1
|
Zhao T, You J, Wang C, Li B, Liu Y, Shao M, Zhao W, Zhou C. Cell-based immunotherapies for solid tumors: advances, challenges, and future directions. Front Oncol 2025; 15:1551583. [PMID: 40356763 PMCID: PMC12066282 DOI: 10.3389/fonc.2025.1551583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Cell-based immunotherapies, including CAR-T, CAR-NK, and TCR-T therapies, represent a transformative approach to cancer treatment by offering precise targeting of tumor cells. Despite their success in hematologic malignancies, these therapies encounter significant challenges in treating solid tumors, such as antigen heterogeneity, immunosuppressive tumor microenvironments, limited cellular infiltration, off-target toxicity, and difficulties in manufacturing scalability. CAR-T cells have demonstrated exceptional efficacy in blood cancers but face obstacles in solid tumors, whereas CAR-NK cells offer reduced graft-versus-host disease but encounter similar barriers. TCR-T cells expand the range of treatable cancers by targeting intracellular antigens but require meticulous antigen selection to prevent off-target effects. Alternative therapies like TIL, NK, and CIK cells show promise but require further optimization to enhance persistence and overcome immunosuppressive barriers. Manufacturing complexity, high costs, and ensuring safety and efficacy remain critical challenges. Future advancements in gene editing, multi-antigen targeting, synthetic biology, off-the-shelf products, and personalized medicine hold the potential to address these issues and expand the use of cell-based therapies. Continued research and innovation are essential to improving safety, efficacy, and scalability, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Jinping You
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Congyue Wang
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Bo Li
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Yuhan Liu
- Department of Medical Oncology, Anshan Cancer Hospital, Anshan, China
| | - Mingjia Shao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Wuyang Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Chuang Zhou
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| |
Collapse
|
2
|
Zhang Q, Dai J, Liu T, Rao W, Li D, Gu Z, Huang L, Wang J, Hou X. Targeting cardiac fibrosis with Chimeric Antigen Receptor-Engineered Cells. Mol Cell Biochem 2025; 480:2103-2116. [PMID: 39460827 DOI: 10.1007/s11010-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Cardiac fibrosis poses a significant challenge in cardiovascular diseases due to its intricate pathogenesis, and there is currently no standardized and effective treatment approach. The fibrotic process entails the involvement of various cell types and molecular mechanisms, such as fibroblast activation and proliferation, increased collagen synthesis, and extracellular matrix rearrangement. Traditional therapies often fall short in efficacy or carry substantial side effects. However, recent studies have shown that Chimeric Antigen Receptor T (CAR-T) cells can selectively target and eliminate activated cardiac fibroblasts (CFs) in mice, leading to reduced cardiac fibrosis and improved myocardial tissue compliance. This breakthrough presents a new and promising avenue for treating cardiac fibrosis. Currently, CAR-T cell-based therapy for cardiac fibrosis is undergoing animal experimentation, indicating ample scope for enhancement. Future investigations could explore the application of CAR cell therapy in cardiac fibrosis treatment, including the potential of CAR-natural killer (CAR-NK) cells and CAR macrophages (CAR-M), offering novel insights and strategies for combating cardiac fibrosis.
Collapse
Affiliation(s)
- Qinghang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xumin Hou
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
3
|
Bernasconi-Bisio F, Molina E, Ibarra V, Ibáñez-Sala I, Rochira F, Jauregui P, Rodríguez-Diaz S, Martínez-Turrillas R, Azagra-Barber I, Gómez-Cebrián N, Lasarte JJ, Puchades-Carrasco L, Vanrell L, Rodríguez-Madoz JR, Prósper F, Pineda-Lucena A. Discovery and preclinical development of a SdAb-based CAR-T technology for targeting CD33 in AML. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200949. [PMID: 40084273 PMCID: PMC11904528 DOI: 10.1016/j.omton.2025.200949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapies have revolutionized cancer immunotherapy. Traditional single-chain variable fragments (ScFvs) used as CAR recognition moieties face challenges such as high tonic signaling, compromised binding epitopes, and suboptimal affinity. Single-domain antibodies (SdAbs) offer an attractive alternative due to their smaller size, stability, and reduced immunogenicity. In this work, we developed an SdAb-CAR-T cell discovery platform integrating generation, characterization, and selection of SdAbs based on various properties. This approach was demonstrated by developing CAR-T cells with SdAbs against CD33, a target for acute myeloid leukemia (AML). We identified diverse SdAbs against CD33, with affinities ranging from 3.9-115 nM, and characterized their binding kinetics and epitope recognition. Using SdAb-based second-generation CARs, we assessed tonic signaling, T cell phenotypes, cytotoxicity and cytokine release in vitro, resulting in reduced tonic signaling and increased cytokine production. In vivo, SdAb-based CAR-T cells exhibited enhanced efficacy at lower doses, in a xenograft AML mouse model, demonstrating advantages over ScFv-based CD33 CAR-T cells.
Collapse
Affiliation(s)
| | - Eva Molina
- Therapeutic Innovation Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Vianca Ibarra
- Therapeutic Innovation Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Inés Ibáñez-Sala
- Therapeutic Innovation Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Federica Rochira
- Therapeutic Innovation Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Patricia Jauregui
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Saray Rodríguez-Diaz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Rebeca Martínez-Turrillas
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
| | - Iñigo Azagra-Barber
- Therapeutic Innovation Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), 31008 Pamplona, Spain
| | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | | | - Juan Roberto Rodríguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
| | - Felipe Prósper
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
| | - Antonio Pineda-Lucena
- Therapeutic Innovation Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), 31008 Pamplona, Spain
| |
Collapse
|
4
|
Lee HN, Lee S, Hong J, Yoo H, Jeong J, Kim Y, Shin HM, Jang M, Lee C, Kim H, Seong J. Novel FRET-based Immunological Synapse Biosensor for the Prediction of Chimeric Antigen Receptor-T Cell Function. SMALL METHODS 2025; 9:e2401016. [PMID: 39258379 PMCID: PMC11926508 DOI: 10.1002/smtd.202401016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment. CARs are activated at the immunological synapse (IS) when their single-chain variable fragment (scFv) domain engages with an antigen, allowing them to directly eliminate cancer cells. Here, an innovative IS biosensor based on fluorescence resonance energy transfer (FRET) for the real-time assessment of CAR-IS architecture and signaling competence is presented. Using this biosensor, scFv variants for mesothelin-targeting CARs and identified as a novel scFv with enhanced CAR-T cell functionality despite its lower affinity than the original screened. The original CAR promoted internalization and trogocytosis, disrupting stable IS formation and impairing functionality are further observed. These findings emphasize the importance of enhancing IS quality rather than maximizing scFv affinity for superior CAR-T cell responses. Therefore, the FRET-based IS biosensor is a powerful tool for predicting CAR-T cell function, enabling the efficient engineering of next-generation CARs with enhanced antitumor potency.
Collapse
Affiliation(s)
- Hae Nim Lee
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Soojin Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Jisu Hong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Hyejin Yoo
- Medicinal Materials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jiyun Jeong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
| | - Yong‐Woo Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
| | - Hyun Mu Shin
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Mihue Jang
- Medicinal Materials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| | - Chang‐Han Lee
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Hang‐Rae Kim
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Jihye Seong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| |
Collapse
|
5
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Zhang B, Liu Q, Li L, Ye Y, Guo X, Xu W, Chen L, Mo X, Nian S, Yuan Q. Therapeutic effect of fully human anti-Nrp-1 antibody on non-small cell lung cancer in vivo and in vitro. Cancer Immunol Immunother 2025; 74:50. [PMID: 39751948 PMCID: PMC11699024 DOI: 10.1007/s00262-024-03893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
Although immune checkpoint inhibitors have changed the treatment paradigm for non-small cell lung cancer (NSCLC), not all patients benefit from them. Therefore, there is an urgent need to explore novel immune checkpoint inhibitors. Neuropilin-1 (Nrp-1) is a unique immune checkpoint capable of exerting antitumor effects through CD8+ T cells. It is also a T-cell memory checkpoint that regulates long-term antitumor immunity. However, its role in NSCLC remains unclear. The aim of this study was to develop a fully human anti-Nrp-1 antibody with therapeutic effects against NSCLC in vitro and in vivo. We screened and constructed of a high-affinity anti-Nrp-1 IgG antibody from a constructed high-capacity fully human single-chain fragment variable (scFv) phage library. This novel anti-Nrp-1 IgG antibody partially restored the killing function of exhausted CD8+ T cells in malignant pleural fluid in vitro. Co-culture of peripheral blood mononuclear cells (PBMC) with A549 and the addition of anti-Nrp1-IgG enhanced the killing of A549 target cells, leading to an increase in late-stage apoptosis of target cells. Importantly, anti-Nrp1-IgG treatment significantly reduced tumor volume in a mouse model of lung cancer with humanized immune system. These findings suggest that 53-IgG has a promising application as a potent Nrp-1-targeting agent in NSCLC immunotherapy.
Collapse
Grants
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
Collapse
Affiliation(s)
- Bo Zhang
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Clinical Laboratory, Female and Child Health Care and Family Planning Service Center, Binhai New Area, Tianjin, 300450, China
| | - Qin Liu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Lin Li
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Wenfeng Xu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Neurosurgery, Luzhou, 646000, Sichuan Province, China
| | - Xianming Mo
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Siji Nian
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Institute of Nuclear Medicine, Southwest Medical University, Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
7
|
Meeus F, Funeh CN, Awad RM, Zeven K, Autaers D, De Becker A, Van Riet I, Goyvaerts C, Tuyaerts S, Neyns B, Devoogdt N, De Vlaeminck Y, Breckpot K. Preclinical evaluation of antigen-sensitive B7-H3-targeting nanobody-based CAR-T cells in glioblastoma cautions for on-target, off-tumor toxicity. J Immunother Cancer 2024; 12:e009110. [PMID: 39562005 PMCID: PMC11575280 DOI: 10.1136/jitc-2024-009110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/27/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common lethal primary brain tumor, urging evaluation of new treatment options. Chimeric antigen receptor (CAR)-T cells targeting B7 homolog 3 (B7-H3) are promising because of the overexpression of B7-H3 on glioblastoma cells but not on healthy brain tissue. Nanobody-based (nano)CARs are gaining increasing attention as promising alternatives to classical single-chain variable fragment-based (scFv)CARs, because of their single-domain nature and low immunogenicity. Still, B7-H3 nanoCAR-T cells have not been extensively studied in glioblastoma. METHODS B7-H3 nanoCAR- and scFvCAR-T cells were developed and evaluated in human glioblastoma models. NanoCAR-T cells targeting an irrelevant antigen served as control. T cell activation, cytokine secretion and killing capacity were evaluated in vitro using ELISA, live cell imaging and flow cytometry. Antigen-specific killing was assessed by generating B7-H3 knock-out cells using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-genome editing. The tumor tracing capacity of the B7-H3 nanobody was first evaluated in vivo using nuclear imaging. Then, the therapeutic potential of the nanoCAR-T cells was evaluated in a xenograft glioblastoma model. RESULTS We showed that B7-H3 nanoCAR-T cells were most efficient in lysing B7-H3pos glioblastoma cells in vitro. Lack of glioblastoma killing by control nanoCAR-T cells and lack of B7-H3neg glioblastoma killing by B7-H3 nanoCAR-T cells showed antigen-specificity. We showed in vivo tumor targeting capacity of the B7-H3 nanobody-used for the nanoCAR design-in nuclear imaging experiments. Evaluation of the nanoCAR-T cells in vivo showed tumor control in mice treated with B7-H3 nanoCAR-T cells in contrast to progressive disease in mice treated with control nanoCAR-T cells. However, we observed limiting toxicity in mice treated with B7-H3 nanoCAR-T cells and showed that the B7-H3 nanoCAR-T cells are activated even by low levels of mouse B7-H3 expression. CONCLUSIONS B7-H3 nanoCAR-T cells showed promise for glioblastoma therapy following in vitro characterization, but limiting in vivo toxicity was observed. Off-tumor recognition of healthy mouse tissue by the cross-reactive B7-H3 nanoCAR-T cells was identified as a potential cause for this toxicity, warranting caution when using highly sensitive nanoCAR-T cells, recognizing the low-level expression of B7-H3 on healthy tissue.
Collapse
Affiliation(s)
- Fien Meeus
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cyprine Neba Funeh
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin Maximilian Awad
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Katty Zeven
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dorien Autaers
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Cellular Therapy Laboratory, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Cellular Therapy Laboratory, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Hematology and Immunology Research Team (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, University Hospital Brussels, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Department of Medical Imaging (MIMA), Molecular Imaging and Therapy (MITH) research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Blud D, Rubio-Reyes P, Perret R, Weinkove R. Tuning CAR T-cell therapies for efficacy and reduced toxicity. Semin Hematol 2024; 61:333-344. [PMID: 39095226 DOI: 10.1053/j.seminhematol.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapies are a standard of care for certain relapsed or refractory B-cell cancers. However, many patients do not respond to CAR T-cell therapy or relapse later, short- and long-term toxicities are common, and current CAR T-cell therapies have limited efficacy for solid cancers. The gene engineering inherent in CAR T-cell manufacture offers an unprecedented opportunity to control cellular characteristics and design products that may overcome these limitations. This review summarises available methods to "tune" CAR T-cells for optimal efficacy and safety. The components of a typical CAR, and the modifications that can influence CAR T-cell function are discussed. Methods of engineering passive, inducible or autonomous control mechanisms into CAR T-cells, allowing selective limitation or enhancement of CAR T-cell activity are reviewed. The impact of manufacturing processes on CAR T-cell function are considered, including methods of limiting CAR T-cell terminal differentiation and exhaustion, and the use of specific T-cell subsets as the CAR T starting material. We discuss the use of multicistronic transgenes and multiplexed gene editing. Finally, we highlight the need for innovative clinical trial designs if we are to make the most of the opportunities offered by CAR T-cell therapies.
Collapse
Affiliation(s)
- Danielle Blud
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Patricia Rubio-Reyes
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Rachel Perret
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand; Wellington Blood & Cancer Centre, Te Whatu Ora Health New Zealand Capital Coast & Hutt Valley, Wellington, New Zealand; Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
9
|
Li W, Wang X, Zhang X, Aziz AUR, Wang D. CAR-NK Cell Therapy: A Transformative Approach to Overcoming Oncological Challenges. Biomolecules 2024; 14:1035. [PMID: 39199421 PMCID: PMC11352442 DOI: 10.3390/biom14081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The use of chimeric antigen receptor (CAR) in natural killer (NK) cells for cancer therapy is gaining momentum, marking a significant shift in cancer treatment. This review aims to explore the potential of CAR-NK cell therapy in cancer immunotherapy, providing a fresh perspective. It discusses the innovative approaches in CAR-NK cell design and engineering, particularly targeting refractory or recurrent cancers. By comparing CAR-NK cells with traditional therapies, the review highlights their unique ability to tackle tumor heterogeneity and immune system suppression. Additionally, it explains how novel cytokines and receptors can enhance CAR-NK cell efficacy, specificity, and functionality. This review underscores the advantages of CAR-NK cells, including reduced toxicity, lower cost, and broader accessibility compared to CAR-T cells, along with their potential in treating both blood cancers and solid tumors.
Collapse
Affiliation(s)
- Wangshu Li
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiuying Wang
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| | - Xu Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin 151801, China;
| | - Aziz ur Rehman Aziz
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| | - Daqing Wang
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| |
Collapse
|
10
|
Chiawpanit C, Wathikthinnakorn M, Sawasdee N, Phanthaphol N, Sujjitjoon J, Junking M, Yamabhai M, Panaampon J, Yenchitsomanus PT, Panya A. Precision immunotherapy for cholangiocarcinoma: Pioneering the use of human-derived anti-cMET single chain variable fragment in anti-cMET chimeric antigen receptor (CAR) NK cells. Int Immunopharmacol 2024; 136:112273. [PMID: 38810311 DOI: 10.1016/j.intimp.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Cholangiocarcinoma (CCA) presents a significant clinical challenge which is often identified in advanced stages, therby restricting the effectiveness of surgical interventions for most patients. The high incidence of cancer recurrence and resistance to chemotherapy further contribute to a bleak prognosis and low survival rates. To address this pressing need for effective therapeutic strategies, our study focuses on the development of an innovative cellular immunotherapy, specifically utilizing chimeric antigen receptor (CAR)-engineered natural killer (NK) cells designed to target the cMET receptor tyrosine kinase. In this investigation, we initiated the screening of a phage library displaying human single-chain variable fragment (ScFv) to identify novel ScFv molecules with specificity for cMET. Remarkably, ScFv11, ScFv72, and ScFv114 demonstrated exceptional binding affinity, confirmed by molecular docking analysis. These selected ScFvs, in addition to the well-established anti-cMET ScFvA, were integrated into a CAR cassette harboring CD28 transmembrane region-41BB-CD3ζ domains. The resulting anti-cMET CAR constructs were transduced into NK-92 cells, generating potent anti-cMET CAR-NK-92 cells. To assess the specificity and efficacy of these engineered cells, we employed KKU213A cells with high cMET expression and KKU055 cells with low cMET levels. Notably, co-culture of anti-cMET CAR-NK-92 cells with KKU213A cells resulted in significantly increased cell death, whereas no such effect was observed with KKU055 cells. In summary, our study identified cMET as a promising therapeutic target for CCA. The NK-92 cells, armed with the anti-cMET CAR molecule, have shown strong ability to kill cancer cells specifically, indicating their potential as a promising treatment for CCA in the future.
Collapse
Affiliation(s)
- Chutipa Chiawpanit
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Methi Wathikthinnakorn
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaporn Phanthaphol
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agriculture Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jutatip Panaampon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aussara Panya
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
11
|
Schlegel LS, Werbrouck C, Boettcher M, Schlegel P. Universal CAR 2.0 to overcome current limitations in CAR therapy. Front Immunol 2024; 15:1383894. [PMID: 38962014 PMCID: PMC11219820 DOI: 10.3389/fimmu.2024.1383894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has effectively complemented the treatment of advanced relapsed and refractory hematological cancers. The remarkable achievements of CD19- and BCMA-CAR T therapies have raised high expectations within the fields of hematology and oncology. These groundbreaking successes are propelling a collective aspiration to extend the reach of CAR therapies beyond B-lineage malignancies. Advanced CAR technologies have created a momentum to surmount the limitations of conventional CAR concepts. Most importantly, innovations that enable combinatorial targeting to address target antigen heterogeneity, using versatile adapter CAR concepts in conjunction with recent transformative next-generation CAR design, offer the promise to overcome both the bottleneck associated with CAR manufacturing and patient-individualized treatment regimens. In this comprehensive review, we delineate the fundamental prerequisites, navigate through pivotal challenges, and elucidate strategic approaches, all aimed at paving the way for the future establishment of multitargeted immunotherapies using universal CAR technologies.
Collapse
Affiliation(s)
- Lara Sophie Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Coralie Werbrouck
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney, NSW, Australia
| |
Collapse
|
12
|
Wang X, Wang P, Liao Y, Zhao X, Hou R, Li S, Guan Z, Jin Y, Ma W, Liu D, Zheng J, Shi M. Expand available targets for CAR-T therapy to overcome tumor drug resistance based on the "Evolutionary Traps". Pharmacol Res 2024; 204:107221. [PMID: 38768669 DOI: 10.1016/j.phrs.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Based on the concept of "Evolutionary Traps", targeting survival essential genes obtained during tumor drug resistance can effectively eliminate resistant cells. While, it still faces limitations. In this study, lapatinib-resistant cells were used to test the concept of "Evolutionary Traps" and no suitable target stand out because of the identified genes without accessible drug. However, a membrane protein PDPN, which is low or non-expressed in normal tissues, is identified as highly expressed in lapatinib-resistant tumor cells. PDPN CAR-T cells were developed and showed high cytotoxicity against lapatinib-resistant tumor cells in vitro and in vivo, suggesting that CAR-T may be a feasible route for overcoming drug resistance of tumor based on "Evolutionary Trap". To test whether this concept is cell line or drug dependent, we analyzed 21 drug-resistant tumor cell expression profiles reveal that JAG1, GPC3, and L1CAM, which are suitable targets for CAR-T treatment, are significantly upregulated in various drug-resistant tumor cells. Our findings shed light on the feasibility of utilizing CAR-T therapy to treat drug-resistant tumors and broaden the concept of the "Evolutionary Trap".
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Pu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ying Liao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yuhang Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
13
|
Ito S, Matsunaga R, Nakakido M, Komura D, Katoh H, Ishikawa S, Tsumoto K. High-throughput system for the thermostability analysis of proteins. Protein Sci 2024; 33:e5029. [PMID: 38801228 PMCID: PMC11129621 DOI: 10.1002/pro.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Thermal stability of proteins is a primary metric for evaluating their physical properties. Although researchers attempted to predict it using machine learning frameworks, their performance has been dependent on the quality and quantity of published data. This is due to the technical limitation that thermodynamic characterization of protein denaturation by fluorescence or calorimetry in a high-throughput manner has been challenging. Obtaining a melting curve that derives solely from the target protein requires laborious purification, making it far from practical to prepare a hundred or more samples in a single workflow. Here, we aimed to overcome this throughput limitation by leveraging the high protein secretion efficacy of Brevibacillus and consecutive treatment with plate-scale purification methodologies. By handling the entire process of expression, purification, and analysis on a per-plate basis, we enabled the direct observation of protein denaturation in 384 samples within 4 days. To demonstrate a practical application of the system, we conducted a comprehensive analysis of 186 single mutants of a single-chain variable fragment of nivolumab, harvesting the melting temperature (Tm) ranging from -9.3 up to +10.8°C compared to the wild-type sequence. Our findings will allow for data-driven stabilization in protein design and streamlining the rational approaches.
Collapse
Affiliation(s)
- Sae Ito
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Ryo Matsunaga
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
14
|
Lin H, Li C, Zhang W, Wu B, Wang Y, Wang S, Wang D, Li X, Huang H. Synthetic Cells and Molecules in Cellular Immunotherapy. Int J Biol Sci 2024; 20:2833-2859. [PMID: 38904025 PMCID: PMC11186374 DOI: 10.7150/ijbs.94346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Cellular immunotherapy has emerged as an exciting strategy for cancer treatment, as it aims to enhance the body's immune response to tumor cells by engineering immune cells and designing synthetic molecules from scratch. Because of the cytotoxic nature, abundance in peripheral blood, and maturation of genetic engineering techniques, T cells have become the most commonly engineered immune cells to date. Represented by chimeric antigen receptor (CAR)-T therapy, T cell-based immunotherapy has revolutionized the clinical treatment of hematological malignancies. However, serious side effects and limited efficacy in solid tumors have hindered the clinical application of cellular immunotherapy. To address these limitations, various innovative strategies regarding synthetic cells and molecules have been developed. On one hand, some cytotoxic immune cells other than T cells have been engineered to explore the potential of targeted elimination of tumor cells, while some adjuvant cells have also been engineered to enhance the therapeutic effect. On the other hand, diverse synthetic cellular components and molecules are added to engineered immune cells to regulate their functions, promoting cytotoxic activity and restricting side effects. Moreover, novel bioactive materials such as hydrogels facilitating the delivery of therapeutic immune cells have also been applied to improve the efficacy of cellular immunotherapy. This review summarizes the innovative strategies of synthetic cells and molecules currently available in cellular immunotherapies, discusses the limitations, and provides insights into the next generation of cellular immunotherapies.
Collapse
Affiliation(s)
- Haikun Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Chentao Li
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Wanying Zhang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Boxiang Wu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Shimin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Xia Li
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - He Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| |
Collapse
|
15
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
16
|
Chen Y, Liu C, Fang Y, Chen W, Qiu J, Zhu M, Wei W, Tu J. Developing CAR-immune cell therapy against SARS-CoV-2: Current status, challenges and prospects. Biochem Pharmacol 2024; 222:116066. [PMID: 38373592 DOI: 10.1016/j.bcp.2024.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Chimeric antigen receptor (CAR)-immune cell therapy has revolutionized the anti-tumor field, achieving efficient and precise tumor clearance by directly guiding immune cell activity to target tumors. In addition, the use of CAR-immune cells to influence the composition and function of the immune system and ultimately achieve virus clearance and immune system homeostasis has attracted the interest of researchers. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered a global pandemic of coronavirus disease 2019 (COVID-19). To date, the rapidly mutating SARS-CoV-2 continues to challenge existing therapies and has raised public concerns regarding reinfection. In patients with COVID-19, the interaction of SARS-CoV-2 with the immune system influences the course of the disease, and the coexistence of over-activated immune system components, such as macrophages, and severely compromised immune system components, such as natural killer cells, reveals a dysregulated immune system. Dysregulated immune-induced inflammation may impair viral clearance and T-cell responses, causing cytokine storms and ultimately leading to patient death. Here, we summarize the research progress on the use of CAR-immune cells against SARS-CoV-2 infection. Furthermore, we discuss the feasibility, challenges and prospect of CAR-immune cells as a new immune candidate therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Chong Liu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Weile Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Jiaqi Qiu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Mengjuan Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Yang N, Zhang C, Zhang Y, Fan Y, Zhang J, Lin X, Guo T, Gu Y, Wu J, Gao J, Zhao X, He Z. CD19/CD20 dual-targeted chimeric antigen receptor-engineered natural killer cells exhibit improved cytotoxicity against acute lymphoblastic leukemia. J Transl Med 2024; 22:274. [PMID: 38475814 PMCID: PMC10935961 DOI: 10.1186/s12967-024-04990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor natural killer (CAR-NK) cells represent a promising advancement in CAR cell therapy, addressing limitations observed in CAR-T cell therapy. However, our prior study revealed challenges in CAR-NK cells targeting CD19 antigens, as they failed to eliminate CD19+ Raji cells in NSG tumor-bearing mice, noting down-regulation or loss of CD19 antigen expression in some Raji cells. In response, this study aims to enhance CD19 CAR-NK cell efficacy and mitigate the risk of tumor recurrence due to target antigen escape by developing CD19 and CD20 (CD19/CD20) dual-targeted CAR-NK cells. METHODS Initially, mRNA encoding anti-CD19 CARs (FMC63 scFv-CD8α-4-1BB-CD3ζ) and anti-CD20 CARs (LEU16 scFv-CD8α-4-1BB-CD3ζ) was constructed via in vitro transcription. Subsequently, CD19/CD20 dual-targeted CAR-NK cells were generated through simultaneous electrotransfection of CD19/CD20 CAR mRNA into umbilical cord blood-derived NK cells (UCB-NK). RESULTS Following co-electroporation, the percentage of dual-CAR expression on NK cells was 86.4% ± 1.83%, as determined by flow cytometry. CAR expression was detectable at 8 h post-electric transfer, peaked at 24 h, and remained detectable at 96 h. CD19/CD20 dual-targeted CAR-NK cells exhibited increased specific cytotoxicity against acute lymphoblastic leukemia (ALL) cell lines (BALL-1: CD19+CD20+, REH: CD19+CD20-, Jurkat: CD19-CD20-) compared to UCB-NK, CD19 CAR-NK, and CD20 CAR-NK cells. Moreover, CD19/CD20 dual-targeted CAR-NK cells released elevated levels of perforin, IFN-γ, and IL-15. Multiple activation markers such as CD69 and cytotoxic substances were highly expressed. CONCLUSIONS The creation of CD19/CD20 dual-targeted CAR-NK cells addressed the risk of tumor escape due to antigen heterogeneity in ALL, offering efficient and safe 'off-the-shelf' cell products. These cells demonstrate efficacy in targeting CD20 and/or CD19 antigens in ALL, laying an experimental foundation for their application in ALL treatment.
Collapse
Affiliation(s)
- Na Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Caili Zhang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
| | - Yingchun Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaojin Lin
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Guo
- Department of Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yangzuo Gu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Jieheng Wu
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China.
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Zhixu He
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China.
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences), Guiyang, China.
- Department of Pediatrics, the Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
18
|
El Alaoui M, Sivado E, Jallas AC, Mebarki L, Dyson MR, Perrez F, Valsesia-Wittmann S, El Alaoui S. Antibody and antibody fragments site-specific conjugation using new Q-tag substrate of bacterial transglutaminase. Cell Death Discov 2024; 10:79. [PMID: 38360912 PMCID: PMC10869684 DOI: 10.1038/s41420-024-01845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
During the last few years Antibody-Drug Conjugates (ADCs) have become one of the most active and very promising therapeutic weapons. Lessons learned from the traditional chemical conjugations (via lysine or cysteine residues of the antibodies) and the clinical studies of the developed ADCs have recently paved the way to the improvement of the conjugation technologies. Use of site-specific conjugation is considered as the promising path for improving the design and development of homogeneous ADCs with controlled Drug-Antibody ratio (DAR). Moreover, some of these conjugations can be applied to antibody fragments such as Fab, scfv and VHH for which random and chemical conjugation showed significant limitations. In this study, we identified a novel small peptide substrate (Q-tag) with high affinity and specificity of bacterial transglutaminase which can be genetically fused to different formats of antibodies of interest for the development of enzymatic site-specific conjugation we named "CovIsolink" platform. We describe the synthesis of chemically defined drugs conjugation in which the site and stoichiometry of conjugation are controlled using a genetically encoded Q-tag peptide with specific amino acids which serves as a substrate of bacterial transglutaminase. This approach has enabled the generation of homogeneous conjugates with DAR 1,7 for full IgG and 0,8 drug ratio for Fab, scfv and VHH antibody fragments without the presence of significant amounts of unconjugated antibody and fragments. As a proof of concept, Q-tagged anti Her-2 (human IgG1 (Trastuzumab) and the corresponding fragments (Fab, scfv and VHH) were engineered and conjugated with different aminated-payloads. The corresponding Cov-ADCs were evaluated in series of in vitro and in vivo assays, demonstrating similar tumor cell killing potency as Trastuzumab emtansine (Kadcyla®) even with lower drug-to-antibody ratio (DAR).
Collapse
Affiliation(s)
| | - Eva Sivado
- Covalab, 1B Rue Jacques Monod, 69500, Bron, France
- Centre Léon Bérard, INSERM 1296 Radiations : défense, Santé et environnement, 28 rue Laennec, 69008, Lyon, France
| | - Anne-Catherine Jallas
- Centre Léon Bérard, INSERM 1296 Radiations : défense, Santé et environnement, 28 rue Laennec, 69008, Lyon, France
| | | | - Michael R Dyson
- IONTAS Ltd, Babraham Research Campus, Babraham, Cambridge, CB22 3AT, UK
| | - Franck Perrez
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Sandrine Valsesia-Wittmann
- Centre Léon Bérard, INSERM 1296 Radiations : défense, Santé et environnement, 28 rue Laennec, 69008, Lyon, France
| | | |
Collapse
|
19
|
Liu Z, Kim D, Kang S, Jung JU. A Detailed Protocol for Constructing a Human Single-Chain Variable Fragment (scFv) Library and Downstream Screening via Phage Display. Methods Protoc 2024; 7:13. [PMID: 38392687 PMCID: PMC10893473 DOI: 10.3390/mps7010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The development of monoclonal antibodies (mAbs) represents a significant milestone in both basic research and clinical applications due to their target specificity and versatility in therapeutic and diagnostic applications. The innovative strategy of mAb screening, utilizing phage display, facilitates the in vitro screening of antibodies with high affinity to target antigens. The single-chain variable fragment (scFv) is a subset of mAb derivatives, known for its high binding affinity and smaller size-just one-third of that of human IgG. This report outlines a detailed and comprehensive procedure for constructing a scFv phagemid library derived from human patients, followed by screening via phage display affinity selection. The protocol utilizes 348 primer combinations spanning the entire human antibody repertoire to minimize sequence bias and maintain library diversity during polymerase chain reaction (PCR) for scFv generation, resulting in a library size greater than 1 × 108. Furthermore, we describe a high-throughput phage display screening protocol using enzyme-linked immunosorbent assay (ELISA) to evaluate more than 1200 scFv candidates. The generation of a highly diverse scFv library, coupled with the implementation of a phage display screening methodology, is expected to provide a valuable resource for researchers in pursuit of scFvs with high affinity for target antigens, thus advancing both research and clinical endeavors.
Collapse
Affiliation(s)
- Ziyi Liu
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dokyun Kim
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Seokmin Kang
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jae U. Jung
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Zhang Y, Patel RP, Kim KH, Cho H, Jo JC, Jeong SH, Oh SY, Choi YS, Kim SH, Lee JH, Angelos M, Guruprasad P, Cohen I, Ugwuanyi O, Lee YG, Pajarillo R, Cho JH, Carturan A, Paruzzo L, Ghilardi G, Wang M, Kim S, Kim SM, Lee HJ, Park JH, Cui L, Lee TB, Hwang IS, Lee YH, Lee YJ, Porazzi P, Liu D, Lee Y, Kim JH, Lee JS, Yoon DH, Chung J, Ruella M. Safety and efficacy of a novel anti-CD19 chimeric antigen receptor T cell product targeting a membrane-proximal domain of CD19 with fast on- and off-rates against non-Hodgkin lymphoma: a first-in-human study. Mol Cancer 2023; 22:200. [PMID: 38066564 PMCID: PMC10709913 DOI: 10.1186/s12943-023-01886-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION NCT05338931; Date: 2022-04-01.
Collapse
Affiliation(s)
- Yunlin Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ki Hyun Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Hyungwoo Cho
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Korea
| | - Jae-Cheol Jo
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | | | - Sung Yong Oh
- Division of Hematology-Oncology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | - Sung Hyun Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Ji Hyun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Mathew Angelos
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Puneeth Guruprasad
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma Ugwuanyi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Soohwan Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Sung-Min Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Hyun-Jong Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Ji-Ho Park
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Leiguang Cui
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Tae Bum Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - In-Sik Hwang
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Young-Ha Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Yong-Jun Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yoon Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Jong-Hoon Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Jong-Seo Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea.
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Korea.
| | - Junho Chung
- Cancer Research Institute, Seoul National University College of Medicine, Suite 510, Samsung Cancer Research Building, 103 Daehak-Ro, Jongno-Gu, Seoul, Korea.
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Harrer DC, Li SS, Kaljanac M, Barden M, Pan H, Abken H. Fine-tuning the antigen sensitivity of CAR T cells: emerging strategies and current challenges. Front Immunol 2023; 14:1321596. [PMID: 38090558 PMCID: PMC10711209 DOI: 10.3389/fimmu.2023.1321596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells are "living drugs" that specifically recognize their target antigen through an antibody-derived binding domain resulting in T cell activation, expansion, and destruction of cognate target cells. The FDA/EMA approval of CAR T cells for the treatment of B cell malignancies established CAR T cell therapy as an emerging pillar of modern immunotherapy. However, nearly every second patient undergoing CAR T cell therapy is suffering from disease relapse within the first two years which is thought to be due to downregulation or loss of the CAR target antigen on cancer cells, along with decreased functional capacities known as T cell exhaustion. Antigen downregulation below CAR activation threshold leaves the T cell silent, rendering CAR T cell therapy ineffective. With the application of CAR T cells for the treatment of a growing number of malignant diseases, particularly solid tumors, there is a need for augmenting CAR sensitivity to target antigen present at low densities on cancer cells. Here, we discuss upcoming strategies and current challenges in designing CARs for recognition of antigen low cancer cells, aiming at augmenting sensitivity and finally therapeutic efficacy while reducing the risk of tumor relapse.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Deptartment of Hematology and Internal Oncology, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Sin-Syue Li
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Marcell Kaljanac
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Markus Barden
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hong Pan
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Chair Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Temple WC, Nix MA, Naik A, Izgutdina A, Huang BJ, Wicaksono G, Phojanakong P, Serrano JAC, Young EP, Ramos E, Salangsang F, Steri V, Xirenayi S, Hermiston M, Logan AC, Stieglitz E, Wiita AP. Framework humanization optimizes potency of anti-CD72 nanobody CAR-T cells for B-cell malignancies. J Immunother Cancer 2023; 11:e006985. [PMID: 38007238 PMCID: PMC10680002 DOI: 10.1136/jitc-2023-006985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Approximately 50% of patients who receive anti-CD19 CAR-T cells relapse, and new immunotherapeutic targets are urgently needed. We recently described CD72 as a promising target in B-cell malignancies and developed nanobody-based CAR-T cells (nanoCARs) against it. This cellular therapy design is understudied compared with scFv-based CAR-T cells, but has recently become of significant interest given the first regulatory approval of a nanoCAR in multiple myeloma. METHODS We humanized our previous nanobody framework regions, derived from llama, to generate a series of humanized anti-CD72 nanobodies. These nanobody binders were inserted into second-generation CD72 CAR-T cells and were evaluated against preclinical models of B cell acute lymphoblastic leukemia and B cell non-Hodgkin's lymphoma in vitro and in vivo. Humanized CD72 nanoCARs were compared with parental ("NbD4") CD72 nanoCARs and the clinically approved CD19-directed CAR-T construct tisangenlecleucel. RNA-sequencing, flow cytometry, and cytokine secretion profiling were used to determine differences between the different CAR constructs. We then used affinity maturation on the parental NbD4 construct to generate high affinity binders against CD72 to test if higher affinity to CD72 improved antitumor potency. RESULTS Toward clinical translation, here we humanize our previous nanobody framework regions, derived from llama, and surprisingly discover a clone ("H24") with enhanced potency against B-cell tumors, including patient-derived samples after CD19 CAR-T relapse. Potentially underpinning improved potency, H24 has moderately higher binding affinity to CD72 compared with a fully llama framework. However, further affinity maturation (KD<1 nM) did not lead to improvement in cytotoxicity. After treatment with H24 nanoCARs, in vivo relapse was accompanied by CD72 antigen downregulation which was partially reversible. The H24 nanobody clone was found to have no off-target binding and is therefore designated as a true clinical candidate. CONCLUSION This work supports translation of H24 CD72 nanoCARs for refractory B-cell malignancies, reveals potential mechanisms of resistance, and unexpectedly demonstrates that nanoCAR potency can be improved by framework alterations alone. These findings may have implications for future engineering of nanobody-based cellular therapies.
Collapse
Affiliation(s)
- William C Temple
- Department of Pediatrics, Division of Hematology/Oncology, University of California, UCSF Benioff Children's Hospital, San Francisco, California, USA
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, UCSF Benioff Children's Hospital, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Matthew A Nix
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Akul Naik
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Adila Izgutdina
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Benjamin J Huang
- Department of Pediatrics, Division of Hematology/Oncology, University of California, UCSF Benioff Children's Hospital, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Gianina Wicaksono
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Paul Phojanakong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | | | - Elizabeth P Young
- Department of Pediatrics, Division of Hematology/Oncology, University of California, UCSF Benioff Children's Hospital, San Francisco, California, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Fernando Salangsang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Simayijiang Xirenayi
- Department of Pediatrics, Division of Hematology/Oncology, University of California, UCSF Benioff Children's Hospital, San Francisco, California, USA
| | - Michelle Hermiston
- Department of Pediatrics, Division of Hematology/Oncology, University of California, UCSF Benioff Children's Hospital, San Francisco, California, USA
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, UCSF Benioff Children's Hospital, San Francisco, California, USA
| | - Aaron C Logan
- Department of Medicine, Division of Hematology and Blood and Marrow Transplantation, University of California, San Francisco, California, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Division of Hematology/Oncology, University of California, UCSF Benioff Children's Hospital, San Francisco, California, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
23
|
Zheng R, Chen Y, Zhang Y, Liang S, Zhao X, Wang Y, Wang P, Meng R, Yang A, Yan B. Humanized single-domain antibody targeting HER2 enhances function of chimeric antigen receptor T cells. Front Immunol 2023; 14:1258156. [PMID: 38022548 PMCID: PMC10661930 DOI: 10.3389/fimmu.2023.1258156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors, and each component plays an important role in the function and anti-tumor efficacy. It has been reported that using human sequences or a low affinity of CAR single-chain variable fragments (scFvs) in the CAR binding domains is a potential way to enhance the function of CAR-T cells. However, it remains largely unknown how a lower affinity of CARs using humanized scFvs affects the function of CAR-T cells until recently. Methods We used different humanized anti-HER2 antibodies as the extracellular domain of CARs and further constructed a series of the CAR-T cells with different affinity. Results We have observed that moderately reducing the affinity of CARs (light chain variable domain (VL)-based CAR-T) could maintain the anti-tumor efficacy, and improved the safety of CAR therapy both in vitro and in vivo compared with high-affinity CAR-T cells. Moreover, T cells expressing the VL domain only antibody exhibited long-lasting tumor elimination capability after multiple challenges in vitro, longer persistence and lower cytokine levels in vivo. Discussion Our findings provide an alternative option for CAR-T optimization with the potential to widen the use of CAR T cells.
Collapse
Affiliation(s)
- Rui Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuankun Chen
- College of Life Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Yiting Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Sixin Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaojuan Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yiyi Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Pengju Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ruotong Meng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- College of Life Science, Yan’an University, Yan’an, Shaanxi, China
| | - Angang Yang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bo Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
24
|
Capponi S, Daniels KG. Harnessing the power of artificial intelligence to advance cell therapy. Immunol Rev 2023; 320:147-165. [PMID: 37415280 DOI: 10.1111/imr.13236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Cell therapies are powerful technologies in which human cells are reprogrammed for therapeutic applications such as killing cancer cells or replacing defective cells. The technologies underlying cell therapies are increasing in effectiveness and complexity, making rational engineering of cell therapies more difficult. Creating the next generation of cell therapies will require improved experimental approaches and predictive models. Artificial intelligence (AI) and machine learning (ML) methods have revolutionized several fields in biology including genome annotation, protein structure prediction, and enzyme design. In this review, we discuss the potential of combining experimental library screens and AI to build predictive models for the development of modular cell therapy technologies. Advances in DNA synthesis and high-throughput screening techniques enable the construction and screening of libraries of modular cell therapy constructs. AI and ML models trained on this screening data can accelerate the development of cell therapies by generating predictive models, design rules, and improved designs.
Collapse
Affiliation(s)
- Sara Capponi
- Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, San Jose, California, USA
- Center for Cellular Construction, San Francisco, California, USA
| | - Kyle G Daniels
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
25
|
Smith R. Bringing cell therapy to tumors: considerations for optimal CAR binder design. Antib Ther 2023; 6:225-239. [PMID: 37846297 PMCID: PMC10576856 DOI: 10.1093/abt/tbad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have revolutionized the immunotherapy of B-cell malignancies and are poised to expand the range of their impact across a broad range of oncology and non-oncology indications. Critical to the success of a given CAR is the choice of binding domain, as this is the key driver for specificity and plays an important role (along with the rest of the CAR structure) in determining efficacy, potency and durability of the cell therapy. While antibodies have proven to be effective sources of CAR binding domains, it has become apparent that the desired attributes for a CAR binding domain do differ from those of a recombinant antibody. This review will address key factors that need to be considered in choosing the optimal binding domain for a given CAR and how binder properties influence and are influenced by the rest of the CAR.
Collapse
Affiliation(s)
- Richard Smith
- Department of Research, Kite, a Gilead Company, 5858 Horton Street, Suite 240, Emeryville, CA 94070, USA
| |
Collapse
|
26
|
Rajakaruna H, Desai M, Das J. PASCAR: a multiscale framework to explore the design space of constitutive and inducible CAR T cells. Life Sci Alliance 2023; 6:e202302171. [PMID: 37507138 PMCID: PMC10387492 DOI: 10.26508/lsa.202302171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
CAR T cells are engineered to bind and destroy tumor cells by targeting overexpressed surface antigens. However, healthy cells expressing lower abundances of these antigens can also be lysed by CAR T cells. Various CAR T cell designs increase tumor cell elimination, whereas reducing damage to healthy cells. However, these efforts are costly and labor-intensive, constraining systematic exploration of potential hypotheses. We develop a protein abundance structured population dynamic model for CAR T cells (PASCAR), a framework that combines multiscale population dynamic models and multi-objective optimization approaches with data from cytometry and cytotoxicity assays to systematically explore the design space of constitutive and tunable CAR T cells. PASCAR can quantitatively describe in vitro and in vivo results for constitutive and inducible CAR T cells and can successfully predict experiments outside the training data. Our exploration of the CAR design space reveals that optimal CAR affinities in the intermediate range of dissociation constants effectively reduce healthy cell lysis, whereas maintaining high tumor cell-killing rates. Furthermore, our modeling offers guidance for optimizing CAR expressions in synthetic notch CAR T cells. PASCAR can be extended to other CAR immune cells.
Collapse
Affiliation(s)
- Harshana Rajakaruna
- The Steve and Cindy Rasmussen Institute for Genomics, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Milie Desai
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Jayajit Das
- The Steve and Cindy Rasmussen Institute for Genomics, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics and Pelotonia Institute for Immuno-Oncology, College of Medicine, Columbus, OH, USA
- Biophysics Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Zhao H, Wu L, Dai J, Sun K, Zi Z, Guan J, Zhang L. Ligand-based adoptive T cell targeting CA125 in ovarian cancer. J Transl Med 2023; 21:596. [PMID: 37670338 PMCID: PMC10481596 DOI: 10.1186/s12967-023-04271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a highly aggressive gynecological malignancy prevalent worldwide. Most OC cases are typically diagnosed at advanced stages, which has led to a 5-year overall survival rate of less than 35% following conventional treatment. Furthermore, immune checkpoint inhibitor therapy has shown limited efficacy in the treatment of patients with OC, and CAR-T therapy has also demonstrated modest results owing to inadequate T cell infiltration. Therefore, novel strategies must be developed to enhance T cell persistence and trafficking within the OC tumor microenvironment. METHODS In this study, we developed a novel adoptive T-cell therapy for ovarian cancer based on a chimeric antigen receptor structure. We used a ligand-receptor binding motif to enhance the therapeutic effect of targeting CA125. Since mesothelin can naturally bind to CA125 with high affinity, we concatenated the core-binding fragment of mesothelin with the 4-1BB and CD3ζ signal fragments to assemble a novel CA125-targeting chimeric receptor (CR). The CAR structure targeting CA125 derived from the 4H11 antibody was also constructed. CR- and CAR-encoding RNA were electroporated into T cells to evaluate their antitumor activity both in vitro and in vivo. RESULTS While CR-T or CAR-T cells exhibited moderate activity against two ovarian cancer cell lines, T cells co-expressing CR and CAR exhibited a superior killing effect compared to T cells expressing either CR or CAR alone. Furthermore, upon interaction with ovarian tumors, the ability of CR and CAR T cells to release activation markers and functional cytokines increased significantly. Similarly, CR and CAR co-expressing T cells persistently controlled the growth of transplanted ovarian cancer tumors in NSG mice and significantly prolonged the overall survival of tumor-challenged mice. Transcriptome sequencing revealed that the survival and cytotoxicity of T cells co-expressing CR and CAR were significantly altered compared with those of T cells expressing either CR or CAR. CONCLUSION Our findings demonstrate that CA125 targeting CR and CAR can synergistically kill ovarian cancer cells, indicating that CA125 targeting by the two binding motifs simultaneously in tumors may improve the therapeutic outcomes of ovarian cancer treatment.
Collapse
Affiliation(s)
- Haihong Zhao
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Lina Wu
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Jiemin Dai
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ke Sun
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Zhenguo Zi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junhua Guan
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| | - Liwen Zhang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
28
|
Jiang J, Chen J, Liao C, Duan Y, Wang Y, Shang K, Huang Y, Tang Y, Gao X, Gu Y, Sun J. Inserting EF1α-driven CD7-specific CAR at CD7 locus reduces fratricide and enhances tumor rejection. Leukemia 2023; 37:1660-1670. [PMID: 37391486 DOI: 10.1038/s41375-023-01948-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
CAR-T therapies to treat T-cell malignancies face unique hurdles. Normal and malignant T cells usually express the same target for CAR, leading to fratricide. CAR-T cells targeting CD7, which is expressed in various malignant T cells, have limited expansion due to fratricide. Using CRISPR/Cas9 to knockout CD7 can reduce the fratricide. Here we developed a 2-in-1 strategy to insert EF1α-driven CD7-specific CAR at the disrupted CD7 locus and compared it to two other known strategies: one was random integration of CAR by a retrovirus and the other was site-specific integration at T-cell receptor alpha constant (TRAC) locus, both in the context of CD7 disruption. All three types of CD7 CAR-T cells with reduced fratricide could expand well and displayed potent cytotoxicity to both CD7+ tumor cell lines and patient-derived primary tumors. Moreover, EF1α-driven CAR expressed at the CD7 locus enhances tumor rejection in a mouse xenograft model of T-cell acute lymphoblastic leukemia (T-ALL), suggesting great clinical application potential. Additionally, this 2-in-1 strategy was adopted to generate CD7-specific CAR-NK cells as NK also expresses CD7, which would prevent contamination from malignant cells. Thus, our synchronized antigen-knockout CAR-knockin strategy could reduce the fratricide and enhance anti-tumor activity, advancing clinical CAR-T treatment of T-cell malignancies.
Collapse
Affiliation(s)
- Jie Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Jiangqing Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Chan Liao
- Department of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanting Duan
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China
| | - Yanjie Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310058, China
| | - Yongming Tang
- Department of Hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofei Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310058, China
| | - Ying Gu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China.
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
29
|
Zhong L, Li Y, Muluh TA, Wang Y. Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncol Lett 2023; 26:281. [PMID: 37274466 PMCID: PMC10236127 DOI: 10.3892/ol.2023.13867] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a new and breakthrough cancer immunotherapy. Although CAR-T cell therapy has made significant progress clinically in patients with refractory or drug-resistant hematological malignancies, there are numerous challenges in its application to solid tumor therapy, including antigen escape, severe toxic reactions, abnormal vascularization, tumor hypoxia, insufficient infiltration of CAR-T cells and immunosuppression. As a conventional mode of anti-tumor therapy, radiotherapy has shown promising effects in combination with CAR-T cell therapy by enhancing the specific immunity of endogenous target antigens, which promoted the infiltration and expansion of CAR-T cells and improved the hypoxic tumor microenvironment. This review focuses on the obstacles to the application of CAR-T technology in solid tumor therapy, the potential opportunities and challenges of combined radiotherapy and CAR-T cell therapy, and the review of recent literature to evaluate the best combination for the treatment of solid tumors.
Collapse
Affiliation(s)
- Liqiang Zhong
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Yi Li
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
30
|
Zhang C, Wang L, Zhang Q, Shen J, Huang X, Wang M, Huang Y, Chen J, Xu Y, Zhao W, Qi Y, Li Y, Ou Y, Yang Z, Qian C. Screening and characterization of the scFv for chimeric antigen receptor T cells targeting CEA-positive carcinoma. Front Immunol 2023; 14:1182409. [PMID: 37304295 PMCID: PMC10248079 DOI: 10.3389/fimmu.2023.1182409] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Chimeric antigen receptor T (CAR-T) cell therapy presents a promising treatment option for various cancers, including solid tumors. Carcinoembryonic antigen (CEA) is an attractive target due to its high expression in many tumors, particularly gastrointestinal cancers, while limited expression in normal adult tissues. In our previous clinical study, we reported a 70% disease control rate with no severe side effects using a humanized CEA-targeting CAR-T cell. However, the selection of the appropriate single-chain variable fragment (scFv) significantly affects the therapeutic efficacy of CAR-T cells by defining their specific behavior towards the target antigen. Therefore, this study aimed to identify the optimal scFv and investigate its biological functions to further optimize the therapeutic potential of CAR-T cells targeting CEA-positive carcinoma. Methods We screened four reported humanized or fully human anti-CEA antibodies (M5A, hMN-14, BW431/26, and C2-45), and inserted them into a 3rd-generation CAR structure. We purified the scFvs and measured the affinity. We monitored CAR-T cell phenotype and scFv binding stability to CEA antigen through flow cytometry. We performed repeated CEA antigen stimulation assays to compare the proliferation potential and response of the four CAR-T cells, then further evaluated the anti-tumor efficacy of CAR-T cells ex vivo and in vivo. Results M5A and hMN-14 CARs displayed higher affinity and more stable CEA binding ability than BW431/26 and C2-45 CARs. During CAR-T cell production culture, hMN-14 CAR-T cells exhibit a larger proportion of memory-like T cells, while M5A CAR-T cells showed a more differentiated phenotype, suggesting a greater tonic signal of M5A scFv. M5A, hMN-14, and BW431/26 CAR-T cells exhibited effective tumor cell lysis and IFN-γ release when cocultured with CEA-positive tumor cells in vitro, correlating with the abundance of CEA expression in target cells. While C2-45 resulted in almost no tumor lysis or IFN-γ release. In a repeat CEA antigen stimulation assay, M5A showed the best cell proliferation and cytokine secretion levels. In a mouse xenograft model, M5A CAR-T cells displayed better antitumor efficacy without preconditioning. Discussion Our findings suggest that scFvs derived from different antibodies have distinctive characteristics, and stable expression and appropriate affinity are critical for robust antitumor efficacy. This study highlights the importance of selecting an optimal scFv in CAR-T cell design for effective CEA-targeted therapy. The identified optimal scFv, M5A, could be potentially applied in future clinical trials of CAR-T cell therapy targeting CEA-positive carcinoma.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Linling Wang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Qianzhen Zhang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Junjie Shen
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Xia Huang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Meiling Wang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Yi Huang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Jun Chen
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Yanmin Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Wenxu Zhao
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Yanan Qi
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Yunyan Li
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Yanjiao Ou
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhi Yang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| | - Cheng Qian
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co. Ltd., Chongqing, China
| |
Collapse
|
31
|
CAR T-Cell Therapy in Children with Solid Tumors. J Clin Med 2023; 12:jcm12062326. [PMID: 36983330 PMCID: PMC10051963 DOI: 10.3390/jcm12062326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The limited efficacy of traditional cancer treatments, including chemotherapy, radiotherapy, and surgery, emphasize the significance of employing innovative methods. CAR (Chimeric Antigen Receptor) T-cell therapy remains the most revolutionizing treatment of pediatric hematological malignancies and solid tumors. Patient’s own lymphocytes are modified ex-vivo using gene transfer techniques and programmed to recognize and destroy specific tumor cells regardless of MHC receptor, which probably makes CAR-T the most personalized therapy for the patient. With continued refinement and optimization, CAR-T cell therapy has the potential to significantly improve outcomes and quality of life for children with limited treatment options. It has shown remarkable success in treating hematological malignancies, such as acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL). However, its effectiveness in treating solid tumors is still being investigated and remains an area of active research. In this review we focus on solid tumors and explain the concept of CAR modified T cells, and discuss some novel CAR designs that are being considered to enhance the safety of CAR T-cell therapy in under-mentioned cancers. Furthermore, we summarize the most crucial recent reports concerning the solid tumors treatment in children. In the end we provide a short summary of many challenges that limit the therapeutic efficacy of CAR-T in solid tumors, such as antigen escape, immunosuppressive microenvironment, poor trafficking, and tumor infiltration, on-target off-tumor effects and general toxicity.
Collapse
|
32
|
Belovezhets T, Kulemzin S, Volkova O, Najakshin A, Taranin A, Gorchakov A. Comparative Pre-Clinical Analysis of CD20-Specific CAR T Cells Encompassing 1F5-, Leu16-, and 2F2-Based Antigen-Recognition Moieties. Int J Mol Sci 2023; 24:ijms24043698. [PMID: 36835110 PMCID: PMC9966244 DOI: 10.3390/ijms24043698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Over the past decade, CAR T cell therapy for patients with B cell malignancies has evolved from an experimental technique to a clinically feasible option. To date, four CAR T cell products specific for a B cell surface marker, CD19, have been approved by the FDA. Despite the spectacular rates of complete remission in r/r ALL and NHL patients, a significant proportion of patients still relapse, frequently with the CD19 low/negative tumor phenotype. To address this issue, additional B cell surface molecules such as CD20 were proposed as targets for CAR T cells. Here, we performed a side-by-side comparison of the activity of CD20-specific CAR T cells based on the antigen-recognition modules derived from the murine antibodies, 1F5 and Leu16, and from the human antibody, 2F2. Whereas CD20-specific CAR T cells differed from CD19-specific CAR T cells in terms of subpopulation composition and cytokine secretion, they displayed similar in vitro and in vivo potency.
Collapse
Affiliation(s)
| | - Sergey Kulemzin
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Olga Volkova
- Institute of Molecular and Cellular Biology of the SB RAS, 630090 Novosibirsk, Russia
| | - Alexander Najakshin
- Institute of Molecular and Cellular Biology of the SB RAS, 630090 Novosibirsk, Russia
| | - Alexander Taranin
- Institute of Molecular and Cellular Biology of the SB RAS, 630090 Novosibirsk, Russia
| | - Andrey Gorchakov
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
33
|
Zhang K, Chen H, Li F, Huang S, Chen F, Li Y. Bright future or blind alley? CAR-T cell therapy for solid tumors. Front Immunol 2023; 14:1045024. [PMID: 36761757 PMCID: PMC9902507 DOI: 10.3389/fimmu.2023.1045024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells therapy has emerged as a significant breakthrough in adoptive immunotherapy for hematological malignancies with FDA approval. However, the application of CAR-T cell therapy in solid tumors remains challenging, mostly due to lack of suitable CAR-T target antigens, insufficient trafficking and extravasation to tumor sites, and limited CAR-T survival in the hostile tumor microenvironment (TME). Herein, we reviewed the development of CARs and the clinical trials in solid tumors. Meanwhile, a "key-and-lock" relationship was used to describe the recognition of tumor antigen via CAR T cells. Some strategies, including dual-targets and receptor system switches or filter, have been explored to help CAR T cells matching targets specifically and to minimize on-target/off-tumor toxicities in normal tissues. Furthermore, the complex TME restricts CAT T cells activity through dense extracellular matrix, suppressive immune cells and cytokines. Recent innovations in engineered CARs to shield the inhibitory signaling molecules were also discussed, which efficiently promote CAR T functions in terms of expansion and survival to overcome the hurdles in the TME of solid tumors.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China,Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Fuqiang Li
- Department of Traditional Chinese Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Sheng Huang
- Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Fei Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China,Graduate School, Kunming Medical University, Kunming, Yunnan, China,*Correspondence: Yi Li,
| |
Collapse
|
34
|
Duan Y, Chen J, Meng X, Liu L, Shang K, Wu X, Wang Y, Huang Z, Liu H, Huang Y, Zhou C, Gao X, Wang Y, Sun J. Balancing activation and co-stimulation of CAR tunes signaling dynamics and enhances therapeutic potency. Mol Ther 2023; 31:35-47. [PMID: 36045585 PMCID: PMC9840118 DOI: 10.1016/j.ymthe.2022.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
CD19-targeting chimeric antigen receptors (CARs) with CD28 and CD3ζ signaling domains have been approved by the US FDA for treating B cell malignancies. Mutation of immunoreceptor tyrosine-based activation motifs (ITAMs) in CD3ζ generated a single-ITAM containing 1XX CAR, which displayed superior antitumor activity in a leukemia mouse model. Here, we investigated whether the 1XX design could enhance therapeutic potency against solid tumors. We constructed both CD19- and AXL-specific 1XX CARs and compared their in vitro and in vivo functions with their wild-type (WT) counterparts. 1XX CARs showed better antitumor efficacy in both pancreatic and melanoma mouse models. Detailed analysis revealed that 1XX CAR-T cells persisted longer in vivo and had a higher percentage of central memory cells. With fluorescence resonance energy transfer (FRET)-based biosensors, we found that decreased ITAM numbers in 1XX resulted in similar 70-kDa zeta chain-associated protein (ZAP70) activation, while 1XX induced higher Ca2+ elevation and faster extracellular signal-regulated kinase (Erk) activation than WT CAR. Thus, our results confirmed the superiority of 1XX against two targets in different solid tumor models and shed light on the underlying molecular mechanism of CAR signaling, paving the way for the clinical applications of 1XX CARs against solid tumors.
Collapse
Affiliation(s)
- Yanting Duan
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Jiangqing Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Xianhui Meng
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Longwei Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Xiaoyan Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Zihan Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Houyu Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China
| | - Yanjie Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310058, China
| | - Chun Zhou
- School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaofei Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310058, China
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
35
|
Shevyrev DV, Tereshchenko VP, Sennikov SV. The Enigmatic Nature of the TCR-pMHC Interaction: Implications for CAR-T and TCR-T Engineering. Int J Mol Sci 2022; 23:ijms232314728. [PMID: 36499057 PMCID: PMC9740949 DOI: 10.3390/ijms232314728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The interaction of the T-cell receptor (TCR) with a peptide in the major histocompatibility complex (pMHC) plays a central role in the adaptive immunity of higher chordates. Due to the high specificity and sensitivity of this process, the immune system quickly recognizes and efficiently responds to the appearance of foreign and altered self-antigens. This is important for ensuring anti-infectious and antitumor immunity, in addition to maintaining self-tolerance. The most common parameter used for assessing the specificity of TCR-pMHC interaction is affinity. This thermodynamic characteristic is widely used not only in various theoretical aspects, but also in practice, for example, in the engineering of various T-cell products with a chimeric (CAR-T) or artificial (TCR-engineered T-cell) antigen receptor. However, increasing data reveal the fact that, in addition to the thermodynamic component, the specificity of antigen recognition is based on the kinetics and mechanics of the process, having even greater influence on the selectivity of the process and T lymphocyte activation than affinity. Therefore, the kinetic and mechanical aspects of antigen recognition should be taken into account when designing artificial antigen receptors, especially those that recognize antigens in the MHC complex. This review describes the current understanding of the nature of the TCR-pMHC interaction, in addition to the thermodynamic, kinetic, and mechanical principles underlying the specificity and high sensitivity of this interaction.
Collapse
Affiliation(s)
- D. V. Shevyrev
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence: ; Tel.: +7-9231345505
| | - V. P. Tereshchenko
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - S. V. Sennikov
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| |
Collapse
|
36
|
Recent Advances in the Development of Anti-FLT3 CAR T-Cell Therapies for Treatment of AML. Biomedicines 2022; 10:biomedicines10102441. [PMID: 36289703 PMCID: PMC9598885 DOI: 10.3390/biomedicines10102441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Following the success of the anti-CD19 chimeric antigen receptor (CAR) T-cell therapies against B-cell malignancies, the CAR T-cell approach is being developed towards other malignancies like acute myeloid leukemia (AML). Treatment options for relapsed AML patients are limited, and the upregulation of the FMS-like tyrosine kinase 3 (FLT3) in malignant T-cells is currently not only being investigated as a prognostic factor, but also as a target for new treatment options. In this review, we provide an overview and discuss different approaches of current anti-FLT3 CAR T-cells under development. In general, these therapies are effective both in vitro and in vivo, however the safety profile still needs to be further investigated. The first clinical trials have been initiated, and the community now awaits clinical evaluation of the approach of targeting FLT3 with CAR T-cells.
Collapse
|