1
|
Strulovici-Barel Y, Rostami MR, Kaner RJ, Mezey JG, Crystal RG. Serial Sampling of the Small Airway Epithelium to Identify Persistent Smoking-dysregulated Genes. Am J Respir Crit Care Med 2023; 208:780-790. [PMID: 37531632 PMCID: PMC10563181 DOI: 10.1164/rccm.202204-0786oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/02/2023] [Indexed: 08/04/2023] Open
Abstract
Rationale: The small airway epithelium (beyond the sixth generation), the initiation site of smoking-induced airway disorders, is highly sensitive to the stress of smoking. Because of variations over time in smoking habits, the small airway epithelium transcriptome is dynamic, fluctuating not only among smokers but also within each smoker. Objectives: To perform accurate assessment of the smoking-related dysregulation of the human small airway epithelium despite the variation of smoking within the same individual and of the effects of smoking cessation on the dysregulated transcriptome. Methods: We conducted serial sampling of the same smokers and nonsmoker control subjects over time to identify persistent smoking dysregulation of the biology of the small airway epithelium over 1 year. We conducted serial sampling of smokers who quit smoking, before and after smoking cessation, to assess the effect of smoking cessation on the smoking-dysregulated genes. Measurements and Main Results: Repeated measures ANOVA of the small airway epithelium transcriptome sampled four times in the same individuals over 1 year enabled the identification of 475 persistent smoking-dysregulated genes. Most genes were normalized after 12 months of smoking cessation; however, 53 (11%) genes, including CYP1B1, PIR, ME1, and TRIM16, remained persistently abnormally expressed. Dysregulated pathways enriched with the nonreversible genes included xenobiotic metabolism signaling, bupropion degradation, and nicotine degradation. Conclusions: Analysis of repetitive sampling of the same individuals identified persistent smoking-induced dysregulation of the small airway epithelium transcriptome and the effect of smoking cessation. These results help identify targets for the development of therapies that can be applicable to smoking-related airway diseases.
Collapse
Affiliation(s)
| | | | - Robert J. Kaner
- Department of Genetic Medicine and
- Department of Medicine, Weill Cornell Medical College, New York, New York; and
| | - Jason G. Mezey
- Department of Genetic Medicine and
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York
| | - Ronald G. Crystal
- Department of Genetic Medicine and
- Department of Medicine, Weill Cornell Medical College, New York, New York; and
| |
Collapse
|
2
|
Lahmar Z, Ahmed E, Fort A, Vachier I, Bourdin A, Bergougnoux A. Hedgehog pathway and its inhibitors in chronic obstructive pulmonary disease (COPD). Pharmacol Ther 2022; 240:108295. [PMID: 36191777 DOI: 10.1016/j.pharmthera.2022.108295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
COPD affects millions of people and is now ranked as the third leading cause of death worldwide. This largely untreatable chronic airway disease results in irreversible destruction of lung architecture. The small lung hypothesis is now supported by epidemiological, physiological and clinical studies. Accordingly, the early and severe COPD phenotype carries the most dreadful prognosis and finds its roots during lung growth. Pathophysiological mechanisms remain poorly understood and implicate individual susceptibility (genetics), a large part of environmental factors (viral infections, tobacco consumption, air pollution) and the combined effects of those triggers on gene expression. Genetic susceptibility is most likely involved as the disease is severe and starts early in life. The latter observation led to the identification of Mendelian inheritance via disease-causing variants of SERPINA1 - known as the basis for alpha-1 anti-trypsin deficiency, and TERT. In the last two decades multiple genome wide association studies (GWAS) identified many single nucleotide polymorphisms (SNPs) associated with COPD. High significance SNPs are located in 4q31 near HHIP which encodes an evolutionarily highly conserved physiological inhibitor of the Hedgehog signaling pathway (HH). HHIP is critical to several in utero developmental lung processes. It is also implicated in homeostasis, injury response, epithelial-mesenchymal transition and tumor resistance to apoptosis. A few studies have reported decreased HHIP RNA and protein levels in human adult COPD lungs. HHIP+/- murine models led to emphysema. HH pathway inhibitors, such as vismodegib and sonidegib, are already validated in oncology, whereas other drugs have evidenced in vitro effects. Targeting the Hedgehog pathway could lead to a new therapeutic avenue in COPD. In this review, we focused on the early and severe COPD phenotype and the small lung hypothesis by exploring genetic susceptibility traits that are potentially treatable, thus summarizing promising therapeutics for the future.
Collapse
Affiliation(s)
- Z Lahmar
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France
| | - E Ahmed
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Fort
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - I Vachier
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bourdin
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bergougnoux
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France; Laboratoire de Génétique Moléculaire et de Cytogénomique, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Early transcriptional responses of bronchial epithelial cells to whole cigarette smoke mirror those of in-vivo exposed human bronchial mucosa. Respir Res 2022; 23:227. [PMID: 36056356 PMCID: PMC9440516 DOI: 10.1186/s12931-022-02150-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/16/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite the well-known detrimental effects of cigarette smoke (CS), little is known about the complex gene expression dynamics in the early stages after exposure. This study aims to investigate early transcriptomic responses following CS exposure of airway epithelial cells in culture and compare these to those found in human CS exposure studies. METHODS Primary bronchial epithelial cells (PBEC) were differentiated at the air-liquid interface (ALI) and exposed to whole CS. Bulk RNA-sequencing was performed at 1 h, 4 h, and 24 h hereafter, followed by differential gene expression analysis. Results were additionally compared to data retrieved from human CS studies. RESULTS ALI-PBEC gene expression in response to CS was most significantly changed at 4 h after exposure. Early transcriptomic changes (1 h, 4 h post CS exposure) were related to oxidative stress, xenobiotic metabolism, higher expression of immediate early genes and pro-inflammatory pathways (i.e., Nrf2, AP-1, AhR). At 24 h, ferroptosis-associated genes were significantly increased, whereas PRKN, involved in removing dysfunctional mitochondria, was downregulated. Importantly, the transcriptome dynamics of the current study mirrored in-vivo human studies of acute CS exposure, chronic smokers, and inversely mirrored smoking cessation. CONCLUSION These findings show that early after CS exposure xenobiotic metabolism and pro-inflammatory pathways were activated, followed by activation of the ferroptosis-related cell death pathway. Moreover, significant overlap between these transcriptomic responses in the in-vitro model and human in-vivo studies was found, with an early response of ciliated cells. These results provide validation for the use of ALI-PBEC cultures to study the human lung epithelial response to inhaled toxicants.
Collapse
|
4
|
Adam N, Vuong NQ, Adams H, Kuo B, Beheshti A, Yauk C, Wilkins R, Chauhan V. Evaluating the Influences of Confounding Variables on Benchmark Dose using a Case Study in the Field of Ionizing Radiation. Int J Radiat Biol 2022; 98:1845-1855. [PMID: 35939396 DOI: 10.1080/09553002.2022.2110303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose A vast amount of data regarding the effects of radiation stressors on transcriptional changes has been produced over the past few decades. These data have shown remarkable consistency across platforms and experimental design, enabling increased understanding of early molecular effects of radiation exposure. However, the value of transcriptomic data in the context of risk assessment is not clear and represents a gap that is worthy of further consideration. Recently, benchmark dose (BMD) modeling has shown promise in correlating a transcriptional point of departure (POD) to that derived using phenotypic outcomes relevant to human health risk assessment. Although frequently applied in chemical toxicity evaluation, our group has recently demonstrated application within the field of radiation research. This approach allows the possibility to quantitatively compare radiation-induced gene and pathway alterations across various datasets using BMD values and derive meaningful biological effects. However, before BMD modeling can confidently be used, an understanding of the impact of confounding variables on BMD outputs is needed. Methods: To this end, BMD modeling was applied to a publicly available microarray dataset (Gene Expression Omnibus #GSE23515) that used peripheral blood ex-vivo gamma-irradiated at 0.82 Gy/min, at doses of 0, 0.1, 0.5 or 2 Gy, and assessed 6 hours post-exposure. The dataset comprised six female smokers (F-S), six female non-smokers (F-NS), six male smokers (M-S), and six male non-smokers (M-NS). Results: A combined total of 412 genes were fit to models and the BMD distribution was noted to be bi-modal across the four groups. A total of 74, 41, 62 and 62 genes were unique to the F-NS, M-NS, F-S and M-S groups. Sixty-two BMD modeled genes and nine pathways were common across all four groups. There were no differential sensitivity of responses in the robust common genes and pathways. Conclusion: For radiation-responsive genes and pathways common across the study groups, the BMD distribution of transcriptional activity was unaltered by sex and smoking status. Although further validation of the data is needed, these initial findings suggest BMD values for radiation relevant genes and pathways are robust and could be explored further in future studies.
Collapse
Affiliation(s)
- Nadine Adam
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Ngoc Q Vuong
- Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Hailey Adams
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Asadi Jozani K, Kouthouridis S, Hirota JA, Zhang B. Next generation preclinical models of lung development, physiology and disease. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kimia Asadi Jozani
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
| | - Sonya Kouthouridis
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Jeremy Alexander Hirota
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Medicine, Division of Respirology McMaster University Hamilton Ontario Canada
- Firestone Institute for Respiratory Health St. Joseph’s Hospital, Hamilton Ontario Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| |
Collapse
|
6
|
Garland LL, Guillen-Rodriguez J, Hsu CH, Davis LE, Szabo E, Husted CR, Liu H, LeClerc A, Alekseyev YO, Liu G, Bauman JE, Spira AE, Beane J, Wojtowicz M, Chow HHS. Clinical Study of Aspirin and Zileuton on Biomarkers of Tobacco-Related Carcinogenesis in Current Smokers. Cancers (Basel) 2022; 14:2893. [PMID: 35740559 PMCID: PMC9221101 DOI: 10.3390/cancers14122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
The chemopreventive effect of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) on lung cancer risk is supported by epidemiologic and preclinical studies. Zileuton, a 5-lipoxygenase inhibitor, has additive activity with NSAIDs against tobacco carcinogenesis in preclinical models. We hypothesized that cyclooxygenase plus 5-lipoxygenase inhibition would be more effective than a placebo in modulating the nasal epithelium gene signatures of tobacco exposure and lung cancer. We conducted a randomized, double-blinded study of low-dose aspirin plus zileuton vs. double placebo in current smokers to compare the modulating effects on nasal gene expression and arachidonic acid metabolism. In total, 63 participants took aspirin 81 mg daily plus zileuton (Zyflo CR) 600 mg BID or the placebo for 12 weeks. Nasal brushes from the baseline, end-of-intervention, and one-week post intervention were profiled via microarray. Aspirin plus zilueton had minimal effects on the modulation of the nasal or bronchial gene expression signatures of smoking, lung cancer, and COPD but favorably modulated a bronchial gene expression signature of squamous dysplasia. Aspirin plus zileuton suppressed urinary leukotriene but not prostaglandin E2, suggesting shunting through the cyclooxygenase pathway when combined with 5-lipoxygenase inhibition. Continued investigation of leukotriene inhibitors is needed to confirm these findings, understand the long-term effects on the airway epithelium, and identify the safest, optimally dosed agents.
Collapse
Affiliation(s)
- Linda L. Garland
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| | - José Guillen-Rodriguez
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| | - Chiu-Hsieh Hsu
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| | - Lisa E. Davis
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA;
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesa, MD 20892, USA; (E.S.); (M.W.)
| | - Christopher R. Husted
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Ashley LeClerc
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (A.L.); (Y.O.A.)
| | - Yuriy O. Alekseyev
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (A.L.); (Y.O.A.)
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Julie E. Bauman
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
- Division of Hematology/Oncology, Department of Medicine, George Washington (GW) University and GW Cancer Center, Washington, DC 20037, USA
| | - Avrum E. Spira
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Jennifer Beane
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Malgorzata Wojtowicz
- Division of Cancer Prevention, National Cancer Institute, Bethesa, MD 20892, USA; (E.S.); (M.W.)
| | - H.-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| |
Collapse
|
7
|
Impaired differentiation of small airway basal stem/progenitor cells in people living with HIV. Sci Rep 2022; 12:2966. [PMID: 35194053 PMCID: PMC8864005 DOI: 10.1038/s41598-022-06373-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With highly active anti-retroviral therapy (HAART), higher incidence of airway abnormalities is common in the HIV population consistent with the concept of accelerated lung "aging". Our previous findings demonstrated that HIV induces human airway basal cells (BC) into destructive and inflammatory phenotypes. Since BC function as stem/progenitor cells of the small airway epithelium (SAE), responsible for self-renewal and differentiation of SAE, we hypothesized that BC from people living with HIV (PLWH) may have altered differentiation capacity that contribute to premature aging. The data demonstrates that BC from PLWH have impaired capacity to differentiate in vitro and senescent phenotypes including shortened telomeres, increased expression of β-galactosidase and cell cycle inhibitors, and mitochondrial dysfunction. In vitro studies demonstrated that BC senescence is partly due to adverse effects of HAART on BC. These findings provide an explanation for higher incidence of airway dysfunction and accelerated lung aging observed in PLWH.
Collapse
|
8
|
Brasier AR, Qiao D, Zhao Y. The Hexosamine Biosynthetic Pathway Links Innate Inflammation With Epithelial-Mesenchymal Plasticity in Airway Remodeling. Front Pharmacol 2021; 12:808735. [PMID: 35002741 PMCID: PMC8727908 DOI: 10.3389/fphar.2021.808735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Disruption of the lower airway epithelial barrier plays a major role in the initiation and progression of chronic lung disease. Here, repetitive environmental insults produced by viral and allergens triggers metabolic adaptations, epithelial-mesenchymal plasticity (EMP) and airway remodeling. Epithelial plasticity disrupts epithelial barrier function, stimulates release of fibroblastic growth factors, and remodels the extracellular matrix (ECM). This review will focus on recent work demonstrating how the hexosamine biosynthetic pathway (HBP) links innate inflammation to airway remodeling. The HBP is a core metabolic pathway of the unfolded protein response (UPR) responsible for protein N-glycosylation, relief of proteotoxic stress and secretion of ECM modifiers. We will overview findings that the IκB kinase (IKK)-NFκB pathway directly activates expression of the SNAI-ZEB1 mesenchymal transcription factor module through regulation of the Bromodomain Containing Protein 4 (BRD4) chromatin modifier. BRD4 mediates transcriptional elongation of SNAI1-ZEB as well as enhancing chromatin accessibility and transcription of fibroblast growth factors, ECM and matrix metalloproteinases (MMPs). In addition, recent exciting findings that IKK cross-talks with the UPR by controlling phosphorylation and nuclear translocation of the autoregulatory XBP1s transcription factor are presented. HBP is required for N glycosylation and secretion of ECM components that play an important signaling role in airway remodeling. This interplay between innate inflammation, metabolic reprogramming and lower airway plasticity expands a population of subepithelial myofibroblasts by secreting fibroblastic growth factors, producing changes in ECM tensile strength, and fibroblast stimulation by MMP binding. Through these actions on myofibroblasts, EMP in lower airway cells produces expansion of the lamina reticularis and promotes airway remodeling. In this manner, metabolic reprogramming by the HBP mediates environmental insult-induced inflammation with remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX, United States
| |
Collapse
|
9
|
Xu X, Mann M, Qiao D, Li Y, Zhou J, Brasier AR. Bromodomain Containing Protein 4 (BRD4) Regulates Expression of its Interacting Coactivators in the Innate Response to Respiratory Syncytial Virus. Front Mol Biosci 2021; 8:728661. [PMID: 34765643 PMCID: PMC8577543 DOI: 10.3389/fmolb.2021.728661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Bromodomain-containing protein 4 plays a central role in coordinating the complex epigenetic component of the innate immune response. Previous studies implicated BRD4 as a component of a chromatin-modifying complex that is dynamically recruited to a network of protective cytokines by binding activated transcription factors, polymerases, and histones to trigger their rapid expression via transcriptional elongation. Our previous study extended our understanding of the airway epithelial BRD4 interactome by identifying over 100 functionally important coactivators and transcription factors, whose association is induced by respiratory syncytial virus (RSV) infection. RSV is an etiological agent of recurrent respiratory tract infections associated with exacerbations of chronic obstructive pulmonary disease. Using a highly selective small-molecule BRD4 inhibitor (ZL0454) developed by us, we extend these findings to identify the gene regulatory network dependent on BRD4 bromodomain (BD) interactions. Human small airway epithelial cells were infected in the absence or presence of ZL0454, and gene expression profiling was performed. A highly reproducible dataset was obtained which indicated that BRD4 mediates both activation and repression of RSV-inducible gene regulatory networks controlling cytokine expression, interferon (IFN) production, and extracellular matrix remodeling. Index genes of functionally significant clusters were validated independently. We discover that BRD4 regulates the expression of its own gene during the innate immune response. Interestingly, BRD4 activates the expression of NFκB/RelA, a coactivator that binds to BRD4 in a BD-dependent manner. We extend this finding to show that BRD4 also regulates other components of its functional interactome, including the Mediator (Med) coactivator complex and the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin (SMARC) subunits. To provide further insight into mechanisms for BRD4 in RSV expression, we mapped 7,845 RSV-inducible Tn5 transposase peaks onto the BRD4-dependent gene bodies. These were located in promoters and introns of cytostructural and extracellular matrix (ECM) formation genes. These data indicate that BRD4 mediates the dynamic response of airway epithelial cells to RNA infection by modulating the expression of its coactivators, controlling the expression of host defense mechanisms and remodeling genes through changes in promoter accessibility.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Morgan Mann
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Allan R Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States.,Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Mastalerz M, Dick E, Chakraborty AA, Hennen E, Schamberger AC, Schröppel A, Lindner M, Hatz R, Behr J, Hilgendorff A, Schmid O, Staab-Weijnitz CA. Validation of in vitro models for smoke exposure of primary human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 322:L129-L148. [PMID: 34668416 DOI: 10.1152/ajplung.00091.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RATIONALE The bronchial epithelium is constantly challenged by inhalative insults including cigarette smoke (CS), a key risk factor for lung disease. In vitro exposure of bronchial epithelial cells using CS extract (CSE) is a widespread alternative to whole CS (wCS) exposure. However, CSE exposure protocols vary considerably between studies, precluding direct comparison of applied doses. Moreover, they are rarely validated in terms of physiological response in vivo and the relevance of the findings is often unclear. METHODS We tested six different exposure settings in primary human bronchial epithelial cells (phBECs), including five CSE protocols in comparison with wCS exposure. We quantified cell-delivered dose and directly compared all exposures using expression analysis of 10 well-established smoke-induced genes in bronchial epithelial cells. CSE exposure of phBECs was varied in terms of differentiation state, exposure route, duration of exposure, and dose. Gene expression was assessed by quantitative Real-Time PCR (qPCR) and Western Blot analysis. Cell type-specific expression of smoke-induced genes was analyzed by immunofluorescent analysis. RESULTS Three surprisingly dissimilar exposure types, namely chronic CSE treatment of differentiating phBECs, acute CSE treatment of submerged basal phBECs, and wCS exposure of differentiated phBECs performed best, resulting in significant upregulation of seven (chronic CSE) and six (acute wCS, acute submerged CSE exposure) out of 10 genes. Acute apical or basolateral exposure of differentiated phBECs with CSE was much less effective despite similar doses used. CONCLUSIONS Our findings provide guidance for the design of human in vitro CS exposure models in experimental and translational lung research.
Collapse
Affiliation(s)
- Michal Mastalerz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ashesh Anjankumar Chakraborty
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Hennen
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andrea C Schamberger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Schröppel
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Rudolf Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität (LMU), Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
11
|
Kotlyarov S, Kotlyarova A. Bioinformatic Analysis of ABCA1 Gene Expression in Smoking and Chronic Obstructive Pulmonary Disease. MEMBRANES 2021; 11:674. [PMID: 34564491 PMCID: PMC8464760 DOI: 10.3390/membranes11090674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
UNLABELLED Smoking is a key modifiable risk factor for developing the chronic obstructive pulmonary disease (COPD). When smoking, many processes, including the reverse transport of cholesterol mediated by the ATP binding cassette transporter A1 (ABCA1) protein are disrupted in the lungs. Changes in the cholesterol content in the lipid rafts of plasma membranes can modulate the function of transmembrane proteins localized in them. It is believed that this mechanism participates in increasing the inflammation in COPD. METHODS Bioinformatic analysis of datasets from Gene Expression Omnibus (GEO) was carried out. Gene expression data from datasets of alveolar macrophages and the epithelium of the respiratory tract in smokers and COPD patients compared with non-smokers were used for the analysis. To evaluate differentially expressed genes, bioinformatic analysis was performed in comparison groups using the limma package in R (v. 4.0.2), and the GEO2R and Phantasus tools (v. 1.11.0). RESULTS The conducted bioinformatic analysis showed changes in the expression of the ABCA1 gene associated with smoking. In the alveolar macrophages of smokers, the expression levels of ABCA1 were lower than in non-smokers. At the same time, in most of the airway epithelial datasets, gene expression did not show any difference between the groups of smokers and non-smokers. In addition, it was shown that the expression of ABCA1 in the epithelial cells of the trachea and large bronchi is higher than in small bronchi. CONCLUSIONS The conducted bioinformatic analysis showed that smoking can influence the expression of the ABCA1 gene, thereby modulating lipid transport processes in macrophages, which are part of the mechanisms of inflammation development.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
12
|
Sin S, Choi HM, Lim J, Kim J, Bak SH, Choi SS, Park J, Lee JH, Oh YM, Lee MK, Hobbs BD, Cho MH, Silverman EK, Kim WJ. A genome-wide association study of quantitative computed tomographic emphysema in Korean populations. Sci Rep 2021; 11:16692. [PMID: 34404834 PMCID: PMC8371078 DOI: 10.1038/s41598-021-95887-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Emphysema is an important feature of chronic obstructive pulmonary disease (COPD). Genetic factors likely affect emphysema pathogenesis, but this question has predominantly been studied in those of European ancestry. In this study, we sought to determine genetic components of emphysema severity and characterize the potential function of the associated loci in Korean population. We performed a genome-wide association study (GWAS) on quantitative emphysema in subjects with or without COPD from two Korean COPD cohorts. We investigated the functional consequences of the loci using epigenetic annotation and gene expression data. We also compared our GWAS results with an epigenome-wide association study and previous differential gene expression analysis. In total, 548 subjects (476 [86.9%] male) including 514 COPD patients were evaluated. We identified one genome-wide significant SNP (P < 5.0 × 10-8), rs117084279, near PIBF1. We identified an additional 57 SNPs (P < 5.0 × 10-6) associated with emphysema in all subjects, and 106 SNPs (P < 5.0 × 10-6) in COPD patients. Of these candidate SNPs, 2 (rs12459249, rs11667314) near CYP2A6 were expression quantitative trait loci in lung tissue and a SNP (rs11214944) near NNMT was an expression quantitative trait locus in whole blood. Of note, rs11214944 was in linkage disequilibrium with variants in enhancer histone marks in lung tissue. Several genes near additional SNPs were identified in our previous EWAS study with nominal level of significance. We identified a novel SNP associated with quantitative emphysema on CT. Including the novel SNP, several candidate SNPs in our study may provide clues to the genetic etiology of emphysema in Asian populations. Further research and validation of the loci will help determine the genetic factors for the development of emphysema.
Collapse
Affiliation(s)
- Sooim Sin
- grid.412010.60000 0001 0707 9039Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Hye-Mi Choi
- grid.412010.60000 0001 0707 9039Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jiwon Lim
- grid.412010.60000 0001 0707 9039Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeeyoung Kim
- grid.412010.60000 0001 0707 9039Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - So Hyeon Bak
- grid.412010.60000 0001 0707 9039Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Sun Shim Choi
- grid.412010.60000 0001 0707 9039Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jinkyeong Park
- grid.470090.a0000 0004 1792 3864Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Jin Hwa Lee
- grid.255649.90000 0001 2171 7754Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Yeon-Mok Oh
- grid.267370.70000 0004 0533 4667Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Kyeong Lee
- grid.280664.e0000 0001 2110 5790Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC USA
| | - Brian D. Hobbs
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Michael H. Cho
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Edwin K. Silverman
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
13
|
Cigarette Smoke Specifically Affects Small Airway Epithelial Cell Populations and Triggers the Expansion of Inflammatory and Squamous Differentiation Associated Basal Cells. Int J Mol Sci 2021; 22:ijms22147646. [PMID: 34299265 PMCID: PMC8305830 DOI: 10.3390/ijms22147646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and causes remodeling of the small airways. However, the exact smoke-induced effects on the different types of small airway epithelial cells (SAECs) are poorly understood. Here, using air–liquid interface (ALI) cultures, single-cell RNA-sequencing reveals previously unrecognized transcriptional heterogeneity within the small airway epithelium and cell type-specific effects upon acute and chronic cigarette smoke exposure. Smoke triggers detoxification and inflammatory responses and aberrantly activates and alters basal cell differentiation. This results in an increase of inflammatory basal-to-secretory cell intermediates and, particularly after chronic smoke exposure, a massive expansion of a rare inflammatory and squamous metaplasia associated KRT6A+ basal cell state and an altered secretory cell landscape. ALI cultures originating from healthy non-smokers and COPD smokers show similar responses to cigarette smoke exposure, although an increased pro-inflammatory profile is conserved in the latter. Taken together, the in vitro models provide high-resolution insights into the smoke-induced remodeling of the small airways resembling the pathological processes in COPD airways. The data may also help to better understand other lung diseases including COVID-19, as the data reflect the smoke-dependent variable induction of SARS-CoV-2 entry factors across SAEC populations.
Collapse
|
14
|
Yang DC, Gu S, Li JM, Hsu SW, Chen SJ, Chang WH, Chen CH. Targeting the AXL Receptor in Combating Smoking-related Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 64:734-746. [PMID: 33730527 PMCID: PMC8456879 DOI: 10.1165/rcmb.2020-0303oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Tobacco smoking is a well-known risk factor for both fibrogenesis and fibrotic progression; however, the mechanisms behind these processes remain enigmatic. RTKs (receptor tyrosine kinases) have recently been reported to drive profibrotic phenotypes in fibroblasts during pulmonary fibrosis (PF). Using a phospho-RTK array screen, we identified the RTK AXL as a top upregulated RTK in response to smoke. Both expression and signaling activity of AXL were indeed elevated in lung fibroblasts exposed to tobacco smoke, whereas no significant change to the levels of a canonical AXL ligand, Gas6 (growth arrest-specific 6), was seen upon smoke treatment. Notably, we found that smoke-exposed human lung fibroblasts exhibited highly proliferative and invasive activities and were capable of inducing fibrotic lung lesions in mice. Conversely, genetic suppression of AXL in smoke-exposed fibroblasts cells led to suppression of AXL downstream pathways and aggressive phenotypes. We further demonstrated that AXL interacted with MARCKS (myristoylated alanine-rich C kinase substrate) and cooperated with MARCKS in regulating downstream signaling activity and fibroblast invasiveness. Pharmacological inhibition of AXL with AXL-specific inhibitor R428 showed selectivity for smoke-exposed fibroblasts. In all, our data suggest that AXL is a potential marker for smoke-associated PF and that targeting of the AXL pathway is a potential therapeutic strategy in treating tobacco smoking-related PF.
Collapse
Affiliation(s)
- David C. Yang
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Shenwen Gu
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Ji-Min Li
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Ssu-Wei Hsu
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Szu-Jung Chen
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Wen-Hsin Chang
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| |
Collapse
|
15
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
16
|
Nathan S, Zhang H, Andreoli M, Leopold PL, Crystal RG. CREB-dependent LPA-induced signaling initiates a pro-fibrotic feedback loop between small airway basal cells and fibroblasts. Respir Res 2021; 22:97. [PMID: 33794877 PMCID: PMC8015171 DOI: 10.1186/s12931-021-01677-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 01/20/2023] Open
Abstract
Background Lysophosphatidic acid (LPA), generated extracellularly by the action of autotaxin and phospholipase A2, functions through LPA receptors (LPARs) or sphingosine-1-phosphate receptors (S1PRs) to induce pro-fibrotic signaling in the lower respiratory tract of patients with idiopathic pulmonary fibrosis (IPF). We hypothesized that LPA induces changes in small airway epithelial (SAE) basal cells (BC) that create cross-talk between the BC and normal human lung fibroblasts (NHLF), enhancing myofibroblast formation. Methods To assess LPA-induced signaling, BC were treated with LPA for 2.5 min and cell lysates were analyzed by phosphokinase array and Western blot. To assess transcriptional changes, BC were treated with LPA for 3 h and harvested for collection and analysis of RNA by quantitative polymerase chain reaction (qPCR). To assess signaling protein production and function, BC were washed thoroughly after LPA treatment and incubated for 24 h before collection for protein analysis by ELISA or functional analysis by transfer of conditioned medium to NHLF cultures. Transcription, protein production, and proliferation of NHLF were assessed. Results LPA treatment induced signaling by cAMP response element-binding protein (CREB), extracellular signal-related kinases 1 and 2 (Erk1/2), and epithelial growth factor receptor (EGFR) resulting in elevated expression of connective tissue growth factor (CTGF), endothelin-1 (EDN1/ET-1 protein), and platelet derived growth factor B (PDGFB) at the mRNA and protein levels. The conditioned medium from LPA-treated BC induced NHLF proliferation and increased NHLF expression of collagen I (COL1A1), smooth muscle actin (ACTA2), and autotaxin (ENPP2) at the mRNA and protein levels. Increased autotaxin secretion from NHLF correlated with increased LPA in the NHLF culture medium. Inhibition of CREB signaling blocked LPA-induced changes in BC transcription and translation as well as the pro-fibrotic effects of the conditioned medium on NHLF. Conclusion Inhibition of CREB signaling may represent a novel target for alleviating the LPA-induced pro-fibrotic feedback loop between SAE BC and NHLF. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01677-0.
Collapse
Affiliation(s)
- Shyam Nathan
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Haijun Zhang
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Mirko Andreoli
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Philip L Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Caruso M, Distefano A, Emma R, Di Rosa M, Carota G, Rust S, Polosa R, Zuccarello P, Ferrante M, Raciti G, Li Volti G. Role of Cigarette Smoke on Angiotensin-Converting Enzyme-2 Protein Membrane Expression in Bronchial Epithelial Cells Using an Air-Liquid Interface Model. Front Pharmacol 2021; 12:652102. [PMID: 33859566 PMCID: PMC8042260 DOI: 10.3389/fphar.2021.652102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Prevalence studies of current smoking, among hospitalized COVID-19 patients, demonstrated an unexpectedly low prevalence among patients with COVID-19. The aim of the present study was to evaluate the effect of smoke from cigarettes on ACE-2 in bronchial epithelial cells. Normal bronchial epithelial cells (H292) were exposed to smoke by an air-liquid-interface (ALI) system and ACE-2 membrane protein expression was evaluated after 24 h from exposure. Our transcriptomics data analysis showed a significant selective reduction of membrane ACE-2 expression (about 25%) following smoking exposure. Interestingly, we observed a positive direct correlation between ACE-2 reduction and nicotine delivery. Furthermore, by stratifying GSE52237 as a function of ACE-2 gene expression levels, we highlighted 1,012 genes related to ACE-2 in smokers and 855 in non-smokers. Furthermore, we showed that 161 genes involved in the endocytosis process were highlighted using the online pathway tool KEGG. Finally, 11 genes were in common between the ACE-2 pathway in smokers and the genes regulated during endocytosis, while 12 genes with non-smokers. Interestingly, six in non-smokers and four genes in smokers were closely involved during the viral internalization process. Our data may offer a pharmaceutical role of nicotine as potential treatment option in COVID-19.
Collapse
Affiliation(s)
- Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center of Excellence for the Acceleration of Harm Reduction (CoEAHR), University of Catania, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sonja Rust
- Center of Excellence for the Acceleration of Harm Reduction (CoEAHR), University of Catania, Catania, Italy
| | - Riccardo Polosa
- Center of Excellence for the Acceleration of Harm Reduction (CoEAHR), University of Catania, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Margherita Ferrante
- Center of Excellence for the Acceleration of Harm Reduction (CoEAHR), University of Catania, Catania, Italy.,Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center of Excellence for the Acceleration of Harm Reduction (CoEAHR), University of Catania, Catania, Italy
| |
Collapse
|
18
|
Xu X, Qiao D, Dong C, Mann M, Garofalo RP, Keles S, Brasier AR. The SWI/SNF-Related, Matrix Associated, Actin-Dependent Regulator of Chromatin A4 Core Complex Represses Respiratory Syncytial Virus-Induced Syncytia Formation and Subepithelial Myofibroblast Transition. Front Immunol 2021; 12:633654. [PMID: 33732255 PMCID: PMC7957062 DOI: 10.3389/fimmu.2021.633654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics plays an important role in the priming the dynamic response of airway epithelial cells to infectious and environmental stressors. Here, we examine the epigenetic role of the SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin A4 (SMARCA4) in the epithelial response to RSV infection. Depletion of SMARCA4 destabilized the abundance of the SMARCE1/ARID1A SWI/SNF subunits, disrupting the innate response and triggering a hybrid epithelial/mesenchymal (E/M) state. Assaying SMARCA4 complex-regulated open chromatin domains by transposase cleavage -next generation sequencing (ATAC-Seq), we observed that the majority of cleavage sites in uninfected cells have reduced chromatin accessibility. Paradoxically, SMARCA4 complex-depleted cells showed enhanced RSV-inducible chromatin opening and gene expression in the EMT pathway genes, MMP9, SNAI1/2, VIM, and CDH2. Focusing on the key MMP9, we observed that SMARCA4 complex depletion reduced basal BRD4 and RNA Polymerase II binding, but enhanced BRD4/Pol II binding in response to RSV infection. In addition, we observed that MMP9 secretion in SMARCA4 complex deficient cells contributes to mesenchymal transition, cellular fusion (syncytia) and subepithelial myofibroblast transition. We conclude the SMARCA4 complex is a transcriptional repressor of epithelial plasticity, whose depletion triggers a hybrid E/M state that affects the dynamic response of the small airway epithelial cell in mucosal remodeling via paracrine MMP9 activity.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Chenyang Dong
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Allan R. Brasier
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
19
|
Kliment CR, Nguyen JMK, Kaltreider MJ, Lu Y, Claypool SM, Radder JE, Sciurba FC, Zhang Y, Gregory AD, Iglesias PA, Sidhaye VK, Robinson DN. Adenine nucleotide translocase regulates airway epithelial metabolism, surface hydration and ciliary function. J Cell Sci 2021; 134:jcs.257162. [PMID: 33526710 DOI: 10.1242/jcs.257162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
Airway hydration and ciliary function are critical to airway homeostasis and dysregulated in chronic obstructive pulmonary disease (COPD), which is impacted by cigarette smoking and has no therapeutic options. We utilized a high-copy cDNA library genetic selection approach in the amoeba Dictyostelium discoideum to identify genetic protectors to cigarette smoke. Members of the mitochondrial ADP/ATP transporter family adenine nucleotide translocase (ANT) are protective against cigarette smoke in Dictyostelium and human bronchial epithelial cells. Gene expression of ANT2 is reduced in lung tissue from COPD patients and in a mouse smoking model, and overexpression of ANT1 and ANT2 resulted in enhanced oxidative respiration and ATP flux. In addition to the presence of ANT proteins in the mitochondria, they reside at the plasma membrane in airway epithelial cells and regulate airway homeostasis. ANT2 overexpression stimulates airway surface hydration by ATP and maintains ciliary beating after exposure to cigarette smoke, both of which are key functions of the airway. Our study highlights a potential for upregulation of ANT proteins and/or of their agonists in the protection from dysfunctional mitochondrial metabolism, airway hydration and ciliary motility in COPD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer M K Nguyen
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Jane Kaltreider
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - YaWen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josiah E Radder
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alyssa D Gregory
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Venkataramana K Sidhaye
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Environmental Health Sciences and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
20
|
Chung NPY, Khan KMF, Kaner RJ, O'Beirne SL, Crystal RG. HIV induces airway basal progenitor cells to adopt an inflammatory phenotype. Sci Rep 2021; 11:3988. [PMID: 33597552 PMCID: PMC7889866 DOI: 10.1038/s41598-021-82143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of anti-retroviral therapy, chronic HIV infection is associated with an increased incidence of other comorbidities such as COPD. Based on the knowledge that binding of HIV to human airway basal stem/progenitor cells (BC) induces a destructive phenotype by increased MMP-9 expression through MAPK signaling pathways, we hypothesized that HIV induces the BC to express inflammatory mediators that contribute to the pathogenesis of emphysema. Our data demonstrate that airway BC isolated from HAART-treated HIV+ nonsmokers spontaneously release inflammatory mediators IL-8, IL-1β, ICAM-1 and GM-CSF. Similarly, exposure of normal BC to HIV in vitro up-regulates expression of the same inflammatory mediators. These HIV-BC derived mediators induce migration of alveolar macrophages (AM) and neutrophils and stimulate AM proliferation. This HIV-induced inflammatory phenotype likely contributes to lung inflammation in HIV+ individuals and provides explanation for the increased incidence of COPD in HIV+ individuals.
Collapse
Affiliation(s)
- Nancy P Y Chung
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - K M Faisal Khan
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sarah L O'Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
21
|
Lange P, Ahmed E, Lahmar ZM, Martinez FJ, Bourdin A. Natural history and mechanisms of COPD. Respirology 2021; 26:298-321. [PMID: 33506971 DOI: 10.1111/resp.14007] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The natural history of COPD is complex, and the disease is best understood as a syndrome resulting from numerous interacting factors throughout the life cycle with smoking being the strongest inciting feature. Unfortunately, diagnosis is often delayed with several longitudinal cohort studies shedding light on the long 'preclinical' period of COPD. It is now accepted that individuals presenting with different COPD phenotypes may experience varying natural history of their disease. This includes its inception, early stages and progression to established disease. Several scenarios regarding lung function course are possible, but it may conceptually be helpful to distinguish between individuals with normal maximally attained lung function in their early adulthood who thereafter experience faster than normal FEV1 decline, and those who may achieve a lower than normal maximally attained lung function. This may be the main mechanism behind COPD in the latter group, as the decline in FEV1 during their adult life may be normal or only slightly faster than normal. Regardless of the FEV1 trajectory, continuous smoking is strongly associated with disease progression, development of structural lung disease and poor prognosis. In developing countries, factors such as exposure to biomass and sequelae after tuberculosis may lead to a more airway-centred COPD phenotype than seen in smokers. Mechanistically, COPD is characterized by a combination of structural and inflammatory changes. It is unlikely that all patients share the same individual or combined mechanisms given the heterogeneity of resultant phenotypes. Lung explants, bronchial biopsies and other tissue studies have revealed important features. At the small airway level, progression of COPD is clinically imperceptible, and the pathological course of the disease is poorly described. Asthmatic features can further add confusion. However, the small airway epithelium is likely to represent a key focus of the disease, combining impaired subepithelial crosstalk and structural/inflammatory changes. Insufficient resolution of inflammatory processes may facilitate these changes. Pathologically, epithelial metaplasia, inversion of the goblet to ciliated cell ratio, enlargement of the submucosal glands and neutrophil and CD8-T-cell infiltration can be detected. Evidence of type 2 inflammation is gaining interest in the light of new therapeutic agents. Alarmin biology is a promising area that may permit control of inflammation and partial reversal of structural changes in COPD. Here, we review the latest work describing the development and progression of COPD with a focus on lung function trajectories, exacerbations and survival. We also review mechanisms focusing on epithelial changes associated with COPD and lack of resolution characterizing the underlying inflammatory processes.
Collapse
Affiliation(s)
- Peter Lange
- Department of Internal Medicine, Section of Respiratory Medicine, Copenhagen University Hospital - Herlev, Herlev, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Engi Ahmed
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Zakaria Mohamed Lahmar
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arnaud Bourdin
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| |
Collapse
|
22
|
Association between tobacco substance usage and a missense mutation in the tumor suppressor gene P53 in the Saudi Arabian population. PLoS One 2021; 16:e0245133. [PMID: 33481818 PMCID: PMC7822264 DOI: 10.1371/journal.pone.0245133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor gene TP53 and its downstream genes P21 and MDM2 play crucial roles in combating DNA damage at the G1/S cell cycle checkpoint. Polymorphisms in these genes can lead to the development of various diseases. This study was conducted to examine a potential association between tobacco substance usage (TSU) and single-nucleotide polymorphism (SNP) at the exon regions of the P53, P21, and MDM2 genes by comparing populations of smokers and non-smokers from Saudi Arabia. P53 rs1042522 (C/G), P21 rs1801270 (A/C), and MDM2 rs769412 (A/G) were investigated by genotyping 568 blood specimens: 283 from male/female smokers and 285 from male/female non-smokers. The results obtained from the smokers and their control non-smokers were compared according to age, sex, duration of smoking, and type of TSU. Heterozygous CG, homozygous GG, and CG+GG genotypes, as well as the G allele of rs1042522 were significantly associated with TSU in Saudi smokers compared with non-smokers. The C allele frequency of rs1801270 was also associated with TSU in smokers (OR = 1.33, p = 0.049) in comparison with non-smokers, in younger smokers (≤29 years) (OR = 1.556, p = 0.03280) in comparison with non-smokers of the same age, in smokers who had smoked cigarettes for seven years or less (OR = 1.596, p = 0.00882), and in smokers who had consumed shisha (OR = 1.608, p = 0.04104) in comparison with the controls. However, the genotypic and allelic frequencies for rs769412 did not show significant associations with TSU in Saudis. The selected SNP of P53 was strongly associated with TSU and may be linked to TSU-induced diseases in the Saudi Arabian population.
Collapse
|
23
|
Fantauzzi MF, Aguiar JA, Tremblay BJM, Mansfield MJ, Yanagihara T, Chandiramohan A, Revill S, Ryu MH, Carlsten C, Ask K, Stämpfli M, Doxey AC, Hirota JA. Expression of endocannabinoid system components in human airway epithelial cells: impact of sex and chronic respiratory disease status. ERJ Open Res 2020; 6:00128-2020. [PMID: 33344628 PMCID: PMC7737429 DOI: 10.1183/23120541.00128-2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis smoking is the dominant route of delivery, with the airway epithelium functioning as the site of first contact. The endocannabinoid system is responsible for mediating the physiological effects of inhaled phytocannabinoids. The expression of the endocannabinoid system in the airway epithelium and contribution to normal physiological responses remains to be defined. To begin to address this knowledge gap, a curated dataset of 1090 unique human bronchial brushing gene expression profiles was created. The dataset included 616 healthy subjects, 136 subjects with asthma, and 338 subjects with COPD. A 32-gene endocannabinoid signature was analysed across all samples with sex and disease-specific analyses performed. Immunohistochemistry and immunoblots were performed to probe in situ and in vitro protein expression. CB1, CB2, and TRPV1 protein signal is detectable in human airway epithelial cells in situ and in vitro, justifying examining the downstream endocannabinoid pathway. Sex status was associated with differential expression of 7 of 32 genes. In contrast, disease status was associated with differential expression of 21 of 32 genes in people with asthma and 26 of 32 genes in people with COPD. We confirm at the protein level that TRPV1, the most differentially expressed candidate in our analyses, was upregulated in airway epithelial cells from people with asthma relative to healthy subjects. Our data demonstrate that the endocannabinoid system is expressed in human airway epithelial cells with expression impacted by disease status and minimally by sex. The data suggest that cannabis consumers may have differential physiological responses in the respiratory mucosa.
Collapse
Affiliation(s)
- Matthew F Fantauzzi
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | | | | | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Toyoshi Yanagihara
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Abiram Chandiramohan
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Spencer Revill
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Min Hyung Ryu
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Martin Stämpfli
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Andrew C Doxey
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,Dept of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Dept of Biology, University of Waterloo, Waterloo, ON, Canada.,Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Singh KP, Maremanda KP, Li D, Rahman I. Exosomal microRNAs are novel circulating biomarkers in cigarette, waterpipe smokers, E-cigarette users and dual smokers. BMC Med Genomics 2020; 13:128. [PMID: 32912198 PMCID: PMC7488025 DOI: 10.1186/s12920-020-00748-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Electronic cigarettes (e-cigs) vaping, cigarette smoke, and waterpipe tobacco smoking are associated with various cardiopulmonary diseases. microRNAs are present in higher concentration in exosomes that play an important role in various physiological and pathological functions. We hypothesized that the non-coding RNAs transcript may serve as susceptibility to disease biomarkers by smoking and vaping. METHODS Plasma exosomes/EVs from cigarette smokers, waterpipe smokers and dual smokers (cigarette and waterpipe) were characterized for their size, morphology and TEM, Nanosight and immunoblot analysis. Exosomal RNA was used for small RNA library preparation and the library was quantified using the High Sensitivity DNA Analysis on the Agilent 2100 Bioanalyzer system and sequenced using the Illumina NextSeq 500 and were converted to fastq format for mapping genes. RESULTS Enrichment of various non-coding RNAs that include microRNAs, tRNAs, piRNAs, snoRNAs, snRNAs, Mt-tRNAs, and other biotypes are shown in exosomes. A comprehensive differential expression analysis of miRNAs, tRNAs and piRNAs showed significant changes across different pairwise comparisons. The seven microRNAs that were common and differentially expressed of when all the smoking and vaping groups were compared with non-smokers (NS) are hsa-let-7a-5p, hsa-miR-21-5p, hsa-miR-29b-3p, hsa-let-7f-5p, hsa-miR-143-3p, hsa-miR-30a-5p and hsa-let-7i-5p. The e-cig vs. NS group has differentially expressed 5 microRNAs (hsa-miR-224-5p, hsa-miR-193b-3p, hsa-miR-30e-5p, hsa-miR-423-3p, hsa-miR-365a-3p, and hsa-miR-365b-3p), which are not expressed in other three groups. Gene set enrichment analysis of microRNAs showed significant changes in the top six enriched functions that consisted of biological pathway, biological process, molecular function, cellular component, site of expression and transcription factor in all the groups. Further, the pairwise comparison of tRNAs and piRNA in all these groups revealed significant changes in their expressions. CONCLUSIONS Plasma exosomes of cigarette smokers, waterpipe smokers, e-cig users and dual smokers have common differential expression of microRNAs which may serve to distinguish smoking and vaping subjects from NS. Among them has-let-7a-5p has high sensitivity and specificity to distinguish NS with the rest of the users, using ROC curve analysis. These findings will pave the way for the utilizing the potential of exosomes/miRNAs as a novel theranostic agents in lung injury and disease caused by tobacco smoking and vaping.
Collapse
Affiliation(s)
- Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Krishna P Maremanda
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
25
|
Bovard D, Giralt A, Trivedi K, Neau L, Kanellos P, Iskandar A, Kondylis A, Luettich K, Frentzel S, Hoeng J, Peitsch MC. Comparison of the basic morphology and function of 3D lung epithelial cultures derived from several donors. Curr Res Toxicol 2020; 1:56-69. [PMID: 34345837 PMCID: PMC8320645 DOI: 10.1016/j.crtox.2020.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
In vitro models of the human lung play an essential role in evaluating the toxicity of inhaled compounds and understanding the development of respiratory diseases. Three-dimensional (3D) organotypic models derived from lung basal epithelial cells and grown at the air–liquid interface resemble human airway epithelium in multiple aspects, including morphology, cell composition, transcriptional profile, and xenobiotic metabolism. Whether the different characteristics of basal cell donors have an impact on model characteristics and responses remains unknown. In addition, studies are often conducted with 3D cultures from one donor, assuming a representative response on the population level. Whether this assumption is correct requires further investigation. In this study, we compared the morphology and functionality of 3D organotypic bronchial and small airway cultures from different donors at different weeks after air-lift to assess the interdonor variability in these parameters. The thickness, cell type composition, and transepithelial electrical resistance varied among the donors and over time after air-lift. Cilia beating frequency increased in response to isoproterenol treatment in both culture types, independent of the donor. The cultures presented low basal cytochrome P450 (CYP) 1A1/1B1 activity, but 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment induced CYP1A1/1B1 activity regardless of the donor. In conclusion, lung epithelial cultures prepared from different donors present diverse morphology but similar functionality and metabolic activity, with certain variability in their response to stimulation. 3D lung cultures derived from various donors differed mostly at the morphological level. Epithelial thickness, presence of cysts, ciliation, and goblet cell number are donor dependent. Cilia beating frequency varied across donors but the response to isoproterenol was similar. CYP450 activity in response to xenobiotics was preserved across donors.
Collapse
Key Words
- ALI, air–liquid interface
- BTUB4, β-tubulin 4
- Bronchial culture
- CBF, cilia beating frequency
- CYP, cytochrome P450
- Donor variability
- Lung toxicology
- MUC5AC, mucin 5AC
- Organotypic
- PBS, phosphate buffered saline
- Small airway culture
- TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin
- TEER, transepithelial electrical resistance
Collapse
Affiliation(s)
- David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Albert Giralt
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Laurent Neau
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Petros Kanellos
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita Iskandar
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
26
|
Aguiar JA, Huff RD, Tse W, Stämpfli MR, McConkey BJ, Doxey AC, Hirota JA. Transcriptomic and barrier responses of human airway epithelial cells exposed to cannabis smoke. Physiol Rep 2020; 7:e14249. [PMID: 31646766 PMCID: PMC6811686 DOI: 10.14814/phy2.14249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 01/04/2023] Open
Abstract
Globally, many jurisdictions are legalizing or decriminalizing cannabis, creating a potential public health issue that would benefit from experimental evidence to inform policy, government regulations, and user practices. Tobacco smoke exposure science has created a body of knowledge that demonstrates the conclusive negative impacts on respiratory health; similar knowledge remains to be established for cannabis. To address this unmet need, we performed in vitro functional and transcriptomic experiments with a human airway epithelial cell line (Calu-3) exposed to cannabis smoke, with tobacco smoke as a positive control. Demonstrating the validity of our in vitro model, tobacco smoke induced gene expression profiles that were significantly correlated with gene expression profiles from published tobacco exposure datasets from bronchial brushings and primary human airway epithelial cell cultures. Applying our model to cannabis smoke, we demonstrate that cannabis smoke induced functional and transcriptional responses that overlapped with tobacco smoke. Ontology and pathway analysis revealed that cannabis smoke induced DNA replication and oxidative stress responses. Functionally, cannabis smoke impaired epithelial cell barrier function, antiviral responses, and increased inflammatory mediator production. Our study reveals striking similarities between cannabis and tobacco smoke exposure on impairing barrier function, suppressing antiviral pathways, potentiating of pro-inflammatory mediators, and inducing oncogenic and oxidative stress gene expression signatures. Collectively our data suggest that cannabis smoke exposure is not innocuous and may possess many of the deleterious properties of tobacco smoke, warranting additional studies to support public policy, government regulations, and user practices.
Collapse
Affiliation(s)
- Jennifer A Aguiar
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wayne Tse
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin R Stämpfli
- Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario
| | - Brendan J McConkey
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.,Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.,Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario
| | - Jeremy A Hirota
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario
| |
Collapse
|
27
|
Ambient particulate matter attenuates Sirtuin1 and augments SREBP1-PIR axis to induce human pulmonary fibroblast inflammation: molecular mechanism of microenvironment associated with COPD. Aging (Albany NY) 2020; 11:4654-4671. [PMID: 31299012 PMCID: PMC6660058 DOI: 10.18632/aging.102077] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Evidences have shown a strong link between particulate matter (PM) and increased risk in human mortality and morbidity, including asthma, chronic obstructive pulmonary disease (COPD), respiratory infection, and lung cancer. However, the underlying toxicologic mechanisms remain largely unknown. Utilizing PM-treated human pulmonary fibroblasts (HPF) models, we analyzed gene expression microarray data and Ingenuity Pathway Analysis (IPA) to identify that the transcription factor sterol regulatory element-binding protein 1 (SREBP1) was the main downstream regulator of Sirtuin1 (SIRT1). Quantitative PCR and western blot results showed that SIRT1 inhibited SREBP1 and further downregulated Pirin (PIR) and Nod-like receptor protein 3 (NLRP3) inflammasome after PM exposure. Inhibitors of SIRT1, SREBP1, and PIR could reverse PM-induced inflammation. An in silico analysis revealed that PIR correlated with smoke exposure and early COPD. Immunohistochemical analysis of tissue microarrays from PM-fed mouse models was used to determine the association of PIR with PM. These data demonstrate that the SIRT1-SREBP1-PIR/ NLRP3 inflammasome axis may be associated with PM-induced adverse health issues. SIRT1 functions as a protector from PM exposure, whereas PIR acts as a predictor of PM-induced pulmonary disease. The SIRT1-SREBP1-PIR/ NLRP3 inflammasome axis may present several potential therapeutic targets for PM-related adverse health events.
Collapse
|
28
|
Zhang H, Rostami MR, Leopold PL, Mezey JG, O’Beirne SL, Strulovici-Barel Y, Crystal RG. Expression of the SARS-CoV-2 ACE2 Receptor in the Human Airway Epithelium. Am J Respir Crit Care Med 2020; 202:219-229. [PMID: 32432483 PMCID: PMC7365377 DOI: 10.1164/rccm.202003-0541oc] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Rationale: Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease (COVID-19), a predominantly respiratory illness. The first step in SARS-CoV-2 infection is binding of the virus to ACE2 (angiotensin-converting enzyme 2) on the airway epithelium.Objectives: The objective was to gain insight into the expression of ACE2 in the human airway epithelium.Methods: Airway epithelia sampled by fiberoptic bronchoscopy of trachea, large airway epithelia (LAE), and small airway epithelia (SAE) of nonsmokers and smokers were analyzed for expression of ACE2 and other coronavirus infection-related genes using microarray, RNA sequencing, and 10x single-cell transcriptome analysis, with associated examination of ACE2-related microRNA.Measurements and Main Results:1) ACE2 is expressed similarly in the trachea and LAE, with lower expression in the SAE; 2) in the SAE, ACE2 is expressed in basal, intermediate, club, mucus, and ciliated cells; 3) ACE2 is upregulated in the SAE by smoking, significantly in men; 4) levels of miR-1246 expression could play a role in ACE2 upregulation in the SAE of smokers; and 5) ACE2 is expressed in airway epithelium differentiated in vitro on air-liquid interface cultures from primary airway basal stem/progenitor cells; this can be replicated using LAE and SAE immortalized basal cell lines derived from healthy nonsmokers.Conclusions:ACE2, the gene encoding the receptor for SARS-CoV-2, is expressed in the human airway epithelium, with variations in expression relevant to the biology of initial steps in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Mahboubeh R. Rostami
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Philip L. Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York
| | - Sarah L. O’Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Yael Strulovici-Barel
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| |
Collapse
|
29
|
Cubillos-Angulo JM, Fukutani ER, Cruz LAB, Arriaga MB, Lima JV, Andrade BB, Queiroz ATL, Fukutani KF. Systems biology analysis of publicly available transcriptomic data reveals a critical link between AKR1B10 gene expression, smoking and occurrence of lung cancer. PLoS One 2020; 15:e0222552. [PMID: 32097409 PMCID: PMC7041805 DOI: 10.1371/journal.pone.0222552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Cigarette smoking is associated with an increased risk of developing respiratory diseases and various types of cancer. Early identification of such unfavorable outcomes in patients who smoke is critical for optimizing personalized medical care. Methods Here, we perform a comprehensive analysis using Systems Biology tools of publicly available data from a total of 6 transcriptomic studies, which examined different specimens of lung tissue and/or cells of smokers and nonsmokers to identify potential markers associated with lung cancer. Results Expression level of 22 genes was capable of classifying smokers from non-smokers. A machine learning algorithm revealed that AKR1B10 was the most informative gene among the 22 differentially expressed genes (DEGs) accounting for the classification of the clinical groups. AKR1B10 expression was higher in smokers compared to non-smokers in datasets examining small and large airway epithelia, but not in the data from a study of sorted alveolar macrophages. Moreover, AKR1B10 expression was relatively higher in lung cancer specimens compared to matched healthy tissue obtained from nonsmoking individuals. Although the overall accuracy of AKR1B10 expression level in distinction between cancer and healthy lung tissue was 76%, with a specificity of 98%, our results indicated that such marker exhibited low sensitivity, hampering its use for cancer screening such specific setting. Conclusion The systematic analysis of transcriptomic studies performed here revealed a potential critical link between AKR1B10 expression, smoking and occurrence of lung cancer.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
| | | | - Luís A. B. Cruz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
| | - María B. Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
| | - João Victor Lima
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Bahia, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| |
Collapse
|
30
|
Benam KH, Novak R, Ferrante TC, Choe Y, Ingber DE. Biomimetic smoking robot for in vitro inhalation exposure compatible with microfluidic organ chips. Nat Protoc 2020; 15:183-206. [PMID: 31925401 DOI: 10.1038/s41596-019-0230-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/24/2019] [Indexed: 01/22/2023]
Abstract
Exposure of lung tissues to cigarette smoke is a major cause of human disease and death worldwide. Unfortunately, adequate model systems that can reliably recapitulate disease biogenesis in vitro, including exposure of the human lung airway to fresh whole cigarette smoke (WCS) under physiological breathing airflow, are lacking. This protocol extension builds upon, and can be used with, our earlier protocol for microfabrication of human organs-on-chips. Here, we describe the engineering, assembly and operation of a microfluidically coupled, multi-compartment platform that bidirectionally 'breathes' WCS through microchannels of a human lung small airway microfluidic culture device, mimicking how lung cells may experience smoke in vivo. Several WCS-exposure systems have been developed, but they introduce smoke directly from above the cell cultures, rather than tangentially as naturally occurs in the lung due to lateral airflow. We detail the development of an organ chip-compatible microrespirator and a smoke machine to simulate breathing behavior and smoking topography parameters such as puff time, inter-puff interval and puffs per cigarette. Detailed design files, assembly instructions and control software are provided. This novel platform can be fabricated and assembled in days and can be used repeatedly. Moderate to advanced engineering and programming skills are required to successfully implement this protocol. When coupled with the small airway chip, this protocol can enable prediction of patient-specific biological responses in a matched-comparative manner. We also demonstrate how to adapt the protocol to expose living ciliated airway epithelial cells to smoke generated by electronic cigarettes (e-cigarettes) on-chip.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine and Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Youngjae Choe
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA. .,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Garland LL, Guillen-Rodriguez J, Hsu CH, Yozwiak M, Zhang HH, Alberts DS, Davis LE, Szabo E, Merenstein C, Lel J, Zhang X, Liu H, Liu G, Spira AE, Beane JE, Wojtowicz M, Chow HHS. Effect of Intermittent Versus Continuous Low-Dose Aspirin on Nasal Epithelium Gene Expression in Current Smokers: A Randomized, Double-Blinded Trial. Cancer Prev Res (Phila) 2019; 12:809-820. [PMID: 31451521 PMCID: PMC7485120 DOI: 10.1158/1940-6207.capr-19-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/23/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
A chemopreventive effect of aspirin (ASA) on lung cancer risk is supported by epidemiologic and preclinical studies. We conducted a randomized, double-blinded study in current heavy smokers to compare modulating effects of intermittent versus continuous low-dose ASA on nasal epithelium gene expression and arachidonic acid (ARA) metabolism. Fifty-four participants were randomized to intermittent (ASA 81 mg daily for one week/placebo for one week) or continuous (ASA 81 mg daily) for 12 weeks. Low-dose ASA suppressed urinary prostaglandin E2 metabolite (PGEM; change of -4.55 ± 11.52 from baseline 15.44 ± 13.79 ng/mg creatinine for arms combined, P = 0.02), a surrogate of COX-mediated ARA metabolism, but had minimal effects on nasal gene expression of nasal or bronchial gene-expression signatures associated with smoking, lung cancer, and chronic obstructive pulmonary disease. Suppression of urinary PGEM correlated with favorable changes in a smoking-associated gene signature (P < 0.01). Gene set enrichment analysis (GSEA) showed that ASA intervention led to 1,079 enriched gene sets from the Canonical Pathways within the Molecular Signatures Database. In conclusion, low-dose ASA had minimal effects on known carcinogenesis gene signatures in nasal epithelium of current smokers but results in wide-ranging genomic changes in the nasal epithelium, demonstrating utility of nasal brushings as a surrogate to measure gene-expression responses to chemoprevention. PGEM may serve as a marker for smoking-associated gene-expression changes and systemic inflammation. Future studies should focus on NSAIDs or agent combinations with broader inhibition of pro-inflammatory ARA metabolism to shift gene signatures in an anti-carcinogenic direction.
Collapse
Affiliation(s)
| | | | - Chiu-Hsieh Hsu
- University of Arizona Cancer Center, University of Arizona
| | | | | | | | - Lisa E Davis
- University of Arizona Cancer Center, University of Arizona
| | - Eva Szabo
- Division of Cancer Prevention, NCI/NIH, Boston, Massachusetts
| | | | - Julian Lel
- Boston University School of Medicine, Boston, Massachusetts
| | - Xiaohui Zhang
- Boston University School of Medicine, Boston, Massachusetts
| | - Hanqiao Liu
- Boston University School of Medicine, Boston, Massachusetts
| | - Gang Liu
- Boston University School of Medicine, Boston, Massachusetts
| | - Avrum E Spira
- Boston University School of Medicine, Boston, Massachusetts
| | | | | | | |
Collapse
|
32
|
Zuo WL, Shenoy SA, Li S, O'Beirne SL, Strulovici-Barel Y, Leopold PL, Wang G, Staudt MR, Walters MS, Mason C, Kaner RJ, Mezey JG, Crystal RG. Ontogeny and Biology of Human Small Airway Epithelial Club Cells. Am J Respir Crit Care Med 2019; 198:1375-1388. [PMID: 29874100 DOI: 10.1164/rccm.201710-2107oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Little is known about human club cells, dome-shaped cells with dense cytoplasmic granules and microvilli that represent the major secretory cells of the human small airways (at least sixth-generation bronchi). OBJECTIVES To define the ontogeny and biology of the human small airway epithelium club cell. METHODS The small airway epithelium was sampled from the normal human lung by bronchoscopy and brushing. Single-cell transcriptome analysis and air-liquid interface culture were used to assess club cell ontogeny and biology. MEASUREMENTS AND MAIN RESULTS We identified the club cell population by unbiased clustering using single-cell transcriptome sequencing. Principal component gradient analysis uncovered an ontologic link between KRT5 (keratin 5)+ basal cells and SCGB1A1 (secretoglobin family 1A member 1)+ club cells, a hypothesis verified by demonstrating in vitro that a pure population of human KRT5+ SCGB1A1- small airway epithelial basal cells differentiate into SCGB1A1+KRT5- club cells on air-liquid interface culture. Using SCGB1A1 as the marker of club cells, the single-cell analysis identified novel roles for these cells in host defense, xenobiotic metabolism, antiprotease, physical barrier function, monogenic lung disorders, and receptors for human viruses. CONCLUSIONS These observations provide novel insights into the molecular phenotype and biologic functions of the human club cell population and identify basal cells as the human progenitor cells for club cells.
Collapse
Affiliation(s)
| | | | - Sheng Li
- 2 Institute for Computational Biomedicine
| | | | | | | | | | | | | | - Christopher Mason
- 2 Institute for Computational Biomedicine.,4 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York; and
| | - Robert J Kaner
- 1 Department of Genetic Medicine.,3 Department of Medicine, and
| | - Jason G Mezey
- 1 Department of Genetic Medicine.,5 Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York
| | | |
Collapse
|
33
|
Cigarette smoke alters the transcriptome of non-involved lung tissue in lung adenocarcinoma patients. Sci Rep 2019; 9:13039. [PMID: 31506599 PMCID: PMC6736939 DOI: 10.1038/s41598-019-49648-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/20/2019] [Indexed: 01/09/2023] Open
Abstract
Alterations in the gene expression of organs in contact with the environment may signal exposure to toxins. To identify genes in lung tissue whose expression levels are altered by cigarette smoking, we compared the transcriptomes of lung tissue between 118 ever smokers and 58 never smokers. In all cases, the tissue studied was non-involved lung tissue obtained at lobectomy from patients with lung adenocarcinoma. Of the 17,097 genes analyzed, 357 were differentially expressed between ever smokers and never smokers (FDR < 0.05), including 290 genes that were up-regulated and 67 down-regulated in ever smokers. For 85 genes, the absolute value of the fold change was ≥2. The gene with the smallest FDR was MYO1A (FDR = 6.9 × 10−4) while the gene with the largest difference between groups was FGG (fold change = 31.60). Overall, 100 of the genes identified in this study (38.6%) had previously been found to associate with smoking in at least one of four previously reported datasets of non-involved lung tissue. Seven genes (KMO, CD1A, SPINK5, TREM2, CYBB, DNASE2B, FGG) were differentially expressed between ever and never smokers in all five datasets, with concordant higher expression in ever smokers. Smoking-induced up-regulation of six of these genes was also observed in a transcription dataset from lung tissue of non-cancer patients. Among the three most significant gene networks, two are involved in immunity and inflammation and one in cell death. Overall, this study shows that the lung parenchyma transcriptome of smokers has altered gene expression and that these alterations are reproducible in different series of smokers across countries. Moreover, this study identified a seven-gene panel that reflects lung tissue exposure to cigarette smoke.
Collapse
|
34
|
Huang J, Jiang W, Tong X, Zhang L, Zhang Y, Fan H. Identification of gene and microRNA changes in response to smoking in human airway epithelium by bioinformatics analyses. Medicine (Baltimore) 2019; 98:e17267. [PMID: 31568004 PMCID: PMC6756728 DOI: 10.1097/md.0000000000017267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Smoking is a substantial risk factor for many respiratory diseases. This study aimed to identify the gene and microRNA changes related to smoking in human airway epithelium by bioinformatics analysis.From the Gene Expression Omnibus (GEO) database, the mRNA datasets GSE11906, GSE22047, GSE63127, and microRNA dataset GSE14634 were downloaded, and were analyzed using GEO2R. Functional enrichment analysis of the differentially expressed genes (DEGs) was enforced using DAVID. The protein-protein interaction (PPI) network and differentially expressed miRNAs (DEMs)- DEGs network were executed by Cytoscape.In total, 107 DEGs and 10 DEMs were determined. Gene Ontology (GO) analysis revealed that DEGs principally enriched in oxidation-reduction process, extracellular space and oxidoreductase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway demonstrated that DEGs were principally enriched in metabolism of xenobiotics by cytochrome P450 and chemical carcinogenesis. The PPI network revealed 15 hub genes, including NQO1, CYP1B1, AKR1C1, CYP1A1, AKR1C3, CEACAM5, MUCL1, B3GNT6, MUC5AC, MUC12, PTGER4, CALCA, CBR1, TXNRD1, and CBR3. Cluster analysis showed that these hub genes were associated with adenocarcinoma in situ, squamous cell carcinoma, cell differentiation, inflammatory response, oxidative DNA damage, oxidative stress response and tumor necrosis factor. Hsa-miR-627-5p might have the most target genes, including ITLN1, TIMP3, PPP4R4, SLC1A2, NOVA1, RNFT2, CLDN10, TMCC3, EPHA7, SRPX2, PPP1R16B, GRM1, HS3ST3A1, SFRP2, SLC7A11, and KLHDC8A.We identified several molecular changes induced by smoking in human airway epithelium. This study may provide some candidate genes and microRNAs for assessing the risk of lung diseases caused by smoking.
Collapse
Affiliation(s)
- Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Wanli Jiang
- Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Yuan Zhang
- Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| |
Collapse
|
35
|
Wang G, Lou HH, Salit J, Leopold PL, Driscoll S, Schymeinsky J, Quast K, Visvanathan S, Fine JS, Thomas MJ, Crystal RG. Characterization of an immortalized human small airway basal stem/progenitor cell line with airway region-specific differentiation capacity. Respir Res 2019; 20:196. [PMID: 31443657 PMCID: PMC6708250 DOI: 10.1186/s12931-019-1140-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background The pathology of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and most lung cancers involves the small airway epithelium (SAE), the single continuous layer of cells lining the airways ≥ 6th generations. The basal cells (BC) are the stem/progenitor cells of the SAE, responsible for the differentiation into intermediate cells and ciliated, club and mucous cells. To facilitate the study of the biology of the human SAE in health and disease, we immortalized and characterized a normal human SAE basal cell line. Methods Small airway basal cells were purified from brushed SAE of a healthy nonsmoker donor with a characteristic normal SAE transcriptome. The BC were immortalized by retrovirus-mediated telomerase reverse transcriptase (TERT) transduction and single cell drug selection. The resulting cell line (hSABCi-NS1.1) was characterized by RNAseq, TaqMan PCR, protein immunofluorescence, differentiation capacity on an air-liquid interface (ALI) culture, transepithelial electrical resistance (TEER), airway region-associated features and response to genetic modification with SPDEF. Results The hSABCi-NS1.1 single-clone-derived cell line continued to proliferate for > 200 doubling levels and > 70 passages, continuing to maintain basal cell features (TP63+, KRT5+). When cultured on ALI, hSABCi-NS1.1 cells consistently formed tight junctions and differentiated into ciliated, club (SCGB1A1+), mucous (MUC5AC+, MUC5B+), neuroendocrine (CHGA+), ionocyte (FOXI1+) and surfactant protein positive cells (SFTPA+, SFTPB+, SFTPD+), observations confirmed by RNAseq and TaqMan PCR. Annotation enrichment analysis showed that “cilium” and “immunity” were enriched in functions of the top-1500 up-regulated genes. RNAseq reads alignment corroborated expression of CD4, CD74 and MHC-II. Compared to the large airway cell line BCi-NS1.1, differentiated of hSABCi-NS1.1 cells on ALI were enriched with small airway epithelial genes, including surfactant protein genes, LTF and small airway development relevant transcription factors NKX2–1, GATA6, SOX9, HOPX, ID2 and ETV5. Lentivirus-mediated expression of SPDEF in hSABCi-NS1.1 cells induced secretory cell metaplasia, accompanied with characteristic COPD-associated SAE secretory cell changes, including up-regulation of MSMB, CEACAM5 and down-regulation of LTF. Conclusions The immortalized hSABCi-NS1.1 cell line has diverse differentiation capacities and retains SAE features, which will be useful for understanding the biology of SAE, the pathogenesis of SAE-related diseases, and testing new pharmacologic agents. Electronic supplementary material The online version of this article (10.1186/s12931-019-1140-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Howard H Lou
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Philip L Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Sharon Driscoll
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | | | - Karsten Quast
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Jay S Fine
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Matthew J Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
| |
Collapse
|
36
|
Starkey MR, Plank MW, Casolari P, Papi A, Pavlidis S, Guo Y, Cameron GJM, Haw TJ, Tam A, Obiedat M, Donovan C, Hansbro NG, Nguyen DH, Nair PM, Kim RY, Horvat JC, Kaiko GE, Durum SK, Wark PA, Sin DD, Caramori G, Adcock IM, Foster PS, Hansbro PM. IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. Eur Respir J 2019; 54:1800174. [PMID: 31196943 PMCID: PMC8132110 DOI: 10.1183/13993003.00174-2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/19/2019] [Indexed: 12/24/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death globally. The lack of effective treatments results from an incomplete understanding of the underlying mechanisms driving COPD pathogenesis.Interleukin (IL)-22 has been implicated in airway inflammation and is increased in COPD patients. However, its roles in the pathogenesis of COPD is poorly understood. Here, we investigated the role of IL-22 in human COPD and in cigarette smoke (CS)-induced experimental COPD.IL-22 and IL-22 receptor mRNA expression and protein levels were increased in COPD patients compared to healthy smoking or non-smoking controls. IL-22 and IL-22 receptor levels were increased in the lungs of mice with experimental COPD compared to controls and the cellular source of IL-22 included CD4+ T-helper cells, γδ T-cells, natural killer T-cells and group 3 innate lymphoid cells. CS-induced pulmonary neutrophils were reduced in IL-22-deficient (Il22 -/-) mice. CS-induced airway remodelling and emphysema-like alveolar enlargement did not occur in Il22 -/- mice. Il22 -/- mice had improved lung function in terms of airway resistance, total lung capacity, inspiratory capacity, forced vital capacity and compliance.These data highlight important roles for IL-22 and its receptors in human COPD and CS-induced experimental COPD.
Collapse
Affiliation(s)
- Malcolm R Starkey
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Maximilian W Plank
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Yike Guo
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Guy J M Cameron
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Tatt Jhong Haw
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Anthony Tam
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ma'en Obiedat
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chantal Donovan
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Nicole G Hansbro
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
- Centre for inflammation, Centenary Institute, Sydney, Australia
- School of Life Sciences, University of Technology, Ultimo, Australia
| | - Duc H Nguyen
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Prema Mono Nair
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Richard Y Kim
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Jay C Horvat
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Gerard E Kaiko
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Scott K Durum
- Laboratory of Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Peter A Wark
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Don D Sin
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gaetano Caramori
- UOC di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Paul S Foster
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
- Centre for inflammation, Centenary Institute, Sydney, Australia
- School of Life Sciences, University of Technology, Ultimo, Australia
| |
Collapse
|
37
|
Corbett SE, Nitzberg M, Moses E, Kleerup E, Wang T, Perdomo C, Perdomo C, Liu G, Xiao X, Liu H, Elashoff DA, Brooks DR, O'Connor GT, Dubinett SM, Spira A, Lenburg ME. Gene Expression Alterations in the Bronchial Epithelium of e-Cigarette Users. Chest 2019; 156:764-773. [PMID: 31233743 DOI: 10.1016/j.chest.2019.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Although e-cigarette (ECIG) use has increased in the United States, their potential health effects remain uncertain. Understanding the effects of tobacco cigarette (TCIG) smoke on bronchial airway epithelial gene expression have previously provided insights into tobacco-related disease pathogenesis. Identifying the impact of ECIGs on airway gene expression could provide insights into their potential long-term health effects. We sought to compare the bronchial airway gene-expression profiles of former TCIG smokers now using ECIGs with the profiles of former and current TCIG smokers. METHODS We performed gene-expression profiling of bronchial epithelial cells collected from current TCIG smokers (n = 9), current ECIG users who are former TCIG smokers (n = 15), and former TCIG smokers (n = 21). We then compared our findings with previous studies of the effects of TCIG use on bronchial epithelium, as well an in vitro model of ECIG exposure. RESULTS Among 3,165 genes whose expression varied between the three study groups (q < 0.05), we identified 468 genes altered in ECIG users relative to former smokers (P < .05). Seventy-nine of these genes were up- or down-regulated concordantly among ECIG and TCIG users. We did not detect ECIG-associated gene-expression changes in known pathways associated with TCIG usage. Genes downregulated in ECIG users are enriched among the genes most downregulated by exposure of airway epithelium to ECIG vapor in vitro. CONCLUSIONS ECIGs induce both distinct and shared patterns of gene expression relative to TCIGs in the bronchial airway epithelium. The concordance of the genes altered in ECIG users and in the in vitro study suggests that genes altered in ECIG users are likely to be changed as the direct effect of ECIG exposure.
Collapse
Affiliation(s)
- Sean E Corbett
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Matthew Nitzberg
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Elizabeth Moses
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Eric Kleerup
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Teresa Wang
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Catalina Perdomo
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Claudia Perdomo
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Xiaohui Xiao
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - David A Elashoff
- Department of Biostatistics, University of California, Los Angeles, CA
| | - Daniel R Brooks
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - George T O'Connor
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Avrum Spira
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA; Johnson & Johnson, Cambridge, MA.
| | - Marc E Lenburg
- Bioinformatics Program, Boston University, Boston, MA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
38
|
Park HR, O'Sullivan M, Vallarino J, Shumyatcher M, Himes BE, Park JA, Christiani DC, Allen J, Lu Q. Transcriptomic response of primary human airway epithelial cells to flavoring chemicals in electronic cigarettes. Sci Rep 2019; 9:1400. [PMID: 30710127 PMCID: PMC6358614 DOI: 10.1038/s41598-018-37913-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
The widespread use of electronic cigarettes (e-cigarettes or e-cig) is a growing public health concern. Diacetyl and its chemical cousin 2,3-pentanedione are commonly used to add flavors to e-cig; however, little is known about how the flavoring chemicals may impair lung function. Here we report that the flavoring chemicals induce transcriptomic changes and perturb cilia function in the airway epithelium. Using RNA-Seq, we identified a total of 163 and 568 differentially expressed genes in primary normal human bronchial epithelial (NHBE) cells that were exposed to diacetyl and 2,3-pentanedione, respectively. DAVID pathway analysis revealed an enrichment of cellular pathways involved in cytoskeletal and cilia processes among the set of common genes (142 genes) perturbed by both diacetyl and 2,3-pentanedione. Consistent with this, qRT-PCR confirmed that the expression of multiple genes involved in cilia biogenesis was significantly downregulated by diacetyl and 2,3-pentanedione in NHBE cells. Furthermore, immunofluorescence staining showed that the number of ciliated cells was significantly decreased by the flavoring chemicals. Our study indicates that the two widely used e-cig flavoring chemicals impair the cilia function in airway epithelium and likely contribute to the adverse effects of e-cig in the lung.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - Michael O'Sullivan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - Jose Vallarino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - Joseph Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA.
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA.
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA.
| |
Collapse
|
39
|
The impact of cigarette smoke exposure, COPD, or asthma status on ABC transporter gene expression in human airway epithelial cells. Sci Rep 2019; 9:153. [PMID: 30655622 PMCID: PMC6336805 DOI: 10.1038/s41598-018-36248-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
ABC transporters are conserved in prokaryotes and eukaryotes, with humans expressing 48 transporters divided into 7 classes (ABCA, ABCB, ABCC, ABCD, ABDE, ABCF, and ABCG). Throughout the human body, ABC transporters regulate cAMP levels, chloride secretion, lipid transport, and anti-oxidant responses. We used a bioinformatic approach complemented with in vitro experimental methods for validation of the 48 known human ABC transporters in airway epithelial cells using bronchial epithelial cell gene expression datasets available in NCBI GEO from well-characterized patient populations of healthy subjects and individuals that smoke cigarettes, or have been diagnosed with COPD or asthma, with validation performed in Calu-3 airway epithelial cells. Gene expression data demonstrate that ABC transporters are variably expressed in epithelial cells from different airway generations, regulated by cigarette smoke exposure (ABCA13, ABCB6, ABCC1, and ABCC3), and differentially expressed in individuals with COPD and asthma (ABCA13, ABCC1, ABCC2, ABCC9). An in vitro cell culture model of cigarette smoke exposure was able to recapitulate select observed in situ changes. Our work highlights select ABC transporter candidates of interest and a relevant in vitro model that will enable a deeper understanding of the contribution of ABC transporters in the respiratory mucosa in lung health and disease.
Collapse
|
40
|
Voic H, Li X, Jang JH, Zou C, Sundd P, Alder J, Rojas M, Chandra D, Randell S, Mallampalli RK, Tesfaigzi Y, Ryba T, Nyunoya T. RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia. BMC Genomics 2019; 20:22. [PMID: 30626320 PMCID: PMC6325884 DOI: 10.1186/s12864-018-5409-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aging is affected by genetic and environmental factors, and cigarette smoking is strongly associated with accumulation of senescent cells. In this study, we wanted to identify genes that may potentially be beneficial for cell survival in response to cigarette smoke and thereby may contribute to development of cellular senescence. RESULTS Primary human bronchial epithelial cells from five healthy donors were cultured, treated with or without 1.5% cigarette smoke extract (CSE) for 24 h or were passaged into replicative senescence. Transcriptome changes were monitored using RNA-seq in CSE and non-CSE exposed cells and those passaged into replicative senescence. We found that, among 1534 genes differentially regulated during senescence and 599 after CSE exposure, 243 were altered in both conditions, representing strong enrichment. Pathways and gene sets overrepresented in both conditions belonged to cellular processes that regulate reactive oxygen species, proteasome degradation, and NF-κB signaling. CONCLUSIONS Our results offer insights into gene expression responses during cellular aging and cigarette smoke exposure, and identify potential molecular pathways that are altered by cigarette smoke and may also promote airway epithelial cell senescence.
Collapse
Affiliation(s)
- Hannah Voic
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Xiuying Li
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Jun-Ho Jang
- 0000 0004 0454 5075grid.417046.0Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA USA
| | - Chunbin Zou
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Prithu Sundd
- 0000 0004 1936 9000grid.21925.3dVascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Jonathan Alder
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Mauricio Rojas
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Divay Chandra
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Scott Randell
- 0000 0001 1034 1720grid.410711.2Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC USA
| | - Rama K. Mallampalli
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, COPD program, Albuquerque, NM USA
| | - Tyrone Ryba
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Toru Nyunoya
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| |
Collapse
|
41
|
O’Beirne SL, Shenoy SA, Salit J, Strulovici-Barel Y, Kaner RJ, Visvanathan S, Fine JS, Mezey JG, Crystal RG. Ambient Pollution-related Reprogramming of the Human Small Airway Epithelial Transcriptome. Am J Respir Crit Care Med 2018; 198:1413-1422. [PMID: 29897792 PMCID: PMC6290954 DOI: 10.1164/rccm.201712-2526oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/12/2018] [Indexed: 01/25/2023] Open
Abstract
RATIONALE Epidemiologic studies have demonstrated that exposure to particulate matter ambient pollution has adverse effects on lung health, exacerbated by cigarette smoking. Particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) is among the most harmful urban pollutants and is closely linked to respiratory disease. OBJECTIVES Based on the knowledge that the small airway epithelium (SAE) plays a central role in the pathogenesis of smoking-related lung disease, we hypothesized that elevated PM2.5 levels are associated with dysregulation of SAE gene expression, which may contribute to the development of respiratory disease. METHODS From 2009 to 2012, healthy nonsmoker (n = 29) and smoker (n = 129) residents of New York City underwent bronchoscopy with SAE brushing (2.6 ± 1.3 samples/subject; total of 405 samples). SAE gene expression was assessed by Affymetrix HG-U133 Plus 2.0 microarray. New York City PM2.5 levels (Environmental Protection Agency data) were averaged for the 30 days before bronchoscopy. A linear mixed model was used to assess PM2.5-related gene dysregulation accounting for multiple clinical and methodologic variables. MEASUREMENTS AND MAIN RESULTS Thirty-day mean PM2.5 levels varied from 6.2 to 18 μg/m3. In nonsmokers, there was no dysregulation of SAE gene expression associated with ambient PM2.5 levels. In marked contrast, n = 219 genes were significantly dysregulated in association with PM2.5 levels in the SAE of smokers. Many of these genes relate to cell growth and transcription regulation. Interestingly, 11% of genes were mitochondria associated. CONCLUSIONS PM2.5 exposure contributes to significant dysregulation of the SAE transcriptome of smokers, linking pollution and airway epithelial biology in the risk of development of respiratory disease in susceptible individuals.
Collapse
Affiliation(s)
- Sarah L. O’Beirne
- Department of Genetic Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | | | | | - Robert J. Kaner
- Department of Genetic Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | | | - Jason G. Mezey
- Department of Genetic Medicine and
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York
| | - Ronald G. Crystal
- Department of Genetic Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
42
|
Glass K, Thibault D, Guo F, Mitchel JA, Pham B, Qiu W, Li Y, Jiang Z, Castaldi PJ, Silverman EK, Raby B, Park JA, Yuan GC, Zhou X. Integrative epigenomic analysis in differentiated human primary bronchial epithelial cells exposed to cigarette smoke. Sci Rep 2018; 8:12750. [PMID: 30143676 PMCID: PMC6109173 DOI: 10.1038/s41598-018-30781-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoke (CS) is one of the major risk factors for many pulmonary diseases, including chronic obstructive pulmonary disease (COPD) and lung cancer. The first line of defense for CS exposure is the bronchial epithelial cells. Elucidation of the epigenetic changes during CS exposure is key to gaining a mechanistic understanding into how mature and differentiated bronchial epithelial cells respond to CS. Therefore, we performed epigenomic profiling in conjunction with transcriptional profiling in well-differentiated human bronchial epithelial (HBE) cells cultured in air-liquid interface (ALI) exposed to the vapor phase of CS. The genome-wide enrichment of histone 3 lysine 27 acetylation was detected by chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) in HBE cells and suggested the plausible binding of specific transcription factors related to CS exposure. Additionally, interrogation of ChIP-Seq data with gene expression profiling of HBE cells after CS exposure for different durations (3 hours, 2 days, 4 days) suggested that earlier epigenetic changes (3 hours after CS exposure) may be associated with later gene expression changes induced by CS exposure (4 days). The integration of epigenetics and gene expression data revealed signaling pathways related to CS-induced epigenetic changes in HBE cells that may identify novel regulatory pathways related to CS-induced COPD.
Collapse
Affiliation(s)
- Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Derek Thibault
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Jennifer A Mitchel
- Department of Enviromental Health, Harvard T.H. School of Public Health, Boston, United States
| | - Betty Pham
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Yan Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Zhiqiang Jiang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.,Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Benjamin Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Jin-Ah Park
- Department of Enviromental Health, Harvard T.H. School of Public Health, Boston, United States
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biostatistics, Harvard T.H. School of Public Health, Boston, United States
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.
| |
Collapse
|
43
|
Xu S, Tsai A, Sze MA, Vucic EA, Shaipanich T, Harris M, Guillemi S, Yang J, Sinha S, Nislow C, Montaner J, Lam W, Lam S, Sin DD, Paul Man SF, Leung JM. Decreased microbiome diversity in the HIV small airway epithelium. Respir Res 2018; 19:140. [PMID: 30053882 PMCID: PMC6062954 DOI: 10.1186/s12931-018-0835-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/25/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Persons living with human immunodeficiency virus (PLWH) face an increased burden of chronic obstructive pulmonary disease (COPD). Repeated pulmonary infections, antibiotic exposures, and immunosuppression may contribute to an altered small airway epithelium (SAE) microbiome. METHODS SAE cells were collected from 28 PLWH and 48 HIV- controls through bronchoscopic cytologic brushings. DNA extracted from SAE cells was subjected to 16S rRNA amplification and sequencing. Comparisons of alpha and beta diversity between HIV+ and HIV- groups were performed and key operational taxonomic units (OTUs) distinguishing the two groups were identified using the Boruta feature selection after Random Forest Analysis. RESULTS PLWH demonstrated significantly reduced Shannon diversity compared with HIV- volunteers (1.82 ± 0.10 vs. 2.20 ± 0.073, p = 0.0024). This was primarily driven by a reduction in bacterial richness (23.29 ± 2.75 for PLWH and 46.04 ± 3.716 for HIV-, p < 0.0001). Phyla distribution was significantly altered among PLWH, with an increase in relative abundance of Proteobacteria (p = 0.0003) and a decrease in Bacteroidetes (p = 0.0068) and Firmicutes (p = 0.0002). Six discriminative OTUs were found to distinguish PLWH from HIV- volunteers, aligning to Veillonellaceae, Fusobacterium, Verrucomicrobiaceae, Prevotella, Veillonella, and Campylobacter. CONCLUSIONS Compared to HIV- controls, PLWH's SAE microbiome is marked by reduced bacterial diversity and richness with significant differences in community composition.
Collapse
Affiliation(s)
- Stella Xu
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Amy Tsai
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marc A Sze
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Emily A Vucic
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Tawimas Shaipanich
- Division of Respiratory Medicine, St. Paul's Hospital, Vancouver, BC, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, BC, Canada
| | - Silvia Guillemi
- British Columbia Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, BC, Canada
| | - Julia Yang
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Sunita Sinha
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Julio Montaner
- British Columbia Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, BC, Canada
| | - Wan Lam
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, St. Paul's Hospital, Vancouver, BC, Canada
| | - S F Paul Man
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, St. Paul's Hospital, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.
- Division of Respiratory Medicine, St. Paul's Hospital, Vancouver, BC, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166-1081 Burrard Street, Vancouver, V6Z 1Y6, Canada.
| |
Collapse
|
44
|
Billatos E, Faiz A, Gesthalter Y, LeClerc A, Alekseyev YO, Xiao X, Liu G, Ten Hacken NHT, Heijink IH, Timens W, Brandsma CA, Postma DS, van den Berge M, Spira A, Lenburg ME. Impact of acute exposure to cigarette smoke on airway gene expression. Physiol Genomics 2018; 50:705-713. [PMID: 29932825 DOI: 10.1152/physiolgenomics.00092.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Understanding effects of acute smoke exposure (ASE) on airway epithelial gene expression and their relationship with the effects of chronic smoke exposure may provide biological insights into the development of smoking-related respiratory diseases. METHODS Bronchial airway epithelial cell brushings were collected from 63 individuals without recent cigarette smoke exposure and before and 24 h after smoking three cigarettes. RNA from these samples was profiled on Affymetrix Human Gene 1.0 ST microarrays. RESULTS We identified 91 genes differentially expressed 24 h after ASE (false discovery rate < 0.25). ASE induced genes involved in xenobiotic metabolism, oxidative stress, and inflammation and repressed genes related to cilium morphogenesis and cell cycle. While many genes altered by ASE are altered similarly in chronic smokers, metallothionein genes are induced by ASE and suppressed in chronic smokers. Metallothioneins are also suppressed in current and former smokers with lung cancer relative to those without lung cancer. CONCLUSIONS Acute exposure to as little as three cigarettes and chronic smoking induce largely concordant changes in airway epithelial gene expression. Differences in short-term and long-term effects of smoking on metallothionein expression and their relationship to lung cancer requires further study given these enzymes' role in the oxidative stress response.
Collapse
Affiliation(s)
- E Billatos
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - A Faiz
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - Y Gesthalter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - A LeClerc
- Microarray and Sequencing Resource Core Facility, Boston University School of Medicine , Boston, Massachusetts
| | - Y O Alekseyev
- Microarray and Sequencing Resource Core Facility, Boston University School of Medicine , Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - X Xiao
- Division of Computational Biomedicine, Boston University School of Medicine , Boston, Massachusetts
| | - G Liu
- Division of Computational Biomedicine, Boston University School of Medicine , Boston, Massachusetts
| | - N H T Ten Hacken
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - I H Heijink
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - W Timens
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - C A Brandsma
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - D S Postma
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - M van den Berge
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - A Spira
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - M E Lenburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts.,Division of Computational Biomedicine, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
45
|
Staudt MR, Salit J, Kaner RJ, Hollmann C, Crystal RG. Altered lung biology of healthy never smokers following acute inhalation of E-cigarettes. Respir Res 2018; 19:78. [PMID: 29754582 PMCID: PMC5950177 DOI: 10.1186/s12931-018-0778-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Background Little is known about health risks associated with electronic cigarette (EC) use although EC are rising in popularity and have been advocated as a means to quit smoking cigarettes. Methods Ten never-smokers, without exposure history to tobacco products or EC, were assessed at baseline with questionnaire, chest X-ray, lung function, plasma levels of endothelial microparticles (EMP), and bronchoscopy to obtain small airway epithelium (SAE) and alveolar macrophages (AM). One week later, subjects inhaled 10 puffs of “Blu” brand EC, waited 30 min, then another 10 puff; n = 7 were randomized to EC with nicotine and n = 3 to EC without nicotine to assess biological responses in healthy, naive individuals. Results Two hr. post-EC exposure, subjects were again assessed as at baseline. No significant changes in clinical parameters were observed. Biological changes were observed compared to baseline, including altered transcriptomes of SAE and AM for all subjects and elevated plasma EMP levels following inhalation of EC with nicotine. Conclusions This study provides in vivo human data demonstrating that acute inhalation of EC aerosols dysregulates normal human lung homeostasis in a limited cohort of healthy naïve individuals. These observations have implications to new EC users, nonsmokers exposed to secondhand EC aerosols and cigarette smokers using EC to quit smoking. Trial registration ClinicalTrials.gov NCT01776398 (registered 10/12/12), NCT02188511 (registered 7/2/14). Electronic supplementary material The online version of this article (10.1186/s12931-018-0778-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle R Staudt
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA
| | - Charleen Hollmann
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA.
| |
Collapse
|
46
|
Kopa PN, Pawliczak R. Effect of smoking on gene expression profile – overall mechanism, impact on respiratory system function, and reference to electronic cigarettes. Toxicol Mech Methods 2018; 28:397-409. [DOI: 10.1080/15376516.2018.1461289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paulina Natalia Kopa
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
47
|
Chung NPY, Ou X, Khan KMF, Salit J, Kaner RJ, Crystal RG. HIV Reprograms Human Airway Basal Stem/Progenitor Cells to Acquire a Tissue-Destructive Phenotype. Cell Rep 2018; 19:1091-1100. [PMID: 28494859 DOI: 10.1016/j.celrep.2017.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/09/2017] [Accepted: 04/09/2017] [Indexed: 12/30/2022] Open
Abstract
While highly active anti-retroviral therapy has dramatically improved the survival of HIV-infected individuals, there is an increased risk for other co-morbidities, such as COPD, manifesting as emphysema. Given that emphysema originates around the airways and that human airway basal cells (BCs) are adult airway stem/progenitor cells, we hypothesized that HIV reprograms BCs to a distinct phenotype that contributes to the development of emphysema. Our data indicate that HIV binds to but does not replicate in BCs. HIV binding to BCs induces them to acquire an invasive phenotype, mediated by upregulation of MMP-9 expression through activation of MAPK signaling pathways. This HIV-induced "destructive" phenotype may contribute to degradation of extracellular matrix and tissue damage relevant to the development of emphysema commonly seen in HIV+ individuals.
Collapse
Affiliation(s)
- Nancy P Y Chung
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xuemei Ou
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - K M Faisal Khan
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
48
|
Champion M, Brennan K, Croonenborghs T, Gentles AJ, Pochet N, Gevaert O. Module Analysis Captures Pancancer Genetically and Epigenetically Deregulated Cancer Driver Genes for Smoking and Antiviral Response. EBioMedicine 2018; 27:156-166. [PMID: 29331675 PMCID: PMC5828545 DOI: 10.1016/j.ebiom.2017.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The availability of increasing volumes of multi-omics profiles across many cancers promises to improve our understanding of the regulatory mechanisms underlying cancer. The main challenge is to integrate these multiple levels of omics profiles and especially to analyze them across many cancers. Here we present AMARETTO, an algorithm that addresses both challenges in three steps. First, AMARETTO identifies potential cancer driver genes through integration of copy number, DNA methylation and gene expression data. Then AMARETTO connects these driver genes with co-expressed target genes that they control, defined as regulatory modules. Thirdly, we connect AMARETTO modules identified from different cancer sites into a pancancer network to identify cancer driver genes. Here we applied AMARETTO in a pancancer study comprising eleven cancer sites and confirmed that AMARETTO captures hallmarks of cancer. We also demonstrated that AMARETTO enables the identification of novel pancancer driver genes. In particular, our analysis led to the identification of pancancer driver genes of smoking-induced cancers and 'antiviral' interferon-modulated innate immune response. SOFTWARE AVAILABILITY AMARETTO is available as an R package at https://bitbucket.org/gevaertlab/pancanceramaretto.
Collapse
Affiliation(s)
- Magali Champion
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine & Biomedical Data Science, Stanford University, United States
| | - Kevin Brennan
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine & Biomedical Data Science, Stanford University, United States
| | - Tom Croonenborghs
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Broad Institute of Harvard and Massachusetts Institute of Technology, United States; Advanced Integrated Sensing Lab, Campus Geel, Department of Computer Science, University of Leuven, Belgium
| | - Andrew J Gentles
- Department of Medicine, Center for Cancer Systems Biology, Stanford University, United States
| | - Nathalie Pochet
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Broad Institute of Harvard and Massachusetts Institute of Technology, United States
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine & Biomedical Data Science, Stanford University, United States.
| |
Collapse
|
49
|
Bartel S, Bhakta N, Christenson S. More Than Meets the Eye: Cigarette Smoke Induces Genomic Changes in the Small Airway Epithelium Independent of Histologic Changes. Am J Respir Crit Care Med 2017; 196:260-262. [PMID: 28762786 PMCID: PMC6850564 DOI: 10.1164/rccm.201704-0665ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Sabine Bartel
- 1 Leibniz Center for Medicine and Biosciences Research Center Borstel Borstel, Germany
- 2 Airway Research Center North (German Center for Lung Research [DZL]) Borstel, Germany and
| | - Nirav Bhakta
- 3 Department of Medicine University of California, San Francisco San Francisco, California
| | - Stephanie Christenson
- 3 Department of Medicine University of California, San Francisco San Francisco, California
| |
Collapse
|
50
|
Shields PG, Berman M, Brasky TM, Freudenheim JL, Mathe E, McElroy JP, Song MA, Wewers MD. A Review of Pulmonary Toxicity of Electronic Cigarettes in the Context of Smoking: A Focus on Inflammation. Cancer Epidemiol Biomarkers Prev 2017; 26:1175-1191. [PMID: 28642230 PMCID: PMC5614602 DOI: 10.1158/1055-9965.epi-17-0358] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
The use of electronic cigarettes (e-cigs) is increasing rapidly, but their effects on lung toxicity are largely unknown. Smoking is a well-established cause of lung cancer and respiratory disease, in part through inflammation. It is plausible that e-cig use might affect similar inflammatory pathways. E-cigs are used by some smokers as an aid for quitting or smoking reduction, and by never smokers (e.g., adolescents and young adults). The relative effects for impacting disease risk may differ for these groups. Cell culture and experimental animal data indicate that e-cigs have the potential for inducing inflammation, albeit much less than smoking. Human studies show that e-cig use in smokers is associated with substantial reductions in blood or urinary biomarkers of tobacco toxicants when completely switching and somewhat for dual use. However, the extent to which these biomarkers are surrogates for potential lung toxicity remains unclear. The FDA now has regulatory authority over e-cigs and can regulate product and e-liquid design features, such as nicotine content and delivery, voltage, e-liquid formulations, and flavors. All of these factors may impact pulmonary toxicity. This review summarizes current data on pulmonary inflammation related to both smoking and e-cig use, with a focus on human lung biomarkers. Cancer Epidemiol Biomarkers Prev; 26(8); 1175-91. ©2017 AACR.
Collapse
Affiliation(s)
- Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio.
| | - Micah Berman
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Public Health, Ohio
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Ewy Mathe
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Joseph P McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Min-Ae Song
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, and College of Medicine, Columbus, Ohio
| | - Mark D Wewers
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|