestered DCs was followed by rapid parasite localization within cortical neurons. Infection-induced microvascular inflammation dramatically elevated the sequestration of parasitized DCs, while treatments targeting the ICAM-1/CD18 leukocyte adhesion axis with blocking antibodies strongly reverted sequestration. The parasite effectors TgWIP and GRA15, known to promote leukocyte hypermigration and inflammatory activation, further increased both the capillary sequestration of infected DCs and cerebral parasite loads in a strain-dependent manner. These findings reveal that the sequestration of parasitized leukocytes in cortical capillaries, with subsequent BBB traversal following parasite egress, provides a mechanism for T. gondii's rapid access to cortical neurons during primary infection.
Collapse
Affiliation(s)
- Matias E Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Ali Hassan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Nikolaos Linaroudis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Felix Harryson-Oliveberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Arne L Ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
3
|
Yang Z, Chen J, Zhang C, Peng H. Pathological mechanisms of glial cell activation and neurodegenerative and neuropsychiatric disorders caused by Toxoplasma gondii infection. Front Microbiol 2024; 15:1512233. [PMID: 39723133 PMCID: PMC11668811 DOI: 10.3389/fmicb.2024.1512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Toxoplasma gondii is an intracellular opportunistic parasite that exists in a latent form within the human central nervous system (CNS), even in immune-competent hosts. During acute infection, T. gondii traverses the blood-brain barrier (BBB). In the subsequent chronic infection phase, the infiltration of immune cells into the brain, driven by T. gondii infection and the formation of parasitic cysts, leads to persistent activation and proliferation of astrocytes and microglia. This process results in neuronal damages that are fatal in some cases. Through inducing systemic immune responses, T. gondii infection can dramatically alter the behavior of rodents and increase the risk of various neuropsychiatric disorders in humans. In this review, we explore some recent research progress on the major events involved in BBB disruption, glial cell activation and neuronal damage following T. gondii infection in hosts. It further discusses potential pathological mechanisms and the feasible treatment approaches for the neurodegenerative and neuropsychiatric disorders caused by T. gondii infection to extend our understanding for pathogenesis and preventive control of toxoplasmosis in humans.
Collapse
Affiliation(s)
| | | | | | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Wang X, Qu L, Chen J, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Rhoptry proteins affect the placental barrier in the context of Toxoplasma gondii infection: Signaling pathways and functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116567. [PMID: 38850700 DOI: 10.1016/j.ecoenv.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Toxoplasma gondii is an opportunistic and pathogenic obligate intracellular parasitic protozoan that is widespread worldwide and can infect most warm-blooded animals, seriously endangering human health and affecting livestock production. Toxoplasmosis caused by T. gondii infection has different clinical manifestations, which are mainly determined by the virulence of T. gondii and host differences. Among the manifestations of this condition, abortion, stillbirth, and fetal malformation can occur if a woman is infected with T. gondii in early pregnancy. Here, we discuss how the T. gondii rhoptry protein affects host pregnancy outcomes and speculate on the related signaling pathways involved. The effects of rhoptry proteins of T. gondii on the placental barrier are complex. Rhoptry proteins not only regulate interferon-regulated genes (IRGs) to ensure the survival of parasites in activated cells but also promote the spread of worms in tissues and the invasive ability of the parasites. The functions of these rhoptry proteins and the associated signaling pathways highlight relevant mechanisms by which Toxoplasma crosses the placental barrier and influences fetal development and will guide future studies to uncover the complexity of the host-pathogen interactions.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Morales P, Brown AJ, Sangaré LO, Yang S, Kuihon SVNP, Chen B, Saeij JPJ. The Toxoplasma secreted effector TgWIP modulates dendritic cell motility by activating host tyrosine phosphatases Shp1 and Shp2. Cell Mol Life Sci 2024; 81:294. [PMID: 38977495 PMCID: PMC11335217 DOI: 10.1007/s00018-024-05283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.
Collapse
Affiliation(s)
- Pavel Morales
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Abbigale J Brown
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
- Target & Protein Sciences, Johnson & Johnson, New Brunswick, USA
| | - Simon V N P Kuihon
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Morales P, Brown AJ, Sangare LO, Yang S, Kuihon S, Chen B, Saeij J. The Toxoplasma secreted effector TgWIP modulates dendritic cell motility by activating host tyrosine phosphatases Shp1 and Shp2. RESEARCH SQUARE 2024:rs.3.rs-4539584. [PMID: 38978596 PMCID: PMC11230507 DOI: 10.21203/rs.3.rs-4539584/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeroen Saeij
- University of California Davis School of Veterinary Medicine
| |
Collapse
|
7
|
Guo Z, Murakami M, Saito K, Kato H, Toriyama M, Tominaga M, Ishii KJ, Fujita F. Integrin α5 regulates motility of human monocyte-derived Langerhans cells during immune response. Exp Dermatol 2024; 33:e15021. [PMID: 38429832 DOI: 10.1111/exd.15021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Langerhans cells (LCs) are mainly present in the epidermis and mucosa, and have important roles during skin infection. Migration of LCs to lymph nodes is essential for antigen presentation. However, due to the difficulties in isolating and culturing human LCs, it is not fully understood how LCs move and interact with the extracellular matrix (ECM) through their adhesion molecules such as integrin, during the immune responses. In this study, we aimed to investigate LC motility, cell shape and the role of integrin under inflammatory conditions using monocyte-derived Langerhans cells (moLCs) as a model. As a result, lipopolysaccharide (LPS) stimulation increased adhesion on fibronectin coated substrate and integrin α5 expression in moLCs. Time-lapse imaging of moLCs revealed that stimulation with LPS elongated cell shape, whilst decreasing their motility. Additionally, this decrease in motility was not observed when pre-treated with a neutralising antibody targeting integrin α5. Together, our data suggested that activation of LCs decreases their motility by promoting integrin α5 expression to enhance their affinity to the fibronectin, which may contribute to their migration during inflammation.
Collapse
Affiliation(s)
- Zhihan Guo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masato Murakami
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Skin Care Institute, Mandom Corporation, Osaka, Japan
| | - Kaori Saito
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hiroko Kato
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Manami Toriyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Makoto Tominaga
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, Sokendai (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Fujita
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
8
|
Jamil Al-Obaidi MM, Desa MNM. Understanding the mechanisms underlying the disruption of the blood-brain barrier in parasitic infections. J Neurosci Res 2024; 102. [PMID: 38284852 DOI: 10.1002/jnr.25288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
Parasites have a significant impact on the neurological, cognitive, and mental well-being of humans, with a global population of over 1 billion individuals affected. The pathogenesis of central nervous system (CNS) injury in parasitic diseases remains limited, and prevention and control of parasitic CNS infections remain significant areas of research. Parasites, encompassing both unicellular and multicellular organisms, have intricate life cycles and possess the ability to infect a diverse range of hosts, including the human population. Parasitic illnesses that impact the central and peripheral nervous systems are a significant contributor to morbidity and mortality in low- to middle-income nations. The precise pathways through which neurotropic parasites infiltrate the CNS by crossing the blood-brain barrier (BBB) and cause neurological harm remain incompletely understood. Investigating brain infections caused by parasites is closely linked to studying neuroinflammation and cerebral impairment. The exact molecular and cellular mechanisms involved in this process remain incomplete, but understanding the exact mechanisms could provide insight into their pathogenesis and potentially reveal novel therapeutic targets. This review paper explores the underlying mechanisms involved in the development of neurological disorders caused by parasites, including parasite-derived elements, host immune responses, and modifications in tight junctions (TJs) proteins.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- University of Technology and Applied Sciences, Rustaq College of Education, Science Department (Biology Unit), Rrustaq, Sultante of Oman
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
9
|
Silva Pereira S, Brás D, Porqueddu T, Nascimento AM, De Niz M. Investigation of Trypanosoma-induced vascular damage sheds insights into Trypanosoma vivax sequestration. Cell Surf 2023; 10:100113. [PMID: 37954640 PMCID: PMC10632540 DOI: 10.1016/j.tcsw.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023] Open
Abstract
Multiple blood-borne pathogens infecting mammals establish close interactions with the host vascular endothelium as part of their life cycles. In this work, we investigate differences in the interactions of three Trypanosoma species: T. brucei, T. congolense and T. vivax with the blood vasculature. Infection with these species results in vastly different pathologies, including different effects on vascular homeostasis, such as changes in vascular permeability and microhemorrhages. While all three species are extracellular parasites, T. congolense is strictly intravascular, while T. brucei is capable of surviving both extra- and intravascularly. Our knowledge regarding T. vivax tropism and its capacity of migration across the vascular endothelium is unknown. In this work, we show for the first time that T. vivax parasites sequester to the vascular endothelium of most organs, and that, like T. congolense, T. vivax Y486 is largely incapable of extravasation. Infection with this parasite species results in a unique effect on vascular endothelium receptors including general downregulation of ICAM1 and ESAM, and upregulation of VCAM1, CD36 and E-selectin. Our findings on the differences between the two sequestering species (T. congolense and T. vivax) and the non-sequestering, but extravasating, T. brucei raise important questions on the relevance of sequestration to the parasite's survival in the mammalian host, and the evolutionary relevance of both sequestration and extravasation.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Daniela Brás
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Teresa Porqueddu
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M. Nascimento
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Center for Advanced Microscopy and Nikon Imaging Center, Northwestern University, Chicago, USA
| |
Collapse
|
10
|
Wang X, Qu L, Chen J, Jin Y, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Toxoplasma rhoptry proteins that affect encephalitis outcome. Cell Death Discov 2023; 9:439. [PMID: 38049394 PMCID: PMC10696021 DOI: 10.1038/s41420-023-01742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Toxoplasma gondii, a widespread obligate intracellular parasite, can infect almost all warm-blooded animals, including humans. The cellular barrier of the central nervous system (CNS) is generally able to protect the brain parenchyma from infectious damage. However, T. gondii typically causes latent brain infections in humans and other vertebrates. Here, we discuss how T. gondii rhoptry proteins (ROPs) affect signaling pathways in host cells and speculate how this might affect the outcome of Toxoplasma encephalitis.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130021, China
| | - Yufen Jin
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Le Guennec L, Weiss N. Blood-brain barrier dysfunction in intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2023; 3:303-312. [PMID: 38028637 PMCID: PMC10658046 DOI: 10.1016/j.jointm.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 12/01/2023]
Abstract
The central nervous system is characterized by a peculiar vascularization termed blood-brain barrier (BBB), which regulates the exchange of cells and molecules between the cerebral tissue and the whole body. BBB dysfunction is a life-threatening condition since its presence corresponds to a marker of severity in most diseases encountered in the intensive care unit (ICU). During critical illness, inflammatory response, cytokine release, and other phenomena activating the brain endothelium contribute to alterations in the BBB and increase its permeability to solutes, cells, nutrients, and xenobiotics. Moreover, patients in the ICU are often old, with underlying acute or chronic diseases, and overly medicated due to their critical condition; these factors could also contribute to the development of BBB dysfunction. An accurate diagnostic approach is critical for the identification of the mechanisms underlying BBB alterations, which should be rapidly managed by intensivists. Several methods were developed to investigate the BBB and assess its permeability. Nevertheless, in humans, exploration of the BBB requires the use of indirect methods. Imaging and biochemical methods can be used to study the abnormal passage of molecules through the BBB. In this review, we describe the structural and functional characteristics of the BBB, present tools and methods for probing this interface, and provide examples of the main diseases managed in the ICU that are related to BBB dysfunction.
Collapse
Affiliation(s)
- Loic Le Guennec
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
| | - Nicolas Weiss
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, Biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris 75013, France
| |
Collapse
|
12
|
Ten Hoeve AL, Braun L, Rodriguez ME, Olivera GC, Bougdour A, Belmudes L, Couté Y, Saeij JPJ, Hakimi MA, Barragan A. The Toxoplasma effector GRA28 promotes parasite dissemination by inducing dendritic cell-like migratory properties in infected macrophages. Cell Host Microbe 2022; 30:1570-1588.e7. [PMID: 36309013 PMCID: PMC9710525 DOI: 10.1016/j.chom.2022.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 11/03/2022]
Abstract
Upon pathogen detection, macrophages normally stay sessile in tissues while dendritic cells (DCs) migrate to secondary lymphoid tissues. The obligate intracellular protozoan Toxoplasma gondii exploits the trafficking of mononuclear phagocytes for dissemination via unclear mechanisms. We report that, upon T. gondii infection, macrophages initiate the expression of transcription factors normally attributed to DCs, upregulate CCR7 expression with a chemotactic response, and perform systemic migration when adoptively transferred into mice. We show that parasite effector GRA28, released by the MYR1 secretory pathway, cooperates with host chromatin remodelers in the host cell nucleus to drive the chemotactic migration of parasitized macrophages. During in vivo challenge studies, bone marrow-derived macrophages infected with wild-type T. gondii outcompeted those challenged with MYR1- or GRA28-deficient strains in migrating and reaching secondary organs. This work reveals how an intracellular parasite hijacks chemotaxis in phagocytes and highlights a remarkable migratory plasticity in differentiated cells of the mononuclear phagocyte system.
Collapse
Affiliation(s)
- Arne L Ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Laurence Braun
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Matias E Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Gabriela C Olivera
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Alexandre Bougdour
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
13
|
Ross EC, Hoeve ALT, Saeij JPJ, Barragan A. Toxoplasma effector-induced ICAM-1 expression by infected dendritic cells potentiates transmigration across polarised endothelium. Front Immunol 2022; 13:950914. [PMID: 35990682 PMCID: PMC9381734 DOI: 10.3389/fimmu.2022.950914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii makes use of infected leukocytes for systemic dissemination. Yet, how infection impacts the processes of leukocyte diapedesis has remained unresolved. Here, we addressed the effects of T. gondii infection on the trans-endothelial migration (TEM) of dendritic cells (DCs) across polarised brain endothelial monolayers. We report that upregulated expression of leukocyte ICAM-1 is a feature of the enhanced TEM of parasitised DCs. The secreted parasite effector GRA15 induced an elevated expression of ICAM-1 in infected DCs that was associated with enhanced cell adhesion and TEM. Consequently, gene silencing of Icam-1 in primary DCs or deletion of parasite GRA15 reduced TEM. Further, the parasite effector TgWIP, which impacts the regulation of host actin dynamics, facilitated TEM across polarised endothelium. The data highlight that the concerted action of the secreted effectors GRA15 and TgWIP modulate the leukocyte-endothelial interactions of TEM in a parasite genotype-related fashion to promote dissemination. In addition to the canonical roles of endothelial ICAM-1, this study identifies a previously unappreciated role for leukocyte ICAM-1 in infection-related TEM.
Collapse
Affiliation(s)
- Emily C. Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, United States
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden,*Correspondence: Antonio Barragan,
| |
Collapse
|
14
|
Idro R, Ogwang R, Barragan A, Raimondo JV, Masocha W. Neuroimmunology of Common Parasitic Infections in Africa. Front Immunol 2022; 13:791488. [PMID: 35222377 PMCID: PMC8866860 DOI: 10.3389/fimmu.2022.791488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections of the central nervous system are an important cause of morbidity and mortality in Africa. The neurological, cognitive, and psychiatric sequelae of these infections result from a complex interplay between the parasites and the host inflammatory response. Here we review some of the diseases caused by selected parasitic organisms known to infect the nervous system including Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei spp., and Taenia solium species. For each parasite, we describe the geographical distribution, prevalence, life cycle, and typical clinical symptoms of infection and pathogenesis. We pay particular attention to how the parasites infect the brain and the interaction between each organism and the host immune system. We describe how an understanding of these processes may guide optimal diagnostic and therapeutic strategies to treat these disorders. Finally, we highlight current gaps in our understanding of disease pathophysiology and call for increased interrogation of these often-neglected disorders of the nervous system.
Collapse
Affiliation(s)
- Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rodney Ogwang
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
15
|
Ross EC, Olivera GC, Barragan A. Early passage of Toxoplasma gondii across the blood–brain barrier. Trends Parasitol 2022; 38:450-461. [DOI: 10.1016/j.pt.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/29/2022]
|
16
|
Olivera GC, Ross EC, Peuckert C, Barragan A. Blood-brain barrier-restricted translocation of Toxoplasma gondii from cortical capillaries. eLife 2021; 10:e69182. [PMID: 34877929 PMCID: PMC8700292 DOI: 10.7554/elife.69182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
The cellular barriers of the central nervous system proficiently protect the brain parenchyma from infectious insults. Yet, the single-celled parasite Toxoplasma gondii commonly causes latent cerebral infection in humans and other vertebrates. Here, we addressed the role of the cerebral vasculature in the passage of T. gondii to the brain parenchyma. Shortly after inoculation in mice, parasites mainly localized to cortical capillaries, in preference over post-capillary venules, cortical arterioles or meningeal and choroidal vessels. Early invasion to the parenchyma (days 1-5) occurred in absence of a measurable increase in blood-brain barrier (BBB) permeability, perivascular leukocyte cuffs or hemorrhage. However, sparse focalized permeability elevations were detected adjacently to replicative parasite foci. Further, T. gondii triggered inflammatory responses in cortical microvessels and endothelium. Pro- and anti-inflammatory treatments of mice with LPS and hydrocortisone, respectively, impacted BBB permeability and parasite loads in the brain parenchyma. Finally, pharmacological inhibition or Cre/loxP conditional knockout of endothelial focal adhesion kinase (FAK), a BBB intercellular junction regulator, facilitated parasite translocation to the brain parenchyma. The data reveal that the initial passage of T. gondii to the central nervous system occurs principally across cortical capillaries. The integrity of the microvascular BBB restricts parasite transit, which conversely is exacerbated by the inflammatory response.
Collapse
Affiliation(s)
- Gabriela C Olivera
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Emily C Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Christiane Peuckert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| |
Collapse
|