1
|
Mubashra S, Rafiq A, Aslam S, Rasool N, Ahmad M. Recent synthetic strategies for N-arylation of pyrrolidines: a potential template for biologically active molecules. Mol Divers 2025; 29:1851-1893. [PMID: 39048884 DOI: 10.1007/s11030-024-10924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.
Collapse
Affiliation(s)
- Saeeda Mubashra
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Saleem SM, Jabbar T, Imran MB, Noureen A, Sherazi TA, Afzal MS, Rab Nawaz HZ, Ramadan MF, Alkahtani AM, Alsuwat MA, Almubarak HA, Momenah MA, Naqvi SAR. Radiosynthesis and Preclinical Evaluation of [ 99mTc]Tc-Tigecycline Radiopharmaceutical to Diagnose Bacterial Infections. Pharmaceuticals (Basel) 2024; 17:1283. [PMID: 39458924 PMCID: PMC11510260 DOI: 10.3390/ph17101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES As a primary source of mortality and disability, bacterial infections continue to develop a severe threat to humanity. Nuclear medicine imaging (NMI) is known for its promising potential to diagnose deep-seated bacterial infections. This work aims to develop a new technetium-99m (99mTc) labeled tigecycline radiopharmaceutical as an infection imaging agent. METHODS Reduced 99mTc was used to make a coordinate complex with tigecycline at pH 7.7-7.9 at room temperature. Instantaneous thin-layer chromatography impregnated with silica gel (ITLC-SG) and ray detector equipped high-performance liquid chromatography (ray-HPLC) was performed to access the radiolabeling yield and radiochemical purity (RCP). RESULTS More than 91% labeling efficiency was achieved after 25 min of mild shaking of the reaction mixture. The radiolabeled complex was found intact up to 4 h in saline. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infection-induced rats were used to record the biodistribution of the radiopharmaceutical and its target specificity; 2 h' post-injection biodistribution revealed a 2.39 ± 0.29 target/non-target (T/NT) ratio in the E. coli infection-induced animal model, while a 2.9 ± 0.31 T/NT value was recorded in the S. aureus bacterial infection-induced animal model. [99mTc]Tc-tigecycline scintigraphy was performed in healthy rabbits using a single photon emission computed tomography (SPECT) camera. Scintigrams showed normal kidney perfusion and excretion into the bladder. CONCLUSION In conclusion, the newly developed [99mTc]Tc-tigecycline radiopharmaceutical could be considered to diagnose broad-spectrum bacterial infections.
Collapse
Affiliation(s)
- Syeda Marab Saleem
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38040, Pakistan
| | - Tania Jabbar
- Punjab Institute of Nuclear Medicine, Faisalabad 38040, Pakistan
| | | | - Asma Noureen
- Department of Zoology, Ghazi University, Dera Ghazi Khan 03222, Pakistan
| | - Tauqir A. Sherazi
- Department of Chemistry, COMSAT University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | | | - Hafiza Zahra Rab Nawaz
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38040, Pakistan
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdullah M. Alkahtani
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Meshari A. Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hassan Ali Almubarak
- Assistant Professor Nuclear Medicine, Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
3
|
Aslam S, Ali HS, Ahmad M, Mansha A, Ali N, Khan S, Naqvi SAR, Khalid Z, Asim S, Parvez M, Khalid M. A combined experimental and theoretical study of alkyl 2-(3-benzoyl-4‑hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)acetates: Synthesis, X-ray crystallography and DFT. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Taj S, Ahmad M, Ashfaq UA. Exploring of novel 4-hydroxy-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide derivative as a dual inhibitor of α-glucosidase and α-amylase: Molecular docking, biochemical, enzyme kinetic and in-vivo mouse model study. Int J Biol Macromol 2022; 207:507-521. [PMID: 35276296 DOI: 10.1016/j.ijbiomac.2022.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that leads to hyperglycemia due to improper insulin secretion. The study aims to investigate the anti-diabetic potential of benzothiazine derivatives. Molecular docking and Molecular Dynamics simulation study revealed that Compound S6 (4-hydroxy-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide) and S7 (4-Hydroxy-2-methyl-2H-1,2-benzothiazine-3-carbohydrazide 1,1-dioxide) had less conformational changes during MD simulation analysis at 100 ns. Compound S6 and S7 showed potent activity with IC50 values of 5.93 μM, 6.91 μM and 75.17, 29.10 μM for α-glucosidase and α-amylase respectively and competitive type of inhibition was observed during enzyme kinetic study with a low value of Ki and Ki' for α-glucosidase and α-amylase, respectively. S6 has the lowest Ki (0.0736) and Ki' (-0.0982) for α-glucosidase. Furthermore, in vivo studies were carried out to distinguish the effects of the drug on the body. Histology analysis on mice model showed that compound S6 has a low necrosis rate in the liver, kidney, and pancreas compared to S7. Biochemical results of S6 revealed lower sugar level (112 mg/dL), increase insulin secretion (23, 25 μM/L), and low level of cholesterol (80, 85 mg/dL) and creatinine (1.6, 1.4 mg/dL). The results conclude that compound S6 is a new anti-diabetic agent that minimizes hyperglycemia complications.
Collapse
Affiliation(s)
- Saman Taj
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
5
|
Farhadi S, Ghasemzadeh MA, Aghaei SS. NiCo
2
O
4
@Ni(BDC) Nano‐Porous Metal–Organic Framework as a Novel Catalyst for the Synthesis of Spiro[indene[1,2‐d]pyrimidine‐ones and Investigation of Their Antimicrobial Activities. ChemistrySelect 2019. [DOI: 10.1002/slct.201803260] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simin Farhadi
- Department of ChemistryQom BranchIslamic Azad University, Qom I. R. Iran
| | | | | |
Collapse
|
6
|
Novel Armed Pyrazolobenzothiazine Derivatives: Synthesis, X-Ray Crystal Structure and POM analyses of Biological Activity Against Drug Resistant Clinical Isolate of Staphylococcus aureus. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1417-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Ahmad M, Aslam S, Rizvi SUF, Muddassar M, Ashfaq UA, Montero C, Ollinger O, Detorio M, Gardiner JM, Schinazi RF. Molecular docking and antiviral activity of N-substituted benzyl/phenyl-2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin-2(4H)-yl)acetamides. Bioorg Med Chem Lett 2015; 25:1348-51. [PMID: 25701249 PMCID: PMC7717120 DOI: 10.1016/j.bmcl.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 11/28/2022]
Abstract
Two series of fifteen N-substituted benzyl/phenyl-2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin-2(4H)-yl)acetamides were screened for anti-HIV-1 activity and cytotoxicity. The compounds 6a, 6d, 6e, 6g and 6i from the series 6a-i of benzylamides and 7a, 7b, 7c, 7d and 7e from the series 7a-f of anilides were identified as effective anti-HIV-1 agents with EC50 values <20μM. Among these compounds that displayed anti-HIV-1 activity, 6a, 6e, 6g and 6i showed no toxicity in human PBM, CEM and Vero cells, with the exception of 6a which displayed toxicity in Vero cells. Molecular docking of these compounds provided insight into the molecular mechanism and it was found that 6e, 6g and 6i bound deeply in the NNRTI binding pocket of the HIV-1 reverse transcriptase, using RT-bound nevirapine X-ray data and molecular docking for validation, showing the potential of these new structures as inhibitors of this viral enzyme.
Collapse
Affiliation(s)
- Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | | | - Muhammad Muddassar
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Catherine Montero
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Emory University School of Medicine/Veterans Affairs Medical Center, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Olivia Ollinger
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Emory University School of Medicine/Veterans Affairs Medical Center, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Mervi Detorio
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Emory University School of Medicine/Veterans Affairs Medical Center, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - John M Gardiner
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Emory University School of Medicine/Veterans Affairs Medical Center, 1760 Haygood Drive, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Li M, Zhao BX. Progress of the synthesis of condensed pyrazole derivatives (from 2010 to mid-2013). Eur J Med Chem 2014; 85:311-40. [PMID: 25104650 DOI: 10.1016/j.ejmech.2014.07.102] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 01/08/2023]
Abstract
Condensed pyrazole derivatives are important heterocyclic compounds due to their excellent biological activities and have been widely applied in pharmaceutical and agromedical fields. In recent years, numerous condensed pyrazole derivatives have been synthesized and advanced to clinic studies with various biological activities. In this review, we summarized the reported synthesis methods of condensed pyrazole derivatives from 2010 until now. All compounds are divided into three parts according to the rings connected to pyrazole-ring, i.e. [5, 5], [5,F 6], and [5, 7]-condensed pyrazole derivatives. The biological activities and applications in pharmaceutical fields are briefly introduced to offer an orientation for the design and synthesis of condensed pyrazole derivatives with good biological activities.
Collapse
Affiliation(s)
- Meng Li
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
9
|
Synthesis, molecular docking and antiviral screening of novel N′-substitutedbenzylidene-2-(4-methyl-5,5-dioxido-3-phenylbenzo[e]pyrazolo[4,3-c][1,2]thiazin-1(4H)-yl)acetohydrazides. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0879-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Synthesis of novel pyrazolobenzothiazine 5,5-dioxide derivatives as potent anti-HIV-1 agents. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0718-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Synthesis, Characterization, and Biological Activity of 4-(2-Hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols Derivatives. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/582079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the aim of synthesizing new heterocyclic compounds and exploring biological potency, new series of chalcones, that is, 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and their pyrimidine derivatives, that is, 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were synthesized using different aromatic amines and salicylaldehyde as starting moieties. The structures of newly synthesized compounds were confirmed using different spectroscopic techniques such as IR, 1H-NMR, 13C-NMR, and mass spectral analysis, and elemental analysis. The newly synthesized pyrimidines derivatives were screened for their in vitro antibacterial and antifungal activities. It was observed that some of the newly synthesized compounds had shown promising activity against several bacterial and fungal stains. Anti-bacterial activity and anti-fungal activity studies revealed that pyrimidine derivatives consisting of nitro group in their molecular structure possess better activity than their corresponding chalcones.
Collapse
|
12
|
Rizvi SUF, Ahmad M, Bukhari MH, Montero C, Chatterjee P, Detorio M, Schinazi RF. Anti-HIV-1 screening of (2E)-3-(2-chloro-6-methyl/methoxyquinolin-3-yl)-1-(aryl)prop-2-en-1-ones. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0652-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|