1
|
Malú Q, Caldeira GI, Catarino L, Indjai B, da Silva IM, Lima B, Silva O. Ethnomedicinal, Chemical, and Biological Aspects of Lannea Species-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:690. [PMID: 38475536 DOI: 10.3390/plants13050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Lannea L. genus belongs to the Anacardiaceae botanical family and has long been used in traditional medicinal systems of many countries to manage several health conditions, but no studies have been conducted regarding its usefulness as a source of herbal medicine for human use. A literature review was conducted on scientific papers indexed on B-On, Pubmed, and Web of Science databases. Our results showed that medicinal plants from this botanical genus, mostly constituted by bark and leaf, are often used to approach a wide variety of disease symptoms, like fever, inflammatory states, pain, and gastrointestinal disorders. Phytochemical profiles of Lannea species revealed that phenolic acid derivatives including hydroquinones, phenolic acids, flavonoids, condensed tannins, and triterpenoids are the main classes of secondary metabolites present. Among the total of 165 identified compounds, 57 (34.5%) are flavonoids, mostly quercetin- and myricetin-derived flavonols and catechin and epicatechin flavan-3-ol derivatives also containing a galloyl group. In vitro and in vivo studies allowed the identification of 12 different biological activities, amongst which antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities were the most frequently cited and observed in in vitro essays. Our review contributes useful information for the scientifical validation of the use of Lannea species in traditional medicinal systems and shows that more research needs to be conducted to better understand the concrete utility of these as herbal medicines.
Collapse
Affiliation(s)
- Quintino Malú
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Gonçalo I Caldeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Luís Catarino
- Centro de Ecologia, Evolução e Alterações Ambientais, (cE3c) & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Bucar Indjai
- Instituto Nacional de Estudos e Pesquisa, Avenida dos Combatentes da Liberdade da Pátria, Bissau 112, Guinea-Bissau
| | - Isabel Moreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Beatriz Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
2
|
Malú Q, Lima K, Malmir M, Pinto R, da Silva IM, Catarino L, Duarte MP, Serrano R, Rocha J, Lima BS, Silva O. Contribution to the Preclinical Safety Assessment of Lannea velutina and Sorindeia juglandifolia Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 12:130. [PMID: 36616259 PMCID: PMC9823897 DOI: 10.3390/plants12010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Dried leaves of Lannea velutina A. Rich. and Sorindeia juglandifolia (A. Rich.) Planch. ex Oliv. (family Anacardiaceae) are used in African traditional medicine. Although these medicinal plants have widespread use in the treatment of inflammatory diseases, there is no scientific data concerning their preclinical or clinical safety. This work aimed to investigate the phytochemical properties of the leaves of both species using HPLC-UV/DAD, as well as the in vivo oral repeated-dose toxicity of 70% hydroethanolic leaf extract of S. juglandifolia and the in vitro genotoxicity of 70% hydroethanolic leaf extracts of L. velutina and S. juglandifolia. Clinical signs of toxicity, body weight variations, and changes in food consumption, mortality, and blood biochemical parameters were monitored. Genotoxicity was assessed using the bacterial reverse mutation assay (Ames test) with and without metabolic activation, according to OECD guidelines. The obtained results showed the presence of gallic acid and anacardic acid as the main marker constituents in both species. No significant changes in general body weight or food intake were observed; small significant changes with no critical relevance were observed in the blood biochemistry of animals treated with S. juglandifolia hydroethanolic extract (50, 400, and 1000 mg/kg body weight) compared to those in the control group. No genotoxicity was observed in the bacterial reverse mutation assay with S. juglandifolia and L. velutina extracts (up to 5 mg/plate). The safety data obtained in vivo and lack of genotoxic potential in vitro points to the safe medicinal use of S. juglandifolia and L. velutina extracts.
Collapse
Affiliation(s)
- Quintino Malú
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maryam Malmir
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rui Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Dr Joaquim Chaves Laboratório de Análises Clínicas, 2790-224 Carnaxide, Portugal
| | - Isabel Moreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Luís Catarino
- Centre for Ecology, Evolution and Environmental Changes, (cE3c) & CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Paula Duarte
- MEtRICs/Chemical Department, Nova School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Rita Serrano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Beatriz Silva Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
3
|
Abdel-Galil E, Girges MM, Said GE. Synthesis, Characterization, and Biological Evaluation of Novel Cyclohexenone Derivatives Incorporating Azo, Triazene, and Tetraazene Moieties. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Bodede O, More GK, Moodley R, Steenkamp P, Baijnath H, Maharaj V, Prinsloo G. New Alk(en)ylhydroxycyclohexanes with Tyrosinase Inhibition Potential from Harpephyllum caffrum Bernh. Gum Exudate. Molecules 2022; 27:molecules27123839. [PMID: 35744961 PMCID: PMC9229927 DOI: 10.3390/molecules27123839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
This work presents the first report on the phytochemical investigation of Harpephyllum caffrum Bernh. gum exudate. A known cardanol, 3-heptadec-12'-Z-enyl phenol (1) and three new alk(en)ylhydroxycyclohexanes, namely, (1R,3R)-1,3-dihydroxy-3-[heptadec-12'(Z)-enyl]cyclohexane (2) (1S,2S,3S,4S,5R)-1,2,3,4,5-pentahydroxy-5-[octadec-13'(Z)-enyl]cyclohexane (3) and (1R,2S,4R)-1,2,4-trihydroxy-4-[heptadec-12'(Z)-enyl]cyclohexane (4) were isolated from the gum. The structures of the compounds were determined by extensive 1D and 2D NMR spectroscopy and HR-ESI-MS data. The ethanolic extract of the gum was found to be the most potent tyrosinase inhibitor with IC50 of 11.32 µg/mL while compounds 2 and 3, with IC50 values of 24.90 and 26.99 µg/mL, respectively, were found to be potential anti-tyrosinase candidates from the gum. Gum exudate may be a potential source for non-destructive harvesting of selective pharmacologically active compounds from plants. The results also provide evidence that H. caffrum gum may find application in cosmetics as a potential anti-tyrosinase agent.
Collapse
Affiliation(s)
- Olusola Bodede
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg 1709, South Africa; (G.K.M.); (G.P.)
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa;
- Correspondence:
| | - Garland K. More
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg 1709, South Africa; (G.K.M.); (G.P.)
| | - Roshila Moodley
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK;
| | - Paul Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa;
| | - Himansu Baijnath
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa;
| | - Vinesh Maharaj
- Department of Chemistry, University of Pretoria, Pretoria 0028, South Africa;
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg 1709, South Africa; (G.K.M.); (G.P.)
| |
Collapse
|
5
|
Ledoux A, Bériot D, Mamede L, Desdemoustier P, Detroz F, Jansen O, Frédérich M, Maquoi E. Cytotoxicity of Poupartone B, an Alkyl Cyclohexenone Derivative from Poupartia borbonica, against Human Cancer Cell Lines. PLANTA MEDICA 2021; 87:1008-1017. [PMID: 34687029 DOI: 10.1055/a-1532-2384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poupartia borbonica is an endemic tree from the Mascarene Islands that belongs to the Anacardiaceae family. The leaves of this plant were phytochemically studied previously, and isolated alkyl cyclohexenone derivatives, poupartones A - C, demonstrated antiplasmodial and antimalarial activities. In addition to their high potency against the Plasmodium sp., high toxicity on human cells was also displayed. The present study aims to investigate in more detail the cytotoxicity and pharmacological interest of poupartone B, one of the most abundant derivatives in the leaves of P. borbonica. For that purpose, real-time live-cell imaging of different human cancer cell lines and normal fibroblasts, treated or not treated with poupartone B, was performed. A potent inhibition of cell proliferation associated with the induction of cell death was observed. A detailed morphological analysis of different adherent cell lines exposed to high concentrations of poupartone B (1 - 2 µg/mL) demonstrated that this compound induced an array of cellular alterations, including a rapid retraction of cellular protrusions associated with cell rounding, massive cytoplasmic vacuolization, loss of plasma membrane integrity, and plasma membrane bubbling, ultimately leading to paraptosis-like cell death. The structure-activity relation of this class of compounds, their selective toxicity, and pharmacological potential are discussed.
Collapse
Affiliation(s)
- Allison Ledoux
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Daphnée Bériot
- Laboratory of Tumors and development Biology, GIGA-Cancer, CIRM, University of Liège, Liège, Belgium
| | - Lucia Mamede
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Pauline Desdemoustier
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Fanny Detroz
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Olivia Jansen
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Erik Maquoi
- Laboratory of Tumors and development Biology, GIGA-Cancer, CIRM, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Khan J, Ali G, Rashid U, Khan R, Jan MS, Ullah R, Ahmad S, Abbasi SW, Khan Khalil AA, Sewell RE. Mechanistic evaluation of a novel cyclohexenone derivative's functionality against nociception and inflammation: An in-vitro, in-vivo and in-silico approach. Eur J Pharmacol 2021; 902:174091. [PMID: 33865830 DOI: 10.1016/j.ejphar.2021.174091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
The synthesis of a novel cyclohexanone derivative (CHD; Ethyl 6-(4-metohxyphenyl)-2-oxo-4-phenylcyclohexe-3-enecarboxylate) was described and the subsequent aim was to perform an in vitro, in vivo and in silico pharmacological evaluation as a putative anti-nociceptive and anti-inflammatory agent in mice. Initial in vitro studies revealed that CHD inhibited both cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzymes and it also reduced mRNA expression of COX-2 and the pro-inflammatory cytokines TNF-α and IL-1β. It was then shown that CHD dose dependently inhibited chemically induced tonic nociception in the abdominal constriction assay and also phasic thermal nociception (i.e. anti-nociception) in the hot plate and tail immersion tests in comparison with aspirin and tramadol respectively. The thermal test outcomes indicated a possible moderate centrally mediated anti-nociception which, in the case of the hot plate test, was pentylenetetrazole (PTZ) and naloxone reversible, implicating GABAergic and opioidergic mechanisms. CHD was also effective against both the neurogenic and inflammatory mediator phases induced in the formalin test and it also disclosed anti-inflammatory activity against the phlogistic agents, carrageenan, serotonin, histamine and xylene compared with standard drugs in edema volume tests. In silico studies indicated that CHD possessed preferential affinity for GABAA, opioid and COX-2 target sites and this was supported by molecular dynamic simulations where computation of free energy of binding also favored the formation of stable complexes with these sites. These findings suggest that CHD has prospective anti-nociceptive and anti-inflammatory properties, probably mediated through GABAergic and opioidergic interactions supplemented by COX-2 and 5-LOX enzyme inhibition in addition to reducing pro-inflammatory cytokine expression. CHD may therefore possess potentially beneficial therapeutic effectiveness in the management of inflammation and pain.
Collapse
Affiliation(s)
- Jawad Khan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, 25120, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - RobertD E Sewell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK. UK
| |
Collapse
|
7
|
Kamil M, Fatima A, Ullah S, Ali G, Khan R, Ismail N, Qayum M, Irimie M, Dinu CG, Ahmedah HT, Cocuz ME. Toxicological Evaluation of Novel Cyclohexenone Derivative in an Animal Model through Histopathological and Biochemical Techniques. TOXICS 2021; 9:119. [PMID: 34070633 PMCID: PMC8227666 DOI: 10.3390/toxics9060119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Toxicity studies were conducted to provide safety data of potential drug candidates by determining lethal and toxic doses. This study was designed for pre-clinical evaluation of novel cyclohexenone derivative with respect to the acute and sub-acute toxicity along with the diabetogenic potential. Acute and sub-acute toxicity were assessed after intraperitoneal (i.p) injection of the investigational compound through selected doses for 21 days. This was followed by assessment of isolated body organs (liver, kidney, heart and pancreas) via biochemical indicators and histopathological techniques. No signs of toxicity were revealed in the study of acute toxicity. Similarly, a sub-acute toxicity study showed no significant difference in biochemical indicators on 11th and 21st days between treated and control groups. However, in blood urea nitrogen (BUN) and random blood glucose/sugar (RBS) values, significant differences were recorded. Histopathological evaluation of liver, kidney, pancreas and heart tissues revealed mild to severe changes in the form of steatosis, inflammation, fibrosis, necrosis and myofibrillary damages on 11th and 21st days of treatment. In conclusion, the median lethal dose of the tested compound was expected to be greater than 500 mg/kg. No significant change occurred in selected biomarkers, except BUN and RBS levels, but a histopathological study showed moderate toxic effect on liver, kidney, pancreas and heart tissues by the cyclohexenone derivative.
Collapse
Affiliation(s)
- Muhammad Kamil
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Arifa Fatima
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Rasool Khan
- Department of Organic Chemistry, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Naila Ismail
- Department of Pathology, Kabir Medical College, Gandhara University, Peshawar 25000, Pakistan;
| | - Mughal Qayum
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
| | | | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Maria Elena Cocuz
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
| |
Collapse
|
8
|
Attenuation of vincristine-induced neuropathy by synthetic cyclohexenone-functionalized derivative in mice model. Neurol Sci 2019; 40:1799-1811. [PMID: 31041611 DOI: 10.1007/s10072-019-03884-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/02/2019] [Indexed: 12/23/2022]
Abstract
Vincristine (VCR) is a well-known anticancer drug which frequently induced painful neuropathy and impairs the quality of life of patients. The present study was designed to investigate the alleviative potential of a novel cyclohexenone derivative (CHD), i.e., ethyl 6-(4-methoxyphenyl)-2-oxo-4-phenylcyclohexe-3-enecarboxylate, against VCR-induced neuropathic pain in mice model. VCR was administered intraperitoneally for 10 days in two cycles to induce neuropathic pain. Static and dynamic mechanical allodynia was evaluated using von Frey hair filaments and cotton buds, respectively. Paw thermal hyperalgesia was determined through a hot plate analgesiometer. The tail cold immersion hyperalgesia and paw cold allodynia were determined by available standard protocols. The formalin nociception was induced via subplantar injection of formalin. The antioxidant potential was evaluated via 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity. The outcome of this study revealed that CHD (30-45 mg/kg) and gabapentin (75 mg/kg) significantly enhanced the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in static and dynamic allodynia, respectively, and increased the PWL in thermal hyperalgesia and tail withdrawal latency (TWL) as compared to the VCR-treated group. CHD significantly augmented the paw withdrawal duration (PWD) in paw cold allodynia, while the same compound only increased the paw elevation and paw licking in the delayed phase of formalin nociception. Moreover, CHD significantly inhibited the DPPH free radical scavenging action (IC50 = 56), butylated hydroxytoluene (BHT) (IC50 = 39), and ascorbic acid (IC50 = 2.93). In conclusion, CHD exhibited a profile of potential attenuative effect against the VCR-induced neuropathic pain which might be attributed to its possible antinociceptive and antioxidant effect.
Collapse
|
9
|
Nguyen HX, Van Do TN, Nguyen MTT, Dang PH, Tho LH, Awale S, Nguyen NT. A New Alkenylphenol from the Propolis of Stingless Bee Trigona minor. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new alkenylphenol, 2-hydroxyl-6-(14' Z -nonadecenyl)benzoic acid (1), was isolated from the ethanolic extract of Vietnamese stingless bee propolis Trigona minor (Meliponini, Apidae), together with two known compounds (2 and 3). Their chemical structures were determined by extensive NMR spectroscopic analysis. All compounds were tested for preferential cytotoxicity against the PANC-1 human pancreatic cell line under nutrition-deprived conditions (NDM). Compound 1 exhibited the strongest preferential cytotoxicity, with a PC50 value of 2.4 μM.
Collapse
Affiliation(s)
- Hai Xuan Nguyen
- Faculty of Chemistry, VNUHCM–University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City Vietnam
| | - Truong Nhat Van Do
- Faculty of Chemistry, VNUHCM–University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City Vietnam
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, VNUHCM–University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City Vietnam
- Cancer Research Laboratory, VNUHCM–University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Phu Hoang Dang
- Faculty of Chemistry, VNUHCM–University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City Vietnam
| | - Le Huu Tho
- Faculty of Chemistry, VNUHCM–University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City Vietnam
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nhan Trung Nguyen
- Faculty of Chemistry, VNUHCM–University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City Vietnam
- Cancer Research Laboratory, VNUHCM–University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Four Prenylflavone Derivatives with Antiplasmodial Activities from the Stem of Tephrosia purpurea subsp. leptostachya. Molecules 2017; 22:molecules22091514. [PMID: 28891957 PMCID: PMC6151588 DOI: 10.3390/molecules22091514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/28/2017] [Accepted: 09/06/2017] [Indexed: 12/26/2022] Open
Abstract
Four new flavones with modified prenyl groups, namely (E)-5-hydroxytephrostachin (1), purleptone (2), (E)-5-hydroxyanhydrotephrostachin (3), and terpurlepflavone (4), along with seven known compounds (5–11), were isolated from the CH2Cl2/MeOH (1:1) extract of the stem of Tephrosia purpurea subsp. leptostachya, a widely used medicinal plant. Their structures were elucidated on the basis of NMR spectroscopic and mass spectrometric evidence. Some of the isolated compounds showed antiplasmodial activity against the chloroquine-sensitive D6 strains of Plasmodium falciparum, with (E)-5-hydroxytephrostachin (1) being the most active, IC50 1.7 ± 0.1 μM, with relatively low cytotoxicity, IC50 > 21 μM, against four cell-lines.
Collapse
|