1
|
Kawai T, Fujimura A. S-adenosylmethionine and S-adenosyl-L-homocysteine metabolism is involved in the sperm motility and in vitro fertility rate in mouse. Biochem Biophys Res Commun 2024; 741:151006. [PMID: 39580959 DOI: 10.1016/j.bbrc.2024.151006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/20/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Increased fragmentation of sperm DNA has been implicated in male infertility. Folate deficiency results in impaired methionine synthesis, depletion of S-adenosylmethionine (SAM) levels, an increase in S-adenosyl-l-homocysteine (SAH) levels, and increased DNA fragmentation. Disruption of the dynamic balance between SAM and SAH may also contribute, although the details of this process are not yet fully understood. We investigated the localization of SAM, SAH, and S-adenosylhomocysteine hydrolase (SAHH), and whether SAM/SAH metabolism contributes to sperm motility and fertilization rate. SAM, SAH, and SAHH levels were assessed in the acrosome, midpiece, and tail of spermatozoa. Chemical inhibition of SAM/SAH metabolism and extracellular SAH significantly decreased the straight-line velocity (VSL), curvilinear velocity (VCL), and amplitude lateral head displacement (ALH) of sperm cells, which were thus unable to swim forward and perform oscillatory movements in place. This significantly reduced the fertilization rate. Therefore, the disruption of the SAM/SAH balance may contribute to male infertility.
Collapse
Affiliation(s)
- Tomoko Kawai
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Neutron Therapy Research Center, Okayama University, Okayama, Japan.
| |
Collapse
|
2
|
Ullah Khan S, Daniela Hernández-González K, Ali A, Shakeel Raza Rizvi S. Diabetes and the fabkin complex: A dual-edged sword. Biochem Pharmacol 2024; 223:116196. [PMID: 38588831 DOI: 10.1016/j.bcp.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Fabkin complex, composed of FABP4, ADK, and NDPKs, emerges as a novel regulator of insulin-producing beta cells, offering promising prospects for diabetes treatment. Our approach, which combines literature review and database analysis, sets the stage for future research. These findings hold significant implications for both diabetes treatment and research, as they present potential therapeutic targets for personalized treatment, leading to enhanced patient outcomes and a deeper comprehension of the disease. The multifaceted role of the Fabkin complex in glucose metabolism, insulin resistance, anti-inflammation, beta cell proliferation, and vascular function underscores its therapeutic potential, reshaping diabetes management and propelling advancements in the field.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Department of Zoology, Wildlife & Fisheries, Faculty of sciences, Pir Mehr Ali Shah Arid Agriculture University, P.C. 46300, Rawalpindi, Pakistan
| | - Karla Daniela Hernández-González
- Facultad de Biología, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, C.P. 91000 Xalapa, Veracruz, México
| | - Amir Ali
- Nanoscience and Nanotechnology Program, Center for Research and Advanced Studies of the IPN, Mexico City, Mexico
| | - Syed Shakeel Raza Rizvi
- Department of Zoology, Wildlife & Fisheries, Faculty of sciences, Pir Mehr Ali Shah Arid Agriculture University, P.C. 46300, Rawalpindi, Pakistan.
| |
Collapse
|
3
|
Andrews SG, Koehle AM, Paudel D, Neuberger T, Ross AC, Singh V, Bottiglieri T, Castro R. Diet-Induced Severe Hyperhomocysteinemia Promotes Atherosclerosis Progression and Dysregulates the Plasma Metabolome in Apolipoprotein-E-Deficient Mice. Nutrients 2024; 16:330. [PMID: 38337615 PMCID: PMC10856797 DOI: 10.3390/nu16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Stephen G. Andrews
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Anthony M. Koehle
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Devendra Paudel
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Vishal Singh
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA;
| | - Rita Castro
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
4
|
Sulyok E, Farkas B, Bodis J. Pathomechanisms of Prenatally Programmed Adult Diseases. Antioxidants (Basel) 2023; 12:1354. [PMID: 37507894 PMCID: PMC10376205 DOI: 10.3390/antiox12071354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Based on epidemiological observations Barker et al. put forward the hypothesis/concept that an adverse intrauterine environment (involving an insufficient nutrient supply, chronic hypoxia, stress, and toxic substances) is an important risk factor for the development of chronic diseases later in life. The fetus responds to the unfavorable environment with adaptive reactions, which ensure survival in the short run, but at the expense of initiating pathological processes leading to adult diseases. In this review, the major mechanisms (including telomere dysfunction, epigenetic modifications, and cardiovascular-renal-endocrine-metabolic reactions) will be outlined, with a particular emphasis on the role of oxidative stress in the fetal origin of adult diseases.
Collapse
Affiliation(s)
- Endre Sulyok
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Balint Farkas
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, 7624 Pécs, Hungary
| | - Jozsef Bodis
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
5
|
Omar M, Alexiou M, Rekhi UR, Lehmann K, Bhardwaj A, Delyea C, Elahi S, Febbraio M. DNA methylation changes underlie the long-term association between periodontitis and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1164499. [PMID: 37153468 PMCID: PMC10160482 DOI: 10.3389/fcvm.2023.1164499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
Periodontitis, the leading cause of adult tooth loss, has been identified as an independent risk factor for cardiovascular disease (CVD). Studies suggest that periodontitis, like other CVD risk factors, shows the persistence of increased CVD risk even after mitigation. We hypothesized that periodontitis induces epigenetic changes in hematopoietic stem cells in the bone marrow (BM), and such changes persist after the clinical elimination of the disease and underlie the increased CVD risk. We used a BM transplant approach to simulate the clinical elimination of periodontitis and the persistence of the hypothesized epigenetic reprogramming. Using the low-density lipoprotein receptor knockout (LDLRo ) atherosclerosis mouse model, BM donor mice were fed a high-fat diet to induce atherosclerosis and orally inoculated with Porphyromonas gingivalis (Pg), a keystone periodontal pathogen; the second group was sham-inoculated. Naïve LDLR o mice were irradiated and transplanted with BM from one of the two donor groups. Recipients of BM from Pg-inoculated donors developed significantly more atherosclerosis, accompanied by cytokine/chemokines that suggested BM progenitor cell mobilization and were associated with atherosclerosis and/or PD. Using whole-genome bisulfite sequencing, 375 differentially methylated regions (DMRs) and global hypomethylation in recipients of BM from Pg-inoculated donors were observed. Some DMRs pointed to the involvement of enzymes with major roles in DNA methylation and demethylation. In validation assays, we found a significant increase in the activity of ten-eleven translocase-2 and a decrease in the activity of DNA methyltransferases. Plasma S-adenosylhomocysteine levels were significantly higher, and the S-adenosylmethionine to S-adenosylhomocysteine ratio was decreased, both of which have been associated with CVD. These changes may be related to increased oxidative stress as a result of Pg infection. These data suggest a novel and paradigm-shifting mechanism in the long-term association between periodontitis and atherosclerotic CVD.
Collapse
|
6
|
Mi J, Chen X, Tang Y, You Y, Liu Q, Xiao J, Ling W. S-adenosylhomocysteine induces cellular senescence in rat aorta vascular smooth muscle cells via NF-κB-SASP pathway. J Nutr Biochem 2022; 107:109063. [DOI: 10.1016/j.jnutbio.2022.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/27/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
7
|
Indumathi B, Oruganti SS, Sreenu B, Kutala VK. Association of Promoter Methylation and Expression of Inflammatory Genes IL-6 and TNF-α with the Risk of Coronary Artery Disease in Diabetic and Obese Subjects among Asian Indians. Indian J Clin Biochem 2022; 37:29-39. [PMID: 35125691 PMCID: PMC8799818 DOI: 10.1007/s12291-020-00932-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023]
Abstract
The inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are considered as the most important contributors to the endothelial dysfunction in subjects with type 2 diabetes mellitus (T2DM) and obesity. The hypomethylation of CpG sites in the promoter region of the IL-6 and TNF-α have shown to be associated with the increased expression of IL-6 and TNF-α. However, there are no studies on the methylation and expression of IL-6 and TNF-α with the risk of coronary artery disease (CAD) in subjects with T2DM and obesity in Asian Indians. Hence, the present study was aimed to investigate whether the IL-6, TNF-α promoter methylation and expression in blood leukocyte DNA is associated with the risk of CAD in diabetic and obese subjects in Asian Indians. For this study, we recruited 574 subjects which includes, 207 angiographically confirmed CAD patients, 100 T2DM patients, 82 obese subjects and 185 healthy controls. The methylation status of IL-6 and TNF-α gene loci was determined by methylation specific PCR (MPCR) and gene expression was determined by qPCR. We found significant hypomethylation of IL-6 in CAD and T2DM subjects (OR 1.98 95% CI: 1.32-2.97, p = 0.001, OR: 2.23 95% CI:1.34-3.76, p = 0.001, respectively). Further, a significant increase in the expression of IL-6 in CAD and T2DM subjects (fold change: 26.39 & 14.7, p = 0.0001) compared to the control subjects was observed. A significant increase in the hypomethylation of TNF-α in CAD, T2DM and obese subjects was observed as compared to the control (OR: 2.04 95% CI: 1.36-3.05, p = 0.0005, OR: 1.81 95% CI 1.10-2.96, p = 0.01, and OR: 2.1 95% CI 1.24-3.57, p = 0.007, respectively).We also found an increased expression of TNF-α in CAD, T2DM and obese subjects as compared to controls. In addition, presence of low folate, and hyperhomocysteinemia was observed in the present study, may be the contributing factors for the hypomethylation of IL-6 and TNF-α and oxidative stress. In conclusion, increased expression of IL-6 and TNF-α due to hypomethylation in T2DM and obese individuals may contribute to CAD risk in these subjects. The presence of hyperhomocysteinemia and increased oxidative risk may enhance the CAD risk further.
Collapse
Affiliation(s)
- Bobbala Indumathi
- Department of Clinical Pharmacology& Therapeutics, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | - Sai Satish Oruganti
- Department of Cardiology, Nizam’s Institute of Medical Sciences, Hyderabad, India
| | - Boddupally Sreenu
- Department of Clinical Pharmacology& Therapeutics, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, India
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology& Therapeutics, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, India
| |
Collapse
|
8
|
No Effect of Diet-Induced Mild Hyperhomocysteinemia on Vascular Methylating Capacity, Atherosclerosis Progression, and Specific Histone Methylation. Nutrients 2020; 12:nu12082182. [PMID: 32717800 PMCID: PMC7468910 DOI: 10.3390/nu12082182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for atherosclerosis through mechanisms which are still incompletely defined. One possible mechanism involves the hypomethylation of the nuclear histone proteins to favor the progression of atherosclerosis. In previous cell studies, hypomethylating stress decreased a specific epigenetic tag (the trimethylation of lysine 27 on histone H3, H3K27me3) to promote endothelial dysfunction and activation, i.e., an atherogenic phenotype. Here, we conducted a pilot study to investigate the impact of mild HHcy on vascular methylating index, atherosclerosis progression and H3K27me3 aortic content in apolipoprotein E-deficient (ApoE -/-) mice. In two different sets of experiments, male mice were fed high-fat, low in methyl donors (HFLM), or control (HF) diets for 16 (Study A) or 12 (Study B) weeks. At multiple time points, plasma was collected for (1) quantification of total homocysteine (tHcy) by high-performance liquid chromatography; or (2) the methylation index of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH ratio) by liquid chromatography tandem-mass spectrometry; or (3) a panel of inflammatory cytokines previously implicated in atherosclerosis by a multiplex assay. At the end point, aortas were collected and used to assess (1) the methylating index (SAM:SAH ratio); (2) the volume of aortic atherosclerotic plaque assessed by high field magnetic resonance imaging; and (3) the vascular content of H3K27me3 by immunohistochemistry. The results showed that, in both studies, HFLM-fed mice, but not those mice fed control diets, accumulated mildly elevated tHcy plasmatic concentrations. However, the pattern of changes in the inflammatory cytokines did not support a major difference in systemic inflammation between these groups. Accordingly, in both studies, no significant differences were detected for the aortic methylating index, plaque burden, and H3K27me3 vascular content between HF and HFLM-fed mice. Surprisingly however, a decreased plasma SAM: SAH was also observed, suggesting that the plasma compartment does not always reflect the vascular concentrations of these two metabolites, at least in this model. Mild HHcy in vivo was not be sufficient to induce vascular hypomethylating stress or the progression of atherosclerosis, suggesting that only higher accumulations of plasma tHcy will exhibit vascular toxicity and promote specific epigenetic dysregulation.
Collapse
|
9
|
Xiao Y, Xia J, Cheng J, Huang H, Zhou Y, Yang X, Su X, Ke Y, Ling W. Inhibition of S-Adenosylhomocysteine Hydrolase Induces Endothelial Dysfunction via Epigenetic Regulation of p66shc-Mediated Oxidative Stress Pathway. Circulation 2020; 139:2260-2277. [PMID: 30773021 DOI: 10.1161/circulationaha.118.036336] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Elevated levels of S-adenosylhomocysteine (SAH), the precursor of homocysteine, are positively associated with the risk of cardiovascular disease and with the development and progression of atherosclerosis. However, the role of SAH in endothelial dysfunction is unclear. METHODS Apolipoprotein E-deficient ( apoE-/-) mice received dietary supplementation with the SAH hydrolase (SAHH) inhibitor adenosine dialdehyde or were intravenously injected with a retrovirus expressing SAHH shRNA. These 2 approaches, along with the heterozygous SAHH gene knockout ( SAHH+/-) mouse model, were used to elevate plasma SAH levels and to examine the role of SAH in aortic endothelial dysfunction. The relationship between plasma SAH levels and endothelial dysfunction was also investigated in human patients with coronary artery disease and healthy control subjects. RESULTS Plasma SAH levels were increased in SAHH+/- mice and in apoE-/- mice after dietary administration of adenosine dialdehyde or intravenous injection with SAHH shRNA. SAHH+/- mice or apoE-/- mice with SAHH inhibition showed impaired endothelium-dependent vascular relaxation and decreased nitric oxide bioavailability after treatment with acetylcholine; this was completely abolished by the administration of the endothelial nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester. Furthermore, SAHH inhibition induced production of reactive oxygen species and p66shc expression in the mouse aorta and human aortic endothelial cells. Antioxidants and p66shc siRNA prevented SAHH inhibition-induced generation of reactive oxygen species and attenuated the impaired endothelial vasomotor responses in high-SAH mice. Moreover, inhibition of SAHH induced hypomethylation in the p66shc gene promoter and inhibited expression of DNA methyltransferase 1. Overexpression of DNA methyltransferase 1, induced by transduction of an adenovirus, was sufficient to abrogate SAHH inhibition-induced upregulation of p66shc expression. Finally, plasma SAH levels were inversely associated with flow-mediated dilation and hypomethylation of the p66shc gene promoter and positively associated with oxidative stress levels in patients with coronary artery disease and healthy control subjects. CONCLUSIONS Our findings indicate that inhibition of SAHH results in elevated plasma SAH levels and induces endothelial dysfunction via epigenetic upregulation of the p66shc-mediated oxidative stress pathway. Our study provides novel molecular insight into mechanisms of SAH-associated endothelial injury that may contribute to the development of atherosclerosis. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov . Unique identifier: NCT03345927.
Collapse
Affiliation(s)
- Yunjun Xiao
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Junjie Xia
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Jinquan Cheng
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen (H.H., X.Y.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Yani Zhou
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen (H.H., X.Y.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Xuefen Su
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, China (X.S.)
| | - Yuebin Ke
- Shenzhen Key Laboratory of Molecular Epidemiology (Y.X., J.X., J.C., Y.Z., YK.), Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China (W.L.)
| |
Collapse
|
10
|
(-)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochem Pharmacol 2019; 173:113699. [PMID: 31756325 DOI: 10.1016/j.bcp.2019.113699] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Ingestion of (-)-epicatechin flavanols reverses endothelial dysfunction by increasing flow mediated dilation and by reducing vascular inflammation and oxidative stress, monocyte-endothelial cell adhesion and transendothelial monocyte migration in vitro and in vivo. This involves multiple changes in gene expression and epigenetic DNA methylation by poorly understood mechanisms. By in silico docking and molecular modeling we demonstrate favorable binding of different glucuronidated, sulfated or methylated (-)-epicatechin metabolites to different DNA methyltransferases (DNMT1/DNMT3A). In favor of this model, genome-wide DNA methylation profiling of endothelial cells treated with TNF and different (-)-epicatechin metabolites revealed specific DNA methylation changes in gene networks controlling cell adhesion-extravasation endothelial hyperpermeability as well as gamma-aminobutyric acid, renin-angiotensin and nitric oxide hypertension pathways. Remarkably, blood epigenetic profiles of an 8 weeks intervention with monomeric and oligomeric flavanols (MOF) including (-)-epicatechin in male smokers revealed individual epigenetic gene changes targeting similar pathways as the in vitro exposure experiments in endothelial cells. Furthermore, epigenetic changes following MOF diet intervention oppose atherosclerosis associated epigenetic changes. In line with biological data, the individual epigenetic response to a MOF diet is associated with different vascular health parameters (glutathione peroxidase 1 and endothelin-1 expression, acetylcholine-mediated microvascular response), in part involving systemic shifts in blood immune cell types which reduce the neutrophil-lymphocyte ratio (NLR). Altogether, our study suggests that different (-)-epicatechin metabolites promote vascular health in part via epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation.
Collapse
|
11
|
Silva L, Plösch T, Toledo F, Faas MM, Sobrevia L. Adenosine kinase and cardiovascular fetal programming in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165397. [PMID: 30699363 DOI: 10.1016/j.bbadis.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is a detrimental condition for human pregnancy associated with endothelial dysfunction and endothelial inflammation in the fetoplacental vasculature and leads to increased cardio-metabolic risk in the offspring. In the fetoplacental vasculature, GDM is associated with altered adenosine metabolism. Adenosine is an important vasoactive molecule and is an intermediary and final product of transmethylation reactions in the cell. Adenosine kinase is the major regulator of adenosine levels. Disruption of this enzyme is associated with alterations in methylation-dependent gene expression regulation mechanisms, which are associated with the fetal programming phenomenon. Here we propose that cellular and molecular alterations associated with GDM can dysregulate adenosine kinase leading to fetal programming in the fetoplacental vasculature. This can contribute to the cardio-metabolic long-term consequences observed in offspring after exposure to GDM.
Collapse
Affiliation(s)
- Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen 9700 RB, the Netherlands.
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen 9700 RB, the Netherlands; Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia.
| |
Collapse
|
12
|
Mochizuki D, Misawa Y, Kawasaki H, Imai A, Endo S, Mima M, Yamada S, Nakagawa T, Kanazawa T, Misawa K. Aberrant Epigenetic Regulation in Head and Neck Cancer Due to Distinct EZH2 Overexpression and DNA Hypermethylation. Int J Mol Sci 2018; 19:ijms19123707. [PMID: 30469511 PMCID: PMC6320890 DOI: 10.3390/ijms19123707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Enhancer of Zeste homologue 2 (EZH2) overexpression is associated with tumor proliferation, metastasis, and poor prognosis. Targeting and inhibition of EZH2 is a potentially effective therapeutic strategy for head and neck squamous cell carcinoma (HNSCC). We analyzed EZH2 mRNA expression in a well-characterized dataset of 230 (110 original and 120 validation cohorts) human head and neck cancer samples. This study aimed to investigate the effects of inhibiting EZH2, either via RNA interference or via pharmacotherapy, on HNSCC growth. EZH2 upregulation was significantly correlated with recurrence (p < 0.001) and the methylation index of tumor suppressor genes (p < 0.05). DNMT3A was significantly upregulated upon EZH2 upregulation (p = 0.043). Univariate analysis revealed that EZH2 upregulation was associated with poor disease-free survival (log-rank test, p < 0.001). In multivariate analysis, EZH2 upregulation was evaluated as a significant independent prognostic factor of disease-free survival (hazard ratio: 2.085, 95% confidence interval: 1.390–3.127; p < 0.001). Cells treated with RNA interference and DZNep, an EZH2 inhibitor, showed the most dramatic changes in expression, accompanied with a reduction in the growth and survival of FaDu cells. These findings suggest that EZH2 upregulation is correlated with tumor aggressiveness and adverse patient outcomes in HNSCC. Evaluation of EZH2 expression might help predict the prognosis of HNSCC patients.
Collapse
Affiliation(s)
- Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Hideya Kawasaki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Shiori Endo
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan.
| | - Takeharu Kanazawa
- Department of Otolaryngology, Tokyo Voice Center, International University of Health and Welfare, Tokyo 107-0052, Japan.
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| |
Collapse
|
13
|
Kerr B, Leiva A, Farías M, Contreras-Duarte S, Toledo F, Stolzenbach F, Silva L, Sobrevia L. Foetoplacental epigenetic changes associated with maternal metabolic dysfunction. Placenta 2018; 69:146-152. [PMID: 29699712 DOI: 10.1016/j.placenta.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
Metabolic-related diseases are attributed to a sedentary lifestyle and eating habits, and there is now an increased awareness regarding pregnancy as a preponderant window in the programming of adulthood health and disease. The developing foetus is susceptible to the maternal environment; hence, any unfavourable condition will result in foetal physiological adaptations that could have a permanent impact on its health. Some of these alterations are maintained via epigenetic modifications capable of modifying gene expression in metabolism-related genes. Children born to mothers with dyslipidaemia, pregestational or gestational obesity, and gestational diabetes mellitus, have a predisposition to develop metabolic alterations during adulthood. CpG methylation-associated alterations to the expression of several genes in the human placenta play a crucial role in the mother-to-foetus transfer of nutrients and macromolecules. Identification of epigenetic modifications in metabolism-related tissues of offspring from metabolic-altered pregnancies is essential to obtain insights into foetal programming controlling newborn, childhood, and adult metabolism. This review points out the importance of the foetal milieu in the programming and development of human disease and provides evidence of this being the underlying mechanism for the development of adulthood metabolic disorders in maternal dyslipidaemia, pregestational or gestational obesity, and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Bredford Kerr
- Laboratory of Biology, Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile.
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Farías
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad Del Bío-Bío, Chillán 3780000, Chile
| | - Francisca Stolzenbach
- Laboratory of Biology, Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile; Faculty of Science, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
14
|
Folinic Acid Increases Protein Arginine Methylation in Human Endothelial Cells. Nutrients 2018; 10:nu10040404. [PMID: 29587354 PMCID: PMC5946189 DOI: 10.3390/nu10040404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/10/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Elevated plasma total homocysteine (tHcy) is associated with increased risk of cardiovascular disease, but the mechanisms underlying this association are not completely understood. Cellular hypomethylation has been suggested to be a key pathophysiologic mechanism, since S-adenosylhomocysteine (AdoHcy), the Hcy metabolic precursor and a potent inhibitor of methyltransferase activity, accumulates in the setting of hyperhomocysteinemia. In this study, the impact of folate and methionine on intracellular AdoHcy levels and protein arginine methylation status was studied. Human endothelial cells were incubated with increasing concentrations of folinic acid (FnA), a stable precursor of folate, with or without methionine restriction. The levels of intracellular AdoHcy and AdoMet, tHcy in the cell culture medium, and protein-incorporated methylarginines were evaluated by suitable liquid chromatography techniques. FnA supplementation, with or without methionine restriction, reduced the level of tHcy and did not affect intracellular AdoMet levels. Interestingly, FnA supplementation reduced intracellular AdoHcy levels only in cells grown under methionine restriction. Furthermore, these cells also displayed increased protein arginine methylation status. These observations suggest that folic acid supplementation may enhance cellular methylation capacity under a low methionine status. Our results lead us to hypothesize that the putative benefits of folic acid supplementation in restoring endothelial homeostasis, thus preventing atherothrombotic events, should be reevaluated in subjects under a methionine restriction diet.
Collapse
|
15
|
Erichsen L, Ghanjati F, Beermann A, Poyet C, Hermanns T, Schulz WA, Seifert HH, Wild PJ, Buser L, Kröning A, Braunstein S, Anlauf M, Jankowiak S, Hassan M, Bendhack ML, Araúzo-Bravo MJ, Santourlidis S. Aberrant methylated key genes of methyl group metabolism within the molecular etiology of urothelial carcinogenesis. Sci Rep 2018; 8:3477. [PMID: 29472622 PMCID: PMC5823913 DOI: 10.1038/s41598-018-21932-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Urothelial carcinoma (UC), the most common cancer of the urinary bladder causes severe morbidity and mortality, e.g. about 40.000 deaths in the EU annually, and incurs considerable costs for the health system due to the need for prolonged treatments and long-term monitoring. Extensive aberrant DNA methylation is described to prevail in urothelial carcinoma and is thought to contribute to genetic instability, altered gene expression and tumor progression. However, it is unknown how this epigenetic alteration arises during carcinogenesis. Intact methyl group metabolism is required to ensure maintenance of cell-type specific methylomes and thereby genetic integrity and proper cellular function. Here, using two independent techniques for detecting DNA methylation, we observed DNA hypermethylation of the 5'-regulatory regions of the key methyl group metabolism genes ODC1, AHCY and MTHFR in early urothelial carcinoma. These hypermethylation events are associated with genome-wide DNA hypomethylation which is commonly associated with genetic instability. We therefore infer that hypermethylation of methyl group metabolism genes acts in a feed-forward cycle to promote additional DNA methylation changes and suggest a new hypothesis on the molecular etiology of urothelial carcinoma.
Collapse
Affiliation(s)
- Lars Erichsen
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Foued Ghanjati
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Agnes Beermann
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Cedric Poyet
- Department of Urology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Thomas Hermanns
- Department of Urology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Peter J Wild
- Institute of Surgical Pathology, University Hospital, University of Zurich, 8091, Zurich, Switzerland
| | - Lorenz Buser
- Institute of Surgical Pathology, University Hospital, University of Zurich, 8091, Zurich, Switzerland
| | - Alexander Kröning
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Stefan Braunstein
- Department of Pathology, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Martin Anlauf
- Department of Pathology, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Silvia Jankowiak
- Department of Pathology, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Mohamed Hassan
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Institut National de la Santé et de la Recherché Médicale, University of Strasbourg, 67000, Strasbourg, France
| | - Marcelo L Bendhack
- Department of Urology, University Hospital, Positivo University, Curitiba, Brazil
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
16
|
Endothelial Aquaporins and Hypomethylation: Potential Implications for Atherosclerosis and Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19010130. [PMID: 29301341 PMCID: PMC5796079 DOI: 10.3390/ijms19010130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol permeation through cell membranes. Recently, the water channel AQP1 was suggested to contribute to endothelial homeostasis and cardiovascular health. Less is known about endothelial aquaglyceroporins expression and its implication in cardiovascular disease (CVD). We have previously used cultured human endothelial cells under a hypomethylating environment to study endothelial dysfunction and activation, a phenotype implicated in the establishment of atherosclerosis and CVD. Here, we used the same cell model to investigate aquaporin’s expression and function in healthy or pro-atherogenic phenotype. We first confirmed key features of endothelium dysfunction and activation in our cell model, including an augmented endothelial transmigration under hypomethylation. Subsequently, we found AQP1 and AQP3 to be the most predominant AQPs accounting for water and glycerol fluxes, respectively, in the healthy endothelium. Moreover, endothelial hypomethylation led to decreased levels of AQP1 and impaired water permeability without affecting AQP3 and glycerol permeability. Furthermore, TNF-α treatment-induced AQP1 downregulation suggesting that the inflammatory NF-κB signaling pathway mediates AQP1 transcriptional repression in a pro-atherogenic endothelium, a possibility that warrants further investigation. In conclusion, our results add further support to AQP1 as a candidate player in the setting of endothelial dysfunction and CVD.
Collapse
|
17
|
Li JG, Barrero C, Merali S, Praticò D. Genetic absence of ALOX5 protects from homocysteine-induced memory impairment, tau phosphorylation and synaptic pathology. Hum Mol Genet 2017; 26:1855-1862. [PMID: 28334897 DOI: 10.1093/hmg/ddx088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/02/2017] [Indexed: 11/13/2022] Open
Abstract
Elevated level of homocysteine (Hcy) is considered a risk factor for neurodegenerative diseases, but the mechanisms remain to be established. Because high Hcy is associated with an up-regulation of the ALOX5 gene product, the 5Lipoxygenase (5LO), herein we investigated whether this activation is responsible for the Hcy effect on neurodegeneration or is a secondary event. To reach this goal, wild type mice and mice genetically deficient for 5LO were assessed after being exposed to a diet known to significantly increase brain levels of Hcy. Confirming compliance with the dietary regimen, we found that by the end of the study brain levels of Hcy were significantly increase in both groups. However, diet-induced high Hcy resulted in a significant increase in Aβ, tau phosphorylation, neuroinflammation, synaptic pathology and memory impairment in control mice, but not in mice lacking ALOX5.Taken together our findings demonstrate that the up-regulation of the ALOX5 gene pathway is responsible for the development of the biochemical and behavioral sequelae of high Hcy brain levels in the context of a neurodegenerative phenotype. They provide critical support that this gene and its expressed protein are viable therapeutic targets to prevent the onset, or delay neurodegenerative events in subjects exposed to this risk factor.
Collapse
Affiliation(s)
- Jian-Guo Li
- Department of Pharmacology and Center for Translational Medicine, Lewis Katz School of Medicine
| | - Carlos Barrero
- Department of Pharmaceutical Sciences, Temple University Philadelphia, PA 19140, USA
| | - Salim Merali
- Department of Pharmaceutical Sciences, Temple University Philadelphia, PA 19140, USA
| | - Domenico Praticò
- Department of Pharmacology and Center for Translational Medicine, Lewis Katz School of Medicine
| |
Collapse
|
18
|
Fu Y, Wang X, Kong W. Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. Br J Pharmacol 2017; 175:1173-1189. [PMID: 28836260 DOI: 10.1111/bph.13988] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/27/2017] [Accepted: 08/12/2017] [Indexed: 12/14/2022] Open
Abstract
Homocysteine is a sulphur-containing non-proteinogenic amino acid. Hyperhomocysteinaemia (HHcy), the pathogenic elevation of plasma homocysteine as a result of an imbalance of its metabolism, is an independent risk factor for various vascular diseases, such as atherosclerosis, hypertension, vascular calcification and aneurysm. Treatments aimed at lowering plasma homocysteine via dietary supplementation with folic acids and vitamin B are more effective in preventing vascular disease where the population has a normally low folate consumption than in areas with higher dietary folate. To date, the mechanisms of HHcy-induced vascular injury are not fully understood. HHcy increases oxidative stress and its downstream signalling pathways, resulting in vascular inflammation. HHcy also causes vascular injury via endoplasmic reticulum stress. Moreover, HHcy up-regulates pathogenic genes and down-regulates protective genes via DNA demethylation and methylation respectively. Homocysteinylation of proteins induced by homocysteine also contributes to vascular injury by modulating intracellular redox state and altering protein function. Furthermore, HHcy-induced vascular injury leads to neuronal damage and disease. Also, an HHcy-activated sympathetic system and HHcy-injured adipose tissue also cause vascular injury, thus demonstrating the interactions between the organs injured by HHcy. Here, we have summarized the recent developments in the mechanisms of HHcy-induced vascular injury, which are further considered as potential therapeutic targets in this condition. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
19
|
Li JG, Barrero C, Merali S, Praticò D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep 2017; 7:46002. [PMID: 28383037 PMCID: PMC5382538 DOI: 10.1038/srep46002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental and genetic risk factors are implicated in the pathogenesis of Alzheimer’s disease (AD). However, how they interact and influence its pathogenesis remains to be investigated. High level of homocysteine (Hcy) is an AD risk factor and associates with an up-regulation of the ALOX5 gene. In the current paper we investigated whether this activation is responsible for the Hcy effect on the AD phenotype and the mechanisms involved. Triple transgenic mice were randomized to receive regular chow diet, a diet deficient in folate and B vitamins (Diet), which results in high Hcy, or the Diet plus zileuton, a specific ALOX5 inhibitor, for 7 months. Compared with controls, Diet-fed mice had a significant increase in Hcy levels, memory and learning deficits, up-regulation of the ALOX5 pathway, increased Aβ levels, tau phosphorylation, and synaptic pathology, which were absent in mice treated with zileuton. In vivo and vitro studies demonstrated that the mechanism responsible was the hypomethylation of the ALOX5 promoter. Our findings demonstrate that the up-regulation of the ALOX5 is responsible for the Hcy-dependent worsening of the AD phenotype in a relevant mouse model of the disease. The discovery of this previously unknown cross-talk between these two pathways could afford novel therapeutic opportunities for treating or halting AD.
Collapse
Affiliation(s)
- Jian-Guo Li
- Department of Pharmacology and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University Philadelphia, PA 19140, USA
| | - Carlos Barrero
- Department of Pharmaceutical Sciences, Temple University Philadelphia, PA 19140, USA
| | - Salim Merali
- Department of Pharmaceutical Sciences, Temple University Philadelphia, PA 19140, USA
| | - Domenico Praticò
- Department of Pharmacology and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University Philadelphia, PA 19140, USA
| |
Collapse
|
20
|
Li J, Barrero C, Gupta S, Kruger WD, Merali S, Praticò D. Homocysteine modulates 5-lipoxygenase expression level via DNA methylation. Aging Cell 2017; 16:273-280. [PMID: 27896923 PMCID: PMC5334532 DOI: 10.1111/acel.12550] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2016] [Indexed: 12/02/2022] Open
Abstract
Elevated levels of homocysteinemia (Hcy), a risk factor for late-onset Alzheimer's disease (AD), have been associated with changes in cell methylation. Alzheimer's disease is characterized by an upregulation of the 5-lipoxygenase (5LO), whose promoter is regulated by methylation. However, whether Hcy activates 5LO enzymatic pathway by influencing the methylation status of its promoter remains unknown. Brains from mice with high Hcy were assessed for the 5LO pathway and neuronal cells exposed to Hcy implemented to study the mechanism(s) regulating 5LO expression levels and the effect on amyloid β formation. Diet- and genetically induced high Hcy resulted in 5LO protein and mRNA upregulation, which was associated with a significant increase of the S-adenosylhomocysteine (SAH)/S-adenosylmethionine ratio, and reduced DNA methyltrasferases and hypomethylation of 5-lipoxygenase DNA. In vitro studies confirmed these results and demonstrated that the mechanism involved in the Hcy-dependent 5LO activation and amyloid β formation is DNA hypomethylation secondary to the elevated levels of SAH. Taken together these findings represent the first demonstration that Hcy directly influences 5LO expression levels and establish a previously unknown cross talk between these two pathways, which is highly relevant for AD pathogenesis. The discovery of such a novel link not only provides new mechanistic insights in the neurobiology of Hcy, but most importantly new therapeutic opportunities for the individuals bearing this risk factor for the disease.
Collapse
Affiliation(s)
- Jian‐Guo Li
- Department of Pharmacology and Center for Translational MedicineLewis Katz School of MedicinePhiladelphiaPA19140USA
| | - Carlos Barrero
- Department of Pharmaceutical SciencesTemple University PhiladelphiaPhiladelphiaPA19140USA
| | - Sapna Gupta
- Cancer Biology Program Fox Chase Cancer CenterTemple University PhiladelphiaPhiladelphiaPA19140USA
| | - Warren D. Kruger
- Cancer Biology Program Fox Chase Cancer CenterTemple University PhiladelphiaPhiladelphiaPA19140USA
| | - Salim Merali
- Department of Pharmaceutical SciencesTemple University PhiladelphiaPhiladelphiaPA19140USA
| | - Domenico Praticò
- Department of Pharmacology and Center for Translational MedicineLewis Katz School of MedicinePhiladelphiaPA19140USA
| |
Collapse
|
21
|
Ferguson JF, Allayee H, Gerszten RE, Ideraabdullah F, Kris-Etherton PM, Ordovás JM, Rimm EB, Wang TJ, Bennett BJ. Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment: A Scientific Statement From the American Heart Association. CIRCULATION. CARDIOVASCULAR GENETICS 2016; 9:291-313. [PMID: 27095829 PMCID: PMC7829062 DOI: 10.1161/hcg.0000000000000030] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases are the leading cause of death worldwide and are strongly linked to both genetic and nutritional factors. The field of nutrigenomics encompasses multiple approaches aimed at understanding the effects of diet on health or disease development, including nutrigenetic studies investigating the relationship between genetic variants and diet in modulating cardiometabolic risk, as well as the effects of dietary components on multiple "omic" measures, including transcriptomics, metabolomics, proteomics, lipidomics, epigenetic modifications, and the microbiome. Here, we describe the current state of the field of nutrigenomics with respect to cardiometabolic disease research and outline a direction for the integration of multiple omics techniques in future nutrigenomic studies aimed at understanding mechanisms and developing new therapeutic options for cardiometabolic disease treatment and prevention.
Collapse
|
22
|
Saha S, Chakraborty PK, Xiong X, Dwivedi SKD, Mustafi SB, Leigh NR, Ramchandran R, Mukherjee P, Bhattacharya R. Cystathionine β-synthase regulates endothelial function via protein S-sulfhydration. FASEB J 2016; 30:441-56. [PMID: 26405298 PMCID: PMC4684530 DOI: 10.1096/fj.15-278648] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
Deficiencies of the human cystathionine β-synthase (CBS) enzyme are characterized by a plethora of vascular disorders and hyperhomocysteinemia. However, several clinical trials demonstrated that despite reduction in homocysteine levels, disease outcome remained unaffected, thus the mechanism of endothelial dysfunction is poorly defined. Here, we show that the loss of CBS function in endothelial cells (ECs) leads to a significant down-regulation of cellular hydrogen sulfide (H2S) by 50% and of glutathione (GSH) by 40%. Silencing CBS in ECs compromised phenotypic and signaling responses to the VEGF that were potentiated by decreased transcription of VEGF receptor (VEGFR)-2 and neuropilin (NRP)-1, the primary receptors regulating endothelial function. Transcriptional down-regulation of VEGFR-2 and NRP-1 was mediated by a lack in stability of the transcription factor specificity protein 1 (Sp1), which is a sulfhydration target of H2S at residues Cys68 and Cys755. Reinstating H2S but not GSH in CBS-silenced ECs restored Sp1 levels and its binding to the VEGFR-2 promoter and VEGFR-2, NRP-1 expression, VEGF-dependent proliferation, and migration phenotypes. Thus, our study emphasizes the importance of CBS-mediated protein S-sulfhydration in maintaining vascular health and function.-Saha, S., Chakraborty, P. K., Xiong, X., Dwivedi, S. K. D., Mustafi, S. B., Leigh, N. R., Ramchandran, R., Mukherjee, P., Bhattacharya, R. Cystathionine β-synthase regulates endothelial function via protein S-sulfhydration.
Collapse
Affiliation(s)
- Sounik Saha
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Prabir K Chakraborty
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xunhao Xiong
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shailendra Kumar Dhar Dwivedi
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Soumyajit Banerjee Mustafi
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Noah R Leigh
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ramani Ramchandran
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Priyabrata Mukherjee
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Resham Bhattacharya
- *Peggy and Charles Stephenson Cancer Center, Department of Obstetrics and Gynecology, Department of Pathology, and Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and Developmental Vascular Biology Program and Zebrafish Drug Screening Core, Department of Obstetrics and Gynecology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Xiao Y, Su X, Huang W, Zhang J, Peng C, Huang H, Wu X, Huang H, Xia M, Ling W. Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. Int J Biochem Cell Biol 2015; 67:158-66. [PMID: 26117455 DOI: 10.1016/j.biocel.2015.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Transmethylation reactions utilize S-adenosylmethionine (SAM) as a methyl donor and are central to the regulation of many biological processes: more than fifty SAM-dependent methyltransferases methylate a broad spectrum of cellular compounds including DNA, histones, phospholipids and other small molecules. Common to all SAM-dependent transmethylation reactions is the release of the potent inhibitor S-adenosylhomocysteine (SAH) as a by-product. SAH is reversibly hydrolyzed to adenosine and homocysteine by SAH hydrolase. Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. However, a major unanswered question is if homocysteine is causally involved in disease pathogenesis or simply a passive and indirect indicator of a more complex mechanism. A chronic elevation in homocysteine levels results in a parallel increase in intracellular or plasma SAH, which is a more sensitive biomarker of cardiovascular disease than homocysteine and suggests that SAH is a critical pathological factor in homocysteine-associated disorders. Previous reports indicate that supplementation with folate and B vitamins efficiently lowers homocysteine levels but not plasma SAH levels, which possibly explains the failure of homocysteine-lowering vitamins to reduce vascular events in several recent clinical intervention studies. Furthermore, more studies are focusing on the role and mechanisms of SAH in different chronic diseases related to hyperhomocysteinemia, such as cardiovascular disease, kidney disease, diabetes, and obesity. This review summarizes the current role of SAH in cardiovascular disease and its effect on several related risk factors. It also explores possible the mechanisms, such as epigenetics and oxidative stress, of SAH. This article is part of a Directed Issue entitled: Epigenetic dynamics in development and disease.
Collapse
Affiliation(s)
- Yunjun Xiao
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Xuefen Su
- The Jockey Club School of Public Health and Primary Care, School of Public Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinzhou Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chaoqiong Peng
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haixiong Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaomin Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids 2015; 47:1319-39. [PMID: 25802182 PMCID: PMC4458266 DOI: 10.1007/s00726-015-1956-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/04/2015] [Indexed: 12/11/2022]
Abstract
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis. In addition to Hcy, related metabolites accumulate in HHcy but their role in endothelial dysfunction is unknown. Here, we examine how Hcy-thiolactone, N-Hcy-protein, and Hcy affect gene expression and molecular pathways in human umbilical vein endothelial cells. We used microarray technology, real-time quantitative polymerase chain reaction, and bioinformatic analysis with PANTHER, DAVID, and Ingenuity Pathway Analysis (IPA) resources. We identified 47, 113, and 30 mRNAs regulated by N-Hcy-protein, Hcy-thiolactone, and Hcy, respectively, and found that each metabolite induced a unique pattern of gene expression. Top molecular pathways affected by Hcy-thiolactone were chromatin organization, one-carbon metabolism, and lipid-related processes [−log(P value) = 20–31]. Top pathways affected by N-Hcy-protein and Hcy were blood coagulation, sulfur amino acid metabolism, and lipid metabolism [−log(P value)] = 4–11; also affected by Hcy-thiolactone, [−log(P value) = 8–14]. Top disease related to Hcy-thiolactone, N-Hcy-protein, and Hcy was ‘atherosclerosis, coronary heart disease’ [−log(P value) = 9–16]. Top-scored biological networks affected by Hcy-thiolactone (score = 34–40) were cardiovascular disease and function; those affected by N-Hcy-protein (score = 24–35) were ‘small molecule biochemistry, neurological disease,’ and ‘cardiovascular system development and function’; and those affected by Hcy (score = 25–37) were ‘amino acid metabolism, lipid metabolism,’ ‘cellular movement, and cardiovascular and nervous system development and function.’ These results indicate that each Hcy metabolite uniquely modulates gene expression in pathways important for vascular homeostasis and identify new genes and pathways that are linked to HHcy-induced endothelial dysfunction and vascular disease.
Collapse
|
25
|
Xiao Y, Huang W, Zhang J, Peng C, Xia M, Ling W. Increased Plasma S-Adenosylhomocysteine–Accelerated Atherosclerosis Is Associated With Epigenetic Regulation of Endoplasmic Reticulum Stress in apoE
−/−
Mice. Arterioscler Thromb Vasc Biol 2015; 35:60-70. [DOI: 10.1161/atvbaha.114.303817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yunjun Xiao
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Wei Huang
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Jinzhou Zhang
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Chaoqiong Peng
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Min Xia
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| | - Wenhua Ling
- From the Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China (Y.X., W.H., J.Z., C.P.); and Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China (Y.X., M.X., W.L.)
| |
Collapse
|
26
|
Milne E, Greenop KR, Scott RJ, Haber M, Norris MD, Attia J, Jamieson SE, Miller M, Bower C, Bailey HD, Dawson S, McCowage GB, de Klerk NH, van Bockxmeer FM, Armstrong BK. Folate pathway gene polymorphisms, maternal folic acid use, and risk of childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev 2015; 24:48-56. [PMID: 25395472 DOI: 10.1158/1055-9965.epi-14-0680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several studies suggest that maternal folic acid supplementation before or during pregnancy protects against childhood acute lymphoblastic leukemia (ALL). We investigated associations between ALL risk and folate pathway gene polymorphisms, and their modification by maternal folic acid supplements, in a population-based case-control study (2003-2007). METHODS All Australian pediatric oncology centers provided cases; controls were recruited by national random digit dialing. Data from 392 cases and 535 controls were included. Seven folate pathway gene polymorphisms (MTHFR 677C>T, MTHFR 1298A>C, MTRR 66A>G, MTR 2756 A>G, MTR 5049 C>A, CBS 844 Ins68, and CBS 2199 T>C) were genotyped in children and their parents. Information on prepregnancy maternal folic acid supplement use was collected. ORs were estimated with unconditional logistic regression adjusted for frequency-matched variables and potential confounders. Case-parent trios were also analyzed. RESULTS There was some evidence of a reduced risk of ALL among children who had, or whose father had, the MTRR 66GG genotype: ORs 0.60 [95% confidence interval (CI) 0.39-0.91] and 0.64 (95% CI, 0.40-1.03), respectively. The ORs for paternal MTHFR 677CT and TT genotypes were 1.41 (95% CI, 1.02-1.93) and 1.81 (95% CI, 1.06-3.07). ORs varied little by maternal folic acid supplementation. CONCLUSIONS Some folate pathway gene polymorphisms in the child or a parent may influence ALL risk. While biologically plausible, underlying mechanisms for these associations need further elucidation. IMPACT Folate pathway polymorphisms may be related to risk of childhood ALL, but larger studies are needed for conclusive results.
Collapse
Affiliation(s)
- Elizabeth Milne
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| | - Kathryn R Greenop
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, John Hunter Hospital, New Lambton, New South Wales, Australia. School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, New South Wales, Australia. Hunter Area Pathology Service, HNEHealth, Newcastle, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - John Attia
- Hunter Medical Research Institute, John Hunter Hospital, New Lambton, New South Wales, Australia. School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Margaret Miller
- School of Exercise and Health Sciences, Edith Cowan University, Mount Lawley, Western Australia, Australia
| | - Carol Bower
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Helen D Bailey
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia. Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
| | - Somer Dawson
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Nicholas H de Klerk
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Frank M van Bockxmeer
- Department of Clinical Biochemistry, Royal Perth Hospital and the School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - Bruce K Armstrong
- Sax Institute, Haymarket, New South Wales, Australia. Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Luttmer R, Spijkerman AM, Kok RM, Jakobs C, Blom HJ, Serne EH, Dekker JM, Smulders YM. Metabolic syndrome components are associated with DNA hypomethylation. Obes Res Clin Pract 2014; 7:e106-e115. [PMID: 24331772 DOI: 10.1016/j.orcp.2012.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/25/2012] [Accepted: 06/04/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Disturbances of DNA methylation have been associated with multiple diseases, including cardiovascular disease, cancer and, as some have suggested, glucometabolic disturbances. Our aim was to assess the association of the metabolic syndrome and its individual components with DNA methylation in a population-based study. MATERIALS AND METHODS In a human population (n = 738) stratified by age, sex and glucose metabolism, we explored associations of the metabolic syndrome according to National Cholesterol Education Program/Adult Treatment Panel-III criteria and its individual components (fasting glucose, high-density lipoprotein cholesterol, triglycerides, blood pressure, waist circumference) with global leukocyte DNA methylation. DNA methylation was measured as the methylcytosine/cytosine ratio in peripheral leukocytes using liquid chromatography-tandem mass spectrometry. RESULTS Individuals with the metabolic syndrome had relative DNA hypomethylation compared to participants without the syndrome (β = -0.05; p = 0.01). This association was mainly attributable to linear associations of two metabolic syndrome components with DNA methylation: fasting plasma glucose (β = -0.02; p = 0.004) and high-density lipoprotein cholesterol (β = 0.07; p = 0.004). People with type 2 diabetes or impaired glucose metabolism had DNA hypomethylation compared to normoglycemic individuals (β = -0.05; p = 0.004). CONCLUSIONS DNA hypomethylation is independently associated with hyperglycemia and low high-density lipoprotein cholesterol, both essential components of the metabolic syndrome. The potential implications and direction of possible causality require further study.
Collapse
Affiliation(s)
- Roosmarijn Luttmer
- Faculty of Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke M Spijkerman
- Center for Prevention and Health Services Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Robert M Kok
- Department of Clinical Chemistry and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Carel Jakobs
- Department of Clinical Chemistry and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk J Blom
- Department of Clinical Chemistry and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik H Serne
- Department of Internal Medicine and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, The Netherlands
| | - Jacqueline M Dekker
- Institute for Research in Extramural Medicine (EMGO Institute), VU University Medical Centre, Amsterdam, The Netherlands
| | - Yvo M Smulders
- Department of Internal Medicine and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, The Netherlands.
| |
Collapse
|
28
|
Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SAGM, Smith DEC, Juffermans LJM, Musters RJP, Roos D, Jakobs C, Blom HJ, Smulders YM, Krijnen PAJ, Stehouwer CDA, Rauwerda JA, van Hinsbergh VWM, Niessen HWM. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys 2014; 67:341-52. [PMID: 22038300 PMCID: PMC3825580 DOI: 10.1007/s12013-011-9297-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01–2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47phox expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨm). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨm. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47phox, and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47phox in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47phox was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.
Collapse
Affiliation(s)
- Jessica A Sipkens
- Department of Pathology, VU University Medical Centre, Room 0E46, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang DH, Wen XM, Zhang L, Cui W. DNA Methylation of Human Telomerase Reverse Transcriptase Associated With Leukocyte Telomere Length Shortening in Hyperhomocysteinemia-Type Hypertension in Humans and in a Rat Model. Circ J 2014; 78:1915-23. [DOI: 10.1253/circj.cj-14-0233] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dong-hong Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital and Peking Union Medical College
| | - Xue-mei Wen
- Department of Clinical Laboratory, Peking Union Medical College Hospital and Peking Union Medical College
| | - Lin Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital and Peking Union Medical College
| | - Wei Cui
- Department of Clinical Laboratory, Peking Union Medical College Hospital and Peking Union Medical College
| |
Collapse
|
30
|
Weiner AS, Boyarskikh UA, Voronina EN, Mishukova OV, Filipenko ML. Methylenetetrahydrofolate reductase C677T and methionine synthase A2756G polymorphisms influence on leukocyte genomic DNA methylation level. Gene 2013; 533:168-72. [PMID: 24103477 DOI: 10.1016/j.gene.2013.09.098] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 08/03/2013] [Accepted: 09/26/2013] [Indexed: 11/16/2022]
Abstract
Methionine synthase (MTR) and methylenetetrahydrofolate reductase (MTHFR) enzymes are involved in the metabolism of methyl groups, and thus have an important role in the maintenance of proper DNA methylation level. In our study we aimed to evaluate the effect of the polymorphism A2756G (rs1805087) in the MTR gene on the level of human leukocyte genomic DNA methylation. Since the well-studied polymorphism C677T (rs1801133) in the MTHFR gene has already been shown to affect DNA methylation, we aimed to analyze the effect of MTR A2756G independently of the MTHFR C677T polymorphism. For this purpose, we collected the groups of 80 subjects with the MTR 2756AA genotype and 80 subjects with the MTR 2756GG genotype, having equal numbers of individuals with the MTHFR 677CC and the MTHFR 677TT genotypes, and determined the level of DNA methylation in each group. Individuals homozygous for the mutant MTR 2756G allele showed higher DNA methylation level than those harboring the MTR 2756AA genotype (5.061 ± 1.761% vs. 4.501 ± 1.621%, P=0.0391). Individuals with wild-type MTHFR 677СC genotype displayed higher DNA methylation level than the subjects with mutant MTHFR 677TT genotype (5.103 ± 1.767% vs. 4.323 ± 1.525%, P=0.0034). Our data provide evidence that the MTR A2756G polymorphism increases the level of DNA methylation and confirm the previous reports that the MTHFR C677T polymorphism is associated with DNA hypomethylation.
Collapse
Affiliation(s)
- Alexandra S Weiner
- Institute of Chemical Biology and Fundamental Medicine, Lavrentjeva, 8, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Street, 2, 630090 Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
31
|
Zhou LT, Jia S, Wan PJ, Kong Y, Guo WC, Ahmat T, Li GQ. RNA interference of a putative S-adenosyl-L-homocysteine hydrolase gene affects larval performance in Leptinotarsa decemlineata (Say). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1049-1056. [PMID: 23973411 DOI: 10.1016/j.jinsphys.2013.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
In Leptinotarsa decemlineata, juvenile hormones (JHs) play primary roles in the regulation of metamorphosis, reproduction and diapause. In JH biosynthetic pathway in insect corpora allata, methylation of farnesoic acid or JH acid using S-adenosyl-L-methionine generates a potent feedback inhibitor S-adenosyl-L-homocysteine (AdoHcy). Rapid removal of AdoHcy is hypothesized to be essential for JH synthesis. AdoHcy hydrolase (SAHase) is the only eukaryotic enzyme catalyzing the removal. In the present paper, we firstly cloned a putative LdSAHase gene from L. decemlineata. The cDNA consists of 1806 bp and encodes a 525 amino acid protein. LdSAHase was expressed in all developmental stages. The gene had the highest and the lowest level of transcription respectively in the 3rd- and 4th-instars' heads that contain corpora allata, which was positively correlated with JH titer in the haemolymph and the mRNA level of a JH early-inducible gene, the Krüppel homolog 1 gene (Kr-h1). Secondly, dietary ingestion of bacterially-expressed LdSAHase-dsRNA significantly decreased LdSAHase and LdKr-h1 mRNA levels, reduced JH titer, and caused the death of the larvae, and the failure of pupation and adult emergence. After continuous exposure for 12 days, 42% of the larvae died, 65% of the prepupae failed to pupate and 100% of the pupae failed to emerge. Moreover, RNAi-mediated LdSAHase knockdown also reduced larval developing time, and decreased larval weight. Lastly, application of JH analogue pyriproxyfen to LdSAHase-dsRNA-exposed larvae did not greatly increase LdSAHase expression level and JH content, but up-regulated LdKr-h1 mRNA level. Expectedly, pyriproxyfen application could partially rescue the negative effects on the survival and the development. Thus, our results support the hypothesis that SAHase plays a critical role in JH biosynthesis in insects.
Collapse
Affiliation(s)
- Li-Tao Zhou
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Inoue-Choi M, Nelson HH, Robien K, Arning E, Bottiglieri T, Koh WP, Yuan JM. Plasma S-adenosylmethionine, DNMT polymorphisms, and peripheral blood LINE-1 methylation among healthy Chinese adults in Singapore. BMC Cancer 2013; 13:389. [PMID: 23957506 PMCID: PMC3765398 DOI: 10.1186/1471-2407-13-389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 08/15/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Global hypomethylation of repetitive DNA sequences is believed to occur early in tumorigenesis. There is a great interest in identifying factors that contribute to global DNA hypomethylation and associated cancer risk. We tested the hypothesis that plasma S-adenosylmethionine (SAM) level alone or in combination with genetic variation in DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) was associated with global DNA methylation extent at long interspersed nucleotide element-1 (LINE-1) sequences. METHODS Plasma SAM level and LINE-1 DNA methylation index were measured using stored blood samples collected from 440 healthy Singaporean Chinese adults during 1994-1999. Genetic polymorphisms of 13 loci in DNMT1, DNMT3A and DNMT3B were determined. RESULTS LINE-1 methylation index was significantly higher in men than in women (p = 0.001). LINE-1 methylation index was positively associated with plasma SAM levels (p ≤ 0.01), with a plateau at approximately 78% of LINE-1 methylation index (55 nmol/L plasma SAM) in men and 77% methylation index (50 nmol/L plasma SAM) in women. In men only, the T allele of DNMT1 rs21124724 was associated with a statistically significantly higher LINE-1 methylation index (ptrend = 0.001). The DNMT1 rs2114724 genotype modified the association between plasma SAM and LINE-1 methylation index at low levels of plasma SAM in men. CONCLUSIONS Circulating SAM level was associated with LINE-1 methylation status among healthy Chinese adults. The DNMT1 genetic polymorphism may exert a modifying effect on the association between SAM and LINE-1 methylation status in men, especially when plasma SAM level is low. Our findings support a link between plasma SAM and global DNA methylation status at LINE-1 sequences.
Collapse
Affiliation(s)
- Maki Inoue-Choi
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Heather H Nelson
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
| | - Kim Robien
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Department of Epidemiology and Biostatistics, George Washington University, Washington, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, USA
| | | | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jian-Min Yuan
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, USA
| |
Collapse
|
33
|
Wang J, Jiang Y, Yang A, Sun W, Ma C, Ma S, Gong H, Shi Y, Wei J. Hyperhomocysteinemia-Induced Monocyte Chemoattractant Protein-1 Promoter DNA Methylation by Nuclear Factor-κB/DNA Methyltransferase 1 in Apolipoprotein E-Deficient Mice. Biores Open Access 2013; 2:118-27. [PMID: 23593564 PMCID: PMC3620495 DOI: 10.1089/biores.2012.0300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hyperhomocysteinemia is considered to be a significant risk factor in atherosclerosis and plays an important role in it. The purpose of this study was to determine the molecular mechanism of blood monocyte chemoattractant protein-1 (MCP-1) promoter DNA hypomethylation in the formation of atherosclerosis induced by hyperhomocysteinemia, and to explore the effect of nuclear factor-κB (NF-κB)/DNA methyltransferase 1 (DNMT1) in this mechanism. The atherosclerotic effect of MCP-1 in apolipoprotein E–deficient (ApoE−/−) and wild-type C57BL/6J mice was evaluated using atherosclerotic lesion area; serum NF-κB, MCP-1, and DNMT1 levels; and MCP-1 promoter DNA methylation expression. In vitro, the mechanism responsible for the effect of NF-κB/DNMT1 on foam cells was investigated by measuring NF-κB and DNMT1 levels to determine whether NF-κB/DNMT1 had an effect on gene expression. Compared with the control group, atherosclerotic lesions in ApoE−/− mice fed a high methionine diet significantly increased, as did the expression of MCP-1. In vitro study showed that pyrrolidine dithiocarbamate treatment down-regulated levels of NF-κB and raised DNMT1 concentrations, confirming the effect of NF-κB/DNMT1 in the MCP-1 promoter DNA methylation process. In conclusion, our results suggest that through NF-κB/DNMT1, MCP-1 promoter DNA hypomethylation may play a key role in formation of atherosclerosis under hyperhomocysteinemia.
Collapse
Affiliation(s)
- Ju Wang
- Department of Inspection, Ningxia Medical University , Yinchuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atherosclerosis 2013; 228:295-305. [PMID: 23497786 DOI: 10.1016/j.atherosclerosis.2013.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 12/26/2022]
Abstract
Previous studies have suggested that homocysteine (Hcy) has wide-ranging biological effects, including accelerating atherosclerosis, impairing post injury endothelial repair and function, deregulating lipid metabolism and inducing thrombosis. However, the biochemical basis by which hyperhomocysteinemia (HHcy) contributes to cardiovascular diseases (CVDs) remains largely unknown. Several case-control studies have reported an association between HHcy and the presence of abdominal aortic aneurysms (AAA) and there are supportive data from animal models. Genotypic data concerning the association between variants of genes involved in the methionine cycle and AAA are conflicting probably due to problems such as reverse causality and confounding. The multifactorial nature of AAA suggests the involvement of additional epigenetic factors in disease formation. Elevated Hcy levels have been previously linked to altered DNA methylation levels in various diseases. Folate or vitamin B12 based methods of lowering Hcy have had disappointingly limited effects in reducing CVD events. One possible reason for the limited efficacy of such therapy is that they have failed to reverse epigenetic changes induced by HHcy. It is possible that individuals with HHcy have an "Hcy memory effect" due to epigenetic alterations which continue to promote progression of cardiovascular complications even after Hcy levels are lowered. It is possible that deleterious effect of prior, extended exposure to elevated Hcy concentrations have long-lasting effects on target organs and genes, hence underestimating the benefit of Hcy lowering therapies in CVD patients. Therapies targeting the epigenetic machinery as well as lowering circulating Hcy concentrations may have a more efficacious effect in reducing the incidence of cardiovascular complications.
Collapse
|
35
|
Esse R, Rocha MS, Barroso M, Florindo C, Teerlink T, Kok RM, Smulders YM, Rivera I, Leandro P, Koolwijk P, Castro R, Blom HJ, de Almeida IT. Protein arginine methylation is more prone to inhibition by S-adenosylhomocysteine than DNA methylation in vascular endothelial cells. PLoS One 2013; 8:e55483. [PMID: 23408989 PMCID: PMC3568140 DOI: 10.1371/journal.pone.0055483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/24/2012] [Indexed: 01/25/2023] Open
Abstract
Methyltransferases use S-adenosylmethionine (AdoMet) as methyl group donor, forming S-adenosylhomocysteine (AdoHcy) and methylated substrates, including DNA and proteins. AdoHcy inhibits most methyltransferases. Accumulation of intracellular AdoHcy secondary to Hcy elevation elicits global DNA hypomethylation. We aimed at determining the extent at which protein arginine methylation status is affected by accumulation of intracellular AdoHcy. AdoHcy accumulation in human umbilical vein endothelial cells was induced by inhibition of AdoHcy hydrolase by adenosine-2,3-dialdehyde (AdOx). As a measure of protein arginine methylation status, the levels of monomethylarginine (MMA) and asymmetric and symmetric dimethylated arginine residues (ADMA and SDMA, respectively) in cell protein hydrolysates were measured by HPLC. A 10% decrease was observed at a 2.5-fold increase of intracellular AdoHcy. Western blotting revealed that the translational levels of the main enzymes catalyzing protein arginine methylation, protein arginine methyl transferases (PRMTs) 1 and 5, were not affected by AdoHcy accumulation. Global DNA methylation status was evaluated by measuring 5-methylcytosine and total cytosine concentrations in DNA hydrolysates by LC-MS/MS. DNA methylation decreased by 10% only when intracellular AdoHcy concentration accumulated to 6-fold of its basal value. In conclusion, our results indicate that protein arginine methylation is more sensitive to AdoHcy accumulation than DNA methylation, pinpointing a possible new player in methylation-related pathology.
Collapse
Affiliation(s)
- Ruben Esse
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands
| | - Monica S. Rocha
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands
| | - Madalena Barroso
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Cristina Florindo
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Tom Teerlink
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert M. Kok
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvo M. Smulders
- Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Isabel Rivera
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Paula Leandro
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Pieter Koolwijk
- Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rita Castro
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Henk J. Blom
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Isabel Tavares de Almeida
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
36
|
Tehlivets O, Malanovic N, Visram M, Pavkov-Keller T, Keller W. S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system. Biochim Biophys Acta Mol Basis Dis 2012; 1832:204-15. [PMID: 23017368 PMCID: PMC3787734 DOI: 10.1016/j.bbadis.2012.09.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| | | | | | | | | |
Collapse
|
37
|
S-Adenosylhomocysteine induces apoptosis and phosphatidylserine exposure in endothelial cells independent of homocysteine. Atherosclerosis 2012; 221:48-54. [DOI: 10.1016/j.atherosclerosis.2011.11.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/09/2011] [Accepted: 11/22/2011] [Indexed: 11/23/2022]
|
38
|
Kim CS, Kim YR, Naqvi A, Kumar S, Hoffman TA, Jung SB, Kumar A, Jeon BH, McNamara DM, Irani K. Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc. Cardiovasc Res 2011; 92:466-75. [PMID: 21933910 PMCID: PMC3211975 DOI: 10.1093/cvr/cvr250] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/01/2011] [Accepted: 09/14/2011] [Indexed: 12/31/2022] Open
Abstract
AIMS Hyperhomocysteinaemia is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial dysfunction. Homocysteine modulates cellular methylation reactions. P66shc is a protein that promotes oxidative stress whose expression is governed by promoter methylation. We asked if homocysteine induces endothelial p66shc expression via hypomethylation of CpG dinucleotides in the p66shc promoter, and whether p66shc mediates homocysteine-stimulated endothelial cell dysfunction. METHODS AND RESULTS Homocysteine stimulates p66shc transcription in human endothelial cells and hypomethylates specific CpG dinucleotides in the human p66shc promoter. Knockdown of p66shc inhibits the increase in reactive oxygen species, and decrease in nitric oxide, elicited by homocysteine in endothelial cells and prevents homocysteine-induced up-regulation of endothelial intercellular adhesion molecule-1. In addition, knockdown of p66shc mitigates homocysteine-induced adhesion of monocytes to endothelial cells. Inhibition of DNA methyltransferase activity or knockdown of DNA methyltransferase 3b abrogates homocysteine-induced up-regulation of p66shc. Comparison of plasma homocysteine in humans with coronary artery disease shows a significant difference between those with highest and lowest p66shc promoter CpG methylation in peripheral blood leucocytes. CONCLUSION Homocysteine up-regulates human p66shc expression via hypomethylation of specific CpG dinucleotides in the p66shc promoter, and this mechanism is important in homocysteine-induced endothelial cell dysfunction.
Collapse
Affiliation(s)
- Cuk-Seong Kim
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Scaife S620, 200 Lothrop St, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Young-Rae Kim
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Scaife S620, 200 Lothrop St, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Asma Naqvi
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Scaife S620, 200 Lothrop St, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Santosh Kumar
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Scaife S620, 200 Lothrop St, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Timothy A. Hoffman
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Scaife S620, 200 Lothrop St, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Saet-Byel Jung
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Scaife S620, 200 Lothrop St, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ajay Kumar
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Scaife S620, 200 Lothrop St, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Byeong-Hwa Jeon
- Department of Physiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Dennis M. McNamara
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Scaife S620, 200 Lothrop St, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Kaikobad Irani
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Scaife S620, 200 Lothrop St, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
39
|
Ikeda S, Sugimoto M, Kume S. Importance of methionine metabolism in morula-to-blastocyst transition in bovine preimplantation embryos. J Reprod Dev 2011; 58:91-7. [PMID: 22052008 DOI: 10.1262/jrd.11-096h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of methionine metabolism in bovine preimplantation embryo development were investigated by using ethionine, an antimetabolite of methionine. In vitro produced bovine embryos that had developed to the 5-cell stage or more at 72 h after the commencement of in vitro fertilization (IVF) were then cultured until day 8 (IVF = day 0) in medium supplemented with 0 (control), 1, 5 and 10 mM ethionine. Compared with the blastocyst development in the control (40.0%), ethionine at 10 mM almost completely blocked blastocyst development (1.1%, P<0.001), and this concentration was used in the following experiments. Methionine added at the same concentration (10 mM, a concentration control of ethionine) did not cause such an intense developmental inhibition. Development to the compacted morula stage on day 6 was not affected by 10 mM ethionine treatment. S-adenosylmethionine (SAM) added to the ethionine treatment partly restored the blastocyst development. Semiquantitative reverse transcription-polymerase chain reaction analysis of cell lineage-related transcription factors in day 6 compacted morulae showed that the expressions of NANOG and TEAD4 were increased by ethionine treatment relative to the control (P<0.01). Furthermore, immunofluorescence analysis of 5-methylcytosine revealed that DNA was hypomethylated in the ethionine-treated day 6 morulae compared with the control (P<0.001). These results demonstrate that the disruption of methionine metabolism causes impairment of the morula-to-blastocyst transition during bovine preimplantation development in part via SAM deficiency, indicating the indispensable roles of methionine during this period. The disruption of methionine metabolism may cause hypomethylation of DNA and consequently lead to the altered expression of developmentally important genes, which then results in the impairment of blastocyst development.
Collapse
Affiliation(s)
- Shuntaro Ikeda
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
40
|
Sipkens JA, Krijnen PAJ, Hahn NE, Wassink M, Meischl C, Smith DEC, Musters RJP, Stehouwer CDA, Rauwerda JA, van Hinsbergh VWM, Niessen HWM. Homocysteine-induced cardiomyocyte apoptosis and plasma membrane flip-flop are independent of S-adenosylhomocysteine: a crucial role for nuclear p47(phox). Mol Cell Biochem 2011; 358:229-39. [PMID: 21739151 DOI: 10.1007/s11010-011-0973-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/28/2011] [Indexed: 02/08/2023]
Abstract
We previously found that homocysteine (Hcy) induced plasma membrane flip-flop, apoptosis, and necrosis in cardiomyocytes. Inactivation of flippase by Hcy induced membrane flip-flop, while apoptosis was induced via a NOX2-dependent mechanism. It has been suggested that S-adenosylhomocysteine (SAH) is the main causative factor in hyperhomocysteinemia (HHC)-induced pathogenesis of cardiovascular disease. Therefore, we evaluated whether the observed cytotoxic effect of Hcy in cardiomyocytes is SAH dependent. Rat cardiomyoblasts (H9c2 cells) were treated under different conditions: (1) non-treated control (1.5 nM intracellular SAH with 2.8 μM extracellular L -Hcy), (2) incubation with 50 μM adenosine-2,3-dialdehyde (ADA resulting in 83.5 nM intracellular SAH, and 1.6 μM extracellular L -Hcy), (3) incubation with 2.5 mM D, L -Hcy (resulting in 68 nM intracellular SAH and 1513 μM extracellular L -Hcy) with or without 10 μM reactive oxygen species (ROS)-inhibitor apocynin, and (4) incubation with 100 nM, 10 μM, and 100 μM SAH. We then determined the effect on annexin V/propodium iodide positivity, flippase activity, caspase-3 activity, intracellular NOX2 and p47(phox) expression and localization, and nuclear ROS production. In contrast to Hcy, ADA did not induce apoptosis, necrosis, or membrane flip-flop. Remarkably, both ADA and Hcy induced a significant increase in nuclear NOX2 expression. However, in contrast to ADA, Hcy additionally induced nuclear p47(phox) expression, increased nuclear ROS production, and inactivated flippase. Incubation with SAH did not have an effect on cell viability, nor on flippase activity, nor on nuclear NOX2-, p47phox expression or nuclear ROS production. HHC-induced membrane flip-flop and apoptosis in cardiomyocytes is due to increased Hcy levels and not primarily related to increased intracellular SAH, which plays a crucial role in nuclear p47(phox) translocation and subsequent ROS production.
Collapse
Affiliation(s)
- Jessica A Sipkens
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barroso M, Rocha MS, Esse R, Gonçalves I, Gomes AQ, Teerlink T, Jakobs C, Blom HJ, Loscalzo J, Rivera I, de Almeida IT, Castro R. Cellular hypomethylation is associated with impaired nitric oxide production by cultured human endothelial cells. Amino Acids 2011; 42:1903-11. [PMID: 21614558 DOI: 10.1007/s00726-011-0916-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for vascular disease, but the underlying mechanisms remain incompletely defined. Reduced bioavailability of nitric oxide (NO) is a principal manifestation of underlying endothelial dysfunction, which is an initial event in vascular disease. Inhibition of cellular methylation reactions by S-adenosylhomocysteine (AdoHcy), which accumulates during HHcy, has been suggested to contribute to vascular dysfunction. However, thus far, the effect of intracellular AdoHcy accumulation on NO bioavailability has not yet been fully substantiated by experimental evidence. The present study was carried out to evaluate whether disturbances in cellular methylation status affect NO production by cultured human endothelial cells. Here, we show that a hypomethylating environment, induced by the accumulation of AdoHcy, impairs NO production. Consistent with this finding, we observed decreased eNOS expression and activity, but, by contrast, enhanced NOS3 transcription. Taken together, our data support the existence of regulatory post-transcriptional mechanisms modulated by cellular methylation potential leading to impaired NO production by cultured human endothelial cells. As such, our conclusions may have implications for the HHcy-mediated reductions in NO bioavailability and endothelial dysfunction.
Collapse
Affiliation(s)
- M Barroso
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Siddique AN, Jurkowska RZ, Jurkowski TP, Jeltsch A. Auto-methylation of the mouse DNA-(cytosine C5)-methyltransferase Dnmt3a at its active site cysteine residue. FEBS J 2011; 278:2055-63. [PMID: 21481189 DOI: 10.1111/j.1742-4658.2011.08121.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED The Dnmt3a DNA methyltransferase is responsible for establishing DNA methylation patterns during mammalian development. We show here that the mouse Dnmt3a DNA methyltransferase is able to transfer the methyl group from S-adenosyl-l-methionine (AdoMet) to a cysteine residue in its catalytic center. This reaction is irreversible and relatively slow. The yield of auto-methylation is increased by addition of Dnmt3L, which functions as a stimulator of Dnmt3a and enhances its AdoMet binding. Auto-methylation was observed in binary Dnmt3a AdoMet complexes. In the presence of CpG containing dsDNA, which is the natural substrate for Dnmt3a, the transfer of the methyl group from AdoMet to the flipped target base was preferred and auto-methylation was not detected. Therefore, this reaction might constitute a regulatory mechanism which could inactivate unused DNA methyltransferases in the cell, or it could simply be an aberrant side reaction caused by the high methyl group transfer potential of AdoMet. ENZYMES Dnmt3a is a DNA-(cytosine C5)-methyltransferase, EC 2.1.1.37. STRUCTURED DIGITAL ABSTRACT • Dnmt3a methylates Dnmt3a by methyltransferase assay (View interaction) • Dnmt3a and DNMT3L methylate Dnmt3a by methyltransferase assay (View interaction).
Collapse
Affiliation(s)
- Abu Nasar Siddique
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Germany
| | | | | | | |
Collapse
|
43
|
Obermann-Borst SA, Vujkovic M, de Vries JH, Wildhagen MF, Looman CW, de Jonge R, Steegers EAP, Steegers-Theunissen RPM. A maternal dietary pattern characterised by fish and seafood in association with the risk of congenital heart defects in the offspring. BJOG 2011; 118:1205-15. [PMID: 21585642 DOI: 10.1111/j.1471-0528.2011.02984.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To identify maternal dietary patterns related to biomarkers of methylation and to investigate associations between these dietary patterns and the risk of congenital heart defects (CHDs) in the offspring. DESIGN Case-control study. SETTING Western part of the Netherlands, 2003-08. POPULATION One hundred and seventy-nine mothers of children with CHD and 231 mothers of children without a congenital malformation. METHODS Food intake was obtained by food frequency questionnaires. The reduced rank regression method was used to identify dietary patterns related to the biomarker concentrations of methylation in blood. MAIN OUTCOME MEASURES Dietary patterns, vitamin B and homocysteine concentrations, biomarkers of methylation (S-adenosylmethionine [SAM] and S-adenosylhomocysteine [SAH]) and the risk of CHD estimated by odds ratios and 95% confidence intervals. RESULTS The one-carbon-poor dietary pattern, comprising a high intake of snacks, sugar-rich products and beverages, was associated with SAH (β = 0.92, P < 0.001). The one-carbon-rich dietary pattern with high fish and seafood intake was associated with SAM (β = 0.44, P < 0.001) and inversely with SAH (β =-0.08, P < 0.001). Strong adherence to this dietary pattern resulted in higher serum (P <0.05) and red blood cell (P < 0.01) folate and a reduced risk of CHD in offspring: odds ratio, 0.3 (95% confidence interval, 0.2-0.6). CONCLUSIONS The one-carbon-rich dietary pattern, characterised by the high intake of fish and seafood, is associated with a reduced risk of CHD. This finding warrants further investigation in a randomised intervention trial.
Collapse
Affiliation(s)
- S A Obermann-Borst
- Division of Obstetrics and Prenatal Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Müller T. Motor complications, levodopa metabolism and progression of Parkinson's disease. Expert Opin Drug Metab Toxicol 2011; 7:847-55. [PMID: 21480824 DOI: 10.1517/17425255.2011.575779] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Oxidative stress is an essential component of neuronal death in Parkinson's disease (PD). Clinically, progression of PD is also characterised by onset of motor complications (MC). MC results from the peripheral and central degree of fluctuations of levodopa (LD) and of dopamine. AREAS COVERED This review highlights aspects of LD and dopamine metabolism in chronic neurodegeneration in PD. A Medline search (terms: homocysteine, LD, PD, progression [from 2000 onwards]) was performed and considered preclinical and clinical investigations. The author discusses pharmacokinetic and metabolic aspects of chronic LD administration in PD patients and provides a therapeutic concept to reduce probable PD accelerating consequences of chronic LD application. EXPERT OPINION The author suggests that the future 'ideal' oral LD therapy should be homocysteine-reducing, methyl-group-donating, oxidative-stress-decreasing and antiglutamatergic while also allowing continuous delivery to the brain. This may slow the progression of PD and delay the onset of MC, both of which represent unmet needs in the treatment of PD patients.
Collapse
Affiliation(s)
- Thomas Müller
- St. Joseph Hospital Berlin-Weissensee, Department of Neurology , Gartenstr. 1, 13088 Berlin, Germany.
| |
Collapse
|
45
|
Obermann-Borst SA, van Driel LMJW, Helbing WA, de Jonge R, Wildhagen MF, Steegers EAP, Steegers-Theunissen RPM. Congenital heart defects and biomarkers of methylation in children: a case-control study. Eur J Clin Invest 2011; 41:143-50. [PMID: 20868449 DOI: 10.1111/j.1365-2362.2010.02388.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Derangements in the maternal methylation pathway, expressed by global hypomethylation and hyperhomocysteinemia, are associated with the risk of having a child with a congenital heart defect (CHD). It is not known whether periconception exposure to these metabolic derangements contributes to chromosome segregation and metabolic programming of this pathway in the foetus. DESIGN In a Dutch population-based case-control study of 143 children with CHD and 186 healthy children, we investigated S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), total homocysteine (tHcy), the vitamins folate and B12 and the functional single nucleotide polymorphisms in the folate gene MTHFR 677C>T and 1298A>C. Comparisons were made between cases and controls adjusting for age, medication, vitamin use and CHD family history. RESULTS In the overall CHD group, the median concentrations of SAM (P = 0·011), folate in serum (P = 0·021) and RBC (P = 0·030) were significantly higher than in the controls. Subgroup analysis showed that this was mainly attributable to complex CHD with higher SAM (P < 0·001), SAH (P = 0·012) and serum folate (P = 0·010) independent of carriership of MTHFR polymorphisms. Highest concentrations of SAM, SAH and folate RBC were observed in complex syndromic CHD. The subgroup of children with Down syndrome, however, showed significantly higher SAH (P = 0·037) and significantly lower SAM:SAH ratio (P = 0·034) compared with other complex CHD, suggesting a state of global hypomethylation. CONCLUSION High concentrations of methylation biomarkers in very young children are associated with complex CHD. Down syndrome and CHD may be associated with a global hypomethylation status, which has to be confirmed in tissues and global DNA methylation in future studies.
Collapse
Affiliation(s)
- Sylvia A Obermann-Borst
- Department of Obstetrics and Gynaecology/Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Levine AJ, Grau MV, Mott LA, Ueland PM, Baron JA. Baseline plasma total homocysteine and adenoma recurrence: results from a double blind randomized clinical trial of aspirin and folate supplementation. Cancer Epidemiol Biomarkers Prev 2010; 19:2541-8. [PMID: 20841390 DOI: 10.1158/1055-9965.epi-10-0536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Elevated plasma total homocysteine (tHcy) is an accepted marker of functional folate deficiency but may have independent effects on colorectal neoplasia risk. It is uncertain whether plasma tHcy is associated with risk at the low levels common in a folate-fortified population. METHODS Study subjects, about half of whom were recruited after fortification of grain products with folic acid in the United States and Canada, consisted of 871 individuals with a recent history of one or more colorectal adenomas who were randomized to receive either a 1 mg/day folic acid supplement or a placebo within one of three randomly assigned aspirin treatment groups (placebo, 81, or 325 mg/day). Nonfasting plasma tHcy was determined by a gas chromatograph mass chromatography method. We estimated adjusted risk ratios and 95% confidence intervals (95% CI) for one or more adenoma recurrences for each quartile of baseline plasma tHcy using generalized linear regression with an overdispersed Poisson approximation to the binomial. RESULTS The Q4/Q1 adjusted risk ratio for any adenoma was 0.98 (95% CI, 0.70-1.38; P trend = 0.17) in the placebo group, and 0.81 (95% CI, 0.58-1.12; P-trend = 0.17) in the folic acid group. Results were similar for adenomas with advanced features. There was no modification by sex, aspirin treatment group or MTHFR 677C>T genotype. CONCLUSIONS Plasma tHcy is not an independent marker for an increase in colorectal adenoma recurrence risk in postfortification populations in which plasma tHcy levels are in the lower range of values. IMPACT Controlling plasma tHcy levels is unlikely to favorably modify adenoma recurrence risk in folate-fortified populations.
Collapse
Affiliation(s)
- A Joan Levine
- USC Keck School of Medicine, Department of Preventive Medicine, Genetic Epidemiology, NRT 1450 Biggy Street Room 1509A, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
47
|
Lechner JF, Wang LS, Rocha CM, Larue B, Henry C, McIntyre CM, Riedl KM, Schwartz SJ, Stoner GD. Drinking water with red beetroot food color antagonizes esophageal carcinogenesis in N-nitrosomethylbenzylamine-treated rats. J Med Food 2010; 13:733-9. [PMID: 20438319 DOI: 10.1089/jmf.2008.0280] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study was undertaken to determine if the oral consumption of red beetroot food color would result in an inhibition of N-nitrosomethylbenzylamine (NMBA)-induced tumors in the rat esophagus. Rats were treated with NMBA and given either regular water ad libitum or water containing 78 microg/mL commercial red beetroot dye, E162. The number of NMBA-induced esophageal papillomas was reduced by 45% (P < .001) in animals that received the food color compared to controls. The treatment also resulted in reduced rates of cell proliferation in both precancerous esophageal lesions and in papillomas of NMBA-treated rats, as measured by immunohistochemical staining of Ki-67 in esophageal tissue specimens. The effects of beetroot food color on angiogenesis (microvessel density by CD34 immunostaining), inflammation (by CD45 immunostaining), and apoptosis (by terminal deoxynucleotidyl transferase dUTP nick end-labeling staining) in esophageal tissue specimens were also determined. Compared to rats treated with NMBA only, the levels of angiogenesis and inflammation in the beetroot color-consuming animals were reduced, and the apoptotic rate was increased. Thus, the mechanism(s) of chemoprevention by the active constituents of red beetroot color include reducing cell proliferation, angiogenesis, and inflammation and stimulating apoptosis. Importantly, consumption of the dye in the drinking water for a period of 35 weeks did not appear to induce any overt toxicity. Based on the fact that red beetroot color contains betanins, which have strong antioxidant activity, it is postulated that these effects are mediated through inhibition of oxygen radical-induced signal transduction. However, the sum of constituents of E162 has not been determined, and other components with other mechanisms may also be involved in antagonizing cancer development.
Collapse
Affiliation(s)
- John F Lechner
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43240, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ikeda S, Namekawa T, Sugimoto M, Kume SI. Expression of methylation pathway enzymes in bovine oocytes and preimplantation embryos. ACTA ACUST UNITED AC 2010; 313:129-36. [PMID: 20073048 DOI: 10.1002/jez.581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The methylation pathway, which consists of two metabolic cycles of nutrients, i.e., the methionine and folate cycles, generates S-adenosylmethionine, the methyl donor for the methylation of DNA and histones. Using reverse transcription-polymerase chain reaction, we examined the gene expression patterns of the methylation pathway enzymes during bovine oocyte maturation and preimplantation embryonic development up to the blastocyst stage. Bovine oocytes were demonstrated to have the mRNA of all methylation pathway enzymes examined, namely, methionine adenosyltransferase 1A (MAT1A), MAT2A, MAT2B, S-adenosylhomocysteine hydrolase (AHCY), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), betaine-homocysteine methyltransferase (BHMT), serine hydroxymethyltransferase 1 (SHMT1), SHMT2, and 5,10-methylenetetrahydrofolate reductase (MTHFR). All the transcripts were consistently expressed throughout all developmental stages, except for MAT1A, which was not detected from the 8-cell stage onward and BHMT, which was not detected in the 8-cell stage. Immunofluorescence analysis of MAT1A protein revealed the relatively higher expression in oocytes and early cleavage stage embryos up to the 8-cell stage compared with the morula and blastocyst stage. Further, to investigate the effects of methylation pathway disruption during the earliest stages of embryonic development, the effects of exogenous homocysteine on preimplantation development and DNA methylation of bovine embryos were investigated in vitro. As results, high concentrations of homocysteine induced hypermethylation of genomic DNA as well as developmental retardation in bovine embryos. These results provide a new insight into nutrient-sensitive epigenetic regulation and perturbation at the earliest stage of our life.
Collapse
Affiliation(s)
- Shuntaro Ikeda
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
49
|
The TCN2 776C>G polymorphism correlates with vitamin B12 cellular delivery in healthy adult populations. Clin Biochem 2010; 43:645-9. [DOI: 10.1016/j.clinbiochem.2010.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 12/17/2022]
|
50
|
Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One 2010; 5:e9692. [PMID: 20300621 PMCID: PMC2837739 DOI: 10.1371/journal.pone.0009692] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Accepted: 02/11/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Elevated serum homocysteine is associated with an increased risk of cardiovascular disease (CVD). This may reflect a reduced systemic remethylation capacity, which would be expected to cause decreased genomic DNA methylation in peripheral blood leukocytes (PBL). METHODOLOGY/PRINCIPAL FINDINGS We examined the association between prevalence of CVD (myocardial infarction, stroke) and its predisposing conditions (hypertension, diabetes) and PBL global genomic DNA methylation as represented by ALU and Satellite 2 (AS) repetitive element DNA methylation in 286 participants of the Singapore Chinese Health Study, a population-based prospective investigation of 63,257 men and women aged 45-74 years recruited during 1993-1998. Men exhibited significantly higher global DNA methylation [geometric mean (95% confidence interval (CI)): 159 (143, 178)] than women [133 (121, 147)] (P = 0.01). Global DNA methylation was significantly elevated in men with a history of CVD or its predisposing conditions at baseline (P = 0.03) but not in women (P = 0.53). Fifty-two subjects (22 men, 30 women) who were negative for these CVD/predisposing conditions at baseline acquired one or more of these conditions by the time of their follow-up I interviews, which took place on average about 5.8 years post-enrollment. Global DNA methylation levels of the 22 incident cases in men were intermediate (AS, 177) relative to the 56 male subjects who remained free of CVD/predisposing conditions at follow-up (lowest AS, 132) and the 51 male subjects with a diagnosis of CVD or predisposing conditions reported at baseline (highest AS 184) (P for trend = 0.0008) No such association was observed in women (P = 0.91). Baseline body mass index was positively associated with AS in both men and women (P = 0.007). CONCLUSIONS/SIGNIFICANCE Our findings indicate that elevated, not decreased, PBL DNA methylation is positively associated with prevalence of CVD/predisposing conditions and obesity in Singapore Chinese.
Collapse
Affiliation(s)
- Myungjin Kim
- Norris Comprehensive Cancer Center, Departments of Surgery and of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Tiffany I. Long
- Norris Comprehensive Cancer Center, Departments of Surgery and of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kazuko Arakawa
- Norris Comprehensive Cancer Center, Departments of Surgery and of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Renwei Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mimi C. Yu
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Peter W. Laird
- Norris Comprehensive Cancer Center, Departments of Surgery and of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|