1
|
Zhang Z, Zhao W, Lv C, Wu Z, Liu W, Chang X, Yu Y, Xiao Z, He Y, Zhang H. Unraveling impact and potential mechanisms of baseline pain on efficacy of immunotherapy in lung cancer patients: a retrospective and bioinformatic analysis. Front Immunol 2024; 15:1456150. [PMID: 39654896 PMCID: PMC11625792 DOI: 10.3389/fimmu.2024.1456150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Objective Pain is a prevalent discomfort symptom associated with cancer, yet the correlations and potential mechanisms between pain and the efficacy of cancer immunotherapy remain uncertain. Methods Non-small cell lung cancer (NSCLC) patients who received immune checkpoint inhibitors (ICIs) in the inpatient department of Guangdong Provincial Hospital of Chinese Medicine from January 1, 2018, to December 31, 2021, were retrospectively enrolled. Through cox regression analysis, prognostic factors and independent prognostic factors affecting the efficacy of ICIs were identified, and a nomogram model was constructed. Hub cancer-related pain genes (CRPGs) were identified through bioinformatic analysis. Finally, the expression levels of hub CRPGs were detected using an enzyme-linked immunosorbent assay (ELISA). Results Before PSM, a total of 222 patients were enrolled in this study. Univariate and multivariate cox analysis indicated that bone metastasis and NRS scores were independent prognostic factors for the efficacy of ICIs. After PSM, a total of 94 people were enrolled in this study. Univariate cox analysis and multivariate cox analysis indicated that age, platelets, Dnlr, liver metastasis, bone metastasis, and NRS scores were independent prognostic factors for the efficacy of ICIs. A nomogram was constructed based on 6 independent prognostic factors with AUC values of 0.80 for 1-year, 0.73 for 2-year, and 0.80 for 3-year survival. ELISA assay results indicated that the level of CXCL12 significantly decreased compared to baseline after pain was relieved. Conclusion Baseline pain is an independent prognostic factor affecting the efficacy of ICIs in lung cancer, potentially through CXCL12-mediated inflammation promotion and immunosuppression.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjie Zhao
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang Lv
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zexia Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhao Liu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuesong Chang
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenzhen Xiao
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihan He
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibo Zhang
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Amoddeo A. In silico assessment of CAR macrophages activity against SARS-CoV-2 infection. Heliyon 2024; 10:e39689. [PMID: 39524874 PMCID: PMC11550025 DOI: 10.1016/j.heliyon.2024.e39689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Macrophage engineering with chimeric antigen receptor is a promising technique first applied to the treatment of tumours and recently suggested as a possible immunotherapeutic route against the COVID-19 disease. Four immunotherapies based on engineered macrophages have been tested in vitro revealing promising, with one of them acting without increasing the cytokines level. We present a mathematical model aimed at the evaluation of both the SARS-CoV-2 virions dynamics and the cytokines production induced, while such newly developed constructs interact with the immune system once administered. The importance of the study lies both in monitoring the dynamics of the infection and in evaluating the cytokine production, since clinical studies show that in critical COVID-19 patients an abnormal cytokines production occurs, a concern to be accounted for in designing appropriate therapeutic strategies. The mathematical model was built in the context of the continuum approach of the mass conservation, while the numerical simulations have been performed introducing parameters deduced from the experiments, using the finite element method. The model simulations allow to analyse and to compare the immune mechanisms underlying the virus dynamics, deepening the investigation for two selected immunotherapies, suggesting that a synergistic work of involved cytokines with phagocytic activity of macrophages occurs. The best SARS-CoV-2 clearance relies not only on the phagocytic capacity of the engineered macrophages, but also on the production of T-lymphocytes, pro- and anti-inflammatory cytokines which in the two cases examined in depth can decrease by 99.7 %, 99.6 % and 69 % respectively, passing from the most effective immunotherapy to the least effective one. This study is the first mathematical model that analyses the dynamics of macrophages engineered to fight the COVID-19, and paves the way for their possible exploitation against such a challenging disease, going beyond existing models involving other immune cells.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università’Mediterranea’ di Reggio Calabria, Via R. Zehender 1, Feo di Vito, I-89122, Reggio Calabria, Italy
| |
Collapse
|
3
|
Zhang T, Yu W, Cheng X, Yeung J, Ahumada V, Norris PC, Pearson MJ, Yang X, van Deursen W, Halcovich C, Nassar A, Vesely MD, Zhang Y, Zhang JP, Ji L, Flies DB, Liu L, Langermann S, LaRochelle WJ, Humphrey R, Zhao D, Zhang Q, Zhang J, Gu R, Schalper KA, Sanmamed MF, Chen L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Sci Immunol 2024; 9:eadh2334. [PMID: 38669316 DOI: 10.1126/sciimmunol.adh2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/19/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues. PLA2G10 overexpression in immunogenic mouse tumors excluded T cells from infiltration, resulting in resistance to anti-PD-1 immunotherapy. PLA2G10 can hydrolyze phospholipids into small lipid metabolites, thus inhibiting chemokine-mediated T cell mobility. Ablation of PLA2G10's enzymatic activity enhanced T cell infiltration and sensitized PLA2G10-overexpressing tumors to immunotherapies. Our study implicates a role for PLA2G10 in T cell exclusion from tumors and suggests a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiwei Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoxiao Cheng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Viviana Ahumada
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Xuan Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Christina Halcovich
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ala Nassar
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D. Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian-Ping Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Ji
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Qiuyu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jindong Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Runxia Gu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Program of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Rheem HB, Choi H, Yang S, Han S, Rhee SY, Jeong H, Lee KB, Lee Y, Kim IS, Lee H, Choi IS. Fugetaxis of Cell-in-Catalytic-Coat Nanobiohybrids in Glucose Gradients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301431. [PMID: 37282761 DOI: 10.1002/smll.202301431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Manipulation and control of cell chemotaxis remain an underexplored territory despite vast potential in various fields, such as cytotherapeutics, sensors, and even cell robots. Herein is achieved the chemical control over chemotactic movement and direction of Jurkat T cells, as a representative model, by the construction of cell-in-catalytic-coat structures in single-cell nanoencapsulation. Armed with the catalytic power of glucose oxidase (GOx) in the artificial coat, the nanobiohybrid cytostructures, denoted as Jurkat[Lipo_GOx] , exhibit controllable, redirected chemotactic movement in response to d-glucose gradients, in the opposite direction to the positive-chemotaxis direction of naïve, uncoated Jurkat cells in the same gradients. The chemically endowed, reaction-based fugetaxis of Jurkat[Lipo_GOx] operates orthogonally and complementarily to the endogenous, binding/recognition-based chemotaxis that remains intact after the formation of a GOx coat. For instance, the chemotactic velocity of Jurkat[Lipo_GOx] can be adjusted by varying the combination of d-glucose and natural chemokines (CXCL12 and CCL19) in the gradient. This work offers an innovative chemical tool for bioaugmenting living cells at the single-cell level through the use of catalytic cell-in-coat structures.
Collapse
Affiliation(s)
- Hyeong Bin Rheem
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyunwoo Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Seoin Yang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Su Yeon Rhee
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyeongseop Jeong
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Kyung-Bok Lee
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Yeji Lee
- Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Chemical & Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - In-San Kim
- Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Chemical & Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hojae Lee
- Department of Chemistry, Hallym University, Chuncheon, 24252, South Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
5
|
Amoddeo A. A mathematical model and numerical simulation for SARS-CoV-2 dynamics. Sci Rep 2023; 13:4575. [PMID: 36941368 PMCID: PMC10027279 DOI: 10.1038/s41598-023-31733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Since its outbreak the corona virus-19 disease has been particularly aggressive for the lower respiratory tract, and lungs in particular. The dynamics of the abnormal immune response leading to lung damage with fatal outcomes is not yet fully understood. We present a mathematical model describing the dynamics of corona virus disease-19 starting from virus seeding inside the human respiratory tract, taking into account its interaction with the components of the innate immune system as classically and alternatively activated macrophages, interleukin-6 and -10. The numerical simulations have been performed for two different parameter values related to the pro-inflammatory interleukin, searching for a correlation among components dynamics during the early stage of infection, in particular pro- and anti-inflammatory polarizations of the immune response. We found that in the initial stage of infection the immune machinery is unable to stop or weaken the virus progression. Also an abnormal anti-inflammatory interleukin response is predicted, induced by the disease progression and clinically associated to tissue damages. The numerical results well reproduce experimental results found in literature.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università 'Mediterranea' di Reggio Calabria, Via Graziella 1, Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
6
|
Rodríguez-Fernández JL, Criado-García O. A meta-analysis indicates that the regulation of cell motility is a non-intrinsic function of chemoattractant receptors that is governed independently of directional sensing. Front Immunol 2022; 13:1001086. [PMID: 36341452 PMCID: PMC9630654 DOI: 10.3389/fimmu.2022.1001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Chemoattraction, defined as the migration of a cell toward a source of a chemical gradient, is controlled by chemoattractant receptors. Chemoattraction involves two basic activities, namely, directional sensing, a molecular mechanism that detects the direction of a source of chemoattractant, and actin-based motility, which allows the migration of a cell towards it. Current models assume first, that chemoattractant receptors govern both directional sensing and motility (most commonly inducing an increase in the migratory speed of the cells, i.e. chemokinesis), and, second, that the signaling pathways controlling both activities are intertwined. We performed a meta-analysis to reassess these two points. From this study emerge two main findings. First, although many chemoattractant receptors govern directional sensing, there are also receptors that do not regulate cell motility, suggesting that is the ability to control directional sensing, not motility, that best defines a chemoattractant receptor. Second, multiple experimental data suggest that receptor-controlled directional sensing and motility can be controlled independently. We hypothesize that this independence may be based on the existence of separated signalling modules that selectively govern directional sensing and motility in chemotactic cells. Together, the information gathered can be useful to update current models representing the signalling from chemoattractant receptors. The new models may facilitate the development of strategies for a more effective pharmacological modulation of chemoattractant receptor-controlled chemoattraction in health and disease.
Collapse
|
7
|
Abstract
Semaphorin 3A is a secreted glycoprotein, which was originally identified as axon guidance factor in the neuronal system, but it also possesses immunoregulatory properties. Here, the effect of semaphorin 3A on T-lymphocytes, myeloid dendritic cells and macrophages is systematically analyzed on the bases of all publications available in the literature for 20 years. Expression of semaphorin 3A receptors – neuropilin-1 and plexins A – in these cells is described in details. The data obtained on human and murine cells is described comparatively. A comprehensive overview of the interaction of semaphorin 3A with mononuclear phagocyte system is presented for the first time. Semaphorin 3A signaling mostly results in changes of the cytoskeletal machinery and cellular morphology that regulate pathways involved in migration, adhesion, and cell–cell cooperation of immune cells. Accumulating evidence indicates that this factor is crucially involved in various phases of immune responses, including initiation phase, antigen presentation, effector T cell function, inflammation phase, macrophage activation, and polarization. In recent years, interest in this field has increased significantly because semaphorin 3A is associated with many human diseases and therefore can be used as a target for their treatment. Its involvement in the immune responses is important to study, because semaphorin 3A and its receptors turn to be a promising new therapeutic tools to be applied in many autoimmune, allergic, and oncology diseases.
Collapse
Affiliation(s)
- Ekaterina P Kiseleva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
- Mechnikov North-Western State Medical University, St. Petersburg, 195067, Russia
| | - Kristina V Rutto
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
| |
Collapse
|
8
|
Kirolos SA, Rijal R, Consalvo KM, Gomer RH. Using Dictyostelium to Develop Therapeutics for Acute Respiratory Distress Syndrome. Front Cell Dev Biol 2021; 9:710005. [PMID: 34350188 PMCID: PMC8326840 DOI: 10.3389/fcell.2021.710005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) involves damage to lungs causing an influx of neutrophils from the blood into the lung airspaces, and the neutrophils causing further damage, which attracts more neutrophils in a vicious cycle. There are ∼190,000 cases of ARDS per year in the US, and because of the lack of therapeutics, the mortality rate is ∼40%. Repelling neutrophils out of the lung airspaces, or simply preventing neutrophil entry, is a potential therapeutic. In this minireview, we discuss how our lab noticed that a protein called AprA secreted by growing Dictyostelium cells functions as a repellent for Dictyostelium cells, causing cells to move away from a source of AprA. We then found that AprA has structural similarity to a human secreted protein called dipeptidyl peptidase IV (DPPIV), and that DPPIV is a repellent for human neutrophils. In animal models of ARDS, inhalation of DPPIV or DPPIV mimetics blocks neutrophil influx into the lungs. To move DPPIV or DPPIV mimetics into the clinic, we need to know how this repulsion works to understand possible drug interactions and side effects. Combining biochemistry and genetics in Dictyostelium to elucidate the AprA signal transduction pathway, followed by drug studies in human neutrophils to determine similarities and differences between neutrophil and Dictyostelium chemorepulsion, will hopefully lead to the safe use of DPPIV or DPPIV mimetics in the clinic.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
10
|
Portella L, Bello AM, Scala S. CXCL12 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:51-70. [PMID: 34286441 DOI: 10.1007/978-3-030-62658-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment (TME) is the local environment of tumor, composed of tumor cells and blood vessels, extracellular matrix (ECM), immune cells, and metabolic and signaling molecules. Chemokines and their receptors play a fundamental role in the crosstalk between tumor cells and TME, regulating tumor-related angiogenesis, specific leukocyte infiltration, and activation of the immune response and directly influencing tumor cell growth, invasion, and cancer progression. The chemokine CXCL12 is a homeostatic chemokine that regulates physiological and pathological process such as inflammation, cell proliferation, and specific migration. CXCL12 activates CXCR4 and CXCR7 chemokine receptors, and the entire axis has been shown to be dysregulated in more than 20 different tumors. CXCL12 binding to CXCR4 triggers multiple signal transduction pathways that regulate intracellular calcium flux, chemotaxis, transcription, and cell survival. CXCR7 binds with high-affinity CXCL12 and with lower-affinity CXCL11, which binds also CXCR3. Although CXCR7 acts as a CXCL12 scavenger through ligand internalization and degradation, it transduces the signal mainly through β-arrestin with a pivotal role in endothelial and neural cells. Recent studies demonstrate that TME rich in CXCL12 leads to resistance to immune checkpoint inhibitors (ICI) therapy and that CXCL12 axis inhibitors sensitize resistant tumors to ICI effect. Thus targeting the CXCL12-mediated axis may control tumor and tumor microenvironment exerting an antitumor dual action. Herein CXCL12 physiology, role in cancer biology and in composite TME, prognostic role, and the relative inhibitors are addressed.
Collapse
Affiliation(s)
- Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
11
|
How Have Leukocyte In Vitro Chemotaxis Assays Shaped Our Ideas about Macrophage Migration? BIOLOGY 2020; 9:biology9120439. [PMID: 33276594 PMCID: PMC7761587 DOI: 10.3390/biology9120439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Simple Summary The migration of immune cells is vital during inflammatory responses. Macrophages, which are a subset of immune cells, are unique in the ways they migrate because they can switch between different mechanism of migration. This crucial feature of macrophage migration has been underappreciated in the literature because technologies used to study macrophage migration were not able to efficiently detect those subtle differences between macrophages and other immune cells. This review article describes popular technologies used to study macrophage migration and critically assesses their advantages and disadvantages in macrophage migration studies. Abstract Macrophage chemotaxis is crucial during both onset and resolution of inflammation and unique among all leukocytes. Macrophages are able to switch between amoeboid and mesenchymal migration to optimise their migration through 3D environments. This subtle migration phenotype has been underappreciated in the literature, with macrophages often being grouped and discussed together with other leukocytes, possibly due to the limitations of current chemotaxis assays. Transwell assays were originally designed in the 1960s but despite their long-known limitations, they are still one of the most popular methods of studying macrophage migration. This review aims to critically evaluate transwell assays, and other popular chemotaxis assays, comparing their advantages and limitations in macrophage migration studies.
Collapse
|
12
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
13
|
Li JF. Some models with repulsion effect on superinfecting viruses by infected cells. INT J BIOMATH 2019. [DOI: 10.1142/s1793524519500797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we study some models with repulsion effect on superinfecting viruses by infected cells [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text] are the density of uninfected cells, infected cells and viruses at time [Formula: see text] at location [Formula: see text], respectively. The functions [Formula: see text] and [Formula: see text] are assumed to be positive, continuous and bounded. [Formula: see text] denotes the production rate of uninfected cells. The infection rate is [Formula: see text] and the function [Formula: see text] is the production rate of free viruses. And [Formula: see text] is the rate of transfer from uninfected cells to infected cells. The positive constants [Formula: see text] and [Formula: see text] denote the death rate of uninfected cells, infected cells and viruses, respectively. The stability of the infection-free equilibrium solution and infection equilibrium solution is discussed. It is shown that if the basic reproduction number [Formula: see text] then the chemotaxis has no effect, that is, the infection-free constant solution is stable. For the system with chemotactic sensitivity [Formula: see text], if [Formula: see text], then the infection constant solution will be unstable under some conditions.
Collapse
Affiliation(s)
- Jun-Feng Li
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
14
|
Manipulation of cell migration by laserporation-induced local wounding. Sci Rep 2019; 9:4291. [PMID: 30862930 PMCID: PMC6414676 DOI: 10.1038/s41598-019-39678-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Living organisms employ various mechanisms to escape harm. At the cellular level, mobile cells employ movement to avoid harmful chemicals or repellents. The present study is the first to report that cells move away from the site of injury in response to local wounding. When a migrating Dictyostelium cell was locally wounded at its anterior region by laserporation, the cell retracted its anterior pseudopods, extended a new pseudopod at the posterior region, and migrated in the opposite direction with increasing velocity. When wounded in the posterior region, the cell did not change its polarity and moved away from the site of wounding. Since the cells repair wounds within a short period, we successfully manipulated cell migration by applying multiple wounds. Herein, we discussed the signals that contributed to the wound-induced escape behavior of Dictyostelium cells. Our findings provide important insights into the mechanisms by which cells establish their polarity.
Collapse
|
15
|
Malhotra D, Shin J, Solnica-Krezel L, Raz E. Spatio-temporal regulation of concurrent developmental processes by generic signaling downstream of chemokine receptors. eLife 2018; 7:e33574. [PMID: 29873633 PMCID: PMC5990360 DOI: 10.7554/elife.33574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/19/2018] [Indexed: 01/09/2023] Open
Abstract
Chemokines are secreted proteins that regulate a range of processes in eukaryotic organisms. Interestingly, different chemokine receptors control distinct biological processes, and the same receptor can direct different cellular responses, but the basis for this phenomenon is not known. To understand this property of chemokine signaling, we examined the function of the chemokine receptors Cxcr4a, Cxcr4b, Ccr7, Ccr9 in the context of diverse processes in embryonic development in zebrafish. Our results reveal that the specific response to chemokine signaling is dictated by cell-type-specific chemokine receptor signal interpretation modules (CRIM) rather than by chemokine-receptor-specific signals. Thus, a generic signal provided by different receptors leads to discrete responses that depend on the specific identity of the cell that receives the signal. We present the implications of employing generic signals in different contexts such as gastrulation, axis specification and single-cell migration.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Movement/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Receptors, CCR/genetics
- Receptors, CCR/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Signal Transduction/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
| | - Jimann Shin
- Department of Developmental BiologyWashington University School of MedicineSt LouisMissouri
| | | | - Erez Raz
- Institute for Cell BiologyZMBEMuensterGermany
| |
Collapse
|
16
|
Hooshmand MJ, Nguyen HX, Piltti KM, Benavente F, Hong S, Flanagan L, Uchida N, Cummings BJ, Anderson AJ. Neutrophils Induce Astroglial Differentiation and Migration of Human Neural Stem Cells via C1q and C3a Synthesis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1069-1085. [PMID: 28687659 DOI: 10.4049/jimmunol.1600064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2017] [Indexed: 12/23/2022]
Abstract
Inflammatory processes play a key role in pathophysiology of many neurologic diseases/trauma, but the effect of immune cells and factors on neurotransplantation strategies remains unclear. We hypothesized that cellular and humoral components of innate immunity alter fate and migration of human neural stem cells (hNSC). In these experiments, conditioned media collected from polymorphonuclear leukocytes (PMN) selectively increased hNSC astrogliogenesis and promoted cell migration in vitro. PMN were shown to generate C1q and C3a; exposure of hNSC to PMN-synthesized concentrations of these complement proteins promoted astrogliogenesis and cell migration. Furthermore, in vitro, Abs directed against C1q and C3a reversed the fate and migration effects observed. In a proof-of-concept in vivo experiment, blockade of C1q and C3a transiently altered hNSC migration and reversed astroglial fate after spinal cord injury. Collectively, these data suggest that modulation of the innate/humoral inflammatory microenvironment may impact the potential of cell-based therapies for recovery and repair following CNS pathology.
Collapse
Affiliation(s)
- Mitra J Hooshmand
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697
| | - Hal X Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697
| | - Katja M Piltti
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697
| | - Francisca Benavente
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697
| | - Samuel Hong
- Bridges to Stem Cell Research Program, California State University, Fullerton, Fullerton, CA 92834; and
| | - Lisa Flanagan
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697
| | | | - Brian J Cummings
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697.,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697
| | - Aileen J Anderson
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697.,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
17
|
Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol 2017; 16:378-91. [PMID: 27231052 DOI: 10.1038/nri.2016.49] [Citation(s) in RCA: 710] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophil migration and its role during inflammation has been the focus of increased interest in the past decade. Advances in live imaging and the use of new model systems have helped to uncover the behaviour of neutrophils in injured and infected tissues. Although neutrophils were considered to be short-lived effector cells that undergo apoptosis in damaged tissues, recent evidence suggests that neutrophil behaviour is more complex and, in some settings, neutrophils might leave sites of tissue injury and migrate back into the vasculature. The role of reverse migration and its contribution to resolution of inflammation remains unclear. In this Review, we discuss the different cues within tissues that mediate neutrophil forward and reverse migration in response to injury or infection and the implications of these mechanisms to human disease.
Collapse
|
18
|
A real-time assay for neutrophil chemotaxis. Biotechniques 2016; 60:245-51. [PMID: 27177817 DOI: 10.2144/000114416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/05/2016] [Indexed: 11/23/2022] Open
Abstract
Neutrophils are the predominant cells during acute phases of inflammation, and it is now recognized that these leukocytes play an important role in modulation of the immune response. Directed migration of these cells to the sites of injury, known as chemotaxis, is driven by chemoattractants present at the endothelial cell surface or in the extracellular matrix (ECM). Since uncontrolled or excessive neutrophil chemotaxis is involved in pathological conditions such as atherosclerosis and severe asthma, studying the chemical cues triggering neutrophil migration is essential for understanding the biology of these cells and developing new anti-inflammatory therapies. Although several methods have been developed to evaluate neutrophil chemotaxis, these techniques are generally labor-intensive or alter the native form of these cells and their physiological response. Here we report a rapid, non-invasive, impedance-based, and label-free assay for real-time assessment of neutrophil chemotaxis.
Collapse
|
19
|
Xu Y, Guan J. Biomaterial property-controlled stem cell fates for cardiac regeneration. Bioact Mater 2016; 1:18-28. [PMID: 29744392 PMCID: PMC5883968 DOI: 10.1016/j.bioactmat.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction (MI) affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes. Cell therapy is an attractive approach for cardiac regeneration after myocardial infarction. Biomaterials are used as cell carriers. This review highlights how biochemical and biophysical properties of biomaterials affect cell fates.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Almeida CR, Caires HR, Vasconcelos DP, Barbosa MA. NAP-2 Secreted by Human NK Cells Can Stimulate Mesenchymal Stem/Stromal Cell Recruitment. Stem Cell Reports 2016; 6:466-473. [PMID: 27052313 PMCID: PMC4834048 DOI: 10.1016/j.stemcr.2016.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
Strategies for improved homing of mesenchymal stem cells (MSCs) to a place of injury are being sought and it has been shown that natural killer (NK) cells can stimulate MSC recruitment. Here, we studied the chemokines behind this recruitment. Assays were performed with bone marrow human MSCs and NK cells freshly isolated from healthy donor buffy coats. Supernatants from MSC-NK cell co-cultures can induce MSC recruitment but not to the same extent as when NK cells are present. Antibody arrays and ELISA assays confirmed that NK cells secrete RANTES (CCL5) and revealed that human NK cells secrete NAP-2 (CXCL7), a chemokine that can induce MSC migration. Inhibition with specific antagonists of CXCR2, a receptor that recognizes NAP-2, abolished NK cell-mediated MSC recruitment. This capacity of NK cells to produce chemokines that stimulate MSC recruitment points toward a role for this immune cell population in regulating tissue repair/regeneration. Primary unstimulated human NK cells produce NAP-2 (CXCL7) NAP-2 is a chemokine that can promote recruitment of bone marrow MSCs Inhibiting the NAP-2 receptor CXCR2 abolishes NK cell-mediated MSC recruitment
Collapse
Affiliation(s)
- Catarina R Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniela P Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
Oelkrug C, Ramage JM. Enhancement of T cell recruitment and infiltration into tumours. Clin Exp Immunol 2014; 178:1-8. [PMID: 24828133 PMCID: PMC4360188 DOI: 10.1111/cei.12382] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 12/22/2022] Open
Abstract
Studies have documented that cancer patients with tumours which are highly infiltrated with cytotoxic T lymphocytes show enhanced survival rates. The ultimate goal of cancer immunotherapy is to elicit high-avidity tumour-specific T cells to migrate and kill malignant tumours. Novel antibody therapies such as ipilumimab (a cytotoxic T lymphocyte antigen-4 blocking antibody) show enhanced T cell infiltration into the tumour tissue and increased survival. More conventional therapies such as chemotherapy or anti-angiogenic therapy and recent therapies with oncolytic viruses have been shown to alter the tumour microenvironment and thereby lead to enhanced T cell infiltration. Understanding the mechanisms involved in the migration of high-avidity tumour-specific T cells into tumours will support and provide solutions for the optimization of therapeutic options in cancer immunotherapy.
Collapse
Affiliation(s)
- C Oelkrug
- Academic Unit of Oncology, University of Nottingham, Nottingham, UK; Cell Tharapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | |
Collapse
|
22
|
Berthier E, Beebe DJ. Gradient generation platforms: new directions for an established microfluidic technology. LAB ON A CHIP 2014; 14:3241-7. [PMID: 25008971 PMCID: PMC4134926 DOI: 10.1039/c4lc00448e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microscale platforms are enabling for cell-based studies as they allow the recapitulation of physiological conditions such as extracellular matrix (ECM) configurations and soluble factors interactions. Gradient generation platforms have been one of the few applications of microfluidics that have begun to be translated to biological laboratories and may become a new "gold standard". Though gradient generation platforms are now established, their full potential has not yet been realized. Here, we will provide our perspective on milestones achieved in the development of gradient generation and cell migration platforms, as well as emerging directions such as using cell migration as a diagnostic readout and attaining mechanistic information from cell migration models.
Collapse
Affiliation(s)
- E Berthier
- Microtechnology Medicine and Biology Lab (MMB), Department of Biomedical Engineering, University of Wisconsin-Madison, USA.
| | | |
Collapse
|
23
|
Phillips JE, Gomer RH. The p21-activated kinase (PAK) family member PakD is required for chemorepulsion and proliferation inhibition by autocrine signals in Dictyostelium discoideum. PLoS One 2014; 9:e96633. [PMID: 24797076 PMCID: PMC4010531 DOI: 10.1371/journal.pone.0096633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
In Dictyostelium discoideum, the secreted proteins AprA and CfaD function as reporters of cell density and regulate cell number by inhibiting proliferation at high cell densities. AprA also functions to disperse groups of cells at high density by acting as a chemorepellent. However, the signal transduction pathways associated with AprA and CfaD are not clear, and little is known about how AprA affects the cytoskeleton to regulate cell movement. We found that the p21-activated kinase (PAK) family member PakD is required for both the proliferation-inhibiting activity of AprA and CfaD and the chemorepellent activity of AprA. Similar to cells lacking AprA or CfaD, cells lacking PakD proliferate to a higher cell density than wild-type cells. Recombinant AprA and CfaD inhibit the proliferation of wild-type cells but not cells lacking PakD. Like AprA and CfaD, PakD affects proliferation but does not significantly affect growth (the accumulation of mass) on a per-nucleus basis. In contrast to wild-type cells, cells lacking PakD are not repelled from a source of AprA, and colonies of cells lacking PakD expand at a slower rate than wild-type cells, indicating that PakD is required for AprA-mediated chemorepulsion. A PakD-GFP fusion protein localizes to an intracellular punctum that is not the nucleus or centrosome, and PakD-GFP is also occasionally observed at the rear cortex of moving cells. Vegetative cells lacking PakD show excessive actin-based filopodia-like structures, suggesting that PakD affects actin dynamics, consistent with previously characterized roles of PAK proteins in actin regulation. Together, our results implicate PakD in AprA/CfaD signaling and show that a PAK protein is required for proper chemorepulsive cell movement in Dictyostelium.
Collapse
Affiliation(s)
- Jonathan E. Phillips
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Peranzoni E, Rivas-Caicedo A, Bougherara H, Salmon H, Donnadieu E. Positive and negative influence of the matrix architecture on antitumor immune surveillance. Cell Mol Life Sci 2013; 70:4431-48. [PMID: 23649148 PMCID: PMC11113382 DOI: 10.1007/s00018-013-1339-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/18/2013] [Accepted: 04/08/2013] [Indexed: 12/15/2022]
Abstract
The migration of T cells and access to tumor antigens is of utmost importance for the induction of protective anti-tumor immunity. Once having entered a malignant site, T cells encounter a complex environment composed of non-tumor cells along with the extracellular matrix (ECM). It is now well accepted that a deregulated ECM favors tumor progression and metastasis. Recent progress in imaging technologies has also highlighted the impact of the matrix architecture found in solid tumor on immune cells and especially T cells. In this review, we argue that the ability of T cells to mount an antitumor response is dependent on the matrix structure, more precisely on the balance between pro-migratory reticular fiber networks and unfavorable migration zones composed of dense and aligned ECM structures. Thus, the matrix architecture, that has long been considered to merely provide the structural framework of connective tissues, can play a key role in facilitating or suppressing the antitumor immune surveillance. A new challenge in cancer therapy will be to develop approaches aimed at altering the architecture of the tumor stroma, rendering it more permissive to antitumor T cells.
Collapse
Affiliation(s)
- Elisa Peranzoni
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Ana Rivas-Caicedo
- Alta Tecnología en Laboratorios SA de CV, Comoporis #45, El Caracol, Mexico, Mexico
| | - Houcine Bougherara
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| | - Hélène Salmon
- Department of Oncological Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029 USA
| | - Emmanuel Donnadieu
- Inserm, U1016, Institut Cochin, Paris, France
- Cnrs UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
- Département d’Immunologie et d’Hématologie, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
| |
Collapse
|
25
|
Herlihy SE, Pilling D, Maharjan AS, Gomer RH. Dipeptidyl peptidase IV is a human and murine neutrophil chemorepellent. THE JOURNAL OF IMMUNOLOGY 2013; 190:6468-77. [PMID: 23677473 DOI: 10.4049/jimmunol.1202583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Dictyostelium discoideum, AprA is a secreted protein that inhibits proliferation and causes chemorepulsion of Dictyostelium cells, yet AprA has little sequence similarity to any human proteins. We found that a predicted structure of AprA has similarity to human dipeptidyl peptidase IV (DPPIV). DPPIV is a serine protease present in extracellular fluids that cleaves peptides with a proline or alanine in the second position. In Insall chambers, DPPIV gradients below, similar to, and above the human serum DPPIV concentration cause movement of human neutrophils away from the higher concentration of DPPIV. A 1% DPPIV concentration difference between the front and back of the cell is sufficient to cause chemorepulsion. Neutrophil speed and viability are unaffected by DPPIV. DPPIV inhibitors block DPPIV-mediated chemorepulsion. In a murine model of acute respiratory distress syndrome, aspirated bleomycin induces a significant increase in the number of neutrophils in the lungs after 3 d. Oropharyngeal aspiration of DPPIV inhibits the bleomycin-induced accumulation of mouse neutrophils. These results indicate that DPPIV functions as a chemorepellent of human and mouse neutrophils, and they suggest new mechanisms to inhibit neutrophil accumulation in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Sarah E Herlihy
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Interactions among neighboring cells underpin many physiological processes ranging from early development to immune responses. When these interactions do not function properly, numerous pathologies, including infection and cancer, can result. Molecular imaging technologies, especially optical imaging, are uniquely suited to illuminate complex cellular interactions within the context of living tissues in the body. However, no tools yet exist that allow the detection of microscopic events, such as two cells coming into close proximity, on a global, whole-animal scale. We report here a broadly applicable, longitudinal strategy for probing interactions among cells in living subjects. This approach relies on the generation of bioluminescent light when two distinct cell populations come into close proximity, with the intensity of the optical signal correlating with relative cellular location. We demonstrate the ability of this reporter strategy to gauge cell-cell proximity in culture models in vitro and then evaluate this approach for imaging tumor-immune cell interactions using a murine breast cancer model. In these studies, our imaging strategy enabled the facile visualization of features that are otherwise difficult to observe with conventional imaging techniques, including detection of micrometastatic lesions and potential sites of tumor immunosurveillance. This proximity reporter will facilitate probing of numerous types of cell-cell interactions and will stimulate the development of similar techniques to detect rare events and pathological processes in live animals.
Collapse
|
27
|
Holmes GR, Anderson SR, Dixon G, Robertson AL, Reyes-Aldasoro CC, Billings SA, Renshaw SA, Kadirkamanathan V. Repelled from the wound, or randomly dispersed? Reverse migration behaviour of neutrophils characterized by dynamic modelling. J R Soc Interface 2012; 9:3229-39. [PMID: 22951343 DOI: 10.1098/rsif.2012.0542] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Following neutralization of infectious threats, neutrophils must be removed from inflammatory sites for normal tissue function to be restored. Recently, a new paradigm has emerged, in which viable neutrophils migrate away from inflammatory sites by a process best described as reverse migration. It has generally been assumed that this process is the mirror image of chemotaxis, where neutrophils are drawn into the areas of infection or tissue damage by gradients of chemotactic cues. Indeed, efforts are underway to identify cues that drive neutrophils away by the reverse process, fugetaxis. By using photoconvertible pigments expressed in neutrophils in transparent zebrafish larvae, we were able to image the position of each neutrophil during inflammation resolution in vivo. These neutrophil coordinates were analysed within a dynamic modelling framework, using different forms of the drift-diffusion equation with model selection and parameter estimation based on approximate Bayesian computation. This analysis revealed the experimental data were best fitted by a model incorporating a diffusion term but no drift term-where the presence of drift would indicate fugetaxis. This result, for the first time, provides rigorous data-driven evidence that reverse migration of neutrophils in vivo is not a form of fugetaxis, but rather a stochastic redistribution.
Collapse
Affiliation(s)
- Geoffrey R Holmes
- Complex Systems and Signal Processing Group, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
A secreted protein is an endogenous chemorepellant in Dictyostelium discoideum. Proc Natl Acad Sci U S A 2012; 109:10990-5. [PMID: 22711818 DOI: 10.1073/pnas.1206350109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemorepellants may play multiple roles in physiological and pathological processes. However, few endogenous chemorepellants have been identified, and how they function is unclear. We found that the autocrine signal AprA, which is produced by growing Dictyostelium discoideum cells and inhibits their proliferation, also functions as a chemorepellant. Wild-type cells at the edge of a colony show directed movement outward from the colony, whereas cells lacking AprA do not. Cells show directed movement away from a source of recombinant AprA and dialyzed conditioned media from wild-type cells, but not dialyzed conditioned media from aprA(-) cells. The secreted protein CfaD, the G protein Gα8, and the kinase QkgA are necessary for the chemorepellant activity of AprA as well as its proliferation-inhibiting activity, whereas the putative transcription factor BzpN is dispensable for the chemorepellant activity of AprA but necessary for inhibition of proliferation. Phospholipase C and PI3 kinases 1 and 2, which are necessary for the activity of at least one other chemorepellant in Dictyostelium, are not necessary for recombinant AprA chemorepellant activity. Starved cells are not repelled by recombinant AprA, suggesting that aggregation-phase cells are not sensitive to the chemorepellant effect. Cell tracking indicates that AprA affects the directional bias of cell movement, but not cell velocity or the persistence of cell movement. Together, our data indicate that the endogenous signal AprA acts as an autocrine chemorepellant for Dictyostelium cells.
Collapse
|
29
|
Williams RL, Sroussi HY, Leung K, Marucha PT. Antimicrobial decapeptide KSL-W enhances neutrophil chemotaxis and function. Peptides 2012; 33:1-8. [PMID: 22197491 DOI: 10.1016/j.peptides.2011.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 12/23/2022]
Abstract
Mammalian cationic antimicrobial peptides have received increased attention over the last decade, due to their prokaryotic selectivity and decreased risk of microbial resistance. In addition, antimicrobial peptides display differential biological effects on mammalian immune cell function, such as migration, adhesion, and modulation of respiratory burst, which make them even more attractive as therapeutic agents. Synthetic combinatorial libraries provide a time-efficient and cost-effective source for these diverse molecules. The novel synthetic antimicrobial peptide, KSLW (KKVVFWVKFK-NH(2)), has been shown to display a broad spectrum of antimicrobial activity against Gram (+) and Gram (-) bacteria, fungi and viruses. In this study, we evaluated the alternative biological activity of the decapeptide on neutrophil migration and function. KSLW was demonstrated to be chemotactic for neutrophils in micromolar amounts, and neutrophil treatment with KSLW, after 1 min, resulted in significant increases in F-actin polymerization. KSLW was shown to inhibit oxygen radical production in PMA- and LPS-stimulated neutrophils. Future studies, to determine if KSLW regulates neutrophil phagocytosis, adhesion, and apoptosis, or examining the effect of KSLW on other mammalian cell types, such as cell populations of healing-impaired wounds, would provide significant insight for the potential therapeutic strategies offered by antimicrobial peptides.
Collapse
Affiliation(s)
- Richard L Williams
- US Army Institute of Surgical Research, Fort Sam Houston, TX, United States.
| | | | | | | |
Collapse
|
30
|
Abstract
Transplantation of stem cells into the heart can improve cardiac function after myocardial infarction and in chronic heart failure, but the extent of benefit and of reproducibility of this approach are insufficient. Survival of transplanted cells into myocardium is poor, and new strategies are needed to enhance stem cell differentiation and survival in vivo. In this review, we describe how biomaterials can enhance stem cell function in the heart. Biomaterials can mimic or include naturally occurring extracellular matrix and also instruct stem cell function in different ways. Biomaterials can promote angiogenesis, enhance engraftment and differentiation of stem cells, and accelerate electromechanical integration of transplanted stem cells. Biomaterials can also be used to deliver proteins, genes, or small RNAs together with stem cells. Furthermore, recent evidence indicates that the biophysical environment of stem cells is crucial for their proliferation and differentiation, as well as their electromechanical integration. Many approaches in regenerative medicine will likely ultimately require integration of molecularly designed biomaterials and stem cell biology to develop stable tissue regeneration.
Collapse
Affiliation(s)
- Vincent F.M. Segers
- From the University of Antwerp (V.F.M.S.), Antwerp, Belgium; Harvard Stem Cell Institute and the Cardiovascular Division (R.T.L.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA
| | - Richard T. Lee
- From the University of Antwerp (V.F.M.S.), Antwerp, Belgium; Harvard Stem Cell Institute and the Cardiovascular Division (R.T.L.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA
| |
Collapse
|
31
|
Nandagopal S, Wu D, Lin F. Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields. PLoS One 2011; 6:e18183. [PMID: 21464944 PMCID: PMC3064588 DOI: 10.1371/journal.pone.0018183] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/22/2011] [Indexed: 12/03/2022] Open
Abstract
Chemokines mediate the trafficking and positioning of lymphocytes in lymphoid tissues that is crucial for immune surveillance and immune responses. In particular, a CCR7 ligand, CCL21, plays important roles in recruiting T cells to secondary lymphoid tissues (SLT). Furthermore, CCL21 together with another CCR7 ligand, CCL19, direct the navigation and compartmentation of T cells within SLT. However, the distinct roles of these two chemokines for regulating cell trafficking and positioning are not clear. In this study, we explore the effect of co-existing CCL19 and CCL21 concentration fields on guiding T cell migration. Using microfluidic devices that can configure single and superimposed chemokine fields we show that under physiological gradient conditions, human peripheral blood T cells chemotax to CCL21 but not CCL19. Furthermore, T cells migrate away from the CCL19 gradient in a uniform background of CCL21. This repulsive migratory response is predicted by mathematical modeling based on the competition of CCL19 and CCL21 for CCR7 signaling and the differential ability of the two chemokines for desensitizing CCR7. These results suggest a new combinatorial guiding mechanism by CCL19 and CCL21 for the migration and trafficking of CCR7 expressing leukocytes.
Collapse
Affiliation(s)
- Saravanan Nandagopal
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dan Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
32
|
CXCL9 induces chemotaxis, chemorepulsion and endothelial barrier disruption through CXCR3-mediated activation of melanoma cells. Br J Cancer 2010; 104:469-79. [PMID: 21179030 PMCID: PMC3049560 DOI: 10.1038/sj.bjc.6606056] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background: Metastasis is associated with poor prognosis for melanoma. The formation of metastases is a multi-step process, in which cancer cells can subsequently acquire the potential to intravasate into the blood or lymph vessels, disseminate through the circulation, extravasate through the endothelium and invade the connective tissue. There is increasing evidence that chemokines have a pivotal role in the dissemination and establishment of melanoma metastasis. Methods: We isolated melanoma cells from melanoma metastasis and performed different migration assays and transendothelial resistance measurements of endothelial monolayers co-cultured with melanoma cells, in order to monitor barrier function and diapedesis and confirmed these results by confocal microscopy. Results: We observed that tumour endothelial cells (ECs) secrete high levels of CXCL9 in all, and CXCL10 in most melanoma metastases. Migration studies revealed that low concentrations of these chemokines induce chemotaxis, whereas high concentrations induce spontaneous migration of melanoma cells (chemokinesis/chemorepulsion) and the disruption of the endothelial barrier, resulting in an accelerated transendothelial migration (TEM). Addition of anti-CXCL9 or anti-CXCR3 antibodies to the co-cultures delayed the TEM of melanoma cells. Conclusion: Our data represent novel mechanisms by which tumour cells in melanoma metastases might use the chemokine-expressing endothelium to leave the tumour and eventually to form additional metastases at distinct sites.
Collapse
|
33
|
An investigation of design principles underlying repulsive and attractive gradient sensing and their switching. J Theor Biol 2010; 273:80-99. [PMID: 21167180 DOI: 10.1016/j.jtbi.2010.11.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 12/30/2022]
Abstract
Many important cellular processes rely on cellular responses to spatially graded signals. This response may be either attractive, indicating a positive bias, or repulsive indicating a negative bias. In this paper we consider cells which exhibit both repulsive and attractive gradient sensing responses and aim to uncover the underlying design principles and features of how the networks are wired which could allow a cell to exhibit both responses. We use a modular approach to examine different configurations which will allow for a cell to exhibit both responses and analyse how this depends on the basic characteristics of gradient sensing and downstream signal propagation. Overall our analysis provides insights into how gradient responses can be switched and the key factors which affect this switching.
Collapse
|
34
|
Bunting MD, Comerford I, McColl SR. Finding their niche: chemokines directing cell migration in the thymus. Immunol Cell Biol 2010; 89:185-96. [PMID: 21135866 DOI: 10.1038/icb.2010.142] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T lymphocytes are generated throughout life, arising from bone marrow-derived progenitors that complete an essential developmental process in the thymus. Thymic T cell education leads to the generation of a self-restricted and largely self-tolerant peripheral T-cell pool and is facilitated by interactions with thymic stromal cells residing in distinct supportive niches. The signals governing thymocyte precursor migration into the thymus, directing thymocyte navigation through thymic microenvironments and mature T-cell egress into circulation were, until recently, largely unknown, but presumed to be mediated to a large extent by chemokine signalling. Recent studies have now uncovered various specific functions for members of the chemokine superfamily in the thymus. These studies have not only revealed distinct but also in some cases overlapping roles for several chemokine family members in various thymocyte migration events and have also shown that homing and positioning of other cells in the thymus, such as dendritic cells and natural killer T cells is also chemokine-dependent. Here, we discuss current understanding of the role of chemokines in the thymus and highlight key future avenues for investigation in this field.
Collapse
Affiliation(s)
- Mark D Bunting
- Chemokine Biology Laboratory, Discipline of Microbiology and Immunology, The School of Molecular and Biomedical Science, The University of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
35
|
Sarkar A, Tatlidede S, Scherer SS, Orgill DP, Berthiaume F. Combination of stromal cell-derived factor-1 and collagen-glycosaminoglycan scaffold delays contraction and accelerates reepithelialization of dermal wounds in wild-type mice. Wound Repair Regen 2010; 19:71-9. [PMID: 21134036 DOI: 10.1111/j.1524-475x.2010.00646.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
While dermal substitutes can mitigate scarring and wound contraction, a significant drawback of current dermal replacement technologies is the apparent delay in vascular ingrowth compared with conventional skin grafts. Herein, we examined the effect of the chemokine stromal cell-derived factor-1 (SDF-1) on the performance of a porous collagen-glycosaminoglycan dermal analog in excisional wounds in mice. C57BL/6 mice with 1 cm × 1 cm dorsal full-thickness wounds were covered with a collagen-glycosaminoglycan scaffold, followed by four daily topical applications of 1 μg SDF-1 or phosphate-buffered saline vehicle. Some animals were also pretreated with five daily doses of 300 mg/kg granulocyte colony-stimulating factor. Animals treated with SDF-1 and no granulocyte colony-stimulating factor reepithelialized 36% faster than vehicle controls (16 vs. 25 days), and exhibited less wound contraction on postwounding day 18 (∼ 35% greater wound area) plus three-fold longer neoepidermis formed than controls. Conversely, granulocyte colony-stimulating factor promoted contraction and no epidermal regeneration. Early (postwounding Day 3) inflammatory cell infiltration in the SDF-1-treated group was 86% less, while the fraction of proliferating cells (positive Ki67 staining) was 32% more, when compared with controls. These results suggest that SDF-1 simultaneously delays contraction and promotes reepithelialization and may improve the wound-healing performance of skin substitutes.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
36
|
Marelli-Berg FM, Fu H, Vianello F, Tokoyoda K, Hamann A. Memory T-cell trafficking: new directions for busy commuters. Immunology 2010; 130:158-65. [PMID: 20408895 PMCID: PMC2878460 DOI: 10.1111/j.1365-2567.2010.03278.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/12/2010] [Accepted: 03/02/2010] [Indexed: 12/29/2022] Open
Abstract
The immune system is unique in representing a network of interacting cells of enormous complexity and yet being based on single cells travelling around the body. The development of effective and regulated immunity relies upon co-ordinated migration of each cellular component, which is regulated by diverse signals provided by the tissue. Co-ordinated migration is particularly relevant to the recirculation of primed T cells, which, while performing continuous immune surveillance, need to promptly localize to antigenic sites, reside for a time sufficient to carry out their effector function and then efficiently leave the tissue to avoid bystander damage. Recent advances that have helped to clarify a number of key molecular mechanisms underlying the complexity and efficiency of memory T-cell trafficking, including antigen-dependent T-cell trafficking, the regulation of T-cell motility by costimulatory molecules, T-cell migration out of target tissue and fugetaxis, are reviewed in this article.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- Section of Immunobiology, Division of Infection and Immunity, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK.
| | | | | | | | | |
Collapse
|
37
|
Alam-Nazki A, Krishnan J. A mathematical modelling framework for understanding chemorepulsive signal transduction in Dictyostelium. J Theor Biol 2010; 266:140-53. [PMID: 20510250 DOI: 10.1016/j.jtbi.2010.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 12/22/2022]
Abstract
Chemorepulsion is the process by which an organism or a cell moves in the direction of decreasing chemical concentration. While a few experimental studies have been performed, no mathematical models exist for this process. In this paper we have modelled gradient sensing, the first subprocess of chemorepulsion, in Dictyostelium discoideum-a well characterized model eukaryotic system. We take the first steps towards achieving a comprehensive mechanistic understanding of chemorepulsion in this system. We have used, as a basis, the biochemical network of the Keizer-Gunnink et al. (2007) to develop the mathematical modelling framework. This network describes the underlying pathways of chemorepellent gradient sensing in D. discoideum. Working within this modelling framework we address whether the postulated interactions of the pathways and species in this network can lead to a chemorepulsive response. We also analyse the possible role of additional regulatory effects (such as additional receptor regulation of enzymes in this network) and if this is necessary to achieve this behaviour. Thus we have investigated the receptor regulation of important enzymes and feedback effects in the network. This modelling framework generates important insights into and testable predictions regarding the role of key components and feedback loops in regulating chemorepulsive gradient sensing, and what factors might be important for generating a chemorepulsive response; it serves as a first step towards a comprehensive mechanistic understanding of this process.
Collapse
Affiliation(s)
- Aiman Alam-Nazki
- Department of Chemical Engineering and Chemical Technology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
38
|
Durrant LG, Pudney V, Spendlove I, Metheringham RL. Vaccines as early therapeutic interventions for cancer therapy: neutralising the immunosuppressive tumour environment and increasing T cell avidity may lead to improved responses. Expert Opin Biol Ther 2010; 10:735-48. [DOI: 10.1517/14712591003769790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Methods for quantitation of leukocyte chemotaxis and fugetaxis. Methods Mol Biol 2010. [PMID: 20379872 DOI: 10.1007/978-1-60761-461-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chemoattraction and chemorepulsion are complex directional responses of a cell to external chemotactic stimuli. The decision of a cell to move towards or away from a chemokinetic source includes detection and quantitation of the gradient of the chemotactic agent, biochemical transmission of the stimulus, and translation into a directional migration. This chapter describes a number of in vitro and in vivo assays that can be used to generate and measure both chemoattraction and chemorepulsion of leucocytes. These tools may eventually allow the further characterisation of the mechanism of this complex and physiologically and pathologically important phenomenon.
Collapse
|
40
|
Kim SHJ, Matthay MA, Mostov K, Hunt CA. Simulation of lung alveolar epithelial wound healing in vitro. J R Soc Interface 2010; 7:1157-70. [PMID: 20236957 DOI: 10.1098/rsif.2010.0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro, we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing 'cells' a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated 'cell' migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration.
Collapse
Affiliation(s)
- Sean H J Kim
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
41
|
Raffaghello L, Pistoia V. Editorial: in-and-out blood vessels: new insights into T cell reverse transmigration. J Leukoc Biol 2009; 86:1271-3. [PMID: 19948520 DOI: 10.1189/jlb.0409283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
42
|
Jaafar F, Righi E, Lindstrom V, Linton C, Nohadani M, Van Noorden S, Lloyd T, Poznansky J, Stamp G, Dina R, Coleman DV, Poznansky MC. Correlation of CXCL12 expression and FoxP3+ cell infiltration with human papillomavirus infection and clinicopathological progression of cervical cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1525-35. [PMID: 19808652 DOI: 10.2353/ajpath.2009.090295] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human cervical cancer is an immunogenic tumor with a defined pattern of histopathological and clinical progression. Tumor-infiltrating T cells contribute to immune control of this tumor; however, cervical cancer dysregulates this immune response both through its association with human papillomavirus (HPV) infection and by producing cytokines and chemokines. Animal tumor models have revealed associations between overproduction of the chemokine stromal cell-derived factor-1 (SDF-1 or CXCL12) and dysregulation of tumor-specific immunity. We therefore proposed that CXCL12 expression by cervical precancerous and cancerous lesions correlates with histopathological progression, loss of immune control of the tumor, and HPV infection. We found a significant association between cancer stage and CXCL12 expression for squamous and glandular lesions as well as with the HPV16+ (high-risk) status of the neoplastic lesions. Cancer progression was correlated with increasing levels of FoxP3 T-cell infiltration in the tumor. FoxP3 and CXCL12 expression significantly correlated for squamous and glandular neoplastic lesions. These observations were supported by enzyme-linked immunosorbent assay and Western blotting. In addition, we demonstrated CXCL12 expression by dyskaryotic cells in ThinPrep cervical smears. This study robustly links increased CXCL12 expression and FoxP3(+)-cell infiltration to HPV infection and progression of cervical cancer. It supports the detection of CXCL12 in cervical smears and biopsies as an additional biomarker for this disease.
Collapse
Affiliation(s)
- Fatimah Jaafar
- Department of Histopathology and Cytology, Imperial College, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huttenlocher A, Poznansky MC. Reverse leukocyte migration can be attractive or repulsive. Trends Cell Biol 2008; 18:298-306. [PMID: 18468440 PMCID: PMC2435406 DOI: 10.1016/j.tcb.2008.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/06/2008] [Accepted: 04/07/2008] [Indexed: 01/08/2023]
Abstract
The directional migration of cells within multicellular organisms is governed by gradients of both chemical attractants and repellents in diverse processes, including leukocyte trafficking and neuronal pathfinding in vivo. These complex extracellular environments direct the orchestrated bidirectional trafficking of leukocytes between the vasculature and tissues. Substantial progress has been made in dissecting the molecular mechanisms involved in orchestrating the directed movement of leukocytes into host tissues; however, less is known about the reverse migration of leukocytes from the tissues to the vasculature. In this article, we discuss the functional interplay between chemoattraction and chemorepulsion in the bidirectional movement of cells in complex in vivo environments, and we describe how these mechanisms influence both normal physiology and human disease.
Collapse
Affiliation(s)
- Anna Huttenlocher
- Dept. of Medical Microbiology and Immunology and Pediatrics University of Wisconsin-Madison, 4205 Microbial Science Building, 1550 Linden Drive Madison, WI 53706
| | - Mark C. Poznansky
- Dept. Infectious Diseases and DFCI/Harvard Cancer Center Massachusetts General Hospital Harvard Medical School 13 Street Boston , MA 02129
| |
Collapse
|
44
|
Wuest TR, Carr DJJ. The role of chemokines during herpes simplex virus-1 infection. FRONT BIOSCI-LANDMRK 2008; 13:4862-72. [PMID: 18508551 DOI: 10.2741/3045] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpes simplex virus-type 1 is among the most prevalent and successful humans pathogens. Although infection is largely uncomplicated in the immunocompetent human host, HSV-1 infection can cause blinding corneal disease, and individuals with defects in innate or adaptive immunity are susceptible to herpes simplex encephalitis. Chemokines regulate leukocyte trafficking to inflamed tissues and play a crucial role in orchestrating the immune response to HSV-1 infection. In this review we will focus on the pathways that induce chemokine expression during HSV-1 infection and the implications of chemokine signaling on control of viral replication.
Collapse
Affiliation(s)
- Todd R Wuest
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
45
|
Papeta N, Chen T, Vianello F, Gererty L, Malik A, Mok YT, Tharp WG, Bagley J, Zhao G, Stevceva L, Yoon V, Sykes M, Sachs D, Iacomini J, Poznansky MC. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent. Transplantation 2007; 83:174-83. [PMID: 17264814 DOI: 10.1097/01.tp.0000250658.00925.c8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alloantigen specific T cells have been shown to be required for allograft rejection. The chemokine, stromal cell derived factor-1 (SDF-1) at high concentration, has been shown to act as a T-cell chemorepellent and abrogate T-cell infiltration into a site of antigen challenge in vivo via a mechanism termed fugetaxis or chemorepulsion. We postulated that this mechanism could be exploited therapeutically and that allogeneic cells engineered to express a chemorepellent protein would not be rejected. METHODS Allogeneic murine insulinoma beta-TC3 cells and primary islets from BALB/C mice were engineered to constitutively secrete differential levels of SDF-1 and transplanted into allogeneic diabetic C57BL/6 mice. Rejection was defined as the permanent return of hyperglycemia and was correlated with the level of T-cell infiltration. The migratory response of T-cells to SDF-1 was also analyzed by transwell migration assay and time-lapse videomicroscopy. The cytotoxicity of cytotoxic T cell (CTLs) against beta-TC3 cells expressing high levels of SDF-1 was measured in standard and modified chromium-release assays in order to determine the effect of CTL migration on killing efficacy. RESULTS Control animals rejected allogeneic cells and remained diabetic. In contrast, high level SDF-1 production by transplanted cells resulted in increased survival of the allograft and a significant reduction in blood glucose levels and T-cell infiltration into the transplanted tissue. CONCLUSIONS This is the first demonstration of a novel approach that exploits T-cell chemorepulsion to induce site specific immune isolation and thereby overcomes allograft rejection without the use of systemic immunosuppression.
Collapse
Affiliation(s)
- Natalia Papeta
- Infectious Diseases Medicine Division and Partner AIDS Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vianello F, Papeta N, Chen T, Kraft P, White N, Hart WK, Kircher MF, Swart E, Rhee S, Palù G, Irimia D, Toner M, Weissleder R, Poznansky MC. Murine B16 Melanomas Expressing High Levels of the Chemokine Stromal-Derived Factor-1/CXCL12 Induce Tumor-Specific T Cell Chemorepulsion and Escape from Immune Control. THE JOURNAL OF IMMUNOLOGY 2006; 176:2902-14. [PMID: 16493048 DOI: 10.4049/jimmunol.176.5.2902] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The chemokine, stromal-derived factor-1/CXCL12, is expressed by normal and neoplastic tissues and is involved in tumor growth, metastasis, and modulation of tumor immunity. T cell-mediated tumor immunity depends on the migration and colocalization of CTL with tumor cells, a process regulated by chemokines and adhesion molecules. It has been demonstrated that T cells are repelled by high concentrations of the chemokine CXCL12 via a concentration-dependent and CXCR4 receptor-mediated mechanism, termed chemorepulsion or fugetaxis. We proposed that repulsion of tumor Ag-specific T cells from a tumor expressing high levels of CXCL12 allows the tumor to evade immune control. Murine B16/OVA melanoma cells (H2b) were engineered to constitutively express CXCL12. Immunization of C57BL/6 mice with B16/OVA cells lead to destruction of B16/OVA tumors expressing no or low levels of CXCL12 but not tumors expressing high levels of the chemokine. Early recruitment of adoptively transferred OVA-specific CTL into B16/OVA tumors expressing high levels of CXCL12 was significantly reduced in comparison to B16/OVA tumors, and this reduction was reversed when tumor-specific CTLs were pretreated with the specific CXCR4 antagonist, AMD3100. Memory OVA-specific CD8+ T cells demonstrated antitumor activity against B16/OVA tumors but not B16/OVA.CXCL12-high tumors. Expression of high levels of CXCL12 by B16/OVA cells significantly reduced CTL colocalization with and killing of target cells in vitro in a CXCR4-dependent manner. The repulsion of tumor Ag-specific T cells away from melanomas expressing CXCL12 confirms the chemorepellent activity of high concentrations of CXCL12 and may represent a novel mechanism by which certain tumors evade the immune system.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Migration Inhibition
- Cell Proliferation
- Chemokine CXCL12
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/physiology
- Chemotaxis, Leukocyte/immunology
- Cytotoxicity, Immunologic
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte
- Immunotherapy, Adoptive
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, CCR5/metabolism
- Receptors, CXCR4/physiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Fabrizio Vianello
- Partners AIDS Research Center, Infectious Diseases Division, and Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Danilova N. The evolution of immune mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:496-520. [PMID: 16619242 DOI: 10.1002/jez.b.21102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
From early on in evolution, organisms have had to protect themselves from pathogens. Mechanisms for discriminating "self" from "non-self" evolved to accomplish this task, launching a long history of host-pathogen co-evolution. Evolution of mechanisms of immune defense has resulted in a variety of strategies. Even unicellular organisms have rich arsenals of mechanisms for protection, such as restriction endonucleases, antimicrobial peptides, and RNA interference. In multicellular organisms, specialized immune cells have evolved, capable of recognition, phagocytosis, and killing of foreign cells as well as removing their own cells changed by damage, senescence, infection, or cancer. Additional humoral factors, such as the complement cascade, have developed that co-operate with cellular immunity in fighting infection and maintaining homeostasis. Defensive mechanisms based on germline-encoded receptors constitute a system known as innate immunity. In jaw vertebrates, this system is supplemented with a second system, adaptive immunity, which in contrast to innate immunity is based on diversification of immune receptors and on immunological memory in each individual.Usually, each newly evolved defense mechanism did not replace the previous one, but supplemented it, resulting in a layered structure of the immune system. The immune system is not one system but rather a sophisticated network of various defensive mechanisms operating on different levels, ranging from mechanisms common for every cell in the body to specialized immune cells and responses at the level of the whole organism. Adaptive changes in pathogens have shaped the evolution of the immune system at all levels.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
48
|
Tharp WG, Yadav R, Irimia D, Upadhyaya A, Samadani A, Hurtado O, Liu SY, Munisamy S, Brainard DM, Mahon MJ, Nourshargh S, van Oudenaarden A, Toner MG, Poznansky MC. Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo. J Leukoc Biol 2005; 79:539-54. [PMID: 16365152 DOI: 10.1189/jlb.0905516] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report for the first time that primary human neutrophils can undergo persistent, directionally biased movement away from a chemokine in vitro and in vivo, termed chemorepulsion or fugetaxis. Robust neutrophil chemorepulsion in microfluidic gradients of interleukin-8 (IL-8; CXC chemokine ligand 8) was dependent on the absolute concentration of chemokine, CXC chemokine receptor 2 (CXCR2), and was associated with polarization of cytoskeletal elements and signaling molecules involved in chemotaxis and leading edge formation. Like chemoattraction, chemorepulsion was pertussis toxin-sensitive and dependent on phosphoinositide-3 kinase, RhoGTPases, and associated proteins. Perturbation of neutrophil intracytoplasmic cyclic adenosine monophosphate concentrations and the activity of protein kinase C isoforms modulated directional bias and persistence of motility and could convert a chemorepellent to a chemoattractant response. Neutrophil chemorepulsion to an IL-8 ortholog was also demonstrated and quantified in a rat model of inflammation. The finding that neutrophils undergo chemorepulsion in response to continuous chemokine gradients expands the paradigm by which neutrophil migration is understood and may reveal a novel approach to our understanding of the homeostatic regulation of inflammation.
Collapse
Affiliation(s)
- William G Tharp
- Infectious Diseases Division and Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|