1
|
Govarthanan K, Meenakshi Sundaram RS, Richard AS, Chabathula SC, Rupert S, Sathyanesan J, Verma RS, Jeyaraman N, Jeyaraman M, Rajendran RL, Gangadaran P, Ahn BC. Inhibition of GSK-3β Restores Differentiation Potential of Late-Passage Mesenchymal Stem Cells. Pharmaceuticals (Basel) 2025; 18:483. [PMID: 40283920 PMCID: PMC12030495 DOI: 10.3390/ph18040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Mesenchymal stem cells (MSCs) are regarded as a promising cell type with significant therapeutic benefits owing to their ease of isolation, maintenance, and characterisation. However, repeated passages during cultural maintenance frequently result in cellular senescence, limiting their utility in regenerative medicine. Methods: We investigated the differentiation capability between early- (P3) and late-passage MSCs (>P15) and tested the potential of Wnt agonist 99021 to reverse MSCs using standard cell culture protocols that define minimal criteria for MSCs, primarily tri-lineage differentiation assays, biochemical staining gene expression analysis, and senescence assays. Results: We initially noticed distinct signs of morphological aging between early- (P3) and late-passage MSCs (>P15) and further examined the differentiation capability between early- (P3) and late-passage MSCs (>P15). We found a diminished differentiation potential in late-passage MSCs. Our senescence assay also revealed >P15 cells were able to absorb the senescence dye, indicating that >P15 MSCs underwent senescence. We further demonstrated that CHIR 99021 reversed the differentiation inhibitory potential-mediated impasse of late-passage MSCs by employing tri-lineage specific differentiation assays, biochemical labelling, and gene expression analysis. Senescence assays after CHIR 99021 treatment also revealed no senescence dye uptake at all. Conclusions: Our findings demonstrated that CHIR 99021 Wnt agonist maybe aids in the reversal of MSC aging-related differentiation inhibition glitches and offers a proven demonstrated protocol for rejuvenating late-passage MSCs. Thus, CHIR99021 treatment inherently reverts the tri-lineage potency in late-passage MSCs, and this method could be further employed to ensure a plentiful MSC source for clinical purposes.
Collapse
Affiliation(s)
- Kavitha Govarthanan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (K.G.); (A.S.R.); (S.C.C.)
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Sciences and Regenerative Medicine, Bengaluru 560065, Karnataka, India
| | - Raja Sundari Meenakshi Sundaram
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (J.S.)
| | - Arthi Sunil Richard
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (K.G.); (A.S.R.); (S.C.C.)
| | - Siva Chander Chabathula
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (K.G.); (A.S.R.); (S.C.C.)
| | - Secunda Rupert
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (J.S.)
| | - Jeswanth Sathyanesan
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (J.S.)
| | - Rama Shanker Verma
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (K.G.); (A.S.R.); (S.C.C.)
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India; (N.J.); (M.J.)
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India; (N.J.); (M.J.)
| | - Ramya Lakshmi Rajendran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Ye X, Cen Y, Li Q, Zhang Y, Li Q, Li J. Immunosuppressive SOX9-AS1 Resists Triple-Negative Breast Cancer Senescence Via Regulating Wnt Signalling Pathway. J Cell Mol Med 2024; 28:e70208. [PMID: 39550706 PMCID: PMC11569622 DOI: 10.1111/jcmm.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in the regulation of triple-negative breast cancer (TNBC) senescence, while pro-carcinogenic lncRNAs resist senescence onset leading to the failure of therapy-induced senescence (TIS) strategy, urgently identifying the key senescence-related lncRNAs (SRlncRNAs). We mined seven SRlncRNAs (SOX9-AS1, LINC01152, AC005152.3, RP11-161 M6.2, RP5-968 J1.1, RP11-351 J23.1 and RP11-666A20.3) by bioinformatics, of which SOX9-AS1 was reported to be pro-carcinogenic. In vitro experiments revealed the highest expression of SOX9-AS1 in MDA-MD-231 cells. SOX9-AS1 knockdown inhibited cell growth (proliferation, cycle and apoptosis) and malignant phenotypes (migration and invasion), while SOX9-AS1 overexpression rescued these effects. Additionally, SOX9-AS1 knockdown facilitated tamoxifen-induced cellular senescence and the transcription of senescence-associated secretory phenotype (SASP) factors (IL-1α, IL-1β, IL-6 and IL-8) mechanistically by resisting senescence-induced Wnt signal (GSK-3β/β-catenin) activation. Immune infiltration analysis revealed that low SOX9-AS1 expression was accompanied by a high infiltration of naïve B cells, CD8+ T cells and γδ T cells. In conclusion, SOX9-AS1 resists TNBC senescence via regulating the Wnt signalling pathway and inhibits immune infiltration. Targeted inhibition of SOX9-AS1 enhances SASP and thus mobilises immune infiltration to adjunct TIS strategy.
Collapse
Affiliation(s)
- Xuan Ye
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouPR China
| | - Quan Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| | - Yuan‐Ping Zhang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| | - Qian Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| |
Collapse
|
3
|
Ordónez-Rubiano EG, Cómbita A, Baldoncini M, Payán-Gómez C, Gómez-Amarillo DF, Hakim F, Camargo J, Zorro-Sepúlveda V, Luzzi S, Zorro O, Parra-Medina R. Cellular Senescence in Diffuse Gliomas: From Physiopathology to Possible Treatments. World Neurosurg 2024; 191:138-148. [PMID: 39233309 DOI: 10.1016/j.wneu.2024.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Cellular senescence in gliomas is a complex process that is induced by aging and replication, ionizing radiation, oncogenic stress, and the use of temozolomide. However, the escape routes that gliomas must evade senescence and achieve cellular immortality are much more complex, in which the expression of telomerase and the alternative lengthening of telomeres, as well as the mutation of some proto-oncogenes or tumor suppressor genes, are involved. In gliomas, these molecular mechanisms related to cellular senescence can have a tumor-suppressing or promoting effect and are directly involved in tumor recurrence and progression. From these cellular mechanisms related to cellular senescence, it is possible to generate targeted senostatic and senolytic therapies that improve the response to currently available treatments and improve survival rates. This review aims to summarize the mechanisms of induction and evasion of cellular senescence in gliomas, as well as review possible treatments with therapies targeting pathways related to cellular senescence.
Collapse
Affiliation(s)
- Edgar G Ordónez-Rubiano
- Department of Neurological Surgery, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia; Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| | - Alba Cómbita
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia; Department of Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Matías Baldoncini
- School of Medicine, Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires, Argentina; Department of Neurological Surgery, Hospital San Fernando, Buenos Aires, Argentina
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Diego F Gómez-Amarillo
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Fernando Hakim
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Julián Camargo
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Sabino Luzzi
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Oscar Zorro
- Department of Neurological Surgery, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| | - Rafael Parra-Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia; Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| |
Collapse
|
4
|
Lee EJ, Kim SJ, Jeon SY, Chung S, Park SE, Kim J, Choi SJ, Oh SY, Ryu GH, Jeon HB, Chang JW. Glutaminase-1 inhibition alleviates senescence of Wharton's jelly-derived mesenchymal stem cells via senolysis. Stem Cells Transl Med 2024; 13:873-885. [PMID: 39120480 PMCID: PMC11386220 DOI: 10.1093/stcltm/szae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
Replicative senescence of mesenchymal stem cells (MSCs) caused by repeated cell culture undermines their potential as a cell therapy because of the reduction in their proliferation and therapeutic potential. Glutaminase-1 (GLS1) is reported to be involved in the survival of senescent cells, and inhibition of GLS1 alleviates age-related dysfunction via senescent cell removal. In the present study, we attempted to elucidate the association between MSC senescence and GLS1. We conducted in vitro and in vivo experiments to analyze the effect of GLS1 inhibition on senolysis and the therapeutic effects of MSCs. Inhibition of GLS1 in Wharton's jelly-derived MSCs (WJ-MSCs) reduced the expression of aging-related markers, such as p16, p21, and senescence-associated secretory phenotype genes, by senolysis. Replicative senescence-alleviated WJ-MSCs, which recovered after short-term treatment with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES), showed increased proliferation and therapeutic effects compared to those observed with senescent WJ-MSCs. Moreover, compared to senescent WJ-MSCs, replicative senescence-alleviated WJ-MSCs inhibited apoptosis in serum-starved C2C12 cells, enhanced muscle formation, and hindered apoptosis and fibrosis in mdx mice. These results imply that GLS1 inhibition can ameliorate the therapeutic effects of senescent WJ-MSCs in patients with muscle diseases such as Duchenne muscular dystrophy. In conclusion, GLS1 is a key factor in modulating the senescence mechanism of MSCs, and regulation of GLS1 may enhance the therapeutic effects of senescent MSCs, thereby increasing the success rate of clinical trials involving MSCs.
Collapse
Affiliation(s)
- Eun Joo Lee
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sun Jeong Kim
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Su Yeon Jeon
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soobeen Chung
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sang Eon Park
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jae‑Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139706, Republic of Korea
- Radiological and Medico‑Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Gyu Ha Ryu
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
- The Office of R&D Strategy & Planning, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hong Bae Jeon
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
| | - Jong Wook Chang
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| |
Collapse
|
5
|
Al-Sammarraie SHA, Ayaz-Güner Ş, Acar MB, Şimşek A, Sınıksaran BS, Bozalan HD, Özkan M, Saraymen R, Dündar M, Özcan S. Mesenchymal stem cells from adipose tissue prone to lose their stemness associated markers in obesity related stress conditions. Sci Rep 2024; 14:19702. [PMID: 39181924 PMCID: PMC11344827 DOI: 10.1038/s41598-024-70127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Obesity is a health problem characterized by large expansion of adipose tissue. During this expansion, genotoxic stressors can be accumulated and negatively affect the mesenchymal stem cells (MSCs) of adipose tissue. Due to the oxidative stress generated by these genotoxic stressors, senescence phenotype might be observed in adipose tissue MSCs. Senescent MSCs lose their proliferations and differentiation properties and secrete senescence-associated molecules to their niche thus triggering senescence for the rest of the tissue. Accumulation of senescent cells in adipose tissue results in decreased tissue regeneration and functional impairment not only in the close vicinity but also in the other tissues. Here we hypothesized that declined tissue regeneration might be associated with loss of stemness markers in MSCs population. We analyzed the expression of several stemness-associated genes of in vitro cultured MSCs originated from adipose tissue of high-fat diet and normal diet mice models. Since the heterogenous MSCs population covers a small percentage of the pluripotent stem cells, which have roles in proliferation and tissue regeneration, we measured the percentage of these cells via TRA-1-60 pluripotent state antigen. Additionally, by conducting a shotgun proteomic approach using LC-MS/MS, whole cell proteome of the adipose tissue MSCs of high-fat diet and normal diet mice were analyzed and identified proteins were evaluated via gene ontology and PPI network analysis. MSCs of obese mice showed senescent phenotype and altered cell cycle distribution due to a hostile environment with oxidative stress in adipose tissue where they reside. Additionally, the number of pluripotent markers expressing cells declined in the MSC population of the high-fat diet mice. Gene expression analysis evidenced the loss of stemness with a decrease in the expression of stemness-associated genes. Of the proteomic comparison of the normal and the high-fat diet group, MSCs revealed that stemness-associated molecules were decreased while inflammation and senescence-associated phenotypes emerged in obese mice MSCs. Our results showed us that the MSCs of adipose tissue may lose their stemness properties due to obesity-associated stress conditions.
Collapse
Affiliation(s)
- Sura Hilal Ahmed Al-Sammarraie
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138, Naples, Italy
| | - Şerife Ayaz-Güner
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Mustafa Burak Acar
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138, Naples, Italy
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Ahmet Şimşek
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
| | | | | | - Miray Özkan
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
| | - Recep Saraymen
- Department of Biochemistry, Private Tekden Hospital, Kayseri, Turkey
| | - Munis Dündar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Servet Özcan
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey.
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
6
|
Wang W, Zheng X, Wang H, Zuo B, Chen S, Li J. Mechanical Unloading Promotes Osteoclastic Differentiation and Bone Resorption by Modulating the MSC Secretome to Favor Inflammation. Cell Transplant 2024; 33:9636897241236584. [PMID: 38501500 PMCID: PMC10953070 DOI: 10.1177/09636897241236584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Aging, space flight, and prolonged bed rest have all been linked to bone loss, and no effective treatments are clinically available at present. Here, with the rodent hindlimb unloading (HU) model, we report that the bone marrow (BM) microenvironment was significantly altered, with an increased number of myeloid cells and elevated inflammatory cytokines. In such inflammatory BM, the osteoclast-mediated bone resorption was greatly enhanced, leading to a shifted bone remodeling balance that ultimately ends up with disuse-induced osteoporosis. Using Piezo1 conditional knockout (KO) mice (Piezo1fl/fl;LepRCre), we proved that lack of mechanical stimuli on LepR+ mesenchymal stem cells (MSCs) is the main reason for the pathological BM inflammation. Mechanically, the secretome of MSCs was regulated by mechanical stimuli. Inadequate mechanical load leads to increased production of inflammatory cytokines, such as interleukin (IL)-1α, IL-6, macrophage colony-stimulating factor 1 (M-CSF-1), and so on, which promotes monocyte proliferation and osteoclastic differentiation. Interestingly, transplantation of 10% cyclic mechanical stretch (CMS)-treated MSCs into HU animals significantly alleviated the BM microenvironment and rebalanced bone remodeling. In summary, our research revealed a new mechanism underlying mechanical unloading-induced bone loss and suggested a novel stem cell-based therapy to potentially prevent disuse-induced osteoporosis.
Collapse
Affiliation(s)
- Wanyuji Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Xueling Zheng
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Hehe Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sisi Chen
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Xue Z, Liao Y, Li Y. Effects of microenvironment and biological behavior on the paracrine function of stem cells. Genes Dis 2024; 11:135-147. [PMID: 37588208 PMCID: PMC10425798 DOI: 10.1016/j.gendis.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 08/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), the most well-studied cell type in the field of stem cell therapy, have multi-lineage differentiation and self-renewal potential. MSC-based therapies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function. An increasing body of evidence demonstrates that paracrine function is central to the effects of MSC-based therapy. Growth factors, cytokines, chemokines, extracellular matrix components, and extracellular vehicles all contribute to the beneficial effects of MSCs on tissue regeneration and repair. The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior. In this review, we discuss the bioactive substances secreted by MSCs depending on the microenvironment and biological behavior and their regulatory mechanisms, which explain their potential to treat human diseases, to provide new ideas for further research and clinical cell-free therapy.
Collapse
Affiliation(s)
- Zhixin Xue
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
8
|
Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol 2023; 11:1323678. [PMID: 38111850 PMCID: PMC10725964 DOI: 10.3389/fcell.2023.1323678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate into multiple cell types, making them highly suitable for use as seed cells in tissue engineering. These can be derived from various sources and have been found to play crucial roles in several physiological processes, such as tissue repair, immune regulation, and intercellular communication. However, the limited capacity for cell proliferation and the secretion of senescence-associated secreted phenotypes (SASPs) pose challenges for the clinical application of MSCs. In this review, we provide a comprehensive summary of the senescence characteristics of MSCs and examine the different features of cellular microenvironments studied thus far. Additionally, we discuss the mechanisms by which cellular microenvironments regulate the senescence process of MSCs, offering insights into preserving their functionality and enhancing their effectiveness.
Collapse
Affiliation(s)
| | | | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Yu Q, Walters HE, Pasquini G, Pal Singh S, Lachnit M, Oliveira CR, León-Periñán D, Petzold A, Kesavan P, Subiran Adrados C, Garteizgogeascoa I, Knapp D, Wagner A, Bernardos A, Alfonso M, Nadar G, Graf AM, Troyanovskiy KE, Dahl A, Busskamp V, Martínez-Máñez R, Yun MH. Cellular senescence promotes progenitor cell expansion during axolotl limb regeneration. Dev Cell 2023; 58:2416-2427.e7. [PMID: 37879337 DOI: 10.1016/j.devcel.2023.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/25/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.
Collapse
Affiliation(s)
- Qinghao Yu
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Hannah E Walters
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Martina Lachnit
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Catarina R Oliveira
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Daniel León-Periñán
- Technische Universität Dresden, Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-Concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Preethi Kesavan
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Cristina Subiran Adrados
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | - Dunja Knapp
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Anne Wagner
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain
| | - Gayathri Nadar
- Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany
| | - Alwin M Graf
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | - Andreas Dahl
- DRESDEN-Concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany; Physics of Life Excellence Cluster, Dresden, Germany.
| |
Collapse
|
10
|
Mahajan A, Nengroo MA, Datta D, Katti DS. Converse modulation of Wnt/β-catenin signaling during expansion and differentiation phases of Infrapatellar fat pad-derived MSCs for improved engineering of hyaline cartilage. Biomaterials 2023; 302:122296. [PMID: 37696204 DOI: 10.1016/j.biomaterials.2023.122296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are potential candidates in cell-based therapy for cartilage repair and regeneration. However, during chondrogenic differentiation, MSCs undergo undesirable hypertrophic maturation. This poses a risk of ossification in the neo-tissue formed that eventually impedes the clinical use of MSCs for cartilage repair. TGF-β is a potent growth factor used for chondrogenic differentiation of MSCs, however, its role in hypertrophy remains ambiguous. In the present work, we decipher that TGF-β activates Wnt/β-catenin signaling through SMAD3 and increases the propensity of Infrapatellar fat pad derived MSCs (IFP-MSCs) towards hypertrophy. Notably, inhibiting TGF-β induced Wnt/β-catenin signaling suppresses hypertrophic progression and enhances chondrogenic ability of IFP-MSCs in plasma hydrogels. Additionally, we demonstrate that activating Wnt signaling during expansion phase, promotes proliferation and reduces senescence, while improving stemness of IFP-MSCs. Thus, conversely modulating Wnt signaling in vitro during expansion and differentiation phases generates hyaline-like cartilage with minimal hypertrophy. Importantly, pre-treatment of IFP-MSCs encapsulated in plasma hydrogel with Wnt modulators followed by subcutaneous implantation in nude mice resulted in formation of a cartilage tissue with negligible calcification. Overall, this study provides technological advancement on targeting Wnt/β-catenin pathway in a 3D scaffold, while maintaining the standard chondro-induction protocol to overcome the challenges associated with the clinical use of MSCs to engineer hyaline cartilage.
Collapse
Affiliation(s)
- Aman Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Mushtaq A Nengroo
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Dipak Datta
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
11
|
He X, Hu W, Zhang Y, Chen M, Ding Y, Yang H, He F, Gu Q, Shi Q. Cellular senescence in skeletal disease: mechanisms and treatment. Cell Mol Biol Lett 2023; 28:88. [PMID: 37891477 PMCID: PMC10612178 DOI: 10.1186/s11658-023-00501-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The musculoskeletal system supports the movement of the entire body and provides blood production while acting as an endocrine organ. With aging, the balance of bone homeostasis is disrupted, leading to bone loss and degenerative diseases, such as osteoporosis, osteoarthritis, and intervertebral disc degeneration. Skeletal diseases have a profound impact on the motor and cognitive abilities of the elderly, thus creating a major challenge for both global health and the economy. Cellular senescence is caused by various genotoxic stressors and results in permanent cell cycle arrest, which is considered to be the underlying mechanism of aging. During aging, senescent cells (SnCs) tend to aggregate in the bone and trigger chronic inflammation by releasing senescence-associated secretory phenotypic factors. Multiple signalling pathways are involved in regulating cellular senescence in bone and bone marrow microenvironments. Targeted SnCs alleviate age-related degenerative diseases. However, the association between senescence and age-related diseases remains unclear. This review summarises the fundamental role of senescence in age-related skeletal diseases, highlights the signalling pathways that mediate senescence, and discusses potential therapeutic strategies for targeting SnCs.
Collapse
Affiliation(s)
- Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Wei Hu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China
| | - Mimi Chen
- Department of Orthopedics, Children Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yicheng Ding
- Xuzhou Medical University, 209 Copper Mountain Road, Xuzhou, 221004, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Fan He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qiaoli Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China.
| |
Collapse
|
12
|
Voskamp C, Koevoet WJLM, Van Osch GJVM, Narcisi R. Senescence during early differentiation reduced the chondrogenic differentiation capacity of mesenchymal progenitor cells. Front Bioeng Biotechnol 2023; 11:1241338. [PMID: 37609111 PMCID: PMC10441241 DOI: 10.3389/fbioe.2023.1241338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Mesenchymal stromal/progenitor cells (MSCs) are promising for cartilage cell-based therapies due to their chondrogenic differentiation capacity. However, MSCs can become senescent during in vitro expansion, a state characterized by stable cell cycle arrest, metabolic alterations, and substantial changes in the gene expression and secretory profile of the cell. In this study, we aimed to investigate how senescence and the senescence-associated secretory phenotype (SASP) affect chondrogenic differentiation of MSCs. Methods: To study the effect of senescence, we exposed MSCs to gamma irradiation during expansion or during chondrogenic differentiation (the pellet culture). Western blot analysis was used to evaluate MSCs response to the chondrogenic inductor TGF-β. Results: When senescence was induced during expansion or at day 7 of chondrogenic differentiation, we observed a significant reduction in the cartilage matrix. Interestingly, when senescence was induced at day 14 of differentiation, chondrogenesis was not significantly altered. Moreover, exposing chondrogenic pellets to the medium conditioned by senescent pellets had no significant effect on the expression of anabolic or catabolic cartilage markers, suggesting a neglectable paracrine effect of senescence on cartilage generation in our model. Finally, we show that senescent MSCs showed lower phosphorylated SMAD2 levels after TGFβ1 stimulation than control MSCs. Conclusion: Overall, these results suggest that the occurrence of senescence in MSCs during expansion or early differentiation could be detrimental for cartilage tissue engineering.
Collapse
Affiliation(s)
- Chantal Voskamp
- Department of Orthopaedics and Sports Medicine, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wendy J. L. M. Koevoet
- Department of Otorhinolaryngology, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerjo J. V. M. Van Osch
- Department of Orthopaedics and Sports Medicine, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Otorhinolaryngology, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Roberto Narcisi
- Department of Orthopaedics and Sports Medicine, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
13
|
Chojak R, Fares J, Petrosyan E, Lesniak MS. Cellular senescence in glioma. J Neurooncol 2023; 164:11-29. [PMID: 37458855 DOI: 10.1007/s11060-023-04387-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/01/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.
Collapse
Affiliation(s)
- Rafał Chojak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Siraj Y, Galderisi U, Alessio N. Senescence induces fundamental changes in the secretome of mesenchymal stromal cells (MSCs): implications for the therapeutic use of MSCs and their derivates. Front Bioeng Biotechnol 2023; 11:1148761. [PMID: 37229499 PMCID: PMC10203235 DOI: 10.3389/fbioe.2023.1148761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population containing multipotent adult stem cells with a multi-lineage differentiation capacity, which differentiated into mesodermal derivatives. MSCs are employed for therapeutic purposes and several investigations have demonstrated that the positive effects of MSC transplants are due to the capacity of MSCs to modulate tissue homeostasis and repair via the activity of their secretome. Indeed, the MSC-derived secretomes are now an alternative strategy to cell transplantation due to their anti-inflammatory, anti-apoptotic, and regenerative effects. The cellular senescence is a dynamic process that leads to permanent cell cycle arrest, loss of healthy cells' physiological functions and acquiring new activities, which are mainly accrued through the release of many factors, indicated as senescence-associated secretory phenotype (SASP). The senescence occurring in stem cells, such as those present in MSCs, may have detrimental effects on health since it can undermine tissue homeostasis and repair. The analysis of MSC secretome is important either for the MSC transplants and for the therapeutic use of secretome. Indeed, the secretome of MSCs, which is the main mechanism of their therapeutic activity, loses its beneficial functions and acquire negative pro-inflammatory and pro-aging activities when MSCs become senescent. When MSCs or their derivatives are planned to be used for therapeutic purposes, great attention must be paid to these changes. In this review, we analyzed changes occurring in MSC secretome following the switch from healthy to senescence status.
Collapse
Affiliation(s)
- Yesuf Siraj
- Department of Experimental Medicine, University of Campania, Naples, Italy
- Department of Medical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania, Naples, Italy
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Türkiye
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania, Naples, Italy
| |
Collapse
|
15
|
Tu M, Wei T, Jia Y, Wang Y, Wu J. Molecular mechanisms of alveolar epithelial cell senescence and idiopathic pulmonary fibrosis: a narrative review. J Thorac Dis 2023; 15:186-203. [PMID: 36794134 PMCID: PMC9922607 DOI: 10.21037/jtd-22-886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial pneumonia of unknown etiology. An increasing number of studies have reported that the incidence of IPF increases with age. Simultaneously, the number of senescent cells increased in IPF. Epithelial cell senescence, an important component of epithelial cell dysfunction, plays a key role in IPF pathogenesis. This article summarizes the molecular mechanisms associated with alveolar epithelial cell senescence and recent advances in the applications of drugs targeting pulmonary epithelial cell senescence to explore novel therapeutic approaches for the treatment of pulmonary fibrosis. Methods All literature published in English on PubMed, Web of Science, and Google Scholar were electronically searched online using the following keyword combinations: aging, alveolar epithelial cell, cell senescence, idiopathic pulmonary fibrosis, WNT/β-catenin, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB). Key Content and Findings We focused on signaling pathways associated with alveolar epithelial cell senescence in IPF, including WNT/β-catenin, PI3K/Akt, NF-κB, and mTOR signaling pathways. Some of these signaling pathways are involved in alveolar epithelial cell senescence by affecting cell cycle arrest and secretion of senescence-associated secretory phenotype-associated markers. We also found that changes in lipid metabolism in alveolar epithelial cells can be induced by mitochondrial dysfunction, both of which contribute to cellular senescence and development of IPF. Conclusions Decreasing senescent alveolar epithelial cells may be a promising strategy for the treatment of IPF. Therefore, further investigations into new treatments of IPF by applying inhibitors of relevant signaling pathways, as well as senolytic drugs, are warranted.
Collapse
Affiliation(s)
- Mingjin Tu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Ting Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yufang Jia
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China;,Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Jun Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
16
|
Li M, Li T, Yin J, Xie C, Zhu J. Evaluation of toxicological effects of bisphenol S with an in vitro human bone marrow mesenchymal stem cell: Implications for bone health. Toxicology 2023; 484:153408. [PMID: 36565802 DOI: 10.1016/j.tox.2022.153408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
As the use of bisphenol A (BPA) has been restricted in consumer products, bisphenol S (BPS) is one major alternative to BPA for various materials, leading to growing concerns about its health risks in human beings. However, little is known about the toxic effects of BPS on bone health. We employed human bone marrow mesenchymal stem cells (hBMSCs) for the in vitro assessment of BPS on cell proliferation, differentiation, and self-renewal. Our study revealed that BPS at concentrations of 10-10-10-7 M increased cell viability but induced the morphological changes of hBMSCs. Moreover, BPS decreased ROS generation and increased Nrf2 expression. Furthermore, BPS not only activated ERα/β expression but also increased β-catenin expression and induced the replicative senescence of hBMSCs. Furthermore, we found that the upregulation of β-catenin induced by BPS was mediated, in part, by ER signaling. Overall, our results suggested BPS exposure caused the homeostatic imbalance of hBMSCs.
Collapse
Affiliation(s)
- Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
17
|
Ma H, Siu WS, Koon CM, Wu XX, Li X, Cheng W, Shum WT, Lau CBS, Wong CK, Leung PC. The Application of Adipose Tissue-Derived Mesenchymal Stem Cells (ADMSCs) and a Twin-Herb Formula to the Rodent Wound Healing Model: Use Alone or Together? Int J Mol Sci 2023; 24:ijms24021372. [PMID: 36674885 PMCID: PMC9867064 DOI: 10.3390/ijms24021372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Our previous study reported that mesenchymal stem cells (MSCs) accelerated the wound healing process through anti-inflammatory, anti-apoptotic, and pro-angiogenetic effects in a rodent skin excision model. NF3 is a twin-herb formula, which presents similar effects in promoting wound healing. Research focusing on the interaction of MSCs and Chinese medicine is limited. In this study, we applied MSCs and the twin-herb formula to the wound healing model and investigated their interactions. Wound healing was improved in all treatment groups (MSCs only, NF3 only, and MSCs + NF3). The combined therapy further enhanced the effect: more GFP-labelled ADMSCs, collagen I and collagen III expression, Sox9 positive cells, and CD31 positive cells, along with less ED-1 positive cells, were detected; the expressions of proinflammatory cytokine IL-6 and TNF-α were downregulated; and the expression of anti-inflammatory cytokine IL-10 was upregulated. In vitro, NF3 promoted the cell viability and proliferation ability of MSCs, and a higher concentration of protein was detected in the NF3-treated supernatant. A proteomic analysis showed there were 15 and 22 proteins in the supernatants of normal ADMSCs and NF3-treated ADMSCs, respectively. After PCR validation, the expressions of 11 related genes were upregulated. The results of a western blot suggested that the TGFβ/Smad and Wnt pathways were related to the therapeutic effects of the combined treatment. Our study suggests for the first time that NF3 enhanced the therapeutic effect of MSCs in the wound healing model and the TGFβ/Smad and Wnt pathways were related to the procedure.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chi-Man Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xiao-Xiao Wu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xiang Li
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wen Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wai-Ting Shum
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Correspondence: ; Tel.: +852-22528868
| |
Collapse
|
18
|
Navakauskienė R, Žukauskaitė D, Borutinskaitė VV, Bukreieva T, Skliutė G, Valatkaitė E, Zentelytė A, Piešinienė L, Shablii V. Effects of human placenta cryopreservation on molecular characteristics of placental mesenchymal stromal cells. Front Bioeng Biotechnol 2023; 11:1140781. [PMID: 37122871 PMCID: PMC10133466 DOI: 10.3389/fbioe.2023.1140781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Cryopreservation of placenta tissue for long-term storage provides the opportunity in the future to isolate mesenchymal stromal cells that could be used for cell therapy and regenerative medicine. Despite being widely used, the established cryopreservation protocols for freezing and thawing still raise concerns about their impact on molecular characteristics, such as epigenetic regulation. In our study, we compared the characteristics of human placental mesenchymal stromal cells (hPMSCs) isolated from fresh (native) and cryopreserved (cryo) placenta tissue. We assessed and compared the characteristics of native and cryo hPMSCs such as morphology, metabolic and differentiation potential, expression of cell surface markers, and transcriptome. No significant changes in immunophenotype and differentiation capacity between native and cryo cells were observed. Furthermore, we investigated the epigenetic changes and demonstrated that both native and cryo hPMSCs express only slight variations in the epigenetic profile, including miRNA levels, DNA methylation, and histone modifications. Nevertheless, transcriptome analysis defined the upregulation of early-senescence state-associated genes in hPMSCs after cryopreservation. We also evaluated the ability of hPMSCs to improve pregnancy outcomes in mouse models. Improved pregnancy outcomes in a mouse model confirmed that isolated placental cells both from native and cryo tissue have a positive effect on the restoration of the reproductive system. Still, the native hPMSCs possess better capacity (up to 66%) in comparison with cryo hPMSCs (up to 33%) to restore fertility in mice with premature ovarian failure. Our study demonstrates that placental tissue can be cryopreserved for long-term storage with the possibility to isolate mesenchymal stromal cells that retain characteristics suitable for therapeutic use.
Collapse
Affiliation(s)
- Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- *Correspondence: Rūta Navakauskienė, ; Volodymyr Shablii,
| | - Deimantė Žukauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Science, Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv, Ukraine
| | - Giedrė Skliutė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Nanodiagnostika, Ltd., Vilnius, Lithuania
| | - Elvina Valatkaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Science, Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv, Ukraine
- *Correspondence: Rūta Navakauskienė, ; Volodymyr Shablii,
| |
Collapse
|
19
|
Angileri KM, Bagia NA, Feschotte C. Transposon control as a checkpoint for tissue regeneration. Development 2022; 149:dev191957. [PMID: 36440631 PMCID: PMC10655923 DOI: 10.1242/dev.191957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
Tissue regeneration requires precise temporal control of cellular processes such as inflammatory signaling, chromatin remodeling and proliferation. The combination of these processes forms a unique microenvironment permissive to the expression, and potential mobilization of, transposable elements (TEs). Here, we develop the hypothesis that TE activation creates a barrier to tissue repair that must be overcome to achieve successful regeneration. We discuss how uncontrolled TE activity may impede tissue restoration and review mechanisms by which TE activity may be controlled during regeneration. We posit that the diversification and co-evolution of TEs and host control mechanisms may contribute to the wide variation in regenerative competency across tissues and species.
Collapse
Affiliation(s)
- Krista M. Angileri
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Nornubari A. Bagia
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| |
Collapse
|