1
|
Rana R, Sharma A, Kumar N, Khanna A, Jyoti, Dhir M, Gulati HK, Singh JV, Bedi PMS. A comprehensive review of synthetic and semisynthetic xanthine oxidase inhibitors: identification of potential leads based on in-silico computed ADME characteristics. Mol Divers 2024:10.1007/s11030-024-10962-1. [PMID: 39164505 DOI: 10.1007/s11030-024-10962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Xanthine oxidase (XO) inhibitors, both synthetic and semisynthetic, have been developed extensively over the past few decades. The increased level of XO is not only the major cause of gout but is also responsible for various conditions associated with hyperuricemia, such as cardiovascular disorders, chronic kidney disorders, diabetes, Alzheimer's disease and chronic wounds. Marketed available XO inhibitors (allopurinol, febuxostat, and topiroxostat) are used to treat hyperuricemia but they are associated with fatal side effects, which pose serious problems for the healthcare system, rising the need for new, more potent, safer compounds. This review summarizes recent findings on XO and describes their design, synthesis, biological significance in the development of anti-hyperuricemic drugs with ADME profile, structure activity relationship (SAR) and molecular docking studies. The results might help medicinal chemists to develop more efficacious XO inhibitors.
Collapse
Affiliation(s)
- Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Muskan Dhir
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
2
|
Singh A, Debnath R, Chawla V, Chawla PA. Heterocyclic compounds as xanthine oxidase inhibitors for the management of hyperuricemia: synthetic strategies, structure-activity relationship and molecular docking studies (2018-2024). RSC Med Chem 2024; 15:1849-1876. [PMID: 38911168 PMCID: PMC11187568 DOI: 10.1039/d4md00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 06/25/2024] Open
Abstract
Hyperuricemia is characterized by higher-than-normal levels of uric acid in the bloodstream. This condition can increase the likelihood of developing gout, a form of arthritis triggered by the deposition of urate crystals in the joints, leading to inflammation and pain. An essential part of purine metabolism is played by the enzyme xanthine oxidase (XO), which transforms xanthine and hypoxanthine into uric acid. Despite its vital role, diseases such as gout have been associated with elevated uric acid levels, which are linked to increased XO activity. To manage hyperuricemia, this study focuses on potential nitrogen based heterocyclic compounds that may serve as XO inhibitors which may lower uric acid levels and prevent hyperuricemia. Xanthine oxidase inhibitors are a class of medications used to treat conditions like gout by reducing the production of uric acid. The present study demonstrates numerous compounds, particularly nitrogen containing heterocyclic compounds including their synthesis, structure-activity relationship, and molecular docking studies. This paper also contains drugs undergoing clinical studies and the xanthine oxidase inhibitors that have been approved by the FDA.
Collapse
Affiliation(s)
- Arshdeep Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy Ghal Kalan, G.T Road Moga Punjab 142001 India
| | - Rabin Debnath
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy Ghal Kalan, G.T Road Moga Punjab 142001 India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences Faridkot 151203 Punjab India
| | - Pooja A Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences Faridkot 151203 Punjab India
| |
Collapse
|
3
|
Kumar N, Kaur K, Kaur N, Singh E, Bedi PMS. Pathology, target discovery, and the evolution of XO inhibitors from the first discovery to recent advances (2020-2023). Bioorg Chem 2024; 143:107042. [PMID: 38118298 DOI: 10.1016/j.bioorg.2023.107042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
Hyperuricemia, a disease characterized by elevation of serum uric acid level beyond 6 mg/dL. This elevation led to appearance of symptoms from joint pain to gout and from gout to difficulty in mobility of the patient. So, in this review, we have summarized the pathology of hyperuricemia, discovery of target and discovery of first XO inhibitor. At last, this review provides in-sights about the recently discovered as natural XO inhibitors, followed by design, structure activity relationship and biological activity of synthetic compounds as XO inhibitors discovered between 2020 and 2023 years. At last, the pharmacophores generated in this study will guide new researchers to design and modify the structure of novel XO inhibitors.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Navjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Ekampreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | | |
Collapse
|
4
|
Zheng Z, Wu L, Deng W, Yi K, Li Y. Polyphenol Composition, Antioxidant Capacity and Xanthine Oxidase Inhibition Mechanism of Furong Plum Fruits at Different Maturity Stages. Foods 2023; 12:4253. [PMID: 38231765 PMCID: PMC10705914 DOI: 10.3390/foods12234253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
An experiment was conducted on the polyphenol content, flavonoid content, anthocyanin content, and antioxidant capacity of Furong plum (Prunus salicina Lindl. cv. "furong") at different maturity stages to determine the most suitable maturity stage. The inhibition of plum polyphenols on xanthine oxidase (XOD) was measured, and its kinetics were studied to reveal the inhibitory mechanism. The experimental results showed that the polyphenol, flavonoid and anthocyanin contents of plums at the ripe stage were the highest, reaching 320.46 mg GAE/100 g FW, 204.21 mg/100 g FW, and 66.24 mg/100 g FW, respectively, in comparison those of the plums at the immature and mid-ripe stages. The antioxidant capacity of the ripe plums was stronger than it was during the other stages of the plums growth. Among them, the total polyphenols of the ripe plums exhibited the strongest antioxidant capacity (IC50 values against DPPH and hydroxyl radicals were 28.19 ± 0.67 μg/mL and 198.16 ± 7.55 μg/mL, respectively), which was between the antioxidant capacity of the free polyphenols and bound polyphenols. The major phenolic monomer compounds of plum polyphenols were flavan-3-ols (epicatechin, catechin, proanthocyanidin, and procyanidin B2), flavonols (myricetin), and phenolic acids (chlorogenic acid, ferulic acid, and protocatechuic acid). Additionally, plum polyphenols exhibited a strong inhibitory effect on XOD, with an IC50 value of 77.64 μg/mL. The inhibition kinetics showed that plum polyphenols are mixed-type inhibitors that inhibit XOD activity and that the inhibition process is reversible. The calculated values of Ki and α were 16.53 mmol/L and 0.26, respectively.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Wei Deng
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kexin Yi
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
5
|
Fais A, Pintus F, Era B, Floris S, Kumar A, Sarmadhikari D, Sogos V, Uriarte E, Asthana S, Matos MJ. Design of 3-Phenylcoumarins and 3-Thienylcoumarins as Potent Xanthine Oxidase Inhibitors: Synthesis, Biological Evaluation, and Docking Studies. ChemMedChem 2023; 18:e202300400. [PMID: 37801332 DOI: 10.1002/cmdc.202300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Coumarin scaffold has proven to be promising in the development of bioactive agents, such as xanthine oxidase (XO) inhibitors. Novel hydroxylated 3-arylcoumarins were designed, synthesized, and evaluated for their XO inhibition and antioxidant properties. 3-(3'-Bromophenyl)-5,7-dihydroxycoumarin (compound 11) proved to be the most potent XO inhibitor, with an IC50 of 91 nM, being 162 times better than allopurinol, one of the reference controls. Kinetic analysis of compound 11 and compound 5 [3-(4'-bromothien-2'-yl)-5,7-dihydroxycoumarin], the second-best compound within the series (IC50 of 280 nM), has been performed, and both compounds showed a mixed-type inhibition. Both compounds present good antioxidant activity (ability to scavenge ABTS radical) and are able to reduce reactive oxygen species (ROS) levels in H2 O2 -treated cells. In addition, they proved to be non-cytotoxic in a Caco-2 cells viability assay. Molecular docking studies have been carried out to correlate the compounds' theoretical and experimental binding affinity to the XO binding pocket.
Collapse
Affiliation(s)
- Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Cagliari, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Cagliari, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Cagliari, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Monserrato, Italy
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912, Santiago, Chile
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Hu SS, Zhang TJ, Wang ZR, Xu EY, Wang QY, Zhang X, Guo S, Ge GH, Wang J, Meng FH. Design, synthesis and structure-activity relationship of N-phenyl aromatic amide derivatives as novel xanthine oxidase inhibitors. Bioorg Chem 2023; 133:106403. [PMID: 36801790 DOI: 10.1016/j.bioorg.2023.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Our previous studies suggested that N-phenyl aromatic amides are a class of promising xanthine oxidase (XO) inhibitor chemotypes. In this effort, several series of N-phenyl aromatic amide derivatives (4a-h, 5-9, 12i-w, 13n, 13o, 13r, 13s, 13t and 13u) were designed and synthesized to carry out an extensive structure-activity relationship (SAR). The investigation provided some valuable SAR information and identified N-(3-(1H-imidazol-1-yl)-4-((2-methylbenzyl)oxy)phenyl)-1H-imidazole-4-carboxamide (12r, IC50 = 0.028 µM) as the most potent XO inhibitor with close in vitro potency to that of topiroxostat (IC50 = 0.017 µM). Molecular docking and molecular dynamics simulation rationalized the binding affinity through a series of strong interactions with the residues Glu1261, Asn768, Thr1010, Arg880, Glu802, etc. In vivo hypouricemic studies also suggested that the uric acid lowering effect of compound 12r was improved compared with the lead g25 (30.61 % vs 22.4 % reduction in uric acid levels at 1 h; 25.91 % vs 21.7 % reduction in AUC of uric acid) . Pharmacokinetic studies revealed that compound 12r presented a short t1/2 of 0.25 h after oral administration. In addition, 12r has non-cytotoxicity against normal cell HK-2. This work may provide some insights for further development of novel amide-based XO inhibitors.
Collapse
Affiliation(s)
- Sen-Sen Hu
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China
| | - Ting-Jian Zhang
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China
| | - Zhao-Ran Wang
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China
| | - En-Yu Xu
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China
| | - Qiu-Yin Wang
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China
| | - Xu Zhang
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China
| | - Shuai Guo
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China
| | - Gong-Hui Ge
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China
| | - Jing Wang
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, 77, Puhe Road, North New Area, Shenyang 110122, China.
| |
Collapse
|
7
|
Chen S, Chen Y, Yang Z, Huang W, Cao Z, Wang X, Yao H, Li Z, Wang G. Design, Synthesis and Biological Activity of Low‐Molecular‐Weight URAT1 Inhibitors**. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202204440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Siliang Chen
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Specialty of Clinical Pharmacy The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Ya Chen
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Specialty of Clinical Pharmacy The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhongcheng Yang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Wanqiu Huang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhijun Cao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Xuekun Wang
- College of Pharmacy Liaocheng University Liaocheng 252059 PR China
| | - Huixin Yao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Zheng Li
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Specialty of Clinical Pharmacy The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Guangji Wang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| |
Collapse
|
8
|
Singh A, Kaur K, Kaur H, Mohana P, Arora S, Bedi N, Chadha R, Bedi PMS. Design, synthesis and biological evaluation of isatin-benzotriazole hybrids as new class of anti-Candida agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Kumar N, Rajput A, Kaur H, Sharma A, Bhagat K, Singh JV, Arora S, Bedi PMS. Shikonin derivatives as potent xanthine oxidase inhibitors: in-vitro study. Nat Prod Res 2022:1-6. [PMID: 36214700 DOI: 10.1080/14786419.2022.2132499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Induction of hypersensitivity reactions (may be fatal too) by specific XO inhibitors has led to development of new molecules that are efficacious and have safer ADME profile. Among natural compounds, biologically active Alkannin/Shikonin (A/S) derivatives have unexplored XO inhibition potential. Therefore, their iso-hexenylnaphthazarin nucleus was studied and found that the nucleus is similar to that of allopurinol, signifying the XO inhibitory potential of these derivatives. For confirmation of their potential, β,β-dimethylacrylshikonin and deoxyshikonin were successfully isolated and characterised from Arnebia euchroma (Royle.) Johnst. (Boraginaceae) and were evaluated for in vitro XO inhibitory potential. β,β-dimethylacrylshikonin and deoxyshikonin showed a good XO inhibition potential with IC50 values of 7.475 ± 1.46 µg/mL and 4.487 ± 0.88 µg/mL, respectively. Results also validated the pharmacophore hypothesis, and it was concluded that nucleus iso-hexenylnaphthazarin can be remodelled for optimising the efficacy.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.,Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harmandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.,Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
10
|
Hashemi SM, Hosseini-Khah Z, Mahmoudi F, Emami S. Synthesis of 4-Hydroxycoumarin-Based Triazoles/Oxadiazoles as Novel Anticancer Agents. Chem Biodivers 2022; 19:e202200043. [PMID: 36181443 DOI: 10.1002/cbdv.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022]
Abstract
A series of novel 3-substituted-4-hydroxycoumarins 7 and 8 containing (5-aryl-1,3,4-oxadiazol-2-yl)thio or (4-amino-5-aryl-4H-1,2,4-triazol-3-yl)thio moieties have been synthesized and evaluated as anticancer agents. The in vitro MTT assay of compounds against hepatocellular carcinoma (HepG2), breast cancer (MCF7) cells, and a human colorectal adenocarcinoma cell line with epithelial morphology (HT29) indicated that the HepG2 cells had more susceptibility to the tested compounds. Indeed, all compounds (with the exception of 7b, 7c, 7g, and 8g) were more potent than the standard drug doxorubicin against HepG2 cells (IC50 values=1.65-3.83 μM). Although, the better result was obtained with the oxadiazole analog 7h against HepG2 (IC50 =1.65 μM), the N-amino-triazole derivatives 8c, 8e, 8f and, 8h with IC50 values of 1.78-6.34 μM showed potent activity against all tested cell lines. The good drug-like properties and in vitro potency and selectivity of 4-hydroxycoumarins 8 make them as good leads for the development of new anticancer agents.
Collapse
Affiliation(s)
- Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseini-Khah
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Mahmoudi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Li J, Li J, Fan L. Recent Advances in Alleviating Hyperuricemia Through Dietary Sources: Bioactive Ingredients and Structure–activity Relationships. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2124414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jun Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jinwei Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liuping Fan
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Singh H, Agrawal DK. Recent advances in the development of active hybrid molecules in the treatment of cardiovascular diseases. Bioorg Med Chem 2022; 62:116706. [PMID: 35364524 PMCID: PMC9018605 DOI: 10.1016/j.bmc.2022.116706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
Abstract
Multifactorial nature of the underlying pathophysiology of chronic disorders hinders in the effective treatment and management of many complex diseases. The conventional targeted therapies have limited applications due to highly complicated disease etiology. Cardiovascular diseases (CVDs) are the group of disorders of the heart and blood vessels. Currently, there is limited knowledge on the underlying cellular and molecular mechanisms of many of the CVDs due to their complex pathophysiology and co-morbidities. Their management with conventional medications results in failure due to adverse drug reactions and clinical specificity of solo-targeting drug therapy. Therefore, it is critical to introduce an alternative strategy to treat multi-factorial diseases. In the past few years, discovery and use of multi-targeted drug therapy with hybrid molecules have shown promising results with minimal side effects, and thus considered a most effective approach. In this review article, prominent hybrid molecules combining with different active moieties are reported to synergistically and simultaneously block different pathways involved in CVDs. Here, we provide a critical evaluation and discussion on their pharmacology with mechanistic insights and the structure activity relationship. The timely information provided in this article reveals the recent trends of molecular hybridization to the scientific community interested in CVDs and help them in designing the next generation of multi-targeting drug therapeutics.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
13
|
Singh A, Heer S, Kaur K, Gulati HK, Kumar N, Sharma A, Singh JV, Bhagat K, Kaur G, Kaur K, Singh H, Chadha R, Bedi PMS. Design, synthesis, and biological evaluation of isatin-indole-3-carboxaldehyde hybrids as a new class of xanthine oxidase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200033. [PMID: 35315115 DOI: 10.1002/ardp.202200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/31/2022]
Abstract
A novel series of triazole-linked isatin-indole-3-carboxaldehyde hybrids based on the febuxostat skeleton and its binding site interactions were rationally designed and synthesized as potential xanthine oxidase inhibitors. Among the synthesized hybrids, A19 showed the most potent xanthine oxidase inhibition (IC50 = 0.37 µM) with the mixed-type inhibitory scenario. Structure-activity relationship studies revealed that methoxy (OCH3 ) substitution on position 5 of the isatin nucleus and a two-carbon distance between isatin and the triazole moiety is most tolerable for the inhibitory potential. Various binding interactions of A19 with the binding site of xanthine oxidase are also streamlined by molecular docking studies, which showcase the favorable binding pattern for xanthine oxidase inhibition by the hybrid. Furthermore, molecular dynamic studies were performed that suggest the stability of the enzyme-hybrid complex. Overall, the study suggests that hybrid A19 can act as an effective hit lead for further development of potent xanthine oxidase inhibitors.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shilpa Heer
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harmandeep K Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jatinder V Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gurinder Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh, India
| | - Preet M S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.,Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
14
|
Keri RS, Budagumpi S, Balappa Somappa S. Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure-activity relationship. J Clin Pharm Ther 2022; 47:915-931. [PMID: 35288962 DOI: 10.1111/jcpt.13644] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The main objective of this review is to highlight the most relevant studies since 1990 (to date) in the area of medicinal chemistry aspects to provide a panoramic view to the biologists/medicinal chemists working in this area and would assist them in their efforts to design, synthesize and extract (from natural source) coumarin-based anticonvulsant agents. Also, the structure-activity relationship (SAR) studies are also discussed for further rational design of this kind of derivatives. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic coumarin-based antiepileptic agents. METHODS A literature review emphasizing the application of coumarin core as antiepileptic agents identify articles related to the topic; we performed a standardized search from 1990 to November 2021, using search engines like Scifinder, web of Science, Pubmed and Scopus. RESULTS AND DISCUSSION This review gives an overview of attempts to shed light and compile published reports on coumarin derivatives along with some opinions on different approaches to help the medicinal chemists in designing future generation potent yet safer anticonvulsant agents. The possible structure-activity relationships (SARs) will also be discussed to indicate the direction for the rational design of more effective candidates. WHAT IS NEW AND CONCLUSION The findings from this review provide new indications or directions for the discovery of new and better drugs from synthetic and naturally occurring coumarins as antiepileptic agents. In our review, we have tried to depict the recent researches which made in the design and development of novel anticonvulsant compounds with coumarin nucleus. Also, SAR of expressed derivatives indicated that the choice of a fitting substitution containing electron-withdrawing/donating groups to coumarin or with some heterocyclic moieties joined to parent coumarin skeleton assumes an essential role in changing the anticonvulsant activity of synthesized derivatives. These findings encourage the scientific community towards the optimization of the pharmacological profile of this structural moiety as an important scaffold for the treatment of epilepsy.
Collapse
Affiliation(s)
- Rangappa S Keri
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | | | - Sasidhar Balappa Somappa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Organic Chemistry Section, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| |
Collapse
|
15
|
Amide-based xanthine oxidase inhibitors bearing an N-(1-alkyl-3-cyano-1H-indol-5-yl) moiety: Design, synthesis and structure-activity relationship investigation. Bioorg Chem 2021; 117:105417. [PMID: 34673452 DOI: 10.1016/j.bioorg.2021.105417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Our previous work identified a promising isonicotinamide based xanthine oxidase (XO) inhibitor, N-(3-cyano-4-((2-cyanobenzyl)oxy)phenyl)isonicotinamide (1), and concluded that amide is an effective linker in exploring the XO inhibitor chemical space that is completely different from the five-membered ring framework of febuxostat and topiroxostat. Indole, an endogenous bioactive substance and a popular drug construction fragment, was involved in the structural optimization campaign of the present effort. After the installation of some functional groups, N-(1-alkyl-3-cyano-1H-indol-5-yl) was generated and employed to mend the missing H-bond interaction between the 3'-cyano of 1 and Asn768 residue of XO by shortening their distance. In this context, eight kinds of heterocyclic aromatic amide chemotypes were rationally designed and synthesized to investigate the structure-activity relationship (SAR) of amide-based XO inhibitors. The optimized compound a6 (IC50 = 0.018 μM) exhibits 17.2-fold improved potency than the initial compound 1 (IC50 = 0.31 μM). Its potency is comparable to that of topiroxostat (IC50 = 0.013 μM). Molecular docking and molecular dynamics studies proved the existence of the stable H-bond between the cyano group and the Asn768 residue. Moreover, oral administration of a6 (11.8 mg/kg) could effectively reduce serum uric acid levels in an acute hyperuricemia rat model. Liver microsomal stability assay illustrated that compound a6 possesses well metabolic stability in rat liver microsomes. However, the in vivo potency of a6 was much lower than that of topiroxostat, which may be explained by the poor absorption found in the parallel artificial membrane permeability assay (PAMPA). In addition, 6a has non-cytotoxicity against normal cell lines MCF10A and 16HBE. Taken together, this work culminated in the identification of compound 6a as an excellent lead for further exploration of amide-based XO inhibitors.
Collapse
|
16
|
Synthesis and biological evaluation of 1,6-bis-triazole-2,3,4-tri-O-benzyl-α-d-glucopyranosides as a novel α-glucosidase inhibitor in the treatment of Type 2 diabetes. Bioorg Med Chem Lett 2021; 50:128331. [PMID: 34418573 DOI: 10.1016/j.bmcl.2021.128331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022]
Abstract
A novel series of 1,6-bis-triazole-benzyl-α-glucoside derivatives (7a-7ee) were designed, synthesized and evaluated for inhibitory activity against α-glucosidase. Most of the synthesized compounds exhibited good activity with IC50 ranging from 3.73 µM to 53.34 µM and are more potent than the standard drug acarbose (IC50 = 146.25 ± 0.40 µM). SARs study showed the ester and menthol moiety play an important role in the inhibitory activity. The molecular docking model of the potent compounds 7f, 7z, 7cc and 7dd showed good binding energy and interacts well with amino acid residues around the active site of the enzyme, which confirmed the in vitro activity results.
Collapse
|
17
|
Linani A, Benarous K, Bou-Salah L, Yousfi M. Hispidin, Harmaline, and Harmine as potent inhibitors of bovine xanthine oxidase: Gout treatment, in vitro, ADMET prediction, and SAR studies. Bioorg Chem 2021; 112:104937. [PMID: 33932770 DOI: 10.1016/j.bioorg.2021.104937] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/19/2021] [Indexed: 01/20/2023]
Abstract
Alkaloids and phenols are potent inhibitors family for many enzymes used in many therapies. We aim to evaluate in vitro and in silico, the inhibition effect of Hispidin, Harmaline, and Harmine as pure molecules to bovine milk xanthine oxidase (BXO), Molecular docking and SAR study with GOLD was done to explain the mechanism of action related to its inhibition, ADMET parameters were checked to confirm their pharmacokinetics (PK) using preADMET 2.0 server, we classified our inhibitors by applying five drug-likeness rules, the best-ranked inhibitors were chosen based on the approved ADMET properties, drug-likeness qualifications, and the best PLPchem score generated by GOLD. The in vitro results show important inhibition activity to BXO comparing to the control with an IC50 of 39.72 ± 3.60 µM, 51.00 ± 1.0 µM, and 48.52 ± 1.76 µM for Hispidin, Harmaline, and Harmine respectively. The in silico results show that Hispidin was the best inhibitor model with approved ADMET properties and qualification in all drug-likeness rules; Harmaline was saved second-best model to BXO with suitable ADMET properties and qualified in most drug-likeness rules. Eventually, Harmine was ranked third potent inhibitor model with acceptable ADMET properties, drug-likeness rules, and PLPchem score. The tested inhibitors could be significant in drug discovery, especially in treating gout disease; therefore, drug development, including clinical trials, should be done with promising results.
Collapse
Affiliation(s)
- Abderahmane Linani
- Fundamental Sciences Laboratory, Amar Telidji University, Ghardaïa Road BP37G (03000), Laghouat, Algeria.
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Ghardaïa Road BP37G (03000), Laghouat, Algeria; Biology Department, Amar Telidji University, Laghouat, Algeria
| | - Leila Bou-Salah
- Fundamental Sciences Laboratory, Amar Telidji University, Ghardaïa Road BP37G (03000), Laghouat, Algeria
| | - Mohamed Yousfi
- Fundamental Sciences Laboratory, Amar Telidji University, Ghardaïa Road BP37G (03000), Laghouat, Algeria
| |
Collapse
|
18
|
Konidala SK, Kotra V, Danduga RCSR, Kola PK. Coumarin-chalcone hybrids targeting insulin receptor: Design, synthesis, anti-diabetic activity, and molecular docking. Bioorg Chem 2020; 104:104207. [PMID: 32947135 DOI: 10.1016/j.bioorg.2020.104207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/25/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
Four series of thirteen new coumarin-chalcone hybrids (DPCU 1-13, DPCT 1-13, DCCU 1-13 and DCCT 1-13) were designed and synthesized using Biginelli synthesis, Pechmann condensation, Acetylation, and Claisen-Schmidt reactions. Synthesized compounds were tested for insulin receptor in silico docking studies (PDB ID: 1IR3); DCCU 13 and DCCT 13 derivatives received the lowest docking score; Streptozocin (STZ) and Nicotinamide (NA) induced type II diabetes was tested for their anti-diabetic activity in rats. In vivo tests suggested that fasting blood glucose levels of animals treated with DCCU 13 (30 mg/kg body weight) and DCCT 13 (30 mg/kg body weight) were significantly and moderately suppressed, respectively, relative to fasting blood glucose levels of diabetic control animals. Similarly, therapy with DCCU 13 and DCCT 13 attenuated oxidative stress parameters such as lipid peroxidation (MDA), superoxide dismutase (SOD) and increased the glutathione (GSH) in the liver and pancreas in a dose-dependent manner. In comparison, therapy with DCCU 13 (30 mg/kg body weight) mitigated alterations in the histological architecture of the liver and pancreatic tissue. These results indicated that the hybrids DUUC 13 and DCCT 13 at 30 mg/kg had an anti-hyperglycemic and antioxidant impact on STZ + NA mediated type II diabetes in rats. Further detailed work could be required to determine the precise mode of action of the anti-diabetic behavior of hybrids.
Collapse
Affiliation(s)
- Sathish Kumar Konidala
- University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, A.P. 522510, India; School of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology, and Research, Guntur, Andhra Pradesh 522213, India
| | - Vijay Kotra
- Faculty of Pharmacy, Quest International University Perak (QIUP), Ipoh, Malaysia
| | | | - Phani Kumar Kola
- University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, A.P. 522510, India.
| |
Collapse
|