1
|
Allais-Bonnet A, Richard C, André M, Gelin V, Deloche MC, Lamadon A, Morin G, Mandon-Pépin B, Canon E, Thépot D, Laubier J, Moazami-Goudarzi K, Laffont L, Dubois O, Fassier T, Congar P, Lasserre O, Aguirre-Lavin T, Vilotte JL, Pailhoux E. CRISPR/Cas9-editing of PRNP in Alpine goats. Vet Res 2025; 56:11. [PMID: 39806509 PMCID: PMC11731167 DOI: 10.1186/s13567-024-01444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
Misfolding of the cellular PrP (PrPc) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrPc induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrPc-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides. The targeted region preceded the PRNPTer mutation previously described in Norwegian goats. Genome editors were injected under the zona pellucida prior to the electroporation of 565 Alpine goat embryos/oocytes. A total of 122 two-cell-stage embryos were transferred to 46 hormonally synchronized recipient goats. Six of the goats remained pregnant and naturally gave birth to 10 offspring. Among the 10 newborns, eight founder animals carrying PRNP genome-edited alleles were obtained. Eight different mutated alleles were observed, including five inducing KO mutations. Three founders carried only genome-edited alleles and were phenotypically indistinguishable from their wild-type counterparts. Among them, one male carrying a one base pair insertion leading to a KO allele is currently used to rapidly extend a PRNP-KO line of Alpine goats for future characterization. In addition to KO alleles, a PRNPdel6 genetic variant has been identified in one-third of founder animals. This new variant will be tested for its potential properties with respect to prion disease. Future studies will also evaluate the effects of genetic background on other characters associated with PRNP KO, as previously described in the Norwegian breed or other species.
Collapse
Affiliation(s)
- Aurélie Allais-Bonnet
- Eliance, Paris, France
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Christophe Richard
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Marjolaine André
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Valérie Gelin
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Marie-Christine Deloche
- Eliance, Paris, France
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Aurore Lamadon
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | | | - Béatrice Mandon-Pépin
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Eugénie Canon
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Dominique Thépot
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Johann Laubier
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Ludivine Laffont
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Olivier Dubois
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Thierry Fassier
- INRAE, UE P3R Bourges, Domaine de Bourges, 31326, Osmoy, France
| | | | | | | | - Jean-Luc Vilotte
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Pailhoux
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
2
|
Benarroch E. What Are the Roles of Cellular Prion Protein in Normal and Pathologic Conditions? Neurology 2024; 102:e209272. [PMID: 38484222 DOI: 10.1212/wnl.0000000000209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
|
3
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
4
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
5
|
Evolution of Transmissible Spongiform Encephalopathies and the Prion Protein Gene (PRNP) in Mammals. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Cha S, Sin MJ, Kim MJ, Kim HJ, Kim YS, Choi EK, Kim MY. Involvement of Cellular Prion Protein in Invasion and Metastasis of Lung Cancer by Inducing Treg Cell Development. Biomolecules 2021; 11:biom11020285. [PMID: 33671884 PMCID: PMC7918983 DOI: 10.3390/biom11020285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
The cellular prion protein (PrPC) is a cell surface glycoprotein expressed in many cell types that plays an important role in normal cellular processes. However, an increase in PrPC expression has been associated with a variety of human cancers, where it may be involved in resistance to the proliferation and metastasis of cancer cells. PrP-deficient (Prnp0/0) and PrP-overexpressing (Tga20) mice were studied to evaluate the role of PrPC in the invasion and metastasis of cancer. Tga20 mice, with increased PrPC, died more quickly from lung cancer than did the Prnp0/0 mice, and this effect was associated with increased transforming growth factor-beta (TGF-β) and programmed death ligand-1 (PD-L1), which are important for the development and function of regulatory T (Treg) cells. The number of FoxP3+CD25+ Treg cells was increased in Tga20 mice compared to Prnp0/0 mice, but there was no significant difference in either natural killer or cytotoxic T cell numbers. In addition, mice infected with the ME7 scrapie strain had decreased numbers of Treg cells and decreased expression of TGF-β and PD-L1. These results suggest that PrPC plays an important role in invasion and metastasis of cancer cells by inducing Treg cells through upregulation of TGF-β and PD-L1 expression.
Collapse
Affiliation(s)
- Seunghwa Cha
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
| | - Mi-Ji Sin
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
| | - Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Correspondence: (E.-K.C.); (M.-Y.K.)
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
- Correspondence: (E.-K.C.); (M.-Y.K.)
| |
Collapse
|
7
|
Carvalho JF, Viana VS, Leon EP, Bonfa E, Pasoto SG, Martins VR. RETRACTED: Antibodies to cellular prion protein and its cognate ligand stress-inducible protein 1 in systemic lupus erythematosus. Lupus 2020; 29:NP1-NP7. [PMID: 32588733 DOI: 10.1177/0961203320935987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jozélio F Carvalho
- Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vilma St Viana
- Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Elaine P Leon
- Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Eloisa Bonfa
- Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sandra G Pasoto
- Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vilma R Martins
- Ludwig Institute for Cancer Research, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| |
Collapse
|
8
|
Butnaru D, Chapman J. The impact of self-replicating proteins on inflammation, autoimmunity and neurodegeneration-An untraveled path. Autoimmun Rev 2019; 18:231-240. [PMID: 30639644 DOI: 10.1016/j.autrev.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) in neurodegenerative diseases is a battlefield in which microglia fight a highly atypical battle. During the inflammatory process microglia themselves become dysfunctional and even with all the available immune arsenal including cytokine or/and antibody production, the battle is eventually lost. A closer look into the picture will reveal the fact that this is mainly due to the atypical characteristics of the infectious agent. The supramolecular assemblies of misfolded proteins carry unique features not encountered in any of the common pathogens. Through misfolding, proteins undergo conformational changes which make them become immunogenic, neurotoxic and highly infective. The immunogenicity appears to be triggered by the exposure of previously hidden hydrophobic portions in proteins which act as damage-associated molecular patters (DAMPs) for the immune system. The neurotoxicity and infectivity are promoted by the small oligomeric forms of misfolded proteins/peptides. Oligomers adopt conformations such as tubular-like, beta-barrel-like, etc., that penetrate cell membranes through their hydrophobic surfaces, thus destabilizing ionic homeostasis. At the same time, oligomers act as a seed for protein misfolding through a prion/prion-like mechanism. Here, we propose the hypothesis that oligomers have catalytic surfaces and exercise their capacity to infect native proteins through specific characteristics such as hydrophobic, electrostatic and π-π stacking interactions as well as the specific surface area (SSA), surface curvature and surface chemistry of their nanoscale supramolecular assemblies. All these are the key elements for prion/prion-like mechanism of self-replication and disease spreading within the CNS. Thus, understanding the mechanism of prion's templating activity may help us in the prevention and development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Dana Butnaru
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.
| | - Joab Chapman
- Sheba Medical Center, Israel; Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
9
|
Esnault S, Hebert AS, Jarjour NN, Coon JJ, Mosher DF. Proteomic and Phosphoproteomic Changes Induced by Prolonged Activation of Human Eosinophils with IL-3. J Proteome Res 2018; 17:2102-2111. [PMID: 29706072 DOI: 10.1021/acs.jproteome.8b00057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purified human eosinophils treated for 18-24 h with IL-3 adopt a unique activated phenotype marked by increased reactivity to aggregated immunoglobulin-G (IgG). To characterize this phenotype, we quantified protein abundance and phosphorylation by multiplexed isobaric labeling combined with high-resolution mass spectrometry. Purified blood eosinophils of five individuals were treated with IL-3 or no cytokine for 20 h, and comparative data were obtained on abundance of 5385 proteins and phosphorylation at 7330 sites. The 1150 proteins that were significantly up-regulated ( q < 0.05, pairwise t test with Benjamini-Hochberg correction) by IL-3 included the IL3RA and CSF2RB subunits of the IL-3 receptor, the low-affinity receptor for IgG (FCGR2B), 96 proteins involved in protein translation, and 55 proteins involved in cytoskeleton organization. Among the 703 proteins that decreased were 78 mitochondrial proteins. Dynamic regulation of protein phosphorylation was detected at 4218 sites. These included multiple serines in CSF2RB; Y694 of STAT5, a key site of activating phosphorylation downstream of IL3RA/CSF2RB; and multiple sites in RPS6KA1, RPS6, and EIF4B, which are responsible for translational initiation. We conclude that IL-3 up-regulates overall protein synthesis and targets specific proteins for up-regulation, including its own receptor.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of Medicine , University of Wisconsin , Madison , Wisconsin 53792 , United States
| | - Alexander S Hebert
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Nizar N Jarjour
- Department of Medicine , University of Wisconsin , Madison , Wisconsin 53792 , United States
| | - Joshua J Coon
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States.,Department of Biomolecular Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States.,Morgridge Institute for Research , Madison , Wisconsin 53715 , United States.,Genome Center of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Deane F Mosher
- Department of Medicine , University of Wisconsin , Madison , Wisconsin 53792 , United States.,Department of Biomolecular Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| |
Collapse
|
10
|
Hirsch TZ, Martin-Lannerée S, Mouillet-Richard S. Functions of the Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:1-34. [PMID: 28838656 DOI: 10.1016/bs.pmbts.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although initially disregarded compared to prion pathogenesis, the functions exerted by the cellular prion protein PrPC have gained much interest over the past two decades. Research aiming at unraveling PrPC functions started to intensify when it became appreciated that it would give clues as to how it is subverted in the context of prion infection and, more recently, in the context of Alzheimer's disease. It must now be admitted that PrPC is implicated in an incredible variety of biological processes, including neuronal homeostasis, stem cell fate, protection against stress, or cell adhesion. It appears that these diverse roles can all be fulfilled through the involvement of PrPC in cell signaling events. Our aim here is to provide an overview of our current understanding of PrPC functions from the animal to the molecular scale and to highlight some of the remaining gaps that should be addressed in future research.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Séverine Martin-Lannerée
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Sophie Mouillet-Richard
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France.
| |
Collapse
|
11
|
Zafar S, Behrens C, Dihazi H, Schmitz M, Zerr I, Schulz-Schaeffer WJ, Ramljak S, Asif AR. Cellular prion protein mediates early apoptotic proteome alternation and phospho-modification in human neuroblastoma cells. Cell Death Dis 2017; 8:e2557. [PMID: 28102851 PMCID: PMC5386350 DOI: 10.1038/cddis.2016.384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023]
Abstract
Anti-apoptotic properties of physiological and elevated levels of the cellular prion protein (PrPc) under stress conditions are well documented. Yet, detrimental effects of elevated PrPc levels under stress conditions, such as exposure to staurosporine (STS) have also been described. In the present study, we focused on discerning early apoptotic STS-induced proteome and phospho-proteome changes in SH-SY5Y human neuroblastoma cells stably transfected either with an empty or PRNP-containing vector, expressing physiological or supraphysiological levels of PrPc, respectively. PrPc-overexpression per se appears to stress the cells under STS-free conditions as indicated by diminished cell viability of PrPc-overexpressing versus control cells. However, PrPc-overexpression becomes advantageous following exposure to STS. Thus, only a short exposure (2 h) to 1 μM STS results in lower survival rates and significantly higher caspase-3 activity in control versus PrPc-overexpressing cells. Hence, by exposing both experimental groups to the same apoptotic conditions we were able to induce apoptosis in control, but not in PrPc-overexpressing cells (as assessed by caspase-3 activity), which allowed for filtering out proteins possibly contributing to protection against STS-induced apoptosis in PrPc-overexpressing cells. Among other proteins regulated by different PrPc levels following exposure to STS, those involved in maintenance of cytoskeleton integrity caught our attention. In particular, the finding that elevated PrPc levels significantly reduce profilin-1 (PFN-1) expression. PFN-1 is known to facilitate STS-induced apoptosis. Silencing of PFN-1 expression by siRNA significantly increased viability of PrPc-overexpressing versus control cells, under STS treatment. In addition, PrPc-overexpressing cells depleted of PFN-1 exhibited increased viability versus PrPc-overexpressing cells with preserved PFN-1 expression, both subjected to STS. Concomitant increase in caspase-3 activity was observed in control versus PrPc-overexpressing cells after treatment with siRNA- PFN-1 and STS. We suggest that reduction of PFN-1 expression by elevated levels of PrPc may contribute to protective effects PrPc-overexpressing SH-SY5Y cells confer against STS-induced apoptosis.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Christina Behrens
- Department of Neuropathology, Georg-August University, Goettingen 37075, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University, Goettingen 37075, Germany
| | - Matthias Schmitz
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Inga Zerr
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | | | | | - Abdul R Asif
- Institute for Clinical Chemistry / UMG-Laboratories, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| |
Collapse
|
12
|
ONODERA T. Dual role of cellular prion protein in normal host and Alzheimer's disease. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:155-173. [PMID: 28413194 PMCID: PMC5489426 DOI: 10.2183/pjab.93.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 06/07/2023]
Abstract
Using PrPC-knockout cell lines, it has been shown that the inhibition of apoptosis through STI1 is mediated by PrPC-dependent SOD activation. Antioxidant PrPC may contribute to suppression of inflammasome activation. PrPC is functionally involved in copper metabolism, signal transduction, neuroprotection, and cell maturation. Recently several reports have shown that PrPC participates in trans-membrane signaling processes associated with hematopoietic stem cell replication and neuronal differentiation. In another role, PrPC also tends to function as a neurotoxic protein. Aβ oligomer, which is associated with neurodegeneration in Alzheimer's disease (AD), has also been reported to act as a ligand of PrPC. However, the physiological role of PrPC as an Aβ42-binding protein is not clear. Actually, PrPC is critical in Aβ42-mediated autophagy in neurons. PrPC shows a beneficial role in lipid rafts to promote autophagy. Further search for PrPC-interaction molecules using Prnp-/- mice and various types of Prnp-/- cell lines under various conditions may elucidate other important PrPC important functions.
Collapse
Affiliation(s)
- Takashi ONODERA
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Kim S, Han S, Lee HS, Kim YS, Choi EK, Kim MY. Impaired spleen structure and chemokine expression in ME7 scrapie-infected mice. Immunobiology 2016; 221:871-8. [PMID: 27021907 DOI: 10.1016/j.imbio.2016.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
We have previously demonstrated that prion protein-deficient (Prnp(0/0)) Zürich I mice display impaired T zone structure resulting from decreased splenic expression of the T cell homing chemokines, CCL19 and CCL21. Prions are transported to, and colonise in, the secondary lymphoid tissues. Therefore, in order to investigate how scrapie infection affects the splenic white pulp structure, we infected C57BL/6 mice with the mouse-adapted scrapie strain ME7 and analysed end-stage prion disease. We found that the white pulp regions of ME7-infected spleens were smaller, and contained markedly diminished T zones, as compared to control spleens. Although lymphoid tissue inducer cells were not affected, the expression of both CCL19 and CCL21 was decreased. In addition, the networks of follicular dendritic cells, which are known to express high levels of the cellular prion protein (PrP(C)) and to accumulate PrP(Sc) following scrapie infection, were larger in ME7-infected spleens. Further, they were associated with increased numbers of B cells expressing high levels of IgM. These data indicate that ME7-infected spleens display phenotype characteristics different from those reported for Prnp(0/0) spleens mainly due to the gain of PrP(Sc) function and suggest that the PrP(C) is required, not only to form the splenic white pulp structure, but also to maintain the intact T zone structure.
Collapse
Affiliation(s)
- Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Republic of Korea
| | - Sinsuk Han
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 200-702, Republic of Korea; Ilsong Institute of Life Science, Hallym University, Anyang 431-815, Republic of Korea
| | - Hyung Soo Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 431-815, Republic of Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Eun-Kyoung Choi
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 200-702, Republic of Korea; Ilsong Institute of Life Science, Hallym University, Anyang 431-815, Republic of Korea.
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Republic of Korea.
| |
Collapse
|
14
|
Dervishi E, Lam TH, Dunn SM, Zwierzchowski G, Saleem F, Wishart DS, Ametaj BN. Recombinant mouse prion protein alone or in combination with lipopolysaccharide alters expression of innate immunity genes in the colon of mice. Prion 2016; 9:59-73. [PMID: 25695140 DOI: 10.1080/19336896.2015.1019694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objectives of this study were to test whether recombinant mouse (mo)PrP alone or in combination with LPS or under simulated endotoxemia would affect expression of genes related to host inflammatory and antimicrobial responses. To test our hypotheses colon tissues were collected from 16 male mice (FVB/N strain) and mounted in an Ussing chamber. Application of moPrP to the mucosal side of the colon affected genes related to TLR- and NLR- signaling and antimicrobial responses. When LPS was added on the mucosal side of the colon, genes related to TLR, Nlrp3 inflammasome, and iron transport proteins were over-expressed. Addition of LPS to the serosal side of the colon up-regulated genes related to TLR- and NLR-signaling, Nlrp3 inflammasome, and a chemokine. Treatment with both moPrP and LPS to the mucosal side of the colon upregulated genes associated with TLR, downstream signal transduction (DST), inflammatory response, attraction of dendritic cells to the site of inflammation, and the JNK-apoptosis pathway. Administration of moPrP to the mucosal side and LPS to the serosal side of the colon affected genes related to TLR- and NLR-signaling, DST, apoptosis, inflammatory response, cytokines, chemokines, and antimicrobial peptides. Overall this study suggests a potential role for moPrP as an endogenous 'danger signal' associated with activation of colon genes related to innate immunity and antibacterial responses.
Collapse
Affiliation(s)
- Elda Dervishi
- a Department of Agricultural, Food and Nutritional Science ; University of Alberta , Edmonton , AB , Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Atkinson CJ, Zhang K, Munn AL, Wiegmans A, Wei MQ. Prion protein scrapie and the normal cellular prion protein. Prion 2016; 10:63-82. [PMID: 26645475 PMCID: PMC4981215 DOI: 10.1080/19336896.2015.1110293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrP(C)) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.
Collapse
Affiliation(s)
- Caroline J. Atkinson
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Kai Zhang
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Alan L. Munn
- Laboratory of Yeast Cell Biology, Molecular Basis of Disease Program, Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Adrian Wiegmans
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Ming Q. Wei
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
16
|
Abstract
Copper has many roles in biology that involve the change of coordination sphere and/or oxidation state of the copper ion. Consequently, the study of copper in heterogeneous environments is an important area in biophysics. EPR is a primary technique for the investigation of paramagnetic copper, which is usually the isolated Cu(II) ion, but sometimes as Cu(II) in different oxidation states of multitransition ion clusters. The gross geometry of the coordination environment of Cu(II) can often be determined from a simple inspection of the EPR spectrum, recorded in the traditional X-band frequency range (9-10 GHz). Identification and quantitation of the coordinating ligand atoms, however, is not so straightforward. In particular, analysis of the superhyperfine structure on the EPR spectrum, to determine the number of coordinated nitrogen atoms, is fraught with difficulty at X-band, despite the observation that the overwhelming number of EPR studies of Cu(II) in the literature have been carried out at X-band. Greater reliability has been demonstrated at S-band (3-4 GHz), using the low-field parallel (gz) features. However, analysis relies on clear identification of the outermost superhyperfine line, which has the lowest intensity of all the spectral features. Computer simulations have subsequently indicated that the much more intense perpendicular region of the spectrum can be reliably interpreted at L-band (2 GHz). The present work describes the development of L-band EPR of Cu(II) into a routine method that is applicable to biological samples.
Collapse
Affiliation(s)
- Brian Bennett
- Physics Department, 540 N. 15th Street, Marquette University, Milwaukee WI 53233
| | - Jason Kowalski
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha WI 53144
| |
Collapse
|
17
|
Soto C, Satani N. The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol Med 2015; 17:14-24. [PMID: 20889378 DOI: 10.1016/j.molmed.2010.09.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
Abstract
Prion diseases are a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission, involving a protein-only infectious agent that propagates the disease by transmitting protein conformational changes. The disease results from extensive and progressive brain degeneration. The molecular mechanisms involved in neurodegeneration are not entirely known but involve multiple processes operating simultaneously and synergistically in the brain, including spongiform degeneration, synaptic alterations, brain inflammation, neuronal death and the accumulation of protein aggregates. Here, we review the pathways implicated in prion-induced brain damage and put the pieces together into a possible model of neurodegeneration in prion disorders. A more comprehensive understanding of the molecular basis of brain degeneration is essential to develop a much needed therapy for these devastating diseases.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas Houston Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | | |
Collapse
|
18
|
Cellular prion protein contributes to LS 174T colon cancer cell carcinogenesis by increasing invasiveness and resistance against doxorubicin-induced apoptosis. Tumour Biol 2015; 36:8107-20. [PMID: 25983001 DOI: 10.1007/s13277-015-3530-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 12/17/2022] Open
Abstract
As the cellular prion protein (PrP(C)) has been implicated in carcinogenesis, we aimed to investigate the effects of cancer cell-specific PrP(C) overexpression from the invasion, metastasis, and apoptosis aspects, by performing cell motility assays, cell proliferation assays under anchorage-dependent and anchorage-independent conditions, and apoptosis evasion when subjected to multiple anti-cancer drugs. Overexpression of PrP(C) in LS 174T was achieved by stable transfection. PrP(C) overexpression was shown to increase cell proliferation in anchorage-dependent and anchorage-independent manners, as shown by more viable cells in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, more colonies formed in soft agar assay and increased resistance to anoikis in poly-2-hydroxyethyl methacrylate-coated surface. PrP(C) overexpression also increased cell motility and invasiveness of LS 174T. Cell adhesion to extracellular matrix using collagen- and fibronectin-coated surfaces revealed increased cell attachment in LS 174T cells overexpressing PrP(C). Analysis of apoptotic and necrotic cells by propidium iodide/annexin V-fluorescein isothiocyanate microscopy and 7-amino-actinomycin D/annexin V-phycoerythrin flow cytometry revealed that PrP(C) overexpression attenuated doxorubicin-induced apoptosis. Human apoptosis antibody array with 35 apoptosis-related proteins revealed that three inhibitor of apoptosis proteins (IAPs)-survivin, X-linked inhibitor of apoptosis protein (XIAP), and cellular inhibitor of apoptosis protein-1 (cIAP-1)-were upregulated in LS 174T cells overexpressing PrP(C) in doxorubicin-induced apoptosis. In conclusion, the overexpression of PrP(C) could enhance the invasiveness and survival of LS 174T colorectal cancer cells, indicating that PrP(C) plays a role in colorectal cancer biology.
Collapse
|
19
|
Onodera T, Sakudo A, Tsubone H, Itohara S. Review of studies that have used knockout mice to assess normal function of prion protein under immunological or pathophysiological stress. Microbiol Immunol 2015; 58:361-74. [PMID: 24866463 DOI: 10.1111/1348-0421.12162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022]
Abstract
Deletion of cellular isoform of prion protein (PrP(C)) increases neuronal predisposition to damage by modulating apoptosis and the negative consequences of oxidative stress. In vivo studies have demonstrated that PrP(C)-deficient mice are more prone to seizure, depression, and induction of epilepsy and experience extensive cerebral damage following ischemic challenge or viral infection. In addition, adenovirus-mediated overexpression of PrP(C) reduces brain damage in rat models of cerebral ischemia. In experimental autoimmune encephalomyelitis, PrP(C)-deficient mice reportedly have a more aggressive disease onset and less clinical improvement during the chronic phase than wild-type mice mice. In mice given oral dextran sulfate, PrP(C) has a potential protective role against inflammatory bowel disease. PrP(C)-deficient mice demonstrate significantly greater increases in blood glucose concentrations after intraperitoneal injection of glucose than wild-type mice. Further in vivo challenges to PrP gene-deficient models and conditional knockout models with siRNA and in vivo administration of PrP-ligating agents may assist in refining knowledge of the lymphoid function of PrP(C) and predicting the effects of anti-PrP treatment on the immune system. Together, these findings indicate that PrP(C) may have multiple neuroprotective and anti-inflammatory roles, which explains why this protein is so widely expressed.
Collapse
Affiliation(s)
- Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657
| | | | | | | |
Collapse
|
20
|
Di Natale G, Turi I, Pappalardo G, Sóvágó I, Rizzarelli E. Cross-Talk Between the Octarepeat Domain and the Fifth Binding Site of Prion Protein Driven by the Interaction of Copper(II) with the N-terminus. Chemistry 2015; 21:4071-84. [DOI: 10.1002/chem.201405502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/21/2022]
|
21
|
Rowinska-Zyrek M, Salerno M, Kozlowski H. Neurodegenerative diseases – Understanding their molecular bases and progress in the development of potential treatments. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.03.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Roucou X. Regulation of PrP(C) signaling and processing by dimerization. Front Cell Dev Biol 2014; 2:57. [PMID: 25364762 PMCID: PMC4207009 DOI: 10.3389/fcell.2014.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022] Open
Abstract
The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein present at the cell surface. PrPC N-terminal moiety is intrinsically disordered and is able to interact with a variety of ligands. Physiological ligands have neurotrophic activity, whilst others, including protein toxic oligomers, have neurotoxic functions. These two opposite activities involve different interacting partners and result from different PrPC-activated signaling pathways. Remarkably, PrPC may be inactivated either by physiological endoproteolysis and release of the N-terminal domain, or by ectodomain shedding. Ligand-induced PrPC dimerization or enforced dimerization of PrPC indicate that PrPC dimerization represents an important molecular switch for both intracellular signaling and inactivation by the release of PrPC N-terminal domain or shedding. In this review, we summarize evidence that cell surface receptor activity of PrPC is finely regulated by dimerization.
Collapse
Affiliation(s)
- Xavier Roucou
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke Sherbrooke, QC, Canada
| |
Collapse
|
23
|
Abstract
The cellular prion protein (PrPC) has been widely investigated ever since its conformational isoform, the prion (or PrPSc), was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and fate in aging.
Collapse
Affiliation(s)
- Lisa Gasperini
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| |
Collapse
|
24
|
Hirsch TZ, Hernandez-Rapp J, Martin-Lannerée S, Launay JM, Mouillet-Richard S. PrP(C) signalling in neurons: from basics to clinical challenges. Biochimie 2014; 104:2-11. [PMID: 24952348 DOI: 10.1016/j.biochi.2014.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 01/05/2023]
Abstract
The cellular prion protein PrP(C) was identified over twenty-five years ago as the normal counterpart of the scrapie prion protein PrP(Sc), itself the main if not the sole component of the infectious agent at the root of Transmissible Spongiform Encephalopathies (TSEs). PrP(C) is a ubiquitous cell surface protein, abundantly expressed in neurons, which constitute the targets of PrP(Sc)-mediated toxicity. Converging evidence have highlighted that neuronal, GPI-anchored PrP(C) is absolutely required for prion-induced neuropathogenesis, which warrants investigating into the normal function exerted by PrP(C) in a neuronal context. It is now well-established that PrP(C) can serve as a cell signalling molecule, able to mobilize transduction cascades in response to interactions with partners. This function endows PrP(C) with the capacity to participate in multiple neuronal processes, ranging from survival to synaptic plasticity. A diverse array of data have allowed to shed light on how this function is corrupted by PrP(Sc). Recently, amyloid Aβ oligomers, whose accumulation is associated with Alzheimer's disease (AD), were shown to similarly instigate toxic events by deviating PrP(C)-mediated signalling. Here, we provide an overview of the various signal transduction cascades ascribed to PrP(C) in neurons, summarize how their subversion by PrP(Sc) or Aβ oligomers contributes to TSE or AD neuropathogenesis and discuss the ensuing clinical implications.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Julia Hernandez-Rapp
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France; Université Paris Sud 11, ED419 Biosigne, 91400 Orsay, France
| | - Séverine Martin-Lannerée
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière, 75010 Paris, France; Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland
| | - Sophie Mouillet-Richard
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France.
| |
Collapse
|
25
|
Hernandez-Rapp J, Martin-Lannerée S, Hirsch TZ, Pradines E, Alleaume-Butaux A, Schneider B, Baudry A, Launay JM, Mouillet-Richard S. A PrP(C)-caveolin-Lyn complex negatively controls neuronal GSK3β and serotonin 1B receptor. Sci Rep 2014; 4:4881. [PMID: 24810941 PMCID: PMC4013941 DOI: 10.1038/srep04881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/08/2014] [Indexed: 12/25/2022] Open
Abstract
The cellular prion protein, PrPC, is a glycosylphosphatidylinositol-anchored protein, abundant in lipid rafts and highly expressed in the brain. While PrPC is much studied for its involvement under its abnormal PrPSc isoform in Transmissible Spongiform Encephalopathies, its physiological role remains unclear. Here, we report that GSK3β, a multifunctional kinase whose inhibition is neuroprotective, is a downstream target of PrPC signalling in serotonergic neuronal cells. We show that the PrPC-dependent inactivation of GSK3β is relayed by a caveolin-Lyn platform located on neuronal cell bodies. Furthermore, the coupling of PrPC to GSK3β potentiates serotonergic signalling by altering the distribution and activity of the serotonin 1B receptor (5-HT1BR), a receptor that limits neurotransmitter release. In vivo, our data reveal an increased GSK3β kinase activity in PrP-deficient mouse brain, as well as sustained 5-HT1BR activity, whose inhibition promotes an anxiogenic behavioural response. Collectively, our data unveil a new facet of PrPC signalling that strengthens neurotransmission.
Collapse
Affiliation(s)
- Julia Hernandez-Rapp
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France [3] Université Paris Sud 11, ED419 Biosigne, 91400 Orsay, France [4]
| | - Séverine Martin-Lannerée
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France [3]
| | - Théo Z Hirsch
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France [3]
| | - Elodie Pradines
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| | - Aurélie Alleaume-Butaux
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| | - Benoît Schneider
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| | - Anne Baudry
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| | - Jean-Marie Launay
- 1] AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière, 75010 Paris, France [2] Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland
| | - Sophie Mouillet-Richard
- 1] INSERM UMR-S1124, 75006 Paris France [2] Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris France
| |
Collapse
|
26
|
Schmidt C, Becker H, Peter C, Lange K, Friede T, Zerr I. Plasma prion protein concentration and progression of Alzheimer disease. Prion 2014; 8:27964. [PMID: 24549099 DOI: 10.4161/pri.27964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVE Recently, PrP(c) has been linked to AD pathogenesis. Second, a relation of PrP(c) plasma levels with cognitive status and decline of healthy elderly subjects has been reported. Therefore, we hypothesized baseline plasma levels of PrP(c) to be associated with AD progression in cognitive and functional domains. MATERIALS AND METHODS AD patients (n = 84) were included into an observational study at time of diagnosis. Baseline plasma PrP(c) levels were determined. Decline was assessed annually (mean follow-up time 3 years) with the aid of different standardized tests (MMSE, iADL, bADL, GDS, UPDRSIII). Multiple regression analyses were used to uncover potential associations between decline and PrP(c) levels. RESULTS No association of PrP(c) and decline could be established. Presence of diabetes mellitus was linked to slower deterioration. Intake of neuroleptic drugs or memantine was associated with faster progression. CONCLUSION Plasma PrP(c) at baseline could not be shown to be related to AD progression in this study. An interesting association of diabetes mellitus and decline warrants further investigation.
Collapse
Affiliation(s)
- Christian Schmidt
- Clinical Dementia Center; Department of Neurology; Georg-August-University Medical Center; Goettingen, Germany
| | - Harry Becker
- Clinical Dementia Center; Department of Neurology; Georg-August-University Medical Center; Goettingen, Germany
| | - Christoph Peter
- Clinical Dementia Center; Department of Neurology; Georg-August-University Medical Center; Goettingen, Germany
| | - Katharina Lange
- Department of Statistics and Bioinformatics; Georg-August-University; Goettingen, Germany
| | - Tim Friede
- Department of Statistics and Bioinformatics; Georg-August-University; Goettingen, Germany
| | - Inga Zerr
- Clinical Dementia Center; Department of Neurology; Georg-August-University Medical Center; Goettingen, Germany
| |
Collapse
|
27
|
Bobkova NV, Medvinskaya NI, Kamynina AV, Aleksandrova IY, Nesterova IV, Samokhin AN, Koroev DO, Filatova MP, Nekrasov PV, Abramov AY, Leonov SV, Volpina OM. Immunization with either prion protein fragment 95-123 or the fragment-specific antibodies rescue memory loss and neurodegenerative phenotype of neurons in olfactory bulbectomized mice. Neurobiol Learn Mem 2013; 107:50-64. [PMID: 24239620 DOI: 10.1016/j.nlm.2013.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/17/2013] [Accepted: 10/25/2013] [Indexed: 12/12/2022]
Abstract
Epidemiological studies demonstrated association between head injury (HI) and the subsequent development of Alzheimer's disease (AD). Certain hallmarks of AD, e.g. amyloid-β (Aβ) containing deposits, may be found in patients following traumatic BI (TBI). Recent studies uncover the cellular prion protein, PrP(C), as a receptor for soluble polymeric forms of Aβ (sAβ) which are an intermediate of such deposits. We aimed to test the hypothesis that targeting of PrP(C) can prevent Aβ related spatial memory deficits in olfactory bulbectomized (OBX) mice utilized here to resemble some clinical features of AD, such as increased level of Aβ, memory loss and deficit of the CNS cholin- and serotonin-ergic systems. We demonstrated that immunization with the a.a. 95-123 fragment of cellular prion (PrP-I) recovered cortical and hippocampus neurons from OBX induced degeneration, rescued spatial memory loss in Morris water maze test and significantly decrease the Aβ level in brain tissue of these animals. Affinity purified anti-PrP-I antibodies rescued pre-synaptic biomarker synaptophysin eliciting similar effect on memory of OBX mice, and protected hippocampal neurones from Aβ25-35-induced toxicity in vitro. Immunization OBX mice with a.a. 200-213 fragment of cellular prion (PrP-II) did not reach a significance in memory protection albeit having similar to PrP-I immunization impact on Aβ level in brain tissue. The observed positive effect of targeting the PrP-I by either active or passive immunization on memory of OBX mice revealed the involvement of the PrP(C) in AD-like pathology induced by olfactory bulbectomy. This OBX model may be a useful tool for mechanistic and preclinical therapeutic investigations into the association between PrP(C) and AD.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - N I Medvinskaya
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - A V Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - I Y Aleksandrova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - I V Nesterova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - A N Samokhin
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - D O Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - M P Filatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - P V Nekrasov
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - A Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK.
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia; Department of Biology, Chemical Diversity Research Institute (CDRI), Rabochaya St., 2-A, 141400 Khimki, Moscow Region, Russia; BioBusiness Incubator, Moscow Institute of Physics and Technology, Institutsky pereulok, 9, Dolgoprudny, Moscow Region 141700, Russia.
| | - O M Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| |
Collapse
|
28
|
Singh A, Haldar S, Horback K, Tom C, Zhou L, Meyerson H, Singh N. Prion protein regulates iron transport by functioning as a ferrireductase. J Alzheimers Dis 2013; 35:541-52. [PMID: 23478311 DOI: 10.3233/jad-130218] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prion protein (PrPC) is implicated in the pathogenesis of prion disorders, but its normal function is unclear. We demonstrate that PrPC is a ferrireductase (FR), and its absence causes systemic iron deficiency in PrP knock-out mice (PrP-/-). When exposed to non-transferrin-bound (NTB) radioactive-iron (59FeCl3) by gastric-gavage, PrP-/- mice absorb significantly more 59Fe from the intestinal lumen relative to controls, indicating appropriate systemic response to the iron deficiency. Chronic exposure to excess dietary iron corrects this deficiency, but unlike wild-type (PrP+/+) controls that remain iron over-loaded, PrP-/- mice revert back to the iron deficient phenotype after 5 months of chase on normal diet. Bone marrow (BM) preparations of PrP-/- mice on normal diet show relatively less stainable iron, and this phenotype is only partially corrected by intraperitoneal administration of excess iron-dextran. Cultured PrP-/- BM-macrophages incorporate significantly less NTB-59Fe in the absence or presence of excess extracellular iron, indicating reduced uptake and/or storage of available iron in the absence of PrPC. When expressed in neuroblastoma cells, PrPC exhibits NAD(P)H-dependent cell-surface and intracellular FR activity that requires the copper-binding octa-peptide-repeat region and linkage to the plasma membrane for optimal function. Incorporation of NTB-59Fe by neuroblastoma cells correlates with FR activity of PrPC, implicating PrPC in cellular iron uptake and metabolism. These observations explain the correlation between PrPC expression and cellular iron levels, and the cause of iron imbalance in sporadic-Creutzfeldt-Jakob-disease brains where PrPC accumulates as insoluble aggregates.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Erdogan S, Duzguner V, Kucukgul A, Aslantas O. Silencing of PrP C (prion protein) expression does not affect Brucella melitensis infection in human derived microglia cells. Res Vet Sci 2013; 95:368-73. [PMID: 23820446 DOI: 10.1016/j.rvsc.2013.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/18/2023]
Abstract
Cellular prion proteins (PrP(C)) are mainly expressed in the central nervous system where they have antioxidant effects and a role in the endocytosis of bacteria within cells. These proteins also have some crucial biological functions including roles in neurotransmission, signal transduction and programmed cell death. However, the role of prion proteins in neuronal Brucella infection, specifically in the interaction of the pathogen and the host cell is controversial. In the present study, the silencing of PrP(C) mRNA by small interfering RNA (siRNA) transfection was investigated in human microglia cells infected with Brucella melitensis. More than 70% of prion proteins were down-regulated in microglia by siRNA transfection and this caused a slight decrease in the cellular viability of the control cells. Silencing of PrP(C) suppressed the antioxidant systems, though it led to an up-regulation of pro-inflammatory cytokines such as IL-12 and TNF-α as demonstrated by qRT-PCR analysis. B. melitensis infection of prion protein-silenced cells led to increase host viability, but had no effect on bacterial phagocytosis. According to the present study, there is no significant effect of prion proteins on phagocytosis and intracellular killing of B. melitensis in microglia cells.
Collapse
Affiliation(s)
- Suat Erdogan
- Zirve University, Emine-Bahaeddin Nakiboglu Medical School, Department of Medical Biochemistry, Gaziantep, Turkey.
| | | | | | | |
Collapse
|
30
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
31
|
Schmidt C, Artjomova S, Hoeschel M, Zerr I. CSF prion protein concentration and cognition in patients with Alzheimer disease. Prion 2013; 7:229-34. [PMID: 23406922 DOI: 10.4161/pri.23904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND/OBJECTIVE PrP (c) has been suggested to play a role in AD pathophysiology. CSF concentrations of PrP (c) have been shown to be reduced in AD compared with healthy controls. Furthermore, serum levels of PrP (c) have recently been reported to be associated with the cognitive status of healthy elderly subjects. Therefore, we hypothesized that CSF levels of PrP (c) could be associated with cognitive function of AD patients at the time of diagnosis. METHODS AD patients (n = 114) included into an observational study underwent CERAD testing and lumbar puncture at time of diagnosis / study inclusion. CSF PrP (c) was determined. Generalized linear models were fitted to assess the associations of PrP (c) plus a variety of possible confounding factors and CERAD subscale measures. RESULTS No association of CSF PrP (c) and cognitive status could be established, while other factors (i.e., use of antipsychotic drugs, use of anti-dementia drugs, female sex, pre-progression time) were related to worse cognitive function in some domains. CONCLUSION CSF PrP (c) appears not to be a useful biochemical surrogate of cognitive status in AD at the time of diagnosis. Follow-up analyses will examine possible associations with the speed of cognitive decline.
Collapse
Affiliation(s)
- Christian Schmidt
- Clinical Dementia Center, Department of Neurology, Georg-August-University, Goettingen, Germany.
| | | | | | | |
Collapse
|
32
|
Rushworth JV, Griffiths HH, Watt NT, Hooper NM. Prion protein-mediated toxicity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 2013; 288:8935-51. [PMID: 23386614 PMCID: PMC3610967 DOI: 10.1074/jbc.m112.400358] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Soluble oligomers of the amyloid-β (Aβ) peptide cause neurotoxicity, synaptic dysfunction, and memory impairments that underlie Alzheimer disease (AD). The cellular prion protein (PrPC) was recently identified as a high affinity neuronal receptor for Aβ oligomers. We report that fibrillar Aβ oligomers recognized by the OC antibody, which have been shown to correlate with the onset and severity of AD, bind preferentially to cells and neurons expressing PrPC. The binding of Aβ oligomers to cell surface PrPC, as well as their downstream activation of Fyn kinase, was dependent on the integrity of cholesterol-rich lipid rafts. In SH-SY5Y cells, fluorescence microscopy and co-localization with subcellular markers revealed that the Aβ oligomers co-internalized with PrPC, accumulated in endosomes, and subsequently trafficked to lysosomes. The cell surface binding, internalization, and downstream toxicity of Aβ oligomers was dependent on the transmembrane low density lipoprotein receptor-related protein-1 (LRP1). The binding of Aβ oligomers to cell surface PrPC impaired its ability to inhibit the activity of the β-secretase BACE1, which cleaves the amyloid precursor protein to produce Aβ. The green tea polyphenol (−)-epigallocatechin gallate and the red wine extract resveratrol both remodeled the fibrillar conformation of Aβ oligomers. The resulting nonfibrillar oligomers displayed significantly reduced binding to PrPC-expressing cells and were no longer cytotoxic. These data indicate that soluble, fibrillar Aβ oligomers bind to PrPC in a conformation-dependent manner and require the integrity of lipid rafts and the transmembrane LRP1 for their cytotoxicity, thus revealing potential targets to alleviate the neurotoxic properties of Aβ oligomers in AD.
Collapse
Affiliation(s)
- Jo V Rushworth
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
33
|
Scalabrino G, Veber D. Cobalamin and normal prions: a new horizon for cobalamin neurotrophism. Biochimie 2013; 95:1041-6. [PMID: 23328344 DOI: 10.1016/j.biochi.2013.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/04/2013] [Indexed: 01/29/2023]
Abstract
It is known that cobalamin (Cbl) deficiency damages myelin by increasing tumor necrosis factor (TNF)-α and decreasing epidermal growth factor (EGF) levels in rat central nervous system (CNS), and affects the peripheral nervous system (PNS) morphologically and functionally. It is also known that some polyneuropathies not due to Cbl deficiency are connected with increased TNF-α levels, and that various cytokines (including TNF-α) and growth factors regulate the in vitro synthesis of normal prions (PrP(C)s). Given that there is extensive evidence that PrP(C)s play a key role in the maintenance of CNS and PNS myelin, we investigated whether the PrP(C) octapeptide repeat (OR) region is involved in the pathogenesis of rat Cbl-deficient (Cbl-D) polyneuropathy. After intracerebroventricularly administering antibodies (Abs) against the OR region (OR-Abs) to Cbl-D rats to prevent myelin damage and maximum nerve conduction velocity (MNCV) abnormalities, and PrP(C)s to otherwise normal rats to reproduce PNS Cbl-D-like lesions, we measured PrP(C) levels and MNCV of the sciatic and tibial nerves. PrP(C) and TNF-α levels were increased in sciatic and tibial nerves of Cbl-D and saline-treated rats, and the OR-Abs normalized the myelin ultrastructure, TNF-α levels, and MNCV values of the sciatic and tibial nerves of Cbl-D rats. The same peripheral nerves of the otherwise normal PrP(C)-treated rats showed typical Cbl-D myelin lesions, significantly increased TNF-α levels, and significantly decreased MNCV values. These findings demonstrate that Cbl deficiency induces excess PrP(C)s and thereby excess OR regions, which seem to be responsible for the PNS myelin damage, as has recently been found in the case of CNS myelin damage [66]. Furthermore, excess TNF-α is also involved in the pathogenesis of Cbl-D polyneuropathy. In conclusion, we have extended the list of prion diseases by adding one caused by excess PrP(C)s and the polyneuropathies related to excess TNF-α.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Città Studi Department, Laboratory of Neuropathology, University of Milan, via Mangiagalli 31, 20133 Milan, Italy.
| | | |
Collapse
|
34
|
Sobrova P, Ryvolova M, Adam V, Kizek R. Capillary electromigration based techniques in diagnostics of prion protein caused diseases. Electrophoresis 2012; 33:3644-52. [DOI: 10.1002/elps.201200208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/30/2012] [Accepted: 07/23/2012] [Indexed: 11/06/2022]
|
35
|
Bottone MG, Veronica DB, Piccolini VM, Bottiroli G, De Pascali SA, Fanizzi FP, Bernocchi G. Developmental expression of cellular prion protein and apoptotic molecules in the rat cerebellum: Effects of platinum compounds. J Chem Neuroanat 2012; 46:19-29. [DOI: 10.1016/j.jchemneu.2012.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/07/2012] [Accepted: 09/14/2012] [Indexed: 01/08/2023]
|
36
|
Yu G, Jiang L, Xu Y, Guo H, Liu H, Zhang Y, Yang H, Yuan C, Ma J. Silencing prion protein in MDA-MB-435 breast cancer cells leads to pleiotropic cellular responses to cytotoxic stimuli. PLoS One 2012; 7:e48146. [PMID: 23133614 PMCID: PMC3487893 DOI: 10.1371/journal.pone.0048146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/20/2012] [Indexed: 01/18/2023] Open
Abstract
Prion protein (PrP) is well studied for its pathogenic role in prion disease, but its potential contribution to other pathological processes is less understood. PrP is expressed in a variety of cancers and at least in pancreatic and breast cancers, its expression appears to be associated with poor prognosis. To understand the role of PrP in breast cancer cells, we knocked down PrP expression in MDA-MB-435 breast cancer cells with small interfering RNA and subjected these cells to a series of analyses. We found that PrP knockdown in these cells does not affect cell proliferation or colony formation, but significantly influences the cellular response to cytotoxic stimuli. Compared to control cells, PrP knockdown cells exhibited an increased susceptibility to serum deprivation induced apoptosis, no change to staurosporine- or paclitaxel-induced cell deaths, and a reduced susceptibility to chemotherapy drug doxorubicin-induced cell death. To understand the mechanism of unexpected role of PrP in exacerbating doxorubicin-induced cytotoxicity, we analyzed cell death related Bcl-2 family proteins. We found that PrP knockdown alters the expression of several Bcl-2 family proteins, correlating with increased resistance to doxorubicin-induced cytotoxicity. Moreover, the enhanced doxorubicin resistance is independent of DNA damage related p53 pathway, but at least partially through the ERK1/2 pathway. Together, our study revealed that silencing PrP in MDA-MB-435 breast cancer cells results in very different responses to various cytotoxic stimuli and ERK1/2 signaling pathway is involved in PrP silencing caused resistance to doxorubicin.
Collapse
Affiliation(s)
- Guohua Yu
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- * E-mail: (GY); (LJ); (JM)
| | - Liming Jiang
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- * E-mail: (GY); (LJ); (JM)
| | - Yuanyuan Xu
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Hongwei Guo
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Huiyan Liu
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Yi Zhang
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Huaiyi Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chonggang Yuan
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Jiyan Ma
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (GY); (LJ); (JM)
| |
Collapse
|
37
|
Arena G, La Mendola D, Pappalardo G, Sóvágó I, Rizzarelli E. Interactions of Cu2+ with prion family peptide fragments: Considerations on affinity, speciation and coordination. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Arsenault RJ, Li Y, Potter A, Griebel PJ, Kusalik A, Napper S. Induction of ligand-specific PrP (C) signaling in human neuronal cells. Prion 2012; 6:477-88. [PMID: 22918447 DOI: 10.4161/pri.21914] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cellular prion protein (PrP (C) ) has attracted considerable attention for its role in transmissible spongiform encephalopathies (TSEs). In spite of being a point of intense research effort critical questions still remain regarding the physiological function of PrP (C) and how these functions may change with the conversion of the protein into the infectious and pathological conformation (PrP (Sc) ). While emerging evidence suggests PrP (C/Sc) are involved in signal transduction there is little consensus on the signaling pathways associated with the normal and diseased states. The purported involvement of PrP (C) in signal transduction, and the association of TSEs with neural pathology, makes kinome analysis of human neurons an interesting and appropriate model to characterize patterns of signal transduction following activation of PrP (C) by two commonly employed experimental ligands; antibody-induced dimerization by 6H4 and the amino acids 106-126 PrP peptide fragment (PrP 106-126). Analysis of the induced kinome responses reveals distinct patterns of signaling activity following each treatment. Specifically, stimulation of human neurons with the 6H4 antibody results in alterations in mitogen activated protein kinase (MAPK) signaling pathways while the 106-126 peptide activates growth factor related signaling pathways including vascular endothelial growth factor (VEGF) signaling and the phosphoinositide-3 kinase (PI3K) pathway. These pathways were validated through independent functional assays. Collectively these results indicate that stimulation of PrP (C) with distinct ligands, even within the same cell type, results in unique patterns of signaling. While this investigation highlights the apparent functional versatility of PrP (C) as a signaling molecule and may offer insight into cellular mechanisms of TSE pathology it also emphasizes the potential dangers associated with attributing activation of specific intracellular events to particular receptors through artificial models of receptor activation.
Collapse
Affiliation(s)
- Ryan J Arsenault
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Breitling LP, Müller H, Stegmaier C, Kliegel M, Brenner H. Association of prion protein with cognitive functioning in humans. Exp Gerontol 2012; 47:919-24. [PMID: 22967749 DOI: 10.1016/j.exger.2012.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 07/05/2012] [Accepted: 08/03/2012] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Recent animal studies have suggested a key role for cellular prion protein (PrPc) in the pathological consequences of amyloid plaque formation, the hallmark of Alzheimer's disease. This epidemiological study investigated whether serum concentrations of PrPc are associated with cognitive functioning in humans. DESIGN, SETTING, PARTICIPANTS Cross-sectional study of 1,322 participants from the elderly general population in Germany, aged 65+ years at baseline (2000-2002). MEASUREMENTS Cognitive functioning was assessed by the COGTEL phone interview 5years after baseline. Serum PrPc was determined by a commercial immunoassay. RESULTS In multiple linear regression adjusted for important confounders, subjects in higher PrPc quintiles appeared to have lower cognitive functioning scores than those in the lowest PrPc quintile. Spline regression suggested pronounced non-linearity with an inverse association between PrPc and cognitive functioning levelling off beyond median PrPc. Cognitive subdomain-specific models produced somewhat heterogeneous results. CONCLUSION The findings are suggestive of an independent association of PrPc with cognitive functioning in humans. Confirmatory and longitudinal studies are needed to elucidate the potential of PrPc for applications in early risk stratification for cognitive impairment.
Collapse
Affiliation(s)
- Lutz Philipp Breitling
- Division of Clinical Epidemiology and Aging Reseach, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
40
|
D'Angelo P, Della Longa S, Arcovito A, Mancini G, Zitolo A, Chillemi G, Giachin G, Legname G, Benetti F. Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site. Biochemistry 2012; 51:6068-79. [PMID: 22788868 DOI: 10.1021/bi300233n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prion diseases are a class of fatal neurodegenerative disorders characterized by brain spongiosis, synaptic degeneration, microglia and astrocytes activation, neuronal loss and altered redox control. These maladies can be sporadic, iatrogenic and genetic. The etiological agent is the prion, a misfolded form of the cellular prion protein, PrP(C). PrP(C) interacts with metal ions, in particular copper and zinc, through the octarepeat and non-octarepeat binding sites. The physiological implication of this interaction is still unclear, as is the role of metals in the conversion. Since prion diseases present metal dyshomeostasis and increased oxidative stress, we described the copper-binding site located in the human C-terminal domain of PrP-HuPrP(90-231), both in the wild-type protein and in the protein carrying the pathological mutation Q212P. We used the synchrotron-based X-ray absorption fine structure technique to study the Cu(II) and Cu(I) coordination geometries in the mutant, and we compared them with those obtained using the wild-type protein. By analyzing the extended X-ray absorption fine structure and the X-ray absorption near-edge structure, we highlighted changes in copper coordination induced by the point mutation Q212P in both oxidation states. While in the wild-type protein the copper-binding site has the same structure for both Cu(II) and Cu(I), in the mutant the coordination site changes drastically from the oxidized to the reduced form of the copper ion. Copper-binding sites in the mutant resemble those obtained using peptides, confirming the loss of short- and long-range interactions. These changes probably cause alterations in copper homeostasis and, consequently, in redox control.
Collapse
Affiliation(s)
- Paola D'Angelo
- Department of Chemistry, University of Rome La Sapienza, P.le Aldo Moro 5, I-00185 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Scalabrino G, Mutti E, Veber D, Rodriguez Menendez V, Novembrino C, Calligaro A, Tredici G. The octapeptide repeat PrPCregion and cobalamin-deficient polyneuropathy of the rat. Muscle Nerve 2011; 44:957-67. [DOI: 10.1002/mus.22225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Martin GR, Keenan CM, Sharkey KA, Jirik FR. Endogenous prion protein attenuates experimentally induced colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2290-301. [PMID: 21924230 DOI: 10.1016/j.ajpath.2011.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 02/07/2023]
Abstract
Although the cellular prion protein (PrP(C)) is expressed in the enteric nervous system and lamina propria, its function(s) in the gut is unknown. Because PrP(C) may exert a cytoprotective effect in response to various physiologic stressors, we hypothesized that PrP(C) expression levels might modulate the severity of experimental colitis. We evaluated the course of dextran sodium sulfate (DSS)-induced colitis in hemizygous Tga20 transgenic mice (approximately sevenfold overexpression of PrP(C)), Prnp(-/-) mice, and wild-type mice. On day 7, colon length, disease severity, and histologic activity indices were determined. Unlike DSS-treated wild-type and Prnp(-/-) animals, PrP(C) overexpressing mice were resistant to colitis induction, exhibited much milder histopathologic features, and did not exhibit weight loss or colonic shortening. In keeping with these results, pro-survival molecule expression and/or phosphorylation levels were elevated in DSS-treated Tga20 mice, whereas pro-inflammatory cytokine production and pSTAT3 levels were reduced. In contrast, DSS-treated Prnp(-/-) mice exhibited increased BAD protein expression and a cytokine expression profile predicted to favor inflammation and differentiation. PrP(C) expression from both the endogenous Prnp locus or the Tga20 transgene was increased in the colons of DSS-treated mice. Considered together, these findings demonstrate that PrP(C) has a previously unrecognized cytoprotective and/or anti-inflammatory function within the murine colon.
Collapse
Affiliation(s)
- Gary R Martin
- Department of Biochemistry and Molecular Biology and the McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
43
|
Panigaj M, Glier H, Wildova M, Holada K. Expression of prion protein in mouse erythroid progenitors and differentiating murine erythroleukemia cells. PLoS One 2011; 6:e24599. [PMID: 21912705 PMCID: PMC3166331 DOI: 10.1371/journal.pone.0024599] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/15/2011] [Indexed: 12/21/2022] Open
Abstract
Prion diseases have been observed to deregulate the transcription of erythroid genes, and prion protein knockout mice have demonstrated a diminished response to experimental anemia. To investigate the role of the cellular prion protein (PrP(C)) in erythropoiesis, we studied the protein's expression on mouse erythroid precursors in vivo and utilized an in vitro model of the erythroid differentiation of murine erythroleukemia cells (MEL) to evaluate the effect of silencing PrP(C) through RNA interference.The expression of PrP(C) and selected differentiation markers was analyzed by quantitative multicolor flow cytometry, western blot analysis and quantitative RT-PCR. The silencing of PrP(C) expression in MEL cells was achieved by expression of shRNAmir from an integrated retroviral vector genome. The initial upregulation of PrP(C) expression in differentiating erythroid precursors was detected both in vivo and in vitro, suggesting PrP(C)'s importance to the early stages of differentiation. The upregulation was highest on early erythroblasts (16200±3700 PrP(C) / cell) and was followed by the gradual decrease of PrP(C) level with the precursor's maturation reaching 470±230 PrP(C) / cell on most mature CD71(-)Ter119(+) small precursors. Interestingly, the downregulation of PrP(C) protein with maturation of MEL cells was not accompanied by the decrease of PrP mRNA. The stable expression of anti-Prnp shRNAmir in MEL cells led to the efficient (>80%) silencing of PrP(C) levels. Cell growth, viability, hemoglobin production and the transcription of selected differentiation markers were not affected by the downregulation of PrP(C).In conclusion, the regulation of PrP(C) expression in differentiating MEL cells mimics the pattern detected on mouse erythroid precursors in vivo. Decrease of PrP(C) protein expression during MEL cell maturation is not regulated on transcriptional level. The efficient silencing of PrP(C) levels, despite not affecting MEL cell differentiation, enables created MEL lines to be used for studies of PrP(C) cellular function.
Collapse
Affiliation(s)
- Martin Panigaj
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Hana Glier
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Marcela Wildova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
44
|
Zhuang D, Liu Y, Mao Y, Gao L, Zhang H, Luan S, Huang F, Li Q. TMZ-induced PrPc/par-4 interaction promotes the survival of human glioma cells. Int J Cancer 2011; 130:309-18. [PMID: 21328340 DOI: 10.1002/ijc.25985] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/26/2011] [Indexed: 01/12/2023]
Abstract
Malignant gliomas recur even after extensive surgery and chemo-radiotherapy. Although a relatively novel chemotherapeutic agent, temozolomide (TMZ), has demonstrated promising activity against gliomas, the effects last only a few months and drug resistance develops thereafter in many cases. It has been acknowledged that glioma cells respond to TMZ treatment by undergoing G2/M arrest, but not apoptosis. Here we demonstrate a phase-specific chemotherapy resistance due to cellular prion protein (PrPc) in human glioma cells upon TMZ treatment. TMZ-induced G2/M-arrested cultures show an upregulation of PrPc expression and are more resistant, whereas G1/S-phase cells that show decreased levels of PrPc are more sensitive to apoptosis. Furthermore, an investigation into the biological significance of PrPc association with par-4 provided the first evidence of a relationship between the endogenous levels of PrPc and the resistance of glioma cells to the apoptotic effects of TMZ. Upon TMZ treatment, PrPc exerts its antiapoptotic activity by inhibiting PKA-mediated par-4 phosphorylation that are important for par-4 activation, nuclear entry and initiation of apoptosis. In context with cell cycle-dependent responses to chemotherapy, the data from this study suggest the possibility of exploiting the PrPc-dependent pathway to improve the efficacy of TMZ-based regimen for patients with gliomas.
Collapse
Affiliation(s)
- Dongxiao Zhuang
- Department of Neurosurgery, HuaShan Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Benvegnù S, Roncaglia P, Agostini F, Casalone C, Corona C, Gustincich S, Legname G. Developmental influence of the cellular prion protein on the gene expression profile in mouse hippocampus. Physiol Genomics 2011; 43:711-25. [PMID: 21406608 DOI: 10.1152/physiolgenomics.00205.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The conversion of the cellular prion protein (PrP(C)) to an abnormal and protease-resistant isoform is the key event in prion diseases. Mice lacking PrP(C) are resistant to prion infection, and downregulation of PrP(C) during prion infection prevents neuronal loss and the progression to clinical disease. These results are suggestive of the potential beneficial effect of silencing PrP(C) during prion diseases. However, the silencing of a protein that is widely expressed throughout the central nervous system could be detrimental to brain homeostasis. The physiological role of PrP(C) remains still unclear, but several putative functions (e.g., neuronal development and maintenance) have been proposed. To assess the influence of PrP(C) on gene expression profile in the mouse brain, we undertook a microarray analysis by using RNA isolated from the hippocampus at two different developmental stages: newborn (4.5-day-old) and adult (3-mo-old) mice, both from wild-type and Prnp(0/0) animals. Comparing the different datasets allowed us to identify "commonly" co-regulated genes and "uniquely" deregulated genes during postnatal development. The absence of PrP(C) affected several biological pathways, the most representative being cell signaling, cell-cell communication and transduction processes, calcium homeostasis, nervous system development, synaptic transmission, and cell adhesion. However, there was only a moderate alteration of the gene expression profile in our animal models. PrP(C) deficiency did not lead to a dramatic alteration of gene expression profile and produced moderately altered gene expression levels from young to adult animals. Thus, our results may provide additional support to silencing endogenous PrP(C) levels as therapeutic approach to prion diseases.
Collapse
Affiliation(s)
- Stefano Benvegnù
- Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste
| | | | | | | | | | | | | |
Collapse
|
46
|
Kowalski JM, Bennett B. Spin hamiltonian parameters for Cu(II)-prion peptide complexes from L-band electron paramagnetic resonance spectroscopy. J Am Chem Soc 2011; 133:1814-23. [PMID: 21265507 PMCID: PMC3150385 DOI: 10.1021/ja106550u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cu(II) is an essential element for life but is also associated with numerous and serious medical conditions, particularly neurodegeneration. Structural modeling of crystallization-resistant biological Cu(II) species relies on detailed spectroscopic analysis. Electron paramagnetic resonance (EPR) can, in principle, provide spin hamiltonian parameters that contain information on the geometry and ligand atom complement of Cu(II). Unfortunately, EPR spectra of Cu(II) recorded at the traditional X-band frequency are complicated by (i) strains in the region of the spectrum corresponding to the g(∥) orientation and (ii) potentially very many overlapping transitions in the g(⊥) region. The rapid progress of density functional theory computation as a means to correlate EPR and structure, and the increasing need to study Cu(II) associated with biomolecules in more biologically and biomedically relevant environments such as cells and tissue, have spurred the development of a technique for the extraction of a more complete set of spin hamiltonian parameters that is relatively straightforward and widely applicable. EPR at L-band (1-2 GHz) provides much enhanced spectral resolution and straightforward analysis via computer simulation methods. Herein, the anisotropic spin hamiltonian parameters and the nitrogen coordination numbers for two hitherto incompletely characterized Cu(II)-bound species of a prion peptide complex are determined by analysis of their L-band EPR spectra.
Collapse
Affiliation(s)
- Jason M. Kowalski
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509, United States
| | - Brian Bennett
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509, United States
| |
Collapse
|
47
|
Karpuj MV, Gelibter-Niv S, Tiran A, Rambold A, Tatzelt J, Nunziante M, Schatzl HM. Conditional modulation of membrane protein expression in cultured cells mediated by prion protein recognition of short phosphorothioate oligodeoxynucleotides. J Biol Chem 2010; 286:6911-7. [PMID: 21156803 DOI: 10.1074/jbc.m110.194662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We demonstrate that the levels of native as well as transfected prion protein (PrP) are lowered in various cell lines exposed to phosphorothioate oligodeoxynucleotides (PS-DNA) and can be rapidly reverted to their normal amounts by removal of PS-DNA. This transient modulation was independent of the glycosylation state of PrP, and in addition, all three PrP glycoforms were susceptible to PS-DNA treatment. Deletion of the N-terminal domain (amino acids 23-99), but not of the other domains of PrP, abrogated its PS-DNA-mediated down-regulation. PrP versions localized in the mitochondria, cytoplasm, or nucleus were not modulated by PS-DNA, indicating that PrP surface exposure is required for executing this effect. Proteins that in their native forms were not responsive to PS-DNA, such as thymocyte antigen 1 (Thy1), Doppel protein (Dpl), green fluorescent protein (GFP), and cyan fluorescent protein (CFP), became susceptible to PS-DNA-mediated down-regulation following introduction of the N terminus of PrP into their sequence. These observations demonstrate the essential role of the N-terminal domain for promoting oligonucleotide-mediated reduction of the PrP level and suggest that transient treatment of cultured cells with PS-DNA may provide a general method for targeted modulation of the levels of desired surface proteins in a conditional and reversible manner.
Collapse
Affiliation(s)
- Marcela Viviana Karpuj
- Institute of Biochemistry, Food Science and Nutrition Food and Environmental Quality Sciences, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The prion diseases are a family of rare neurodegenerative disorders that result from the accumulation of a misfolded isoform of the prion protein (PrP), a normal constituent of the neuronal membrane. Five subtypes constitute the known human prion diseases; kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), fatal insomnia (FI), and variant CJD (vCJD). These subtypes are distinguished, in part, by their clinical phenotype, but primarily by their associated brain histopathology. Evidence suggests these phenotypes are defined by differences in the pathogenic conformation of misfolded PrP. Although the vast majority of cases are sporadic, 10% to 15% result from an autosomal dominant mutation of the PrP gene (PRNP). General phenotype-genotype correlations can be made for the major subtypes of CJD, GSS, and FI. This paper will review some of the general background related to prion biology and detail the clinical and pathologic features of the major prion diseases, with a particular focus on the genetic aspects that result in prion disease or modification of its risk or phenotype.
Collapse
Affiliation(s)
- Khalilah Brown
- Center for Comprehensive Care and Research on Memory Disorders, Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
49
|
Prion protein self-interactions: A gateway to novel therapeutic strategies? Vaccine 2010; 28:7810-23. [DOI: 10.1016/j.vaccine.2010.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022]
|
50
|
Transcytosis of murine-adapted bovine spongiform encephalopathy agents in an in vitro bovine M cell model. J Virol 2010; 84:12285-91. [PMID: 20861256 DOI: 10.1128/jvi.00969-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSE), including bovine spongiform encephalopathy (BSE), are fatal neurodegenerative disorders in humans and animals. BSE appears to have spread to cattle through the consumption of feed contaminated with BSE/scrapie agents. In the case of an oral infection, the agents have to cross the gut-epithelial barrier. We recently established a bovine intestinal epithelial cell line (BIE cells) that can differentiate into the M cell type in vitro after lymphocytic stimulation (K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi, and H. Aso, Histochem. Cell Biol. 133:125-134, 2010). In this study, we evaluated the role of M cells in the intestinal invasion of the murine-adapted BSE (mBSE) agent using our in vitro bovine intestinal epithelial model. We demonstrate here that M cell-differentiated BIE cells are able to transport the mBSE agent without inactivation at least 30-fold more efficiently than undifferentiated BIE cells in our in vitro model. As M cells in the follicle-associated epithelium are known to have a high ability to transport a variety of macromolecules, viruses, and bacteria from gut lumen to mucosal immune cells, our results indicate the possibility that bovine M cells are able to deliver agents of TSE, not just the mBSE agent.
Collapse
|