1
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
2
|
Eboreime J, Choi SK, Yoon SR, Sadybekov A, Katritch V, Calabrese P, Arnheim N. Germline selection of PTPN11 (HGNC:9644) variants make a major contribution to both Noonan syndrome's high birth rate and the transmission of sporadic cancer variants resulting in fetal abnormality. Hum Mutat 2022; 43:2205-2221. [PMID: 36349709 PMCID: PMC10099774 DOI: 10.1002/humu.24493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
Abstract
Some spontaneous germline gain-of-function mutations promote spermatogonial stem cell clonal expansion and disproportionate variant sperm production leading to unexpectedly high transmission rates for some human genetic conditions. To measure the frequency and spatial distribution of de novo mutations we divided three testes into 192 pieces each and used error-corrected deep-sequencing on each piece. We focused on PTPN11 (HGNC:9644) Exon 3 that contains 30 different PTPN11 Noonan syndrome (NS) mutation sites. We found 14 of these variants formed clusters among the testes; one testis had 11 different variant clusters. The mutation frequencies of these different clusters were not correlated with their case-recurrence rates nor were case recurrence rates of PTPN11 variants correlated with their tyrosine phosphatase levels thereby confusing PTPN11's role in germline clonal expansion. Six of the PTPN11 exon 3 de novo variants associated with somatic mutation-induced sporadic cancers (but not NS) also formed testis clusters. Further, three of these six variants were observed among fetuses that underwent prenatal ultrasound screening for NS-like features. Mathematical modeling showed that germline selection can explain both the mutation clusters and the high incidence of NS (1/1000-1/2500).
Collapse
Affiliation(s)
- Jordan Eboreime
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Soo-Kyung Choi
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Song-Ro Yoon
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Anastasiia Sadybekov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California, USA
| | - Vsevolod Katritch
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California, USA
| | - Peter Calabrese
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Norman Arnheim
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Mishra MK, Gupta S, Shivangi, Sehgal S. Assessing Long Non-coding RNAs in Tobacco-associated Oral Cancer. Curr Cancer Drug Targets 2022; 22:879-888. [PMID: 35747968 DOI: 10.2174/1568009622666220623115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer is one of the compelling and pegged diseases battled by clinicians and researchers worldwide. Among different types of cancer, oral cancer holds the sixth position globally. With an escalating prevalence in Asian countries, India, China, and Pakistan constitute a large proportion of total incidents of oral cancer patients in terms of new cases or deaths. This mounting prevalence is ascribed to poor oral hygiene and rampant use of substances earmarked as potential risk factors for the disease. Risk factors (dietary/lifestyle habits/occupational/environmental) trigger the activation of oncogenes, dysregulation of lncRNA and miRNA, and silence the tumor suppressor genes, which robustly contributes to the onset and progression of tumorigenesis in oral squamous cell carcinoma. Evidence suggests that specific carcinogens identified in tobacco and related products alter many cellular pathways predisposing to advanced stages of oral cancer. Long non-coding RNAs represent a broad group of heterogenous transcripts longer than 200 nucleotides which do not translate to form functional proteins. They regulate various cellular pathways by specifically interacting with other RNAs, DNA, and proteins. Their role in the pathogenesis of OSCC and other cancer is still being debated. In this review, we discuss the molecular insights of significant lncRNAs involved in some crucial deregulated pathways of tobacco-associated OSCC. The implications and challenges to harnessing the potential of lncRNAs as biomarkers in early diagnosis and targeted treatment have also been analyzed.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Centre for Molecular Biology, Central University of Jammu, Jammu (J&K), India
| | - Sachin Gupta
- Department of ENT and Head & Neck Surgery, Acharya Shri Chander College of Medical Sciences and Hospital (ASCOMS), Jammu (J&K), India
| | - Shivangi
- Centre for Molecular Biology, Central University of Jammu, Jammu (J&K), India
| | - Shelly Sehgal
- Centre for Molecular Biology, Central University of Jammu, Jammu (J&K), India
| |
Collapse
|
4
|
Fidan M, Chennappan S, Cirstea IC. Studying Metabolic Abnormalities in the Costello Syndrome HRAS G12V Mouse Model: Isolation of Mouse Embryonic Fibroblasts and Their In Vitro Adipocyte Differentiation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:397-409. [PMID: 33977491 DOI: 10.1007/978-1-0716-1190-6_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Costello syndrome (CS), characterized by a developmental delay and a failure to thrive, is also associated with an impaired lipid and energy metabolism. White adipose tissue is a central sensor of whole-body energy homeostasis, and HRAS hyperactivation may affect adipocyte differentiation and mature adipocyte homeostasis. An extremely useful tool for delineating in vitro intrinsic cellular signaling leading to metabolic alterations during adipogenesis is mouse embryonic fibroblasts, known to differentiate into adipocytes in response to adipogenesis-stimulating factors. Here, we describe in detail the isolation and maintenance of CS HRAS G12V mouse embryonic fibroblasts, their differentiation into adipocytes, and an assessment of adipocyte differentiation.
Collapse
Affiliation(s)
- Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | | |
Collapse
|
5
|
Zhang Z, Zhang Y, Gao M, Cui X, Yang Y, van Duijn B, Wang M, Hu Y, Wang C, Xiong Y. Steamed Panax notoginseng Attenuates Anemia in Mice With Blood Deficiency Syndrome via Regulating Hematopoietic Factors and JAK-STAT Pathway. Front Pharmacol 2020; 10:1578. [PMID: 32038252 PMCID: PMC6985777 DOI: 10.3389/fphar.2019.01578] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Panax notoginseng (Burk.) F. H. Chen is a medicinal herb used to treat blood disorders since ancient times, of which the steamed form exhibits the anti-anemia effect and acts with a “blood-tonifying” function according to traditional use. The present study aimed to investigate the anti-anemia effect and underlying mechanism of steamed P. notoginseng (SPN) on mice with blood deficiency syndrome induced by chemotherapy. Blood deficiency syndrome was induced in mice by cyclophosphamide and acetylphenylhydrazine. A number of peripheral blood cells and organs (liver, kidney, and spleen) coefficients were measured. The mRNA expression of hematopoietic function-related cytokines in the bone marrow of mice was detected by RT-qPCR. The janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway was screened based on our previous analysis by network pharmacology. The expression of related proteins and cell cycle factors predicted in the pathway was determined by Western blot and RT-qPCR. SPN could significantly increase the numbers of peripheral blood cells and reverse the enlargement of spleen in a dose-dependent manner. The quantities of related hematopoietic factors in bone marrow were also increased significantly after SPN administration. SPN was involved in the cell cycle reaction and activation of immune cells through the JAK-STAT pathway, which could promote the hematopoiesis.
Collapse
Affiliation(s)
- Zejun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yiming Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Min Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Bert van Duijn
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands.,Fytagoras BV, Leiden, Netherlands
| | - Mei Wang
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands.,LU-European Center for Chinese Medicine, Leiden University, Leiden, Netherlands.,SUBioMedicine BV, Leiden, Netherlands
| | - Yupiao Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Institute of Biology Leiden, Leiden University, Leiden, Netherlands.,Fytagoras BV, Leiden, Netherlands.,LU-European Center for Chinese Medicine, Leiden University, Leiden, Netherlands
| |
Collapse
|
6
|
Dolatkhah R, Somi MH, Shabanloei R, Farassati F, Fakhari A, Dastgiri S. Main Risk Factors Association with Proto-Oncogene Mutations in Colorectal Cancer. Asian Pac J Cancer Prev 2018; 19:2183-2190. [PMID: 30139223 PMCID: PMC6171391 DOI: 10.22034/apjcp.2018.19.8.2183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Although several factors have been shown to have etiological roles in colorectal cancer, few investigations
have addressed how and to what extent these factors affect the genetics and pathology of the disease. Precise relationships
with specific genetic mutations that could alter signaling pathways involved in colorectal cancer remain unknown.
We therefore aimed to investigate possible links between lifestyle, dietary habits, and socioeconomic factors and specific
mutations that are common in colorectal cancers. Methods: Data were retrieved from a baseline survey of lifestyle factors,
dietary behavior, and SES, as well as anthropometric evaluations during a physical examination, for 100 confirmed
primary sporadic colorectal cancer patients from Northwest Iran. Results: High socioeconomic status was significantly
associated with higher likelihood of a KRAS gene mutation (P < 0.05) (odds ratio: 3.01; 95% CI: 0.69–13.02). Consuming
carbohydrates and alcohol, working less, and having a sedentary lifestyle also increased the odds of having a KRAS
mutation. Conclusion: Although research has not yet described the exact relationships among genetic mutations with
different known risk factors in colorectal cancer, examples of the latter may have an impact on KRAS gene mutations.
Collapse
Affiliation(s)
- Roya Dolatkhah
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
7
|
Pierpont ME, Richards M, Engel WK, Mendelsohn NJ, Summers CG. Retinal dystrophy in two boys with Costello syndrome due to the HRAS p.Gly13Cys mutation. Am J Med Genet A 2017; 173:1342-1347. [PMID: 28337834 DOI: 10.1002/ajmg.a.38110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/17/2016] [Accepted: 12/05/2016] [Indexed: 11/12/2022]
Abstract
Features of Costello Syndrome, a systemic disorder caused by germline mutations in the proto-oncogene HRAS from the RAS/MAPK pathway, include failure-to-thrive, short stature, coarse facial features, cardiac defects including hypertrophic cardiomyopathy, intellectual disability, and predisposition to neoplasia. Two unrelated boys with Costello syndrome and an HRAS mutation (p.Gly13Cys) are presented with their ophthalmologic findings. Both had early symptoms of nystagmus, photophobia, and vision abnormalities. Fundus examination findings of retinal dystrophy were present at age 3 years. Both boys have abnormal electroretinograms with reduced or undetectable rod responses along with reduced cone responses consistent with rod-cone dystrophy. Our observations suggest that early ophthalmic examination and re-evaluations are indicated in children with Costello syndrome.
Collapse
Affiliation(s)
- Mary Ella Pierpont
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota.,Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota
| | - Mary Richards
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - W Keith Engel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota.,Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota
| | - Nancy J Mendelsohn
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Genomic Medicine, Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota
| | - C Gail Summers
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
8
|
Dolatkhah R, Somi MH, Kermani IA, Farassati F, Dastgiri S. A novel KRAS gene mutation report in sporadic colorectal cancer, from Northwest of Iran. Clin Case Rep 2017; 5:338-341. [PMID: 28265402 PMCID: PMC5331244 DOI: 10.1002/ccr3.779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/19/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
While the role of KRAS gene mutations has been widely accepted for predicting responses to anti‐EGFR therapy in patients with colorectal cancer, although this study was based on observation of a single case it gives hope that some KRAS gene mutation may have favorable prognosis. More studies are required on patients with similar mutation to validate this finding.
Collapse
Affiliation(s)
- Roya Dolatkhah
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Iraj Asvadi Kermani
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Faris Farassati
- The University of Kansas Medical School-Molecular Medicine Laboratory Kansas City Kansas USA
| | - Saeed Dastgiri
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran; Tabriz Health Services Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
9
|
Impaired synaptic plasticity in RASopathies: a mini-review. J Neural Transm (Vienna) 2016; 123:1133-8. [PMID: 27565148 DOI: 10.1007/s00702-016-1609-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
Synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) is considered to be the neurophysiological correlate of learning and memory. Impairments are discussed to be one of the underlying pathophysiological mechanisms of developmental disorders. In so-called RASopathies [e.g., neurofibromatosis 1 (NF1)], neurocognitive impairments are frequent and are affected by components of the RAS pathway which lead to impairments in synaptic plasticity. Transcranial magnetic stimulation (TMS) provides a non-invasive method to investigate synaptic plasticity in humans. Here, we review studies using TMS to evaluate synaptic plasticity in patients with RASopathies. Patients with NF1 and Noonan syndrome (NS) showed reduced cortical LTP-like synaptic plasticity. In contrast, increased LTP-like synaptic plasticity has been shown in Costello syndrome. Notably, lovastatin normalized impaired LTP-like plasticity and increased intracortical inhibition in patients with NF1. TMS has been shown to be a safe and efficient method to investigate synaptic plasticity and intracortical inhibition in patients with RASopathies. Deeper insights in impairments of synaptic plasticity in RASopathies could help to develop new options for the therapy of learning deficits in these patients.
Collapse
|
10
|
Krencik R, Hokanson KC, Narayan AR, Dvornik J, Rooney GE, Rauen KA, Weiss LA, Rowitch DH, Ullian EM. Dysregulation of astrocyte extracellular signaling in Costello syndrome. Sci Transl Med 2016; 7:286ra66. [PMID: 25947161 DOI: 10.1126/scitranslmed.aaa5645] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astrocytes produce an assortment of signals that promote neuronal maturation according to a precise developmental timeline. Is this orchestrated timing and signaling altered in human neurodevelopmental disorders? To address this question, the astroglial lineage was investigated in two model systems of a developmental disorder with intellectual disability caused by mutant Harvey rat sarcoma viral oncogene homolog (HRAS) termed Costello syndrome: mutant HRAS human induced pluripotent stem cells (iPSCs) and transgenic mice. Human iPSCs derived from patients with Costello syndrome differentiated to astroglia more rapidly in vitro than those derived from wild-type cell lines with normal HRAS, exhibited hyperplasia, and also generated an abundance of extracellular matrix remodeling factors and proteoglycans. Acute treatment with a farnesyl transferase inhibitor and knockdown of the transcription factor SNAI2 reduced expression of several proteoglycans in Costello syndrome iPSC-derived astrocytes. Similarly, mice in which mutant HRAS was expressed selectively in astrocytes exhibited experience-independent increased accumulation of perineuronal net proteoglycans in cortex, as well as increased parvalbumin expression in interneurons, when compared to wild-type mice. Our data indicate that astrocytes expressing mutant HRAS dysregulate cortical maturation during development as shown by abnormal extracellular matrix remodeling and implicate excessive astrocyte-to-neuron signaling as a possible drug target for treating mental impairment and enhancing neuroplasticity.
Collapse
Affiliation(s)
- Robert Krencik
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kenton C Hokanson
- Neuroscience Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aditi R Narayan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jill Dvornik
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gemma E Rooney
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine A Rauen
- Department of Pediatrics, University of California, Davis, Sacramento, CA 95817, USA
| | - Lauren A Weiss
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Institute for Regenerative Medicine and Stem Cell Research, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA. Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Peripheral blood cells from children with RASopathies show enhanced spontaneous colonies growth in vitro and hyperactive RAS signaling. Blood Cancer J 2015; 5:e324. [PMID: 26186557 PMCID: PMC4526778 DOI: 10.1038/bcj.2015.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/06/2023] Open
Abstract
Germline mutations in genes coding for molecules involved in the RAS/RAF/MEK/ERK pathway are the hallmarks of a newly classified family of autosomal dominant syndromes termed RASopathies. Myeloproliferative disorders (MPDs), in particular, juvenile myelomonocytic leukemia, can lead to potentially severe complications in children with Noonan syndrome (NS). We studied 27 children with NS or other RASopathies and 35 age-matched children as control subjects. Peripheral blood (PB) cells from these patients were studied for in vitro colony-forming units (CFUs) activity, as well as for intracellular phosphosignaling. Higher spontaneous growth of both burst-forming units-erythroid (BFU-E) and CFU-granulocyte/macrophage (CFU-GM) colonies from RAS-mutated patients were observed as compared with control subjects. We also observed a significantly higher amount of GM-colony-stimulating factor-induced p-ERK in children with RASopathies. Our findings demonstrate for the first time that PB cells isolated from children suffering from NS or other RASopathies without MPD display enhanced BFU-E and CFU-GM colony formation in vitro. The biological significance of these findings clearly awaits further studies. Collectively, our data provide a basis for further investigating of only partially characterized hematological alterations present in children suffering from RASopathies, and may provide new markers for progression toward malignant MPD in these patients.
Collapse
|
12
|
Alfieri P, Caciolo C, Piccini G, D'Elia L, Valeri G, Menghini D, Tartaglia M, Digilio MC, Dallapiccola B, Vicari S. Behavioral phenotype in Costello syndrome with atypical mutation: a case report. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:66-71. [PMID: 25367099 DOI: 10.1002/ajmg.b.32279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 09/30/2014] [Indexed: 01/09/2023]
Abstract
Costello syndrome (CS) is a rare genetic disorder caused, in the majority of cases, by germline missense HRAS mutations affecting Gly(12) promoting enhanced signaling through the MAPK and PI3K-AKT signaling cascades. In general, the cognitive profile in CS is characterized by intellectual disability ranging from mild to severe impairment. The first published descriptions of behavior in CS children underlined the presence of irritability and shyness at younger ages with sociable personality and good empathic skills after 4-5 years of age, however some recent studies have reported autistic traits. We report on a 7-year-old boy heterozygous for a rare duplication of codon 37 (p.E37dup) in HRAS, manifesting impaired social interaction and non-verbal communication and with circumscribed interests. These additional features improve phenotype delineation in individuals with rare HRAS mutations, facilitating the development of specific behavioral treatments which could lead to improvement in cases of autism spectrum disorder.
Collapse
Affiliation(s)
- Paolo Alfieri
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abdel-Salam G, Thoenes M, Afifi HH, Körber F, Swan D, Bolz HJ. The supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration. Orphanet J Rare Dis 2014; 9:12. [PMID: 24456803 PMCID: PMC3918143 DOI: 10.1186/1750-1172-9-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023] Open
Abstract
Background WWOX, encoding WW domain-containing oxidoreductase, spans FRA16D, the second most common chromosomal fragile site frequently altered in cancers. It is therefore considered a tumor suppressor gene, but its direct implication in cancerogenesis remains controversial. Methods and results By whole-exome sequencing, we identified a homozygous WWOX nonsense mutation, p.Arg54*, in a girl from a consanguineous family with a severe syndrome of growth retardation, microcephaly, epileptic seizures, retinopathy and early death, a phenotype highly similar to the abormalities reported in lde/lde rats with a spontaneous functional null mutation of Wwox. As in rats, no tumors were observed in the patient or heterozygous mutation carriers. Conclusions Our finding, a homozygous loss-of-function germline mutation in WWOX in a patient with a lethal autosomal recessive syndrome, supports an alternative role of WWOX and indicates its importance for human viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanno Jörn Bolz
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Mainberger F, Zenker M, Jung NH, Delvendahl I, Brandt A, Freudenberg L, Heinen F, Mall V. Impaired motor cortex plasticity in patients with Noonan syndrome. Clin Neurophysiol 2013; 124:2439-44. [DOI: 10.1016/j.clinph.2013.04.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022]
|
15
|
Association of folate intake, dietary habits, smoking and COX-2 promotor -765G>C polymorphism with K-ras mutation in patients with colorectal cancer. J Egypt Natl Canc Inst 2012; 24:115-22. [PMID: 22929917 DOI: 10.1016/j.jnci.2012.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 05/15/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Understanding the role of environmental and molecular influences on the nature and rate of K-ras mutations in colorectal neoplasms is crucial. COX-2 polymorphisms -765G>C may play a role in carcinogenic processes in combination with specific life-style conditions or dependent on the racial composition of a particular population. If mutational events play an important role in colorectal carcinogenesis sequence, one can hypothesize that modification of these events by life-style or other factors would be a useful prevention strategy. AIM OF WORK To explore the association between K-ras mutation and potential variables known or suspected to be related to the risk of colorectal cancer (CRC) as well as determining the possible modulating effect of the COX-2 polymorphism, -765G>C. SUBJECTS AND METHODS The study was conducted on 80 patients with colorectal cancer from Tropical Medicine and Gastrointestinal Tract endoscopy Departments and those attending clinic of the National Cancer Institute, Cairo University during the period extending from April 2009 to March 2010. Full history taking with emphasis on the risk factors of interest, namely age, sex, family history, smoking and dietary history. Serum CEA and CA19-9, RBCs folic acid and occult blood in stool were done to all samples. K-ras protooncogene mutation at codon 12 (exon 1) and cyclooxygenase 2 (COX-2) -765G>C polymorphism were determined by PCR-RFLP. RESULTS The K-ras mutation was positive in 23 (28.7%) patients. COX-2 polymorphism revealed GG in 62.5%, GC in 26.2 % and CC genotype was found in 11.3 % of cases. The mean red blood cell folic acid level was lower in the K-ras positive group (100.96±51.3 ng/ml) than the negative group (216.6±166.4 ng/ml), (P<0.01). Higher folate levels were found in males than females (median=173 ng/ml and 85 ng/ml; respectively, P=0.002) with adjusted odds ratio (OR) of 0.984. Only, the RBCs folate (P=0.0018) followed by gender (P=0.036) contributed significantly in the discrimination between patients prone to develop K-ras mutation and those who are not. CONCLUSION RBC folic acid was significantly deficient in CRC (colorectal cancer) patients with K-ras mutations in comparison with CRC patients free of the mutations, suggesting that folic acid may be a risk factor for K-ras mutation development.
Collapse
|
16
|
Yoshida N, Doisaki S, Kojima S. Current management of juvenile myelomonocytic leukemia and the impact of RAS mutations. Paediatr Drugs 2012; 14:157-63. [PMID: 22480363 DOI: 10.2165/11631360-000000000-00000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare clonal myelodysplastic/myeloproliferative disorder that affects young children. It is characterized by hypersensitivity of JMML cells to granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. The pathogenesis of JMML seems to arise from constitutional activation of the GM-CSF/RAS (a GTPase) signaling pathway, a result of mutations in RAS, NF1, PTPN11, and CBL that interfere with downstream components of the pathway. Most patients with JMML usually experience an aggressive clinical course, and hematopoietic stem cell transplantation (HSCT) is currently the only curative treatment, although the high rates of relapses and graft failures are of great concern. In contrast, a certain proportion of patients experience a stable clinical course for a considerable period of time, and sometimes the disease even spontaneously resolves without any treatment. Recent studies have provided us with increased knowledge of genotype-phenotype correlations in JMML, and suggested that differences in clinical courses may reflect genetic status. Thus, genotype-based management is of current international interest, especially for JMML with RAS mutations. Cumulative evidence suggests that RAS mutations can be related to favorable clinical outcomes, and HSCT may not have to be a mandatory therapeutic option for a portion of patients with this mutation, although a consensus regarding genotype-based management has not yet been achieved. Further efforts toward identifying which patients who will do well without HSCT are required.
Collapse
Affiliation(s)
- Nao Yoshida
- Department of Hematology and Oncology, Childrens Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | | | | |
Collapse
|
17
|
Alteraciones de los genes de la vía RAS-MAPK en 200 pacientes españoles con síndrome de Noonan y otros síndromes neurocardiofaciocutáneos. Genotipo y cardiopatía. Rev Esp Cardiol 2012; 65:447-55. [DOI: 10.1016/j.recesp.2011.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022]
|
18
|
C4ST-1/CHST11-controlled chondroitin sulfation interferes with oncogenic HRAS signaling in Costello syndrome. Eur J Hum Genet 2012; 20:870-7. [PMID: 22317973 DOI: 10.1038/ejhg.2012.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Costello syndrome is a pediatric genetic disorder linked to oncogenic germline mutations in the HRAS gene. The disease is characterized by multiple developmental abnormalities, as well as predisposition to malignancies. Our recent observation that heart tissue from patients with Costello syndrome showed a loss of the glycosaminoglycan chondroitin-4-sulfate (C4S) inspired our present study aimed to explore a functional involvement of the chondroitin sulfate (CS) biosynthesis gene Carbohydrate sulfotransferase 11/Chondroitin-4-sulfotransferase-1 (CHST11/C4ST-1), as well as an impaired chondroitin sulfation balance, as a downstream mediator of oncogenic HRAS in Costello syndrome. Here we demonstrate a loss of C4S, as well as a reduction in C4ST-1 mRNA and protein expression, in primary fibroblasts from Costello syndrome patients. We go on to show that expression of oncogenic HRAS in normal fibroblasts can repress C4ST-1 expression, whereas interference with oncogenic HRAS signaling in Costello syndrome fibroblasts elevated C4ST-1 expression, thus identifying C4ST-1 as a negatively regulated target gene of HRAS signaling. Importantly, we show that forced expression of C4ST-1 in Costello fibroblasts could rescue the proliferation and elastogenesis defects associated with oncogenic HRAS signaling in these cells. Our results indicate reduced C4ST-1 expression and chondroitin sulfation imbalance mediating the effects of oncogenic HRAS signaling in the pathogenesis of Costello syndrome. Thus, our work identifies C4ST-1-dependent chondroitin sulfation as a downstream vulnerability in oncogenic RAS signaling, which might be pharmacologically exploited in future treatments of not only Costello syndrome and other RASopathies, but also human cancers associated with activating RAS mutations.
Collapse
|
19
|
Bertola DR, Pereira AC, Brasil AS, Suzuki L, Leite C, Falzoni R, Tannuri U, Poplawski AB, Janowski KM, Kim CA, Messiaen LM. Multiple, diffuse schwannomas in a RASopathy phenotype patient with germline KRAS mutation: a causal relationship? Clin Genet 2011; 81:595-7. [DOI: 10.1111/j.1399-0004.2011.01764.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Abstract
Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.
Collapse
Affiliation(s)
- Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
21
|
Carcavilla A, Pinto I, Muñoz-Pacheco R, Barrio R, Martin-Frías M, Ezquieta B. LEOPARD syndrome (PTPN11, T468M) in three boys fulfilling neurofibromatosis type 1 clinical criteria. Eur J Pediatr 2011; 170:1069-74. [PMID: 21365175 DOI: 10.1007/s00431-011-1418-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/03/2011] [Indexed: 01/20/2023]
Abstract
Noonan syndrome (NS) and neurofibromatosis type 1 (NF1) are well-defined entities. The association of both disorders is called neurofibromatosis-Noonan syndrome (NFNS), a disorder that has been related to mutations in the NF1 gene. Both NS and NFNS display phenotypic overlapping with LEOPARD syndrome (LS), and differential diagnosis between these two entities often represents a challenge for clinicians. We report on three patients (two brothers and a not-related patient) diagnosed as having NFNS. They fulfilled NF1 diagnostic criteria and had some features of NS. The three of them had hypertophic cardiomyopathy while neurofibromas, Lisch nodules, and unidentified bright objects on MRI were absent. PTPN11 gene assays revealed a T468M mutation, typical of LS. Thorough clinical examinations of the patients revealed multiple lentigines, which were considered to be freckling in the initial evaluation. We conclude that NF1 clinical criteria should be used with caution in patients with features of NS. Patients with hyperpigmented cutaneous spots associated with cardiac anomalies, even if fulfilling the minimal NF1 criteria for diagnosis, should be strongly considered for LS diagnosis.
Collapse
|
22
|
Gripp KW, Hopkins E, Sol-Church K, Stabley DL, Axelrad ME, Doyle D, Dobyns WB, Hudson C, Johnson J, Tenconi R, Graham GE, Sousa AB, Heller R, Piccione M, Corsello G, Herman GE, Tartaglia M, Lin AE. Phenotypic analysis of individuals with Costello syndrome due to HRAS p.G13C. Am J Med Genet A 2011; 155A:706-16. [PMID: 21438134 PMCID: PMC4166651 DOI: 10.1002/ajmg.a.33884] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/14/2010] [Indexed: 11/06/2022]
Abstract
Costello syndrome is characterized by severe failure-to-thrive, short stature, cardiac abnormalities (heart defects, tachyarrhythmia, and hypertrophic cardiomyopathy (HCM)), distinctive facial features, a predisposition to papillomata and malignant tumors, postnatal cerebellar overgrowth resulting in Chiari 1 malformation, and cognitive disabilities. De novo germline mutations in the proto-oncogene HRAS cause Costello syndrome. Most mutations affect the glycine residues in position 12 or 13, and more than 80% of patients share p.G12S. To test the hypothesis that subtle genotype-phenotype differences exist, we report the first cohort comparison between 12 Costello syndrome individuals with p.G13C and individuals with p.G12S. The individuals with p.G13C had many typical findings including polyhydramnios, failure-to-thrive, HCM, macrocephaly with posterior fossa crowding, and developmental delay. Subjectively, their facial features were less coarse. Statistically significant differences included the absence of multifocal atrial tachycardia (P-value = 0.033), ulnar deviation of the wrist (P < 0.001) and papillomata (P = 0.003), and fewer neurosurgical procedures (P = 0.024). Fewer individuals with p.G13C had short stature (height below -2 SD) without use of growth hormone (P < 0.001). The noteworthy absence of malignant tumors did not reach statistical significance. Novel ectodermal findings were noted in individuals with p.G13C, including loose anagen hair resulting in easily pluckable hair with a matted appearance, different from the tight curls typical for most Costello syndrome individuals. Unusually long eye lashes requiring trimming are a novel finding we termed dolichocilia. These distinctive ectodermal findings suggest a cell type specific effect of this particular mutation. Additional patients are needed to validate these findings.
Collapse
Affiliation(s)
- Karen W Gripp
- Division of Medical Genetics, A. I. duPont Hospital for Children, Wilmington, Delaware, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Janosi L, Gorfe AA. Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras. Biophys J 2011; 99:3666-74. [PMID: 21112291 DOI: 10.1016/j.bpj.2010.10.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 12/19/2022] Open
Abstract
The Kras protein, a member of the Ras family of bio-switches that are frequently mutated in cancer and developmental disorders, becomes functional when anchored to the inner surface of the plasma membrane. It is well known that membrane attachment involves the farnesylated and poylcationic C-terminus of the protein. However, little is known about the structure of the complex and the specific protein-lipid interactions that are responsible for the binding. On the basis of data from extensive (>0.55 μs) molecular dynamics simulations of multiple Kras anchors in bilayers of POPC/POPG lipids (4:1 ratio), we show that, as expected, Kras is tethered to the bilayer surface by specific lysine-POPG salt bridges and by nonspecific farnesyl-phospholipid van der Waals interactions. Unexpectedly, however, only the C-terminal five of the eight Kras Lys side chains were found to directly interact with the bilayer, with the N-terminal ones staying in water. Furthermore, the positively charged Kras anchors pull the negatively charged POPG lipids together, leading to the clustering of the POPG lipids around the proteins. This selective Kras-POPG interaction is directly related to the specific geometry of the backbone, which exists in two major conformational states: 1), a stable native-like ensemble of structures characterized by an extended geometry with a pseudohelical turn; and 2), less stable nonnative ensembles of conformers characterized by severely bent geometries. Finally, although the interface-bound anchor has little effect on the overall structure of the bilayer, it induces local thinning within a persistence length of ∼12 Å. Our results thus go beyond documenting how Kras attaches to a mixed bilayer of charged and neutral lipids; they highlight a fascinating process of protein-induced lipid sorting coupled with the (re)shaping of a surface-bound protein by the host lipids.
Collapse
Affiliation(s)
- Lorant Janosi
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
24
|
Li C, Jones PM, Persaud SJ. Role of the endocannabinoid system in food intake, energy homeostasis and regulation of the endocrine pancreas. Pharmacol Ther 2011; 129:307-20. [DOI: 10.1016/j.pharmthera.2010.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 01/26/2023]
|
25
|
Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, Wittinghofer A, Ahmadian MR. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum Mutat 2011; 32:33-43. [PMID: 20949621 PMCID: PMC3117284 DOI: 10.1002/humu.21377] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/05/2010] [Indexed: 02/06/2023]
Abstract
The KRAS gene is the most common locus for somatic gain-of-function mutations in human cancer. Germline KRAS mutations were shown recently to be associated with developmental disorders, including Noonan syndrome (NS), cardio-facio-cutaneous syndrome (CFCS), and Costello syndrome (CS). The molecular basis of this broad phenotypic variability has in part remained elusive so far. Here, we comprehensively analyzed the biochemical and structural features of ten germline KRAS mutations using physical and cellular biochemistry. According to their distinct biochemical and structural alterations, the mutants can be grouped into five distinct classes, four of which markedly differ from RAS oncoproteins. Investigated functional alterations comprise the enhancement of intrinsic and guanine nucleotide exchange factor (GEF) catalyzed nucleotide exchange, which is alternatively accompanied by an impaired GTPase-activating protein (GAP) stimulated GTP hydrolysis, an overall loss of functional properties, and a deficiency in effector interaction. In conclusion, our data underscore the important role of RAS in the pathogenesis of the group of related disorders including NS, CFCS, and CS, and provide clues to the high phenotypic variability of patients with germline KRAS mutations.
Collapse
Affiliation(s)
- Lothar Gremer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Max-Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Torsten Merbitz-Zahradnik
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Max-Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Max-Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Ion C. Cirstea
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Alfred Wittinghofer
- Max-Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
26
|
|
27
|
Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7:22. [PMID: 19737390 PMCID: PMC2747914 DOI: 10.1186/1478-811x-7-22] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/08/2009] [Indexed: 01/13/2023] Open
Abstract
Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease. In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.
Collapse
Affiliation(s)
- Franziska U Wöhrle
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Germany.
| | | | | |
Collapse
|
28
|
Zhang W, Chan RJ, Chen H, Yang Z, He Y, Zhang X, Luo Y, Yin F, Moh A, Miller LC, Payne RM, Zhang ZY, Fu XY, Shou W. Negative regulation of Stat3 by activating PTPN11 mutants contributes to the pathogenesis of Noonan syndrome and juvenile myelomonocytic leukemia. J Biol Chem 2009; 284:22353-22363. [PMID: 19509418 PMCID: PMC2755958 DOI: 10.1074/jbc.m109.020495] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/07/2009] [Indexed: 01/14/2023] Open
Abstract
Noonan syndrome (NS) is an autosomal dominant congenital disorder characterized by multiple birth defects including heart defects and myeloproliferative disease (MPD). Approximately 50% of NS patients have germline gain-of-function mutations in PTPN11, which encodes the protein-tyrosine phosphatase, Shp2. We provide evidence that conditional ablation of Stat3 in hematopoietic cells and cardiac valvular tissues leads to myeloid progenitor hyperplasia and pulmonary stenosis due to the leaflet thickening, respectively. Consistently, STAT3 activation is significantly compromised in peripheral blood cells from NS patients bearing Shp2-activating mutations. Biochemical and functional analyses demonstrate that activated Shp2 is able to down-regulate Tyr(P)-Stat3 and that constitutively active Stat3 rescues activating mutant Shp2-induced granulocyte-macrophage colony-stimulating factor hypersensitivity in bone marrow cells. Collectively, our work demonstrates that Stat3 is an essential signaling component potentially contributing to the pathogenesis of NS and juvenile myelomonocytic leukemia caused by PTPN11 gain-of-function mutations.
Collapse
Affiliation(s)
- Wenjun Zhang
- From the Herman B. Wells Center for Pediatric Research
- Riley Heart Research Center
- the Departments of Microbiology and Immunology and
| | - Rebecca J. Chan
- From the Herman B. Wells Center for Pediatric Research
- Section of Neonatology, Department of Pediatrics, and
| | - Hanying Chen
- From the Herman B. Wells Center for Pediatric Research
| | - Zhenyun Yang
- Section of Neonatology, Department of Pediatrics, and
| | - Yantao He
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xian Zhang
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yong Luo
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Fuqing Yin
- Section of Neonatology, Department of Pediatrics, and
| | - Akira Moh
- the Departments of Microbiology and Immunology and
| | | | - R. Mark Payne
- From the Herman B. Wells Center for Pediatric Research
- Riley Heart Research Center
| | - Zhong-Yin Zhang
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xin-Yuan Fu
- the Departments of Microbiology and Immunology and
| | - Weinian Shou
- From the Herman B. Wells Center for Pediatric Research
- Riley Heart Research Center
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
29
|
Lo FS, Lin JL, Kuo MT, Chiu PC, Shu SG, Chao MC, Lee YJ, Lin SP. Noonan syndrome caused by germline KRAS mutation in Taiwan: report of two patients and a review of the literature. Eur J Pediatr 2009; 168:919-23. [PMID: 18958496 DOI: 10.1007/s00431-008-0858-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/09/2008] [Indexed: 11/30/2022]
Abstract
Noonan syndrome is a highly variable disorder that has significant phenotypic overlap with Costello syndrome and cardio-facio-cutaneous syndrome. KRAS mutation was the second reported gene for Noonan syndrome. This study screened for mutation of the KRAS gene in 57 unrelated ethnic Chinese children suffering from Noonan syndrome without PTPN11 gene mutation in Taiwan. This work only identified two patients with different missense mutations (c.40G>A, p.Val14Ile; c.108A>G, p.Ile36Met) in the exon 1 of KRAS gene. This study also analyzed the characteristics of 34 reported cases involving KRAS mutations in the literature. All these patients presented with variable phenotypes, including Noonan syndrome (n = 19), cardio-facio-cutaneous syndrome (n = 7), Costello syndrome (n = 6), and Noonan/cardio-facio-cutaneous syndrome (n = 1). The phenotype of KRAS mutations was generally severe, including short stature, mental retardation, heart defects, etc. In conclusion, this investigation demonstrates that KRAS mutations are the cause in a minority of cases of Chinese patients with Noonan syndrome in Taiwan.
Collapse
Affiliation(s)
- Fu-Sung Lo
- Department of Pediatrics, Division of Pediatric Endocrinology, Chang Gung Memorial Hospital, Chung Gung University College of Medicine, Kweishan, Taoyuan, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Thiel C, Wilken M, Zenker M, Sticht H, Fahsold R, Gusek-Schneider GC, Rauch A. Independent NF1 and PTPN11 mutations in a family with neurofibromatosis-Noonan syndrome. Am J Med Genet A 2009; 149A:1263-7. [PMID: 19449407 DOI: 10.1002/ajmg.a.32837] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurofibromatosis-Noonan syndrome (NFNS), an entity which combines both features of Noonan syndrome (NS) and neurofibromatosis type 1 (NF1), was etiologically unresolved until recent reports demonstrated NF1 mutations in the majority of patients with NFNS. The phenotypic overlap was explained by the involvement of the Ras pathway in both disorders, and, accordingly, clustering of the NF1 mutations in the GTPase-activating protein (GAP) domain of neurofibromin was observed in individuals with NFNS. We report on an 18-month-old girl with typical findings suggestive of NS in combination with multiple café-au-lait spots and bilateral optic gliomas suggestive of NF1. The patient was found to carry a de novo PTPN11 mutation p.T2I as well as the maternally inherited NF1 mutation c.4661+1G>C. Her otherwise healthy mother and brother, who also had the NF1 mutation, showed few café-au-lait spots as the only sign of neurofibromatosis. Since our patient's unique NF1 mutation results in skipping of exon 27a and thus involves the same region, Gap-related domain, that had been shown to be associated with NFNS, her phenotype could have been misleadingly attributed to the NF1 mutation only. Contrarily, absence of both cutaneous neurofibromas and NS features in her relatives with the same NF1 mutation, suggests that the index patient's typical NFNS phenotype is caused by an additive effect of mutations in both NF1 and PTPN11. In contrast to previous findings, we speculate that absence of cutaneous neurofibromas is not solely associated with the recurrent 3-bp in-frame deletion in exon 17.
Collapse
Affiliation(s)
- Christian Thiel
- Insitute of Human Genetics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Neumann TE, Allanson J, Kavamura I, Kerr B, Neri G, Noonan J, Cordeddu V, Gibson K, Tzschach A, Krüger G, Hoeltzenbein M, Goecke TO, Kehl HG, Albrecht B, Luczak K, Sasiadek MM, Musante L, Laurie R, Peters H, Tartaglia M, Zenker M, Kalscheuer V. Multiple giant cell lesions in patients with Noonan syndrome and cardio-facio-cutaneous syndrome. Eur J Hum Genet 2009; 17:420-5. [PMID: 18854871 PMCID: PMC2986220 DOI: 10.1038/ejhg.2008.188] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/08/2008] [Accepted: 08/27/2008] [Indexed: 01/13/2023] Open
Abstract
Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFCS) are related developmental disorders caused by mutations in genes encoding various components of the RAS-MAPK signaling cascade. NS is associated with mutations in the genes PTPN11, SOS1, RAF1, or KRAS, whereas CFCS can be caused by mutations in BRAF, MEK1, MEK2, or KRAS. The NS phenotype is rarely accompanied by multiple giant cell lesions (MGCL) of the jaw (Noonan-like/MGCL syndrome (NL/MGCLS)). PTPN11 mutations are the only genetic abnormalities reported so far in some patients with NL/MGCLS and in one individual with LEOPARD syndrome and MGCL. In a cohort of 75 NS patients previously tested negative for mutations in PTPN11 and KRAS, we detected SOS1 mutations in 11 individuals, four of whom had MGCL. To explore further the relevance of aberrant RAS-MAPK signaling in syndromic MGCL, we analyzed the established genes causing CFCS in three subjects with MGCL associated with a phenotype fitting CFCS. Mutations in BRAF or MEK1 were identified in these patients. All mutations detected in these seven patients with syndromic MGCL had previously been described in NS or CFCS without apparent MGCL. This study demonstrates that MGCL may occur in NS and CFCS with various underlying genetic alterations and no obvious genotype-phenotype correlation. This suggests that dysregulation of the RAS-MAPK pathway represents the common and basic molecular event predisposing to giant cell lesion formation in patients with NS and CFCS rather than specific mutation effects.
Collapse
Affiliation(s)
- Thomas E Neumann
- Department of Human Genetics, University Hospital Münster, Münster, Germany
| | - Judith Allanson
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Ines Kavamura
- Medical Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Bronwyn Kerr
- Royal Manchester Children's Hospital, Manchester, UK
| | - Giovanni Neri
- Instituto di Genetica Medica, Universita Cattolica, Rome, Italy
| | - Jacqueline Noonan
- Division of Cardiology, Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Viviana Cordeddu
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome, Italy
| | - Kate Gibson
- Genetic Health Queensland, Royal Children's Hospital, Herston, Queensland, Australia
| | | | - Gabriele Krüger
- Medical Genetics Unit, Department of Pediatrics, University Hospital Rostock, Rostock, Germany
| | | | - Timm O Goecke
- Department of Human Genetics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hans Gerd Kehl
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Beate Albrecht
- Department of Human Genetics, University Hospital Essen, Essen, Germany
| | - Klaudiusz Luczak
- Department of Maxilla-Facial Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Maria M Sasiadek
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Luciana Musante
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rohan Laurie
- Mater Pathology Services, South Brisbane, Queensland, Australia
| | - Hartmut Peters
- Department of Medical Genetics, University Hospital Charité, Berlin, Germany
| | - Marco Tartaglia
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vera Kalscheuer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
32
|
Scholl FA, Dumesic PA, Barragan DI, Charron J, Khavari PA. Mek1/2 gene dosage determines tissue response to oncogenic Ras signaling in the skin. Oncogene 2009; 28:1485-95. [PMID: 19198628 PMCID: PMC3084589 DOI: 10.1038/onc.2008.459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/09/2008] [Accepted: 11/01/2008] [Indexed: 11/08/2022]
Abstract
Ras genes are commonly mutated in human cancers of the skin and other tissues. Oncogenic Ras signals through multiple effector pathways, including the Erk1/2 mitogen-activated protein kinase (MAPK), phosphatidylinositol-3 kinase (PI3K) and the Ral guanine nucleotide exchange factor (RalGEF) cascades. In epidermis, the activation of oncogenic Ras induces hyperplasia and inhibits differentiation, features characteristic of squamous cell carcinoma. The downstream effector pathways required for oncogenic Ras effects in epidermis, however, are undefined. In this study, we investigated the direct contribution of Mek1 and Mek2 MAPKKs to oncogenic Ras signaling. The response of murine epidermis to conditionally active oncogenic Ras was unimpaired by deletion of either Mek1 or Mek2 MAPKKs individually. In contrast, Ras effects were entirely abolished by combined deletion of all Mek1/2 alleles, whereas epidermis retaining only one allele of either Mek1 or Mek2 showed intermediate responsiveness. Thus, the effects of oncogenic Ras on proliferation and differentiation in skin show a gene dosage-dependent requirement for the Erk1/2 MAPK cascade at the level of Mek1/2 MAPKKs.
Collapse
Affiliation(s)
- F A Scholl
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - P A Dumesic
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - D I Barragan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - J Charron
- Centre de recherche en cancérologie de l'Université Laval, CHUQ, Hotel-Dieu de Québec, Québec, QC G1R 2J6, Canada
| | - P A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
33
|
Cesarini L, Alfieri P, Pantaleoni F, Vasta I, Cerutti M, Petrangeli V, Mariotti P, Leoni C, Ricci D, Vicari S, Selicorni A, Tartaglia M, Mercuri E, Zampino G. Cognitive profile of disorders associated with dysregulation of the RAS/MAPK signaling cascade. Am J Med Genet A 2009; 149A:140-6. [PMID: 19133693 DOI: 10.1002/ajmg.a.32488] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mutations in genes coding for transducers participating in the RAS/MAPK pathway have been identified as the molecular cause underlying a group of clinically related developmental disorders with cognitive deficits of variable severity. To determine the spectrum of cognitive defects associated with dysregulation of this signal cascade, we studied the profile of cognitive abilities in patients with mutations affecting the PTPN11, SOS1, HRAS, KRAS, BRAF, RAF1, and MEK1 genes and phenotype-genotype correlations. Our findings support the observation that heterogeneity in cognitive abilities can be at least partially ascribed to the individual affected genes and type of mutation involved. While mutations affecting transducers upstream of RAS were less frequently associated with mental retardation, mutations in downstream components of the pathway were generally associated with a more severe cognitive impairment. Among patients with a heterozygous PTPN11 mutation, the T468M substitution was associated with a mean IQ significantly higher compared to that of individuals carrying the N308D change. Our study provides insights on the range of cognitive abilities in patients with gene mutations causing dysregulation of RAS signaling suggesting that the presence and severity of cognitive involvement can be predicted in part by the gene involved.
Collapse
Affiliation(s)
- Laura Cesarini
- Pediatric Neurology Unit, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Germline mutations in PTPN11 gene cause Noonan syndrome and the clinically similar LEOPARD syndrome (LS). LS is a rare congenital developmental disorder characterized by multiple lentigines, cardiac abnormalities, facial dysmorphism, retardation of growth, and deafness. Mutations in exons 7 and 12 of the PTPN11 gene can be identified in nearly 90% of patients with LS. PTPN11 gene encodes for an ubiquitously expressed protein tyrosine phosphatase SHP-2 involved in a variety of intracellular signaling processes in development and hematopoiesis. Somatic PTPN11 mutations contribute to leukemogenesis in children with hematologic malignancies including juvenile myelomonocytic leukemia, acute lymphoblastic leukemia, acute myeloid leukemia, and myelodysplasia. Two cases of leukemia (acute myeloid leukemia) have been reported in children with LS. The authors describe for the first time a girl with genetically confirmed LEOPARD syndrome presenting with common acute lymphoblastic leukemia.
Collapse
|
35
|
Cole DN, Carlson JA, Wilson VL. Human germline and somatic cells have similar TP53 and Kirsten-RAS gene single base mutation frequencies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:417-425. [PMID: 18418864 DOI: 10.1002/em.20390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding the risk of offspring inheriting rare mutations, and the frequencies at which these mutations are present in germ cells can be explored with direct analysis of human semen samples. The present work utilized the ultrasensitive PCR/RE/LCR mutation assay to detect, identify and determine the prevalence single base substitution mutations in the TP53 and KRAS genes in human sperm. Four disease-associated base sites in the TP53 and KRAS genes, three of which are known to be heritable to live, term offspring, were studied in sperm from eleven human semen specimens. Eight of the specimens (73%) displayed single base substitution mutations, and 30% of all base sites tested were found to harbor mutations ranging in prevalence from 1 x 10(-6) to 1 x 10(-5) wild type sperm. These germ cell single base substitution mutation frequencies are very similar to somatic tissue TP53 and KRAS mutation frequencies. Equivalent single base mutation frequencies in both germ and somatic cells suggest that there is no unusual selection or mutation protective process operating premeiotically in the germline, and that a selection bias at the level of sperm viability, conception, early cleavage, implantation, and/or embryogenesis operates to exclude the majority of these TP53 mutations and all of the activating KRAS mutations.
Collapse
Affiliation(s)
- Derek N Cole
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
36
|
Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, Toedt G, Wittmann A, Kratz C, Olbrich H, Ahmadi R, Thieme B, Joos S, Radlwimmer B, Kulozik A, Pietsch T, Herold-Mende C, Gnekow A, Reifenberger G, Korshunov A, Scheurlen W, Omran H, Lichter P. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008; 118:1739-49. [PMID: 18398503 DOI: 10.1172/jci33656] [Citation(s) in RCA: 375] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 02/13/2008] [Indexed: 12/30/2022] Open
Abstract
The molecular pathogenesis of pediatric astrocytomas is still poorly understood. To further understand the genetic abnormalities associated with these tumors, we performed a genome-wide analysis of DNA copy number aberrations in pediatric low-grade astrocytomas by using array-based comparative genomic hybridization. Duplication of the BRAF protooncogene was the most frequent genomic aberration, and tumors with BRAF duplication showed significantly increased mRNA levels of BRAF and a downstream target, CCND1, as compared with tumors without duplication. Furthermore, denaturing HPLC showed that activating BRAF mutations were detected in some of the tumors without BRAF duplication. Similarly, a marked proportion of low-grade astrocytomas from adult patients also had BRAF duplication. Both the stable silencing of BRAF through shRNA lentiviral transduction and pharmacological inhibition of MEK1/2, the immediate downstream phosphorylation target of BRAF, blocked the proliferation and arrested the growth of cultured tumor cells derived from low-grade gliomas. Our findings implicate aberrant activation of the MAPK pathway due to gene duplication or mutation of BRAF as a molecular mechanism of pathogenesis in low-grade astrocytomas and suggest inhibition of the MAPK pathway as a potential treatment.
Collapse
Affiliation(s)
- Stefan Pfister
- Division Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Owen C, Barnett M, Fitzgibbon J. Familial myelodysplasia and acute myeloid leukaemia--a review. Br J Haematol 2008; 140:123-32. [PMID: 18173751 DOI: 10.1111/j.1365-2141.2007.06909.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Familial occurrence of myelodysplasia (MDS) and/or acute myeloid leukaemia (AML) is rare but can provide a useful resource for the investigation of predisposing mutations in these myeloid malignancies. To date, examination of families with MDS/AML has lead to the detection of two culprit genes, RUNX1 and CEBPA. Germline mutations in RUNX1 result in familial platelet disorder with propensity to myeloid malignancy and inherited mutations of CEBPA predispose to AML. Unfortunately, the genetic cause remains obscure in most other reported pedigrees. Further insight into the molecular mechanisms of familial MDS/AML will require awareness by clinicians of new patients with relevant family histories.
Collapse
Affiliation(s)
- Carolyn Owen
- Centre for Medical Oncology, Barts & the London School of Medicine & Dentistry, London, UK.
| | | | | |
Collapse
|
38
|
Niemeyer CM, Kratz CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br J Haematol 2008; 140:610-24. [DOI: 10.1111/j.1365-2141.2007.06958.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Rodriguez-Viciana P, Rauen KA. Biochemical characterization of novel germline BRAF and MEK mutations in cardio-facio-cutaneous syndrome. Methods Enzymol 2008; 438:277-89. [PMID: 18413255 DOI: 10.1016/s0076-6879(07)38019-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardio-facio-cutaneous syndrome (CFC) is a sporadic, complex developmental disorder involving characteristic craniofacial features, cardiac defects, ectodermal abnormalities, growth deficiency, hypotonia, and developmental delay. CFC is caused by alteration of activity through the mitogen-activated protein kinase (MAPK) pathway due to heterogeneous de novo germline mutations in B-Raf mutant proteins, MEK1 and MEK2. Approximately 75% of individuals with CFC have mutations in BRAF. In vitro functional studies demonstrate that many of these mutations confer increase activity upon the mutant protein as compared to the wildtype protein. However, as is seen cancer, some of the B-Raf mutant proteins are kinase impaired. Western blot analyses corroborate kinase assays as determined by mutant proteins phosphorylating downstream effectors MEK and ERK. Approximately 25% of individuals with CFC have mutations in either MEK1 or MEK2 that lead to increased MEK kinase activity as judged by increased phosphorylation of its downstream effector ERK. Unlike BRAF, no somatic mutations have ever been identified in MEK genes. The identification of novel germline BRAF and MEK mutations in CFC will help understand the pathophysiology of this syndrome. Furthermore, it will also provide insight to the normal function of B-Raf and MEK, and contribute to the knowledge of the role of the MAPK pathway in cancer. Since the MAPK pathway has been studied intensively in the context of cancer, numerous therapeutics that specifically target this pathway may merit investigation in this population of patients.
Collapse
Affiliation(s)
- Pablo Rodriguez-Viciana
- UCSF Helen Diller Family, Comprehensive Cancer Center and Cancer Research Institute, University of California, San Francisco, California, USA
| | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Costello syndrome is a rare congenital disorder affecting multiple organ systems, encompassing severe failure to thrive, cardiac anomalies including hypertrophic cardiomyopathy and atrial tachycardia, tumor predisposition, and cognitive impairment. Costello syndrome shares findings with cardio-facio-cutaneous syndrome and the diagnosis can be challenging. The discovery of gene mutations underlying these and other closely related disorders allows for molecular confirmation of a clinical diagnosis. RECENT FINDINGS The identification of germline HRAS mutations in Costello syndrome, and mutations in BRAF, MEK1 and MEK2 in cardio-facio-cutaneous syndrome, uncovered the biologic mechanism for the shared phenotypic findings based on the close interaction of the gene products within the Ras-mitogen-activated protein kinase pathway. Changes in other genes encoding mitogen-activated protein kinase pathway proteins are responsible for Noonan syndrome and the KRAS mutation phenotype. SUMMARY Costello syndrome is caused by heterozygous de-novo point mutations in HRAS, resulting in increased activation of the mitogen-activated protein kinase pathway. Despite their overlapping presentation, Costello syndrome and its related disorders are distinct, and the phenotypes become more distinctive with age. Molecular testing is available and a clinical diagnosis should be reconsidered if it is inconsistent with the molecular result.
Collapse
Affiliation(s)
- Emilio Quezada
- Division of Medical Genetics, A.I. duPont Hospital for Children, Wilmington, Delaware 19803, USA
| | | |
Collapse
|
41
|
Abstract
Ras GTPases mediate a wide variety of cellular processes by converting a multitude of extracellular stimuli into specific biological responses including proliferation, differentiation and survival. In mammalian cells, three ras genes encode four Ras isoforms (H-Ras, K-Ras4A, K-Ras4B and N-Ras) that are highly homologous but functionally distinct. Differences between the isoforms, including their post-translational modifications and intracellular sorting, mean that Ras has emerged as an important model system of compartmentalised signalling and membrane biology. Ras isoforms in different subcellular locations are proposed to recruit distinct upstream and downstream accessory proteins and activate multiple signalling pathways. Here, we summarise data relating to isoform-specific signalling, its role in disease and the mechanisms promoting compartmentalised signalling. Further understanding of this field will reveal the role of Ras signalling in development, cellular homeostasis and cancer and may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- J. Omerovic
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - A. J. Laude
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - I. A. Prior
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| |
Collapse
|
42
|
Karow A, Steinemann D, Göhring G, Hasle H, Greiner J, Harila-Saari A, Flotho C, Zenker M, Schlegelberger B, Niemeyer CM, Kratz CP. Clonal duplication of a germline PTPN11 mutation due to acquired uniparental disomy in acute lymphoblastic leukemia blasts from a patient with Noonan syndrome. Leukemia 2007; 21:1303-5. [PMID: 17361219 DOI: 10.1038/sj.leu.2404651] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|