1
|
Klem JR, Schwantes-An TH, Abreu M, Suttie M, Gray R, Vo HDL, Conley G, Foroud TM, Wetherill L, Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD), Lovely CB. Mutations in the bone morphogenetic protein signaling pathway sensitize zebrafish and humans to ethanol-induced jaw malformations. Dis Model Mech 2025; 18:dmm052223. [PMID: 40067253 PMCID: PMC12010914 DOI: 10.1242/dmm.052223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Fetal alcohol spectrum disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Signaling via bone morphogenetic protein (Bmp) is a key regulatory step of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish carrying mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating that ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. By integrating FASD patient data, we provide the first evidence that variants of the human Bmp receptor gene BMPR1B associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD.
Collapse
Affiliation(s)
- John R. Klem
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 40202, USA
| | - Marco Abreu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 40202, USA
| | - Michael Suttie
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
- Big Data Institute, University of Oxford, Oxford OX3 7LF, UK
| | - Raèden Gray
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| | - Hieu D. L. Vo
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| | - Grace Conley
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 40202, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 40202, USA
| | | | - C. Ben Lovely
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Shanika D, Rajapaksa G. Bisphenol-S exposure of zebrafish unveils the hidden risks of bisphenol paradigm with growth, developmental, and behavioral impacts similar to bisphenol-A. Sci Rep 2025; 15:9560. [PMID: 40108279 PMCID: PMC11923150 DOI: 10.1038/s41598-025-91984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The introduction of bisphenol-S (BPS) in substitution of bisphenol-A (BPA) has become argumentative owing to their endocrine destructive properties and insufficient comparative ecotoxicity assessments. Thus, comparative effects of long-term, low-dose BPA and BPS exposure on the development of juvenile zebrafish (Danio rerio) were investigated. Juvenile zebrafish (age: 21 days; weight: ~ 61.5 mg; length: ~ 7.56 mm) were exposed to environmentally-relevant 50 µg/L of BPA, BPS, and control for ~ 60 days in triplicate. Both BPA and BPS significantly increased length (p = 0.00), weight (p = 0.00), specific growth rate (p = 0.00), female preponderance (p = 0.003), mortality (p = 0.017), ammonia excretion (p = 0.00), and aggression (p = 0.00) in zebrafish compared to control. Both bisphenols significantly reduced fish swimming speed in a comparable manner (p = 0.001). A notably higher female-biased-sex ratio was observed in BPS than in BPA (p = 0.003). The length gain (p = 0.014) and aggression (p = 0.032) were higher in BPA-treated fish than in BPS. However, a significant difference was not shown in body mass index (p = 0.295) and condition factor (p = 0.256) between bisphenols and control (p < 0.05). BPA and BPS exposure led to hyperplasia, mucous secretion, aneurism in fish gills, vacuolization and necrosis in liver. Therefore, BPS (~ 50 µg/L) also imposes noteworthy threats to aquatic wildlife, emphasizing the necessity of toxicity assessments and regular monitoring aiming at bespoken environmental standards for freshwater.
Collapse
Affiliation(s)
- Divani Shanika
- Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya, Sri Lanka
| | - Gayani Rajapaksa
- Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya, Sri Lanka.
| |
Collapse
|
3
|
Shen Q, Zhao F, Zhang N, Zheng L, Su D, Qian Y, Xin L, Mingxia S, Hongxu Z, Chen F, Qiu W, Liu D. Embryonic exposure of estrogen and BPA in zebrafish leads to ADHD-like and ASD-like phenotypes, respectively. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111293. [PMID: 40020986 DOI: 10.1016/j.pnpbp.2025.111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Exposure to the estrogenic pollutant bisphenol A (BPA) during pregnancy and early childhood is a risk factor for numerous neurodevelopmental and psychiatric disorders in humans. To understand why early BPA exposure is associated with attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), we have analyzed a series of zebrafish behaviors, neurodevelopmental process, and gene expression profiles, after a moderate level of estrogen (17β-estradiol, E2, as a positive control) and BPA treatments during embryogenesis (2-48 h post fertilization). E2 exposure-caused hyperactivity was likely due to elevated expression of cyp19a1b since blocking aromatase activity rescued the defect. Furthermore, E2 exposure resulted in impulsive behaviors, perhaps due to a reduced expression of brain th (crucial for dopamine synthesis), resembling the ADHD phenotypes. However, the hyperactivity upon BPA exposure was due to a reduction of GABAergic neurons, particularly in the midbrain. BPA-exposed fish were less-social, with increased repetitive behaviors and escape rate (during strobe light stimulation), like the ASD phenotypes. Taking advantage of published single-cell and bulk RNA-sequencing data related to zebrafish BPA exposure, we uncovered that embryonic midbrain GABAergic neurons express less stmn1a upon BPA exposure. When stmn1a function was partially lost, 14-day post-fertilization larvae became less social, further stressing the ASD phenotype after BPA exposure. Upon embryonic E2 and BPA exposure, we have unexpectedly unveiled zebrafish ADHD-like and ASD-like phenotypes, respectively, suggesting that women of childbearing age should be cautious to use BPA and estrogen related products.
Collapse
Affiliation(s)
- Qiaosen Shen
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Feng Zhao
- School of Life Science, Southern University of Science and Technology, Shenzhen, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Na Zhang
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Ling Zheng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dongmei Su
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Yongyi Qian
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Liu Xin
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Sun Mingxia
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Zhang Hongxu
- School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong Liu
- School of Life Science, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Moser TV, Bond DM, Hore TA. Variant ribosomal DNA is essential for female differentiation in zebrafish. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240107. [PMID: 40045777 PMCID: PMC11883429 DOI: 10.1098/rstb.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 03/09/2025] Open
Abstract
The ribosome consists of protein and RNA components. Deletion of genes encoding specific ribosomal proteins has revealed that heterogeneity in the ribosome must exist in vertebrates; however, this has not been tested for ribosomal RNA (rRNA). In zebrafish (Danio rerio), the '45S-M' ribosomal RNA-encoding locus undergoes massive extrachromosomal amplification during oocyte growth and ovary differentiation and is distinct from the regular ribosomal DNA (rDNA) locus encoding somatic rRNA (45S-S). Although the 45S-M rDNA locus falls within the only described sex-linked region in multiple wild zebrafish strains, its role in sexual differentiation is unclear. We used CRISPR-Cas9 gene editing to alter 45S-M rDNA sequences in zygotes and found that although there was no effect on growth or male development, there was dramatic suppression of female differentiation. Males with edited 45S-M rDNA produced phenotypically normal sperm and were able to fertilize eggs from wild-type females, with resulting embryos once more displaying normal development. Our work supports the hypothesis that specialized 45S-M rDNA is the elusive apical sex-determining locus in zebrafish and that this region represents the most tractable genetic system to date for studying ribosomal RNA heterogeneity and function in a vertebrate.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
|
5
|
Louie KW, Hasegawa EH, Farr GH, Ignacz A, Paguio A, Maenza A, Paquette AG, Henry C, Maves L. Epigenetic small molecule screening identifies a new HDACi compound for ameliorating Duchenne muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634796. [PMID: 39974951 PMCID: PMC11838185 DOI: 10.1101/2025.01.24.634796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease. There are currently few effective therapies to treat the disease, although many approaches are being pursued. Certain histone deacetylase inhibitors (HDACi) have been shown to ameliorate DMD phenotypes in mouse and zebrafish animal models, and the HDACi givinostat has recently gained FDA approval for DMD. Our goal was to identify additional HDACi, or other classes of epigenetic small molecules, that are beneficial for DMD. Using an established animal model for DMD, the zebrafish dmd mutant strain sapje , we screened a library of over 800 epigenetic small molecules of various classes. We used a quantitative muscle birefringence assay to assess and compare the effects of these small molecule treatments on dmd mutant zebrafish skeletal muscle. Our screening identified a new HDACi, SR-4370, that ameliorated dmd mutant zebrafish skeletal muscle degeneration, in addition to HDACi previously shown to improve dmd zebrafish. We find that a single early treatment of HDACi can ameliorate dmd zebrafish. Furthermore, we find that HDACi that improve dmd muscle also cause increased histone acetylation in zebrafish larvae, whereas givinostat does not appear to increase histone acetylation or improve zebrafish dmd muscle. Our results add to the growing evidence that HDACi are promising candidates for treating DMD. Our study also provides further support for the effectiveness of small-molecule screening in dmd zebrafish. Graphical abstract
Collapse
|
6
|
Dedukh D, Kulikova T, Dobrovolskaia M, Maslova A, Krasikova A. Lampbrush chromosomes of Danio rerio. Chromosome Res 2025; 33:2. [PMID: 39815120 DOI: 10.1007/s10577-024-09761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/15/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
Danio rerio, commonly known as zebrafish, is an established model organism for the developmental and cell biology studies. Although significant progress has been made in the analysis of the D. rerio genome, cytogenetic studies face challenges due to the unclear identification of chromosomes. Here, we present a novel approach to the study of the D. rerio karyotype, focusing on the analysis of lampbrush chromosomes isolated from growing oocytes. Lampbrush chromosomes, existing during diplotene, serve as a powerful tool for high-resolution mapping and transcription analysis due to their profound decondensation and remarkable lateral loops decorated by RNA polymerases and ribonucleoprotein (RNP) matrix. In D. rerio, lampbrush chromosomes are about 20 times longer than corresponding metaphase chromosomes. We found that the lampbrush chromosome stage karyotype of D. rerio is generally undifferentiated, except for several bivalents bearing distinct marker structures, including loops with complex RNP matrix and locus-associated nuclear bodies. Locus-associated nuclear bodies were enriched for coilin and snRNAs; the loci where they formed presumably correspond to the histone gene clusters. Further, we observed the accumulation of splicing factors in giant terminal RNP aggregates on one bivalent. DAPI staining of Danio rerio lampbrush chromosomes revealed large and small chromomeres non-uniformly distributed along the axis. For example, D. rerio lampbrush chromosome 4, comprising the sex-determining region, is divided into two halves-with small chromomeres bearing long lateral loops and with large dense chromomeres bearing no or very tiny lateral loops. As centromeres were not distinguishable, we identified centromeric regions in all bivalents by FISH mapping of pericentromeric RFAL1, RFAL2, and RFAM tandem repeats. Through a combination of morphological analysis, immunostaining of marker structures, and centromere mapping, we developed cytological maps of D. rerio lampbrush chromosomes. Finally, by RNA FISH we revealed transcripts of pericentromeric and telomeric tandem repeats at the lampbrush chromosome stage.
Collapse
Affiliation(s)
- D Dedukh
- Saint-Petersburg State University, Saint-Petersburg, Russia
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - T Kulikova
- Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | - A Maslova
- Saint-Petersburg State University, Saint-Petersburg, Russia
| | - A Krasikova
- Saint-Petersburg State University, Saint-Petersburg, Russia.
| |
Collapse
|
7
|
Lovely CB. Bone morphogenetic protein signaling pathway- Ethanol interactions disrupt palate formation independent of gata3. Reprod Toxicol 2025; 131:108754. [PMID: 39586481 PMCID: PMC11634638 DOI: 10.1016/j.reprotox.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD. From a screen for gene-ethanol interactions, we found that mutants for Bmp signaling components are ethanol-sensitive leading to defects in the zebrafish palate. Loss of Bmp signaling results in reductions in gata3 expression in the maxillary domain of the neural crest in the 1st pharyngeal arch, leading to palate defects while upregulation of human GATA3 rescues these defects. Here, we show that ethanol-treated Bmp mutants exhibit misshaped and/or broken trabeculae. Surprisingly, up regulation of GATA3 does not rescue ethanol-induced palate defects and gata3 expression was not altered in ethanol-treated Bmp mutants or dorsomorphin-treated larvae. Timing of ethanol sensitivity shows that Bmp mutants are ethanol sensitive from 10 to 18 hours post-fertilization (hpf), prior to Bmp's regulation of gata3 in palate formation. This is consistent with our previous work with dorsomorphin-dependent knock down of Bmp signaling from 10 to 18 hpf disrupting endoderm formation and subsequent jaw development. Overall, this suggests that ethanol disrupts Bmp-dependent palate development independent of and earlier than the role of gata3 in palate formation by disrupting epithelial development. Ultimately, these data demonstrate that zebrafish is a useful model to identify and characterize gene-ethanol interactions and this work will directly inform our understanding of FASD.
Collapse
Affiliation(s)
- C Ben Lovely
- University of Louisville, School of Medicine, Department of Biochemistry and Molecular Genetics, 319 Abraham Flexner Way, Louisville, KY 40202, USA.
| |
Collapse
|
8
|
Qian ST, Chen LM, He MF, Li HJ. Zebrafish Larvae as a Predictive Model for the Risk of Chemical-Induced Cholestasis: Phenotypic Evaluation and Nomogram Formation. Chem Res Toxicol 2024; 37:1976-1988. [PMID: 39566033 DOI: 10.1021/acs.chemrestox.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Chemical-induced cholestasis (CIC) has become a concern in chemical safety risk assessment in pharmaceutical, food, cosmetic, and industrial manufacturing. Currently, known animal and in vitro liver models are unsuitable as high-throughput screening tools due to their high cost, time-consuming, or poor screening accuracy. Herein, a cohort of chemicals validated as cholestatic hepatotoxic in humans, rodents, and in vitro liver models was established for testing. The accuracy and reliability of the detection of CIC in zebrafish larvae were assessed by liver phenotype, bile flow inhibition rate, bile acid distribution, biochemical indices, and RT-qPCR. In addition, the nomogram prediction model was constructed using binomial logistic regression analysis. The model was constructed with three variables: aspartate aminotransferase (AST.FC) level, total bile acid (TBA.FC) level, and fold change in the number of bile acid nodes per unit of bile ducts in the zebrafish liver (NPL.FC), which showed high predictive power (areas under the ROC curve: 0.983). Furthermore, this study demonstrated that zebrafish larvae have some model specificity for CIC risk assessment of estrogen endocrine disruptors and that testing after 10 dpf provides more scientific results. Overall, combining zebrafish larval phenotyping and nomograms is an efficient and powerful tool for CIC risk monitoring of chemicals.
Collapse
Affiliation(s)
- Si-Tong Qian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Liang-Min Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
9
|
Dong S, Xu J, Meng X, Jiang X, Yang D, Zhao X, Li X, Ding G. Impact of hexafluoropropylene oxide trimer acid (HFPO-TA) on sex differentiation after exposures during different development stages of zebrafish (Danio rerio). Food Chem Toxicol 2024; 194:115108. [PMID: 39536898 DOI: 10.1016/j.fct.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), a novel alternative to perfluorooctanoic acid (PFOA), has been widely used and ubiquitously detected in aquatic environments. However, its potential effects on sex differentiation of aquatic organisms are not well known. Therefore, in this study, zebrafish were exposed to HFPO-TA at different development stages (0-21, 21-42, and 42-63 dpf) to investigate the effects on sex differentiation and its underlying mechanisms. All three exposures to HFPO-TA resulted in the feminization of zebrafish, and the impact of Stage II was most significant. The transcription levels of key genes related to female differentiation (bpm15, cyp19a1a, esr1, vtg1, and sox9b) were up-regulated, while those of key genes related to male differentiation (dmrt1, gata4, amh, and sox9a) were down-regulated, which could lead to the feminization. In addition, it was found that the dysregulations of these genes were prolonged in adult zebrafish even through a long recovery, which could cause sex imbalance in populations. Therefore, HFPO-TA might not be a safe alternative to PFOA, and more evidences from multi- and transgenerational toxicology are warranted.
Collapse
Affiliation(s)
- Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiangyue Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
10
|
Liu C, Zhang L, Xia Y, Li K, Wu J, Zhang J. Identification, expression, and function analysis of Rbpms2 splicing variants in Japanese flounder gonad. Gen Comp Endocrinol 2024; 359:114628. [PMID: 39414089 DOI: 10.1016/j.ygcen.2024.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Rbpms2, an RNA-binding protein with multiple splicing (Rbpms), can interact with RNAs to involve oocyte development, thereby influencing female sex differentiation in vertebrates. Here, two splicing variants of the Rbpms2 gene from Japanese flounder (Paralichthys olivaceus) were identified, namely Rbpms2.1 and Rbpms2.2. The two variants exhibited 98.22 % amino acid homology, both featuring an RNA recognition motif (RRM) domain spanning positions 98-170 amino acids. They were relatively conserved throughout phylogenetic evolution. Differently, the C-terminal region of the Rbpms2.1 contains five additional sequential amino acids (-VRDQP-) compared to Rbpms2.2. The real-time qPCR results demonstrated that Rbpms2.1 and Rbpms2.2 had relatively abundant expression in the gonads of adult Japanese flounder, with higher expression levels in the ovary compared to the testis (P < 0.05). In situ hybridization results showed strong positive expression of Rbpms2 mRNA in oocytes at stages I-III during the V stage of ovarian development. In the testis atstage IV, the expression of Rbpms2 mRNA was mainly concentrated on primary spermatocytes. Importantly, Rbpms2 binding sites were found in the 3'UTR, 5'UTR, and ORF regions of the sex-related genes including dmrt1, sox9, amh, foxl2, and wnt4. siRNA interference and overexpression analysis of Rbpms2.1 and Rbpms2.2 in primary cells of the ovary and testis showed that Rbpms2 can repress the expression of male-related genes (dmrt1, sox9, and amh) and significantly promote the expression of female-related genes (foxl2 and wnt4). Our results revealed that Rbpms2 may play a critical role by targeting the sex-related genes in the gonad development of Japanese flounder.
Collapse
Affiliation(s)
- Cui Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Longsheng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - You Xia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Keqi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jikui Wu
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Junling Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
11
|
Lovely CB. Bone Morphogenetic Protein signaling pathway - ethanol interactions disrupt palate formation independent of gata3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623833. [PMID: 39605565 PMCID: PMC11601317 DOI: 10.1101/2024.11.15.623833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD. From a screen for gene-ethanol interactions, we found that mutants for Bmp signaling components are ethanol-sensitive leading to defects in the zebrafish palate. Loss of Bmp signaling results in reductions in gata3 expression in the maxillary domain of the neural crest in the 1st pharyngeal arch, leading to palate defects while upregulation of human GATA3 rescues these defects. Here, we show that ethanol-treated Bmp mutants exhibit misshaped and/or broken trabeculae. Surprisingly, up regulation of GATA3 does not rescue ethanol-induced palate defects and gata3 expression was not altered in ethanol-treated Bmp mutants or dorsomorphin-treated larvae. Timing of ethanol sensitivity shows that Bmp mutants are ethanol sensitive from 10-18 hours post-fertilization (hpf), prior to Bmp's regulation of gata3 in palate formation. This is consistent with our previous work with dorsomorphin-dependent knock down of Bmp signaling from 10-18 hpf disrupting endoderm formation and subsequent jaw development. Overall, this suggests that ethanol disrupts Bmp-dependent palate development independent of and earlier than the role of gata3 in palate formation by disrupting epithelial development. Ultimately, these data demonstrate that zebrafish is a useful model to identify and characterize gene-ethanol interactions and this work will directly inform our understanding of FASD. Highlights Bmp pathway mutants are ethanol sensitive resulting in palate defects. Ethanol disrupts Bmp-dependent palate development independent of gata3 . Timing of ethanol sensitivity suggests ethanol disrupts Bmp-dependent epithelial morphogenesis.
Collapse
|
12
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Guan K, Ye M, Guo A, Chen X, Shan Y, Li X. Deficiency of leap2 promotes somatic growth in zebrafish: Involvement of the growth hormone system. Heliyon 2024; 10:e36397. [PMID: 39347412 PMCID: PMC11437977 DOI: 10.1016/j.heliyon.2024.e36397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Liver-expressed antimicrobial peptide-2 (LEAP2) is identified as an endogenous antagonist and inverse agonist of the growth hormone secretagogue receptor type 1a (GHSR1a), its effect on the GHSR1a is contrary to the role of GHRELIN. Growth hormone (GH) is a crucial hormone for early development. Previous studies report that LEAP2 dose-dependently attenuates ghrelin-induced GH secretion, and Leap2-knockout mice exhibit increased plasma GH levels after GHRELIN administration. Clinical data revealed a possible correlation between LEAP2 and height development. However, the role of LEAP2 in early development remains unclear. This study aimed to investigate the role of LEAP2 in early development using leap2 mutant zebrafish larvae as a model. Method We analyzed the conservation of LEAP2 peptide across multiple species and generated leap2 mutants in zebrafish by CRISPR-Cas9, dynamically observed and measured the growth and development of zebrafish larvae from fertilization to 5 day post fertilization (dpf). In situ hybridization, transcriptome sequencing, quantitative real-time PCR and Western blot were used to detect the expression levels of GH and its signaling in early stage of embryonic development. Result Our data demonstrate that zebrafish with a knockout of the leap2 gene display a significant increase in hatching rate, body length, and the distance between their eyes, all without visible developmental defects in the early stages of development. In addition, both RNA and protein analyses revealed a significant increase in GH expression in leap2 mutant. Conclusion In general, this study demonstrates that LEAP2 regulates the expression of GH during early development, particularly influencing body length.
Collapse
Affiliation(s)
- Kaiyu Guan
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Minjie Ye
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Anqi Guo
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaoyu Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yunfeng Shan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi Li
- Zhejiang Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
14
|
Ren Z, Ye D, Su N, Wang C, He L, Wang H, He M, Sun Y. foxl2l is a germ cell-intrinsic gatekeeper of oogenesis in zebrafish. Zool Res 2024; 45:1116-1130. [PMID: 39257375 PMCID: PMC11491788 DOI: 10.24272/j.issn.2095-8137.2024.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/20/2024] [Indexed: 09/12/2024] Open
Abstract
Zebrafish serve as a valuable model organism for studying germ cell biology and reproductive processes. The AB strain of zebrafish is proposed to exhibit a polygenic sex determination system, where most males initially develop juvenile ovaries before committing to male fate. In species with chromosomal sex determination, gonadal somatic cells are recognized as key determinants of germ cell fate. Notably, the loss of germ cells in zebrafish leads to masculinization, implying that germ cells harbor an intrinsic feminization signal. However, the specific signal triggering oogenesis in zebrafish remains unclear. In the present study, we identified foxl2l as an oocyte progenitor-specific gene essential for initiating oogenesis in germ cells. Results showed that foxl2l-knockout zebrafish bypassed the juvenile ovary stage and exclusively developed into fertile males. Further analysis revealed that loss of foxl2l hindered the initiation of oocyte-specific meiosis and prevented entry into oogenesis, leading to premature spermatogenesis during early gonadal development. Furthermore, while mutation of the pro-male gene dmrt1 led to fertile female differentiation, simultaneous disruption of foxl2l in dmrt1 mutants completely blocked oogenesis, with a large proportion of germ cells arrested as germline stem cells, highlighting the crucial role of foxl2l in oogenesis. Overall, this study highlights the unique function of foxl2l as a germ cell-intrinsic gatekeeper of oogenesis in zebrafish.
Collapse
Affiliation(s)
- Zhiqin Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Ding Ye
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China. E-mail:
| | - Naike Su
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaofan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Lijia He
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Mudan He
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Shi DL. Interplay of RNA-binding proteins controls germ cell development in zebrafish. J Genet Genomics 2024; 51:889-899. [PMID: 38969260 DOI: 10.1016/j.jgg.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants, called germ plasm, confer germline fate in the early embryo. Extensive studies have partially allowed the identification of key regulators governing germ plasm formation and subsequent germ cell development. RNA-binding proteins, acting in concert with other germ plasm components, play essential roles in the organization of the germ plasm and the specification, migration, maintenance, and differentiation of primordial germ cells. The loss of their functions impairs germ cell formation and causes sterility or sexual conversion. Evidence is emerging that they instruct germline development through differential regulation of mRNA fates in somatic and germ cells. However, the challenge remains to decipher the complex interplay of maternal germ plasm components in germ plasm compartmentalization and germ cell specification. Because failure to control the developmental outcome of germ cells disrupts the formation of gametes, it is important to gain a complete picture of regulatory mechanisms operating in the germ cell lineage. This review sheds light on the contributions of RNA-binding proteins to germ cell development in zebrafish and highlights intriguing questions that remain open for future investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
16
|
Wilson CA, Postlethwait JH. A maternal-to-zygotic-transition gene block on the zebrafish sex chromosome. G3 (BETHESDA, MD.) 2024; 14:jkae050. [PMID: 38466753 PMCID: PMC11075544 DOI: 10.1093/g3journal/jkae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex-determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting that Chr4R transcriptomics might differ from the rest of the genome. To test this hypothesis, we conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes in the Nadia strain and identified 4 regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brains and livers validated reduced transcripts from Region-2 in somatic cells, but without sex specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. Region-2 lacks protein-coding genes with human orthologs; has zinc finger genes expressed early in zygotic genome activation; has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and a distinct set of repetitive elements. The colocalization of (1) genes silenced in ovaries but not in testes that are (2) expressed in embryos briefly at the onset of zygotic genome activation; (3) maternal-specific genes for translation machinery; (4) maternal-specific spliceosome components; and (5) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a maternal-to-zygotic-transition gene regulatory block.
Collapse
|
17
|
Li C, Cai R, Shi W, Zhang H, Liu Z, Xie F, Chen Y, Hong Q. Comparative transcriptome analysis of ovaries and testes reveals sex-biased genes and pathways in zebrafish. Gene 2024; 901:148176. [PMID: 38242380 DOI: 10.1016/j.gene.2024.148176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Zebrafish (Danio rerio) is a widely recognized and extensively studied model organism in scientific research. The regulatory mechanism of gonadal development and differentiation of this species has aroused considerable attention. Nonetheless, the major sex-biased genes and pathways associated with gonadal development remain elusive. Therefore, to comprehend this intricate process, gonadal transcriptome sequencing was carried out to identify differentially expressed genes (DEGs) between the testes and ovaries of adult zebrafish. The preliminary assessment yielded a total of 23,529,272 and 23,521,368 clean reads from the cDNA libraries of ovaries and testes. Afterward, a comparative analysis of the transcriptome revealed 3,604 upregulated and 11,371 downregulated DEGs in the ovaries compared to the testes. Of these genes, 428 were exclusively expressed in females, while 3,516 were exclusively expressed in males. Additionally, further assessments were conducted to explore the functions associated with these DEGs in various biological processes. The data revealed their involvement in sex-biased pathways, such as progesterone-mediated oocyte maturation, oocyte meiosis, cytokine-cytokine receptor interaction, and cardiac muscle contraction. Finally, the expression levels of 14 sex-biased DEGs (cdc20, ccnb1, ypel3, chn1, bmp15, rspo1, tnfsf10, egfra, acta2, cox8a, gsdf, dmrt1, star, and cyp17a1) associated with the enriched pathways were subjected to further validation through qRT-PCR. The data acquired from these investigations offer valuable resources to support further exploration of the mechanisms governing sexual dimorphism and gonadal development in zebrafish.
Collapse
Affiliation(s)
- Cong Li
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Rui Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Wenhui Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hao Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhuang Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Fenfen Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Yuanhua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Qiang Hong
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
18
|
Shelton DS, Suriyampola PS, Dinges ZM, Glaholt SP, Shaw JR, Martins EP. Plants buffer some of the effects of a pair of cadmium-exposed zebrafish on the un-exposed majority. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104419. [PMID: 38508506 PMCID: PMC11042042 DOI: 10.1016/j.etap.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Certain individuals have a disproportionate effect on group responses. Characteristics may include susceptibility to pollutants, such as cadmium (Cd), a potent trace metal. Here, we show how a pair of Cd-exposed individuals can impact the behavior of unexposed groups. We used behavioral assessments to characterize the extent of the effects of the Cd-exposed individuals on group boldness, cohesion, foraging, activity, and responses to plants. We found that groups with a pair of Cd-exposed fish remained closer to novel stimuli and plants than did groups with untreated (control) fish. The presence of plants reduced Cd-induced differences in shoal cohesion and delays feeding in male shoals. Shoals with Cd- and water-treated fish were equally active. The results suggest that fish acutely exposed to environmentally relevant Cd concentrations can have profound effects on the un-exposed majority. However, the presence of plants may mitigate the effects of contaminants on some aspects of social behavior.
Collapse
Affiliation(s)
- Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33134, USA.
| | - Piyumika S Suriyampola
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Zoe M Dinges
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
19
|
Sadamitsu K, Velilla F, Shinya M, Kashima M, Imai Y, Kawasaki T, Watai K, Hosaka M, Hirata H, Sakai N. Establishment of a zebrafish inbred strain, M-AB, capable of regular breeding and genetic manipulation. Sci Rep 2024; 14:7455. [PMID: 38548817 PMCID: PMC10978973 DOI: 10.1038/s41598-024-57699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
Inbred strains of organisms are genetically highly uniform and thus useful for life science research. We have previously reported the ongoing generation of the zebrafish IM strain from the India (IND) strain through full sib-pair mating for 16 generations. However, the IM fish laid a small number of offspring and had a short lifespan, implying the need for discreet care in breeding. Here, we report the subsequent establishment of IM strain as well as the generation of a new inbred zebrafish strain, Mishima-AB (M-AB). M-AB was derived from the *AB strain by full sib-pair mating for over 20 generations, which fulfills the general criterion for the establishment of an inbred strain. In contrast to the IM case, maintenance of the M-AB strain by sib-pair mating required almost no special handling. Genome sequencing of IM individuals from the 47th generation and M-AB individuals from the 27th generation revealed that SNP-based genomic heterogeneity across whole-genome nucleotides was 0.008% and 0.011%, respectively. These percentages were much lower than those of the parental IND (0.197%) and *AB (0.086%) strains. These results indicate that the genomes of these inbred strains were highly homogenous. We also demonstrated the successful microinjection of antisense morpholinos, CRISPR/Cas9, and foreign genes into M-AB embryos at the 1-cell stage. Overall, we report the establishment of a zebrafish inbred strain, M-AB, which is capable of regular breeding and genetic manipulation. This strain will be useful for the analysis of genetically susceptible phenotypes such as behaviors, microbiome features and drug susceptibility.
Collapse
Affiliation(s)
- Kenichiro Sadamitsu
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Fabien Velilla
- Model Fish Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Minori Shinya
- Department of Biology, Keio University, Yokohama, 223-8521, Japan
| | - Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
- Faculty of Science, Toho University, Funabashi, 274-8510, Japan
| | - Yukiko Imai
- Model Fish Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Toshihiro Kawasaki
- Model Fish Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Kenta Watai
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Miho Hosaka
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Hiromi Hirata
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan.
| | - Noriyoshi Sakai
- Model Fish Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan.
- Department of Genetics, SOKENDAI, Mishima, 411-8540, Japan.
| |
Collapse
|
20
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
21
|
Antón-Galindo E, Adel MR, García-González J, Leggieri A, López-Blanch L, Irimia M, Norton WHJ, Brennan CH, Fernàndez-Castillo N, Cormand B. Pleiotropic contribution of rbfox1 to psychiatric and neurodevelopmental phenotypes in two zebrafish models. Transl Psychiatry 2024; 14:99. [PMID: 38374212 PMCID: PMC10876957 DOI: 10.1038/s41398-024-02801-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the contribution of rbfox1 to behaviour, we used rbfox1sa15940, a zebrafish mutant line with TL background. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 mutant line with a different genetic background (TU), rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that mutations in rbfox1 lead to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study, thus, highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain
| | - Maja R Adel
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Judit García-González
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, NYC 10029, USA
| | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Laura López-Blanch
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, Spain
- Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
- ICREA, Barcelona, Catalunya, Spain
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain.
| |
Collapse
|
22
|
Zhao H, Xiao Y, Xiao Z, Wu Y, Ma Y, Li J. Genome-wide investigation of the DMRT gene family sheds new insight into the regulation of sex differentiation in spotted knifejaw (Oplegnathus punctatus) with fusion chromosomes (Y). Int J Biol Macromol 2024; 257:128638. [PMID: 38070801 DOI: 10.1016/j.ijbiomac.2023.128638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
The role of the DMRT family in male sex determination and differentiation is significant, but its regulatory role in spotted knifejaw with Y fusion chromosomes remains unclear. Through genome-wide scanning, transcriptome analysis, qPCR, FISH, and RNA interference (RNAi), we investigated the DMRT family and the dmrt1-based sex regulation network. Seven DMRTs were identified (DMRT1/2 (2a,2b)/6, DMRT4/5, DMRT3), and dmrt gene dispersion among chromosomes is possibly driven by three whole-genome duplications. Transcriptome analysis enriched genes were associated with sex regulation and constructed a network associated with dmrt1. qPCR and FISH results showed the expression dimorphism of sex-related genes in dmrt-related regulatory networks. RNAi experiments indicated a distinct sex regulation mode in spotted knifejaw. Dmrt1 knockdown upregulated male-related genes (sox9a, sox9b, dmrt1, amh, amhr2) and hsd11b2 expression, which is critical for androgen synthesis. Amhr2 is located on the heterozygous chromosome (Y) and is specifically localized in primary spermatocytes, and is extremely upregulated after dmrt1 knockdown which suggested besides the important role of dmrt1 in male differentiation, the amhr2 along with amhr2/amh system, also play important regulatory roles in maintaining high expression of the hsd11b2 and male differentiation. This study aims to further investigate sex regulatory mechanisms in species with fusion chromosomes.
Collapse
Affiliation(s)
- Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
23
|
Bovee TF, Heusinkveld HJ, Dodd S, Peijnenburg A, Rijkers D, Blokland M, Sprong RC, Crépet A, Nolles A, Zwart EP, Gremmer ER, Ven LTVD. Dose addition in mixtures of compounds with dissimilar endocrine modes of action in in vitro receptor activation assays and the zebrafish sexual development test. Food Chem Toxicol 2024; 184:114432. [PMID: 38176580 DOI: 10.1016/j.fct.2023.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Human exposure to pesticides is being associated with feminisation for which a decrease of the anogenital distance (AGD) is a sensitive endpoint. Dose addition for the cumulative risk assessment of pesticides in food is considered sufficiently conservative for combinations of compounds with both similar and dissimilar modes of action (MoA). OBJECTIVE The present study was designed to test the dose addition hypothesis in a binary mixture of endocrine active compounds with a dissimilar mode of action for the endpoint feminisation. METHODS Compounds were selected from a list of chemicals of which exposure is related to a decrease of the AGD in rats and completed with reference compounds. These chemicals were characterised using specific in vitro transcriptional activation (TA) assays for estrogenic and androgenic properties, leading to a final selection of dienestrol as an ER-agonist and flutamide, linuron, and deltamethrin as AR-antagonists. These compounds were then tested in an in vivo model, i.e. in zebrafish (Danio rerio), using sex ratio in the population as an endpoint in order to confirm their feminising effect and MoA. Ultimately, the fish model was used to test a binary mixture of flutamide and dienestrol. RESULTS Statistical analysis of the binary mixture of flutamide and dienestrol in the fish sexual development tests (FSDT) with zebrafish supported dose addition.
Collapse
Affiliation(s)
- Toine Fh Bovee
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Sophie Dodd
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Marco Blokland
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - R Corinne Sprong
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Amélie Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, 947001, Maisons-Alfort, France
| | - Antsje Nolles
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Edwin P Zwart
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Eric R Gremmer
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Leo Tm van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
24
|
Hou M, Wang Q, Zhao R, Cao Y, Zhang J, Sun X, Yu S, Wang K, Chen Y, Zhang Y, Li J. Analysis of Chromatin Accessibility and DNA Methylation to Reveal the Functions of Epigenetic Modifications in Cyprinus carpio Gonads. Int J Mol Sci 2023; 25:321. [PMID: 38203492 PMCID: PMC10778764 DOI: 10.3390/ijms25010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Epigenetic modifications are critical in precisely regulating gene expression. The common carp (Cyprinus carpio) is an economically important fish species, and females exhibit faster growth rates than males. However, the studies related to epigenetic modifications in the common carp gonads are limited. In this study, we conducted the Assay for Transposase Accessible Chromatin sequencing (ATAC-seq) and Bisulfite sequencing (BS-seq) to explore the roles of epigenetic modifications in the common carp gonads. We identified 84,207 more accessible regions and 77,922 less accessible regions in ovaries compared to testes, and some sex-biased genes showed differential chromatin accessibility in their promoter regions, such as sox9a and zp3. Motif enrichment analysis showed that transcription factors (TFs) associated with embryonic development and cell proliferation were heavily enriched in ovaries, and the TFs Foxl2 and SF1 were only identified in ovaries. We also analyzed the possible regulations between chromatin accessibility and gene expression. By BS-seq, we identified 2087 promoter differentially methylated genes (promoter-DMGs) and 5264 gene body differentially methylated genes (genebody-DMGs) in CG contexts. These genebody-DMGs were significantly enriched in the Wnt signaling pathway, TGF-beta signaling pathway, and GnRH signaling pathway, indicating that methylation in gene body regions could play an essential role in sex maintenance, just like methylation in promoter regions. Combined with transcriptomes, we revealed that the expression of dmrtb1-like, spag6, and fels was negatively correlated with their methylation levels in promoter regions. Our study on the epigenetic modifications of gonads contributes to elucidating the molecular mechanism of sex differentiation and sex maintenance in the common carp.
Collapse
Affiliation(s)
- Mingxi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Yiming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Jin Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Xiaoqing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Shuangting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaikuo Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (K.W.); (Y.C.)
| | - Yingjie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (K.W.); (Y.C.)
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| |
Collapse
|
25
|
Bravo P, Liu Y, Draper BW, Marlow FL. Macrophage activation drives ovarian failure and masculinization in zebrafish. SCIENCE ADVANCES 2023; 9:eadg7488. [PMID: 37992158 PMCID: PMC10664988 DOI: 10.1126/sciadv.adg7488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
BMP15 is a conserved regulator of ovarian development and maintenance in vertebrates. In humans, premature ovarian insufficiency is caused by autoimmunity and genetic factors, including mutation of BMP15. The cellular mechanisms underlying ovarian failure caused by BMP15 mutation and immune contributions are not understood. Using zebrafish, we established a causal link between macrophage activation and ovarian failure, which, in zebrafish, causes sex reversal. We define a germline-soma signaling axis that activates macrophages and drives ovarian failure and female-to-male sex reversal. Germline loss of zebrafish Bmp15 impairs oogenesis and initiates this cascade. Single-cell RNA sequencing and genetic analyses implicate ovarian somatic cells that express conserved macrophage-activating ligands as mediators of ovarian failure and sex reversal. Genetic ablation of macrophages or elimination of Csf1Rb ligands, Il34 or Csf1a, delays or blocks premature oocyte loss and sex reversal. The axis identified here provides insight into the cells and pathways governing oocyte and ovary maintenance and potential therapeutic targets to preserve female fertility.
Collapse
Affiliation(s)
- Paloma Bravo
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yulong Liu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Florence L. Marlow
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
26
|
Sorokin IE, Evsyukova VS, Arefieva AB, Sachkova VV, Kulikov PA, Kulikov AV. Effect of Prolonged Exposure to Short Daylight and a Tryptophan Hydroxylase Inhibitor on the Behavior and Brain Serotonin System in Danio rerio. Bull Exp Biol Med 2023; 175:814-821. [PMID: 37979022 DOI: 10.1007/s10517-023-05953-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 11/19/2023]
Abstract
We studied the effect of reduced tryptophan hydroxylase (TPH) activity and short daylight exposure on the behavior and the 5-HT system of the brain in D. rerio. Male and female D. rerio were exposed for 30 days to standard (12:12 h light:dark) and short (4:20 h light:dark) photoperiods in the presence or absence of TPH inhibitor (p-chlorophenylalanine, pCPA, 5 mg/liter). On day 31, the fish behavior in the "novel tank diving" test, their sex and body weight were determined, and the levels of pCPA, 5-HT, and its metabolite 5-HIAA were measured by HPLC; the levels of the key genes encoding metabolism enzymes (Tph1a, Tph1b, Tph2, and Mao) and receptors of 5-HT (Htr1aa, Htr2aa) were assessed by real-time PCR with reverse transcription. The short daylight exposure caused masculinization of females, reduced body weight, and motor activity in the "novel tank diving" test, but did not affect the 5-HT system of the brain. Long-term pCPA treatment had no effect on sex and body weight, significantly reduced the 5-HIAA level, but increased Tph1a and Tph2 gene expression in the brain. No effects of the interaction of short daylight and pCPA exposure on the sex, body weight, behavior, and 5-HT system of the brain were found. Thus, a moderate decrease in TPH activity cannot potentiate the negative effects of short daylight exposure on the sex, body weight, behavior, and 5-HT system of D. rerio.
Collapse
Affiliation(s)
- I E Sorokin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Evsyukova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A B Arefieva
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Sachkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P A Kulikov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kulikov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
27
|
Zhang JG, Shi W, Ma DD, Lu ZJ, Li SY, Long XB, Ying GG. Chronic Paternal/Maternal Exposure to Environmental Concentrations of Imidacloprid and Thiamethoxam Causes Intergenerational Toxicity in Zebrafish Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13384-13396. [PMID: 37651267 DOI: 10.1021/acs.est.3c04371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidacloprid (IMI) and thiamethoxam (THM) are ubiquitous in aquatic ecosystems. Their negative effects on parental fish are investigated while intergenerational effects at environmentally relevant concentrations remain unclear. In this study, F0 zebrafish exposed to IMI and THM (0, 50, and 500 ng L-1) for 144 days post-fertilization (dpf) was allowed to spawn with two modes (internal mating and cross-mating), resulting in four types of F1 generations to investigate the intergenerational effects. IMI and THM affected F0 zebrafish fecundity, gonadal development, sex hormone and VTG levels, with accumulations found in F0 muscles and ovaries. In F1 generation, paternal or maternal exposure to IMI and THM also influenced sex hormones levels and elevated the heart rate and spontaneous movement rate. LncRNA-mRNA network analysis revealed that cell cycle and oocyte meiosis-related pathways in IMI groups and steroid biosynthesis related pathways in THM groups were significantly enriched in F1 offspring. Similar transcriptional alterations of dmrt1, insl3, cdc20, ccnb1, dnd1, ddx4, cox4i1l, and cox5b2 were observed in gonads of F0 and F1 generations. The findings indicated that prolonged paternal or maternal exposure to IMI and THM could severely cause intergenerational toxicity, resulting in developmental toxicity and endocrine-disrupting effects in zebrafish offspring.
Collapse
Affiliation(s)
- Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wenjun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
28
|
Dai X, Pradhan A, Liu J, Liu R, Zhai G, Zhou L, Dai J, Shao F, Yuan Z, Wang Z, Yin Z. Zebrafish gonad mutant models reveal neuroendocrine mechanisms of brain sexual dimorphism and male mating behaviors of different brain regions. Biol Sex Differ 2023; 14:53. [PMID: 37605245 PMCID: PMC10440941 DOI: 10.1186/s13293-023-00534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Sexually dimorphic mating behaviors differ between sexes and involve gonadal hormones and possibly sexually dimorphic gene expression in the brain. However, the associations among the brain, gonad, and sexual behavior in teleosts are still unclear. Here, we utilized germ cells-free tdrd12 knockout (KO) zebrafish, and steroid synthesis enzyme cyp17a1-deficient zebrafish to investigate the differences and interplays in the brain-gonad-behavior axis, and the molecular control of brain dimorphism and male mating behaviors. METHODS Tdrd12+/-; cyp17a1+/- double heterozygous parents were crossed to obtain tdrd12-/-; cyp17a1+/+ (tdrd12 KO), tdrd12+/+; cyp17a1-/- (cyp17a1 KO), and tdrd12-/-; cyp17a1-/- (double KO) homozygous progenies. Comparative analysis of mating behaviors were evaluated using Viewpoint zebrafish tracking software and sexual traits were thoroughly characterized based on anatomical and histological experiments in these KOs and wild types. The steroid hormone levels (testosterone, 11-ketotestosterone and 17β-estradiol) in the brains, gonads, and serum were measured using ELISA kits. To achieve a higher resolution view of the differences in region-specific expression patterns of the brain, the brains of these KOs, and control male and female fish were dissected into three regions: the forebrain, midbrain, and hindbrain for transcriptomic analysis. RESULTS Qualitative analysis of mating behaviors demonstrated that tdrd12-/- fish behaved in the same manner as wild-type males to trigger oviposition behavior, while cyp17a1-/- and double knockout (KO) fish did not exhibit these behaviors. Based on the observation of sex characteristics, mating behaviors and hormone levels in these mutants, we found that the maintenance of secondary sex characteristics and male mating behavior did not depend on the presence of germ cells; rather, they depended mainly on the 11-ketotestosterone and testosterone levels secreted into the brain-gonad regulatory axis. RNA-seq analysis of different brain regions revealed that the brain transcript profile of tdrd12-/- fish was similar to that of wild-type males, especially in the forebrain and midbrain. However, the brain transcript profiles of cyp17a1-/- and double KO fish were distinct from those of wild-type males and were partially biased towards the expression pattern of the female brain. Our results revealed important candidate genes and signaling pathways, such as synaptic signaling/neurotransmission, MAPK signaling, and steroid hormone pathways, that shape brain dimorphism and modulate male mating behavior in zebrafish. CONCLUSIONS Our results provide comprehensive analyses and new insights regarding the endogenous interactions in the brain-gonad-behavior axis. Moreover, this study revealed the crucial candidate genes and neural signaling pathways of different brain regions that are involved in modulating brain dimorphism and male mating behavior in zebrafish, which would significantly light up the understanding the neuroendocrine and molecular mechanisms modulating brain dimorphism and male mating behavior in zebrafish and other teleost fish.
Collapse
Affiliation(s)
- Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebrorebro University, 70182, Örebro, Sweden
| | - Jiao Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ruolan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhiyong Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
29
|
Fontana CM, Terrin F, Facchinello N, Meneghetti G, Dinarello A, Gambarotto L, Zuccarotto A, Caichiolo M, Brocca G, Verin R, Nazio F, Carnevali O, Cecconi F, Bonaldo P, Dalla Valle L. Zebrafish ambra1b knockout reveals a novel role for Ambra1 in primordial germ cells survival, sex differentiation and reproduction. Biol Res 2023; 56:19. [PMID: 37106439 PMCID: PMC10142490 DOI: 10.1186/s40659-023-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND AMBRA1 is an intrinsically disordered protein, working as a scaffold molecule to coordinate, by protein-protein interaction, many cellular processes, including autophagy, mitophagy, apoptosis and cell cycle progression. The zebrafish genome contains two ambra1 paralogous genes (a and b), both involved in development and expressed at high levels in the gonads. Characterization of the zebrafish paralogous genes mutant lines generated by CRISPR/Cas9 approach showed that ambra1b knockout leads to an all-male population. RESULTS We demonstrated that the silencing of the ambra1b gene determines a reduction of primordial germ cells (PGCs), a condition that, in the zebrafish, leads to the development of all-male progeny. PGC reduction was confirmed by knockdown experiments and rescued by injection of ambra1b and human AMBRA1 mRNAs, but not ambra1a mRNA. Moreover, PGC loss was not rescued by injection with human AMBRA1 mRNA mutated in the CUL4-DDB1 binding region, thus suggesting that interaction with this complex is involved in PGC protection from loss. Results from zebrafish embryos injected with murine Stat3 mRNA and stat3 morpholino suggest that Ambra1b could indirectly regulate this protein through CUL4-DDB1 interaction. According to this, Ambra1+/- mice showed a reduced Stat3 expression in the ovary together with a low number of antral follicles and an increase of atretic follicles, indicating a function of Ambra1 in the ovary of mammals as well. Moreover, in agreement with the high expression of these genes in the testis and ovary, we found significant impairment of the reproductive process and pathological alterations, including tumors, mainly limited to the gonads. CONCLUSIONS By exploiting ambra1a and ambra1b knockout zebrafish lines, we prove the sub-functionalization between the two paralogous zebrafish genes and uncover a novel function of Ambra1 in the protection from excessive PGC loss, which seems to require binding with the CUL4-DDB1 complex. Both genes seem to play a role in the regulation of reproductive physiology.
Collapse
Affiliation(s)
- Camilla Maria Fontana
- Department of Biology, University of Padua, Padua, Italy
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | - Alberto Dinarello
- Department of Biology, University of Padua, Padua, Italy
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Denver, USA
| | - Lisa Gambarotto
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Annalisa Zuccarotto
- Department of Biology, University of Padua, Padua, Italy
- Department of Biology and Evolution of Marine Organisms, Zoological Station Anton Dohrn, Naples, Italy
| | | | - Ginevra Brocca
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Francesca Nazio
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
30
|
The role of post-transcriptional modifications during development. Biol Futur 2022:10.1007/s42977-022-00142-3. [PMID: 36481986 DOI: 10.1007/s42977-022-00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
AbstractWhile the existence of post-transcriptional modifications of RNA nucleotides has been known for decades, in most RNA species the exact positions of these modifications and their physiological function have been elusive until recently. Technological advances, such as high-throughput next-generation sequencing (NGS) methods and nanopore-based mapping technologies, have made it possible to map the position of these modifications with single nucleotide accuracy, and genetic screens have uncovered the “writer”, “reader” and “eraser” proteins that help to install, interpret and remove such modifications, respectively. These discoveries led to intensive research programmes with the aim of uncovering the roles of these modifications during diverse biological processes. In this review, we assess novel discoveries related to the role of post-transcriptional modifications during animal development, highlighting how these discoveries can affect multiple aspects of development from fertilization to differentiation in many species.
Collapse
|
31
|
Gould GG, Barba-Escobedo PA, Horton RE, Daws LC. High Affinity Decynium-22 Binding to Brain Membrane Homogenates and Reduced Dorsal Camouflaging after Acute Exposure to it in Zebrafish. Front Pharmacol 2022; 13:841423. [PMID: 35754508 PMCID: PMC9218599 DOI: 10.3389/fphar.2022.841423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Organic cation transporters (OCTs) are expressed in the mammalian brain, kidney, liver, placenta, and intestines, where they facilitate the transport of cations and other substrates between extracellular fluids and cells. Despite increasing reliance on ectothermic vertebrates as alternative toxicology models, properties of their OCT homologs transporting many drugs and toxins remain poorly characterized. Recently, in zebrafish (Danio rerio), two proteins with functional similarities to human OCTs were shown to be highly expressed in the liver, kidney, eye, and brain. This study is the first to characterize in vivo uptake to the brain and the high-affinity brain membrane binding of the mammalian OCT blocker 1-1'-diethyl-2,2'cyanine iodide (decynium-22 or D-22) in zebrafish. Membrane saturation binding of [3H] D-22 in pooled zebrafish whole brain versus mouse hippocampal homogenates revealed a high-affinity binding site with a KD of 5 ± 2.5 nM and Bmax of 1974 ± 410 fmol/mg protein in the zebrafish brain, and a KD of 3.3 ± 2.3 and Bmax of 704 ± 182 fmol/mg protein in mouse hippocampus. The binding of [3H] D-22 to brain membrane homogenates was partially blocked by the neurotoxic cation 1-methyl-4-phenylpyridinium (MPP+), a known OCT substrate. To determine if D-22 bath exposures reach the brain, zebrafish were exposed to 25 nM [3H] D-22 for 10 min, and 736 ± 68 ng/g wet weight [3H] D-22 was bound. Acute behavioral effects of D-22 in zebrafish were characterized in two anxiety-relevant tests. In the first cohort of zebrafish, 12.5, 25, or 50 mg/L D-22 had no effect on their height in the dive tank or entries and time spent in white arms of a light/dark plus maze. By contrast, 25 mg/L buspirone increased zebrafish dive tank top-dwelling (p < 0.05), an anticipated anxiolytic effect. However, a second cohort of zebrafish treated with 50 mg/L D-22 made more white arm entries, and females spent more time in white than controls. Based on these findings, it appears that D-22 bath treatments reach the zebrafish brain and have partial anxiolytic properties, reducing anti-predator dorsal camouflaging, without increasing vertical exploration. High-affinity binding of [3H] D-22 in zebrafish brain and mouse brain was similar, with nanomolar affinity, possibly at conserved OCT site(s).
Collapse
Affiliation(s)
- Georgianna G Gould
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Priscilla A Barba-Escobedo
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rebecca E Horton
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lynette C Daws
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
32
|
Moog M, Baraban SC. Clemizole and Trazodone are Effective Antiseizure Treatments in a Zebrafish Model of STXBP1 Disorder. Epilepsia Open 2022; 7:504-511. [PMID: 35451230 PMCID: PMC9436285 DOI: 10.1002/epi4.12604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022] Open
Abstract
CRISPR-Cas9-generated zebrafish carrying a 12 base-pair deletion in stxbpb1b, a paralog sharing 79% amino acid sequence identity with human, exhibit spontaneous electrographic seizures during larval stages of development. Zebrafish stxbp1b mutants provide an efficient preclinical platform to test antiseizure therapeutics. The present study was designed to test antiseizure medications approved for clinical use and two recently identified repurposed drugs with antiseizure activity. Larval homozygous stxbp1b zebrafish (4 days post-fertilization) were agarose-embedded and monitored for electrographic seizure activity using a local field recording electrode placed in midbrain. Frequency of ictal-like events was evaluated at baseline and following 45 min of continuous drug exposure (1 mM, bath application). Analysis was performed on coded files by an experimenter blinded to drug treatment and genotype. Phenytoin, valproate, ethosuximide, levetiracetam, and diazepam had no effect on ictal-like event frequency in stxbp1b mutant zebrafish. Clemizole and trazodone decreased ictal-like event frequency in stxbp1b mutant zebrafish by 80% and 83%, respectively. These results suggest that repurposed drugs with serotonin receptor binding affinities could be effective antiseizure treatments. Clemizole and trazodone were previously identified in a larval zebrafish model for Dravet syndrome. Based primarily on these preclinical zebrafish studies, compassionate-use and double-blind clinical trials with both drugs have progressed. The present study extends this approach to a preclinical zebrafish model representing STXBP1-related disorders, and suggests that future clinical studies may be warranted.
Collapse
Affiliation(s)
- Maia Moog
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Scott C. Baraban
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|