1
|
Sun C, Ding Z, Li B, Chen S, Li E, Yang Q. New insights into Gremlin-1: A tumour microenvironment landscape re-engineer and potential therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119962. [PMID: 40250712 DOI: 10.1016/j.bbamcr.2025.119962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Gremlin-1 (GREM1), a well-known bone morphogenetic protein (BMP) antagonist, is highly expressed in various malignant tumours. However, the specific role of GREM1 in tumours remains controversial and may be attributed to the heterogeneity and complexity of the tumour microenvironment (TME). It is currently believed that GREM1 regulates the complex landscape of the TME, primarily by antagonising BMP signalling or BMP-independent pathways. Both GREM1 and BMP play dual roles in tumour progression. Therefore, the mutual crosstalk between tumour cells and tumour-associated fibroblasts and the regulation of various secreted factors in the TME affect the secretion level of GREM1, which in turn regulates the amplitude balance between GREM1 and BMP, affecting tumour progression. The inhibition of GREM1 activity in the TME can disrupt this amplitude balance and prevent the formation of a tumour-supportive microenvironment, demonstrating that GREM1 is a potential therapeutic target. In this study, we reviewed the specific signalling pathways via which GREM1 in the TME regulates epithelial-mesenchymal transition, construction of the tumour immune microenvironment, and maintenance of tumour cell stemness via BMP-dependent and BMP-independent regulation, and also summarised the latest clinical progress of GREM1.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang 330006, China; HuanKui Academy, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Benjie Li
- Queen Mary School, Jiangxi Medical college, Nanchang University, Nanchang 330031, China
| | - Sihong Chen
- Queen Mary School, Jiangxi Medical college, Nanchang University, Nanchang 330031, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, China.
| | - Qingping Yang
- Department of Reproductive Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai zheng Street, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Song L, Zhang R, Pan L, Mi Q, Yang Y, Wang X, Ma Y, Shen S, Li B, Li Y, Hong L. GREM1 deficiency induced bone marrow adipose niche promotes B-cell acute lymphoblastic leukemia disease progression. Int J Cancer 2025. [PMID: 40285538 DOI: 10.1002/ijc.35418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 04/29/2025]
Abstract
Relapse and disease progression are the primary causes of treatment failure and subsequent mortality in children with B-cell acute lymphocytic leukemia (B-ALL). At diagnosis and during treatment, dyslipidemia and the bone marrow adipose microenvironment are commonly observed in pediatric leukemia. However, the intricate connection between these factors and disease progression remains largely unexplored. We found that abnormal triglyceride accumulation increased the risk of death. Further investigation into the adipogenic potential of BM-MSCs revealed a correlation between higher adipogenicity and elevated serum TG levels, which subsequently led to the rapid proliferation of leukemia cells and heightened the risk of post-relapse mortality. Through RNA sequencing, Gremlin1 (GREM1) was identified as an important factor affecting adipogenicity. Silencing of GREM1 in BM-MSCs induced adipogenic differentiation, partly through the BMP/SMAD signaling pathway. In an in vitro co-culture model, shGREM1-MSCs promoted B-ALL cell proliferation and induced drug resistance to dexamethasone, while increasing sensitivity to L-asparaginase. Furthermore, GREM1-deficient BM-MSCs promoted B-ALL disease progression in xenograft models. This study provides new insights into overcoming drug resistance, relapse, and death by elucidating the novel mechanism by which GREM1 deficiency induces adipogenic differentiation of BM-MSCs and promotes B-ALL disease progression.
Collapse
Affiliation(s)
- Lili Song
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hematology & Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Zhang
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liya Pan
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Mi
- Department of Hematology & Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Hematology & Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yani Ma
- Department of Hematology & Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Shen
- Department of Hematology & Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Department of Hematology & Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Quintavalle C, Ingenito F, Roscigno G, Pattanayak B, Esposito CL, Affinito A, Fiore D, Petrillo G, Nuzzo S, Della Ventura B, D'Aria F, Giancola C, Mitola S, Grillo E, Pirozzi M, Donati G, Di Leva FS, Marinelli L, Minic Z, De Micco F, Thomas G, Berezovski MV, Condorelli G. Ex.50.T aptamer impairs tumor-stroma cross-talk in breast cancer by targeting gremlin-1. Cell Death Discov 2025; 11:94. [PMID: 40069570 PMCID: PMC11897156 DOI: 10.1038/s41420-025-02363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
The tumor microenvironment profoundly influences tumor complexity, particularly in breast cancer, where cancer-associated fibroblasts play pivotal roles in tumor progression and therapy resistance. Extracellular vesicles are involved in mediating communication within the TME, specifically highlighting their role in promoting the transformation of normal fibroblasts into cancer-associated fibroblasts. Recently, we identified an RNA aptamer, namely ex.50.T, that binds with remarkable affinity to extracellular vesicles shed from triple-negative breast cancer cells. Here, through in vitro assays and computational analyses, we demonstrate that the binding of ex.50.T to extracellular vesicles and parental breast cancer cells is mediated by recognition of gremlin-1 (GREM1), a bone morphogenic protein antagonist implicated in breast cancer aggressiveness and metastasis. Functionally, we uncover the role of ex.50.T as an innovative therapeutic agent in the process of tumor microenvironment re-modeling, impeding GREM1 signaling, blocking triple-negative breast cancer extracellular vesicles internalization in recipient cells, and counteracting the transformation of normal fibroblasts into cancer-associated fibroblasts. Altogether, our findings highlight ex.50.T as a novel therapeutical avenue for breast cancer and potentially other GREM1-dependent malignancies, offering insights into disrupting TME dynamics and enhancing cancer treatment strategies.
Collapse
Affiliation(s)
- Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Birlipta Pattanayak
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carla Lucia Esposito
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- AKA Biotech S.r.l, Naples, Italy
| | - Danilo Fiore
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Pirozzi
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | - Gerolama Condorelli
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
4
|
Li H, Zhou Y, Xiao J, Liu F. A comprehensive prognostic and immunological implications of Gremlin 1 in lung adenocarcinoma. Front Immunol 2025; 16:1529195. [PMID: 40066442 PMCID: PMC11891240 DOI: 10.3389/fimmu.2025.1529195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/04/2025] [Indexed: 03/15/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a prevalent form of lung cancer globally, known for its high invasiveness, metastatic potential, and notable heterogeneity, particularly in its response to immunotherapy. Gremlin 1 (GREM1) is implicated in tumor progression and poor prognosis in multiple cancers. However, GREM1's specific role in LUAD remains unclear. This study systematically examines GREM1 expression in LUAD and its association with tumor progression, immune microenvironment, and prognosis. Methods Gene expression data from the TCGA and GSE31210 databases were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), GO and KEGG enrichment analyses. The prognostic value of GREM1 was evaluated through survival analysis, Cox regression, and Kaplan-Meier curves. Additionally, immune microenvironment analysis was conducted to explore the relationship between GREM1 and immune cell infiltration. In vitro experiments, including Western blot and assays for cell proliferation, migration, and invasion, were performed to confirm the specific role of GREM1 in LUAD cells. Results GREM1 was significantly upregulated in tumor tissues and correlated with poor prognosis. Moreover, GREM1 was significantly associated with immune cell infiltration and immunotherapy response within the immune microenvironment. In vitro experiments confirmed that GREM1 overexpression significantly promoted LUAD cell proliferation, migration, and epithelial-mesenchymal transition (EMT), whereas GREM1 knockdown suppressed these functions. Conclusions A comprehensive analysis indicates that GREM1 is crucial in LUAD progression, with its overexpression predicting poor prognosis. GREM1 could be a potential therapeutic target for LUAD, providing insights for personalized therapy optimization.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiaqing Xiao
- Institute of Disinfection and Infection Control, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Jin Z, Cao Y. Gremlin1: a BMP antagonist with therapeutic potential in Oncology. Invest New Drugs 2024; 42:716-727. [PMID: 39347850 DOI: 10.1007/s10637-024-01474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Gremlins, originating from early 20th-century Western folklore, are mythical creatures known for causing mechanical malfunctions and electronic failures, aptly dubbed "little devils". Analogously, GREM1 acts like a horde of these mischievous entities by antagonizing the bone morphogenetic protein (BMP signaling) pathway or through other non-BMP dependent mechanisms (such as binding to Fibroblast Growth Factor Receptor 1and Epidermal Growth Factor Receptor) contributing to the malignant progression of various cancers. The overexpression of GREM1 promotes tumor cell growth and survival, enhances angiogenesis within the tumor microenvironment, and creates favorable conditions for tumor development and dissemination. Consequently, inhibiting the activity of GREM1 or blocking its interaction with BMP presents a promising strategy for suppressing tumor growth and metastasis. However, the role of GREM1 in cancer remains a subject of debate, with evidence suggesting both oncogenic and tumor-suppressive functions. Currently, several pharmaceutical companies are researching the GREM1 target, with some advancing to Phase I/II clinical trials. This article will provide a detailed overview of the GREM1 target and explore its potential role in cancer therapy.
Collapse
Affiliation(s)
- Zhao Jin
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
6
|
Jiang Y, Fu Z, Chen Y, Jin Q, Yang Y, Lin Z, Li C, Gao Y, Dong Z, He Y, Mao X, He Y, Zhang Q, Zhang Q, Li N. Mapping and tracing Grem1 + stromal cells in an Apc Min/+ mouse utilizing cryopreserved intestinal sections prepared via modified Swiss-roll technique. iScience 2024; 27:111173. [PMID: 39563897 PMCID: PMC11574797 DOI: 10.1016/j.isci.2024.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/18/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
Grem1+ cancer-associated fibroblasts (CAFs) are crucial in colorectal cancer (CRC) development, yet technical challenges have limited understanding of their origins, spatiotemporal distribution, and potential roles. Here, we devised a custom mold, optimizing the gut Swiss-roll technique to create a single cryopreserved slide for comprehensive staining. Our integrated approach uncovered a marked increase in Grem1+ CAFs within Apc Min/+ mouse tumors at 12 weeks, compared to normal mucosa. Subsequent lineage tracing in Grem1-CreER T2 ; R26-LSL-tdTomato; Apc Min/+ mice revealed that most Grem1+ CAFs infiltrating the tumor core originated from Grem1+ intestinal reticular stem cells (iRSCs). A minor subset of Grem1+ CAFs, located in the submucosa, retained characteristics of Grem1+ intestinal sub-epithelial myofibroblasts (ISEMFs). Altogether, CAFs derived from Grem1+ iRSCs may serve as a principal stromal cell type driving early-stage CRC progression, while Grem1+ ISEMFs contribute less from a more distant location. Hence, targeting Grem1+ CAFs presents an early and promising therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Youheng Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhang Fu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Geriatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfang Chen
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qunlong Jin
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanming Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zerong Lin
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Changxue Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yunfei Gao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zepeng Dong
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yang He
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518107, China
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yulong He
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qingyuan Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qi Zhang
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- China-UK Institute for Frontier Science, Shenzhen 518107, China
| |
Collapse
|
7
|
Celik M, Tekin E, Koçak MN, Uzunçakmak SK, Bayraktar M. Unveiling the significance of Gremlin-1 as a novel biomarker for enhanced severity prediction in COVID-19 patients. Medicine (Baltimore) 2024; 103:e40001. [PMID: 39465816 PMCID: PMC11479505 DOI: 10.1097/md.0000000000040001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
Gremlin-1 is associated with lung disease and plays a role in the initiation and progression of pulmonary fibrosis. This suggests that Gremlin-1 may be associated with lung involvement in COVID-19 and poor clinical outcomes and warrants further investigation. This prospective, cross-sectional, single-blind study was the first to investigate Gremlin-1 levels in COVID-19 patients and whether Gremlin-1 levels could be used to predict and guide clinical follow-up in outpatients and inpatients. In this context, serum Gremlin-1 levels were measured and compared in 2 groups of patients who were diagnosed as positive for COVID-19 by RT-PCR and were followed up as outpatients (n = 28) or required hospitalization (n = 30). The median Gremlin-1 values were statistically significantly different between outpatients and intensive care unit patients (0.367 ng/mL [IQR = 0.377], 1.858 ng/mL [IQR = 2.245], respectively) (P < .0001). The area under the ROC curve value to determine the discriminative power of Gremlin-1 was found to be 0.772 (95% CI: 0.672-0.871; P < .0001), and the cutoff value of Gremlin-1 to discriminate between outpatients and hospitalized patients was found to be 1.242 ng/mL with 66.7% sensitivity and 67.2% specificity. Serum Gremlin-1 level is an important biomarker that can be used as a clinical decision-making tool for COVID-19 positive patients.
Collapse
Affiliation(s)
- Muhammet Celik
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Erdal Tekin
- Department of Emergency Medicine, Ataturk University, Medical Faculty, Erzurum, Turkey
| | - Mehmet Nuri Koçak
- Department of Neurology, Ataturk University Medical Faculty, Erzurum, Turkey
| | | | - Mustafa Bayraktar
- Department of Family Medicine, Ataturk University, Medical Faculty, Erzurum, Turkey
| |
Collapse
|
8
|
Li C, Abdurehim A, Zhao S, Sun Q, Xu J, Xie J, Zhang Y. Research on the potential mechanism of Deapioplatycodin D against pulmonary fibrosis based on bioinformatics and experimental verification. Eur J Pharmacol 2024; 974:176603. [PMID: 38679121 DOI: 10.1016/j.ejphar.2024.176603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a group of respiratory diseases that are extremely complex and challenging to treat. Due to its high mortality rate and short survival, it's often referred to as a "tumor-like disease" that poses a serious threat to human health. OBJECTIVE We aimed validate the potential of Deapioplatycodin D (DPD) to against PF and clarify the underlying mechanism of action of DPD for the treatment of PF based on bioinformatics and experimental verification. This finding provides a basis for the development of safe and effective therapeutic PF drugs based on DPD. METHODS We used LPS-induced early PF rats as a PF model to test the overall efficacy of DPD in vivo. Then, A variety of bioinformatics methods, such as WGCNA, LASSO algorithm and immune cell infiltration (ICI), were applied to analyze the gene microarray related to PF obtained from Gene Expression Omnibus (GEO) to obtained key targets of PF. Finally, an in vitro PF model was constructed based on BEAS-2B cells while incorporating rat lung tissues to validate the regulatory effects of DPD on critical genes. RESULTS DPD can effectively alleviate inflammatory and fibrotic markers in rat lungs. WGCNA analysis resulted in a total of six expression modules, with the brown module having the highest correlation with PF. Subsequently, seven genes were acquired by intersecting the genes in the brown module with DEGs. Five key genes were identified as potential biomarkers of PF by LASSO algorithm and validation dataset verification analysis. In the ICI analysis, infiltration of activated B cell, immature B cell and natural killer cells were found to be more crucial in PF. Ultimately, it was observed that DPD could modulate key genes to achieve anti-PF effects. CONCLUSION In short, these comprehensive analysis methods were employed to identify critical biomarkers closely related to PF, which helps to elucidate the pathogenesis and potential immunotherapy targets of PF. It also provides essential support for the potential of DPD against PF.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Aliya Abdurehim
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Shuang Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qing Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Jiawen Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
9
|
Humphreys DT, Lewis A, Pan‐Castillo B, Berti G, Mein C, Wozniak E, Gordon H, Gadhok R, Minicozzi A, ChinAleong J, Feakins R, Giannoulatou E, James LK, Stagg AJ, Lindsay JO, Silver A. Single cell sequencing data identify distinct B cell and fibroblast populations in stricturing Crohn's disease. J Cell Mol Med 2024; 28:e18344. [PMID: 38685679 PMCID: PMC11058334 DOI: 10.1111/jcmm.18344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Single cell RNA sequencing of human full thickness Crohn's disease (CD) small bowel resection specimens was used to identify potential therapeutic targets for stricturing (S) CD. Using an unbiased approach, 16 cell lineages were assigned within 14,539 sequenced cells from patient-matched SCD and non-stricturing (NSCD) preparations. SCD and NSCD contained identical cell types. Amongst immune cells, B cells and plasma cells were selectively increased in SCD samples. B cell subsets suggested formation of tertiary lymphoid tissue in SCD and compared with NSCD there was an increase in IgG, and a decrease in IgA plasma cells, consistent with their potential role in CD fibrosis. Two Lumican-positive fibroblast subtypes were identified and subclassified based on expression of selectively enriched genes as fibroblast clusters (C) 12 and C9. Cells within these clusters expressed the profibrotic genes Decorin (C12) and JUN (C9). C9 cells expressed ACTA2; ECM genes COL4A1, COL4A2, COL15A1, COL6A3, COL18A1 and ADAMDEC1; LAMB1 and GREM1. GO and KEGG Biological terms showed extracellular matrix and stricture organization associated with C12 and C9, and regulation of WNT pathway genes with C9. Trajectory and differential gene analysis of C12 and C9 identified four sub-clusters. Intra sub-cluster gene analysis detected 13 co-regulated gene modules that aligned along predicted pseudotime trajectories. CXCL14 and ADAMDEC1 were key markers in module 1. Our findings support further investigation of fibroblast heterogeneity and interactions with local and circulating immune cells at earlier time points in fibrosis progression. Breaking these interactions by targeting one or other population may improve therapeutic management for SCD.
Collapse
Affiliation(s)
- David T. Humphreys
- Victor Chang Cardiac Research InstituteSydneyNew South WalesAustralia
- St Vincent's Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Amy Lewis
- Centre for Genomics and Child Health, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - Belen Pan‐Castillo
- Centre for Genomics and Child Health, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - Giulio Berti
- Centre for Genomics and Child Health, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - Charles Mein
- Genome Centre, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - Eva Wozniak
- Genome Centre, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - Hannah Gordon
- Centre for Immunobiology, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - Radha Gadhok
- Centre for Immunobiology, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - Annamaria Minicozzi
- Department of Colorectal Surgery, Division of Surgery and Perioperative CareThe Royal London HospitalLondonUK
| | | | - Roger Feakins
- Department of Cellular PathologyRoyal Free London NHS Foundation TrustLondonUK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research InstituteSydneyNew South WalesAustralia
- St Vincent's Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Louisa K. James
- Centre for Immunobiology, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - Andrew J. Stagg
- Centre for Immunobiology, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - James Oliver Lindsay
- Centre for Immunobiology, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
10
|
Sun X, Jiang M, Wang Z, Xu C, Ma Z. GREM1 knockdown regulates the proliferation, apoptosis and EMT of benign prostatic hyperplasia by suppressing the STAT3/c-Myc signaling. Tissue Cell 2024; 86:102231. [PMID: 37931534 DOI: 10.1016/j.tice.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Gremlin 1 (GREM1) has been reported to be highly expressed in prostate hyperplasia tissues. However, the role and molecular mechanism of GREM1 in benign prostatic hyperplasia (BPH) is still unclear. METHODS In this study, expression of GREM1 in BPH-1 cells was detected by western blot assay. Cell counting kit-8 assay was performed to assess cell proliferation. Flow cytometry and western blot were used to assess cell apoptosis and cell cycle. The EMT process was detected by western blot assay and immunofluorescence staining. In addition, colivelin was used as a STAT3 activator and the expressions of STAT3/c-Myc signaling were assessed by western blot assay. RESULTS The data showed that GREM1 silencing inhibited BPH-1 cell proliferation and promoted cell apoptosis. Moreover, GREM1 silencing repressed the cell cycle progression and the development of EMT. In addition, knockdown of GREM1 suppressed the expression of the STAT3/c-Myc signaling in BPH-1 cells and colivelin treatment rehabilitated this signaling. Moreover, c-Myc overexpression or colivelin reversed the effects of GREM1 silencing on BPH-1 cell proliferation, cell apoptosis, cell cycle, as well as EMT. CONCLUSION To sum up, GREM1 silencing may alleviate the BPH progress by inhibiting the STAT3/c-Myc signaling.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Minjun Jiang
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Zhenfan Wang
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Chen Xu
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Zheng Ma
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China.
| |
Collapse
|
11
|
Zhang Z, Huo J, Ji X, Wei L, Zhang J. GREM1, LRPPRC and SLC39A4 as potential biomarkers of intervertebral disc degeneration: a bioinformatics analysis based on multiple microarray and single-cell sequencing data. BMC Musculoskelet Disord 2023; 24:729. [PMID: 37700277 PMCID: PMC10498557 DOI: 10.1186/s12891-023-06854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Low back pain (LBP) has drawn much widespread attention and is a major global health concern. In this field, intervertebral disc degeneration (IVDD) is frequently the focus of classic studies. However, the mechanistic foundation of IVDD is unclear and has led to conflicting outcomes. METHODS Gene expression profiles (GSE34095, GSE147383) of IVDD patients alongside control groups were analyzed to identify differentially expressed genes (DEGs) in the GEO database. GSE23130 and GSE70362 were applied to validate the yielded key genes from DEGs by means of a best subset selection regression. Four machine-learning models were established to assess their predictive ability. Single-sample gene set enrichment analysis (ssGSEA) was used to profile the correlation between overall immune infiltration levels with Thompson grades and key genes. The upstream targeting miRNAs of key genes (GSE63492) were also analyzed. A single-cell transcriptome sequencing data (GSE160756) was used to define several cell clusters of nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplate (CEP) of human intervertebral discs and the distribution of key genes in different cell clusters was yielded. RESULTS By developing appropriate p-values and logFC values, a total of 6 DEGs was obtained. 3 key genes (LRPPRC, GREM1, and SLC39A4) were validated by an externally validated predictive modeling method. The ssGSEA results indicated that key genes were correlated with the infiltration abundance of multiple immune cells, such as dendritic cells and macrophages. Accordingly, these 4 key miRNAs (miR-103a-3p, miR-484, miR-665, miR-107) were identified as upstream regulators targeting key genes using the miRNet database and external GEO datasets. Finally, the spatial distribution of key genes in AF, CEP, and NP was plotted. Pseudo-time series and GSEA analysis indicated that the expression level of GREM1 and the differentiation trajectory of NP chondrocytes are generally consistent. GREM1 may mainly exacerbate the degeneration of NP cells in IVDD. CONCLUSIONS Our study gives a novel perspective for identifying reliable and effective gene therapy targets in IVDD.
Collapse
Affiliation(s)
- ZhaoLiang Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - JianZhong Huo
- Taiyuan Central Hospital, Ninth Hospital of Shanxi Medical University, Southern Fendong Road 256, Taiyuan, ShanXi, 030009, China.
| | - XingHua Ji
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - LinDong Wei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinfeng Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
12
|
Zhu D, Zhao D, Wang N, Cai F, Jiang M, Zheng Z. Current status and prospects of GREM1 research in cancer (Review). Mol Clin Oncol 2023; 19:69. [PMID: 37614374 PMCID: PMC10442762 DOI: 10.3892/mco.2023.2665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/21/2023] [Indexed: 08/25/2023] Open
Abstract
GREM1 is a secreted protein that antagonizes bone morphogenetic proteins (BMPs) and participates in critical biological processes, including embryonic development, organogenesis and tissue differentiation. Gremlin 1 (GREM1) is also an inhibitor of TGF-β and a ligand for vascular endothelial growth factor receptor 2. In addition, GREM1 can induce cells, participate in the process of epithelial-mesenchymal transition, and then participate in tumor development. GREM1 has a variety of biological functions and can participate in the malignant progression of a variety of tumors through the BMP signaling pathway. GREM1 also can inhibit TGF-β in some tumors, thereby inhibiting tumors, and its involvement in tumor development varies in different types of cancer. The present review examines the role and function of GREM1 in tumors. GREM1 is expressed in a variety of tumor types. GREM1 expression can affect the epithelial-mesenchymal transformation of tumor cells. GREM1 has been studied in breast and colon cancer, and its potential role is to promote cancer. However, in pancreatic cancer, which was found to act differently from other cancer types, overexpression of GREM1 inhibits tumor metastasis. The present review suggests that GREM1 can be a diagnostic and prognostic indicator. In future studies, the study of GREM1 based on single-cell sequencing technology will further clarify its role and function in tumors.
Collapse
Affiliation(s)
- Dantong Zhu
- Department of Medical Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Dong Zhao
- Department of Medical Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Naixue Wang
- Department of Oncology, General Hospital of Northern Theater Command, Jinzhou Medical University, Shenyang, Liaoning 121017, P.R. China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Mingzhe Jiang
- Department of Medical Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Zhendong Zheng
- Department of Medical Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
13
|
Chan TC, Pan CT, Hsieh HY, Vejvisithsakul PP, Wei RJ, Yeh BW, Wu WJ, Chen LR, Shiao MS, Li CF, Shiue YL. The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma. Cell Oncol (Dordr) 2023; 46:933-951. [PMID: 36920729 DOI: 10.1007/s13402-023-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE Urothelial carcinoma (UC) is a common disease in developed counties. This study aimed to identify autocrine roles and signaling pathways of gremlin 1, DAN family BMP antagonist (GREM1), which inhibits tumor growth and epithelial-mesenchymal transition (EMT) in UC. METHODS Systematic in vitro and in vivo studies using genetic engineering, different urinary bladder urothelial carcinoma (UBUC)-derived cell lines, and mouse models were performed, respectively. Further, primary upper tract urothelial carcinoma (UTUC) and UBUC specimens were evaluated by immunohistochemistry. RESULTS GREM1 protein levels conferred better disease-specific and metastasis-free survival rates and played an independent prognostic factor in UTUC and UBUC. Hypermethylation is the primary cause of low GREM1 levels. In different UBUC-derived cell lines, the autocrine/secreted and glycosylated GREM1 interacted with transforming growth factor beta 1 (TGFB1) and inhibited TGFβ/BMP/SMAD signaling and myosin light chain 9 (MYL9) transactivation, subsequently cell proliferation and epithelial-mesenchymal transition (EMT). Secreted and glycosylated GREM1 also suppressed tumor growth, metastasis, and MYL9 levels in the mouse model. Instead, cytosolic GREM1 promoted cell proliferation and EMT by activating the tumor necrosis factor (TNF)/AKT/nuclear factor kappa B (NFκB) axis. CONCLUSIONS Clinical associations, animal models, and in vitro indications provided solid evidence to show that the epithelial autocrine GREM1 is a novel tumor suppressor in UCs. The glycosylated-GREM1 hampered cell proliferation, migration, invasion, and in vitro angiogenesis through interaction with TGFB1 to inactivate TGFβ/BMP/SMAD-mediated EMT in an autocrine manner.
Collapse
Affiliation(s)
- Ti-Chun Chan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 71004, Taiwan
| | - Cheng-Tang Pan
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Institute of Advanced Semiconductor Packaging and Testing, College of Semiconductor and Advanced Technology Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Pichpisith Pierre Vejvisithsakul
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Ren-Jie Wei
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
- Institute of Medical Science and Technology, School of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Tainan, 71246, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chien-Feng Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 71004, Taiwan.
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Yow-Ling Shiue
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
14
|
Del Cuore A, Pipitone RM, Casuccio A, Mazzola MM, Puleo MG, Pacinella G, Riolo R, Maida C, Di Chiara T, Di Raimondo D, Zito R, Lupo G, Agnello L, Di Maria G, Ciaccio M, Grimaudo S, Tuttolomondo A. Metabolic memory in diabetic foot syndrome (DFS): MICRO-RNAS, single nucleotide polymorphisms (SNPs) frequency and their relationship with indices of endothelial function and adipo-inflammatory dysfunction. Cardiovasc Diabetol 2023; 22:148. [PMID: 37365645 PMCID: PMC10294440 DOI: 10.1186/s12933-023-01880-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Diabetic foot is a significant cause of morbidity in diabetic patients, with a rate that is approximately twice that of patients without foot ulcers. "Metabolic memory" represents the epigenetic changes induced by chronic hyperglycaemia, despite the correction of the glucose levels themselves. These epigenetic modifications appear to perpetuate the damage caused by persistently elevated glucose levels even in their absence, acting at various levels, mostly affecting the molecular processes of diabetic ulcer healing. METHODS The aim of our cross-sectional study was to analyse a cohort of patients with diabetes with and without lower limb ulcers. We examined the effects of epigenetic changes on miRNA 126, 305, and 217 expression and the frequency of the SNPs of genes encoding inflammatory molecules (e.g., IL-6 and TNF-alpha) and their correlations with serum levels of proangiogenic molecules (e.g., ENOS, VEGF and HIF-1alpha) and several adipokines as well as with endothelial dysfunction, assessed noninvasively by reactive hyperaemia peripheral artery tonometry. Between March 2021 and June 2022, 110 patients were enrolled into the study: 50 diabetic patients with diabetic foot injuries, 40 diabetic patients without ulcerative complications and 20 nondiabetic patients as the control group. RESULTS Diabetic subjects with lower limb ulcerative lesions exhibited higher levels of inflammatory cytokines, such as VEGF (191.40 ± 200 pg/mL vs. 98.27 ± 56.92 pg/mL vs. 71.01 ± 52.96 pg/mL; p = 0.22), HIF-1alpha (40.18 ± 10.80 ng/mL vs. 33.50 ± 6.16 ng/mL vs. 33.85 ± 6.84 ng/mL; p = 0.10), and Gremlin-1 (1.72 ± 0.512 ng/mL vs. 1.31 ± 0.21 ng/mL vs. 1.11 ± 0.19 ng/mL; p < 0.0005), than those without lower limb ulcers and healthy controls. Furthermore, we observed that miR-217-5p and miR-503-5p were 2.19-fold (p < 0.05) and 6.21-fold (p = 0.001) more highly expressed in diabetic foot patients than in healthy controls, respectively. Additionally, diabetic patients without lower limb ulcerative complications showed 2.41-fold (p = 0) and 2.24-fold (p = 0.029) higher expression of miR-217-5p and miR-503-5p, respectively, than healthy controls. Finally, diabetic patients with and without ulcerative complications of the lower limbs showed higher expression of the VEGFC2578A CC polymorphism (p = 0.001) and lower expression of the VEGFC2578A AC polymorphism (p < 0.005) than the healthy control population. We observed a significant increase in Gremlin-1 levels in patients with diabetic foot, suggesting that this inflammatory adipokine may serve as a predictive marker for the diagnosis of diabetic foot. CONCLUSIONS Our results highlighted that patients with diabetic foot showed predominant expression of the VEGF C2578A CC polymorphism and reduced expression of the AC allele. Additionally, we found an overexpression of miR-217-5p and miR-503-5p in diabetic patients with and without diabetic foot syndrome compared with healthy controls. These results align with those reported in the literature, in which the overexpression of miR-217-5p and miR-503-5p in the context of diabetic foot is reported. The identification of these epigenetic modifications could therefore be helpful in the early diagnosis of diabetic foot and the treatment of risk factors. However, further studies are necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Alessandro Del Cuore
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
- Internal Medicine and Stroke Care Ward, Policlinico "P. Giaccone", Palermo, Italy
| | - Rosaria Maria Pipitone
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
| | - Alessandra Casuccio
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
| | - Marco Maria Mazzola
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
- Internal Medicine and Stroke Care Ward, Policlinico "P. Giaccone", Palermo, Italy
| | - Maria Grazia Puleo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
- Internal Medicine and Stroke Care Ward, Policlinico "P. Giaccone", Palermo, Italy
| | - Gaetano Pacinella
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
- Internal Medicine and Stroke Care Ward, Policlinico "P. Giaccone", Palermo, Italy
| | - Renata Riolo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
- Internal Medicine and Stroke Care Ward, Policlinico "P. Giaccone", Palermo, Italy
| | - Carlo Maida
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
- Internal Medicine and Stroke Care Ward, Policlinico "P. Giaccone", Palermo, Italy
| | - Tiziana Di Chiara
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
- Internal Medicine and Stroke Care Ward, Policlinico "P. Giaccone", Palermo, Italy
| | - Domenico Di Raimondo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
- Internal Medicine and Stroke Care Ward, Policlinico "P. Giaccone", Palermo, Italy
| | - Rossella Zito
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
| | - Giulia Lupo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
| | - Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gabriele Di Maria
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D'Alessandro, University of Palermo, Piazza Delle Cliniche N.2, 90127, Palermo, Italy.
- Internal Medicine and Stroke Care Ward, Policlinico "P. Giaccone", Palermo, Italy.
| |
Collapse
|
15
|
Grillo E, Ravelli C, Colleluori G, D'Agostino F, Domenichini M, Giordano A, Mitola S. Role of gremlin-1 in the pathophysiology of the adipose tissues. Cytokine Growth Factor Rev 2023; 69:51-60. [PMID: 36155165 DOI: 10.1016/j.cytogfr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Gremlin-1 is a secreted bone morphogenetic protein (BMP) antagonist playing a pivotal role in the regulation of tissue formation and embryonic development. Since its first identification in 1997, gremlin-1 has been shown to be a multifunctional factor involved in wound healing, inflammation, cancer and tissue fibrosis. Among others, the activity of gremlin-1 is mediated by its interaction with BMPs or with membrane receptors such as the vascular endothelial growth factor receptor 2 (VEGFR2) or heparan sulfate proteoglycans (HSPGs). Growing evidence has highlighted a central role of gremlin-1 in the homeostasis of the adipose tissue (AT). Of note, gremlin-1 is involved in AT dysfunction during type 2 diabetes, obesity and non-alcoholic fatty liver disease (NAFLD) metabolic disorders. In this review we discuss recent findings on gremlin-1 involvement in AT biology, with particular attention to its role in metabolic diseases, to highlight its potential as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Francesco D'Agostino
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Domenichini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Ren G, Peng Q, Emmersen J, Zachar V, Fink T, Porsborg SR. A Comparative Analysis of the Wound Healing-Related Heterogeneity of Adipose-Derived Stem Cells Donors. Pharmaceutics 2022; 14:2126. [PMID: 36297561 PMCID: PMC9608503 DOI: 10.3390/pharmaceutics14102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived Stem cells (ASCs) are on the verge of being available for large clinical trials in wound healing. However, for developing advanced therapy medicinal products (ATMPs), potency assays mimicking the mode of action are required to control the product consistency of the cells. Thus, greater effort should go into the design of product assays. Therefore, we analyzed three ASC-based ATMPs from three different donors with respect to their surface markers, tri-lineage differentiation, proliferation, colony-forming unit capacity, and effect on fibroblast proliferation and migration, endothelial proliferation, migration, and angiogenesis. Furthermore, the transcriptome of all three cell products was analyzed through RNA-sequencing. Even though all products met the criteria by the International Society for Cell and Gene Therapy and the International Federation for Adipose Therapeutics and Science, we found one product to be consistently superior to others when exploring their potency in the wound healing specific assays. Our results indicate that certain regulatory genes associated with extracellular matrix and angiogenesis could be used as markers of a superior ASC donor from which to use ASCs to treat chronic wounds. Having a panel of assays capable of predicting the potency of the product would ensure the patient receives the most potent product for a specific indication, which is paramount for successful patient treatment and acceptance from the healthcare system.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone R. Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark
| |
Collapse
|
17
|
Gremlin-1 Promotes Colorectal Cancer Cell Metastasis by Activating ATF6 and Inhibiting ATF4 Pathways. Cells 2022; 11:cells11142136. [PMID: 35883579 PMCID: PMC9324664 DOI: 10.3390/cells11142136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cell survival, function and fate strongly depend on endoplasmic reticulum (ER) proteostasis. Although previous studies have implicated the ER stress signaling network in all stages of cancer development, its role in cancer metastasis remains to be elucidated. In this study, we investigated the role of Gremlin-1 (GREM1), a secreted protein, in the invasion and metastasis of colorectal cancer (CRC) cells in vitro and in vivo. Firstly, public datasets showed a positive correlation between high expression of GREM1 and a poor prognosis for CRC. Secondly, GREM1 enhanced motility and invasion of CRC cells by epithelial–mesenchymal transition (EMT). Thirdly, GREM1 upregulated expression of activating transcription factor 6 (ATF6) and downregulated that of ATF4, and modulation of the two key players of the unfolded protein response (UPR) was possibly through activation of PI3K/AKT/mTOR and antagonization of BMP2 signaling pathways, respectively. Taken together, our results demonstrate that GREM1 is an invasion-promoting factor via regulation of ATF6 and ATF4 expression in CRC cells, suggesting GREM1 may be a potential pharmacological target for colorectal cancer treatment.
Collapse
|
18
|
Elemam NM, Malek AI, Mahmoud EE, El-Huneidi W, Talaat IM. Insights into the Role of Gremlin-1, a Bone Morphogenic Protein Antagonist, in Cancer Initiation and Progression. Biomedicines 2022; 10:301. [PMID: 35203511 PMCID: PMC8869528 DOI: 10.3390/biomedicines10020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
The bone morphogenic protein (BMP) antagonist Gremlin-1 is a biologically significant regulator known for its crucial role in tissue differentiation and embryonic development. Nevertheless, it has been reported that Gremlin-1 can exhibit its function through BMP dependent and independent pathways. Gremlin-1 has also been reported to be involved in organ fibrosis, which has been correlated to the development of other diseases, such as renal inflammation and diabetic nephropathy. Based on growing evidence, Gremlin-1 has recently been implicated in the initiation and progression of different types of cancers. Further, it contributes to the stemness state of cancer cells. Herein, we explore the recent findings on the role of Gremlin-1 in various cancer types, including breast, cervical, colorectal, and gastric cancers, as well as glioblastomas. Additionally, we highlighted the impact of Gremlin-1 on cellular processes and signaling pathways involved in carcinogenesis. Therefore, it was suggested that Gremlin-1 might be a promising prognostic biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Imadeddin Malek
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Esraa Elaraby Mahmoud
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|