1
|
Fu S, Xie B, Song X. Neurological Mechanisms Exploration and Therapeutic Targets in Segmental Vitiligo Accompanied by White Hair. Pigment Cell Melanoma Res 2025; 38:e70020. [PMID: 40252009 DOI: 10.1111/pcmr.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/21/2025]
Abstract
Vitiligo is the most common skin depigmentation disease, affecting 0.1%-2% of people in the world. 3.5%-20.5% of segmental patients account for the total number of vitiligo patients. It has been clinically observed that segmental vitiligo patients are more likely to generate white hair, which may be related to neuroendocrine factors. The color of human skin and hair is affected by the number and functional status of melanocytes. Vitiligo affects patients' physical and mental health due to the shame it causes from the white patches and hair. This article reviews the underlying mechanisms of segmental vitiligo with white hair based on skin and hair follicle melanocytes. The article attempts to propose possible targets for the treatment of this disease.
Collapse
Affiliation(s)
- Shiqi Fu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Yang H, Wang YY, Chang W, Zhai M, Du WJ, Jiang W, Xiang YW, Qin G, Yu J, Gong Y, Han Q. Primary sensory neuron-derived miR-let-7b underlies stress-elicited psoriasis. Brain Behav Immun 2025; 123:997-1010. [PMID: 39510418 DOI: 10.1016/j.bbi.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/09/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Psoriasis, a chronic autoimmune skin condition with significant global morbidity, badly impairs patients' quality of life. Stress has been identified as a prominent trigger for psoriasis, and effectively management of stress can ameliorate its pathological manifestations. However, the precise mechanisms by which stress influences psoriasis remain elusive. In this study, we found that mice subjected to chronic social defeat stress (CSDS) exhibit severer imiquimod (IMQ)-induced psoriasis with increased epidermal scaling, epidermal hyperplasia, number of epidermal ridges, itch, and skin inflammation than control mice. Mechanistic study reveals that CSDS leads to an elevated release of miR-let-7b, an endogenous ligand of Toll-like receptor 7 (TLR7), from the peripheral terminal of dorsal root ganglia (DRG) neurons into the skin. This process can stimulate skin-resident macrophages to release cytokines (such as IL-6 and TNF-a) and chemokines (such as MCP-1), subsequently promoting the recruitment of additional macrophages into the skin. Notably, the specific blockade of miR-let-7b in DRG neurons effectively relieve stress-induced exacerbations of psoriasis. Furthermore, intradermal injection of synthetic miR-let-7b can induce a psoriasis-like phenotype in wildtype mice, a phenomenon that can be countered by the application of a TLR7 antagonist. Additionally, microfluidic chamber coculture assays demonstrated that miR-let-7b released by DRG neurons activates macrophages via TLR7 expressed on these immune cells. Totally, this study found that stress-induced upregulation and release of miR-let-7b from DRG neurons stimulates macrophages to secrete more inflammatory cytokines and chemokines, thereby exacerbating skin inflammation and the psoriatic phenotype. These findings provide a potential therapeutic strategy targeting the miR-let-7b/TLR7 pathway to alleviate stress-induced exacerbation of psoriasis.
Collapse
Affiliation(s)
- Huan Yang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yun-Yun Wang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengying Zhai
- Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wan-Jie Du
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wencheng Jiang
- Traditional Chinese Medicine Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Qingjian Han
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Cao C, Lei J, Zheng Y, Xu A, Zhou M. The brain-skin axis in vitiligo. Arch Dermatol Res 2024; 316:607. [PMID: 39240376 DOI: 10.1007/s00403-024-03362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Vitiligo is an acquired autoimmune skin disease characterized by patchy depigmentation of the skin, often accompanied by white hair. The aetiology of vitiligo is complex and difficult to cure, and its disfiguring appearance significantly impacts patients' mental and physical health. Psychological stress is a major factor in inducing and exacerbating vitiligo, as well as affecting its treatment efficacy, though the specific mechanisms remain unclear. Increasing research on the brain-skin axis in skin immunity suggests that psychological stress can influence local skin immunity through this axis, which may play a crucial role in the pathogenesis of vitiligo. This review focuses on the role of brain-skin axis in the pathogenesis of vitiligo, and explores the possible mechanism of brain-skin axis mediating the pathogenesis of vitiligo from the aspects of sympathetic nervous system, hypothalamic-pituitary-adrenal (HPA) axis and hormones and neuropeptides, aiming to provide the necessary theoretical basis for psychological intervention in the prevention and treatment of vitiligo.
Collapse
Affiliation(s)
- Cheng Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jindi Lei
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujie Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai'e Xu
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Bertolini M, Gherardini J, Chéret J, Alam M, Sulk M, Botchkareva NV, Biro T, Funk W, Grieshaber F, Paus R. Mechanical epilation exerts complex biological effects on human hair follicles and perifollicular skin: An ex vivo study approach. Int J Cosmet Sci 2024; 46:175-198. [PMID: 37923568 DOI: 10.1111/ics.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Electrical epilation of unwanted hair is a widely used hair removal method, but it is largely unknown how this affects the biology of human hair follicles (HF) and perifollicular skin. Here, we have begun to explore how mechanical epilation changes selected key biological read-out parameters ex vivo within and around the pilosebaceous unit. METHODS Human full-thickness scalp skin samples were epilated ex vivo using an electro-mechanical device, organ-cultured for up to 6 days in serum-free, supplemented medium, and assessed at different time points by quantitative (immuno-)histomorphometry for selected relevant read-out parameters in epilated and sham-epilated control samples. RESULTS Epilation removed most of the hair shafts, often together with fragments of the outer and inner root sheath and hair matrix. This was associated with persistent focal thinning of the HF basal membrane, decreased melanin content of the residual HF epithelium, and increased HF keratinocyte apoptosis, including in the bulge, yet without affecting the number of cytokeratin 15+ HF epithelial stem cells. Sebocyte apoptosis in the peripheral zone was increased, albeit without visibly altering sebum production. Epilation transiently perturbed HF immune privilege, and increased the expression of ICAM-1 in the bulge and bulb mesenchyme, and the number of perifollicular MHC class II+ cells as well as mast cells around the distal epithelium and promoted mast cell degranulation around the suprabulbar and bulbar area. Moreover, compared to controls, several key players of neurogenic skin inflammation, itch, and/or thermosensation (TRPV1, TRPA1, NGF, and NKR1) were differentially expressed in post-epilation skin. CONCLUSION These data generated in denervated, organ-cultured human scalp skin demonstrate that epilation-induced mechanical HF trauma elicits surprisingly complex biological responses. These may contribute to the delayed re-growth of thinner and lighter hair shafts post-epilation and temporary post-epilation discomfort. Our findings also provide pointers regarding the development of topically applicable agents that minimize undesirable sequelae of epilation.
Collapse
Affiliation(s)
- Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Jennifer Gherardini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Majid Alam
- Department of Dermatology and Venereology, Qatar Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Mathias Sulk
- Department of Dermatology, University of Münster, Münster, Germany
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Tamas Biro
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, Munich, Germany
| | | | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
5
|
Keller JJ. Cutaneous neuropeptides: the missing link between psychological stress and chronic inflammatory skin disease? Arch Dermatol Res 2023; 315:1875-1881. [PMID: 36700961 DOI: 10.1007/s00403-023-02542-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
A "brain-skin" connection has been long been observed between chronic stress and chronic inflammatory skin disease including urticaria, psoriasis, atopic dermatitis, and prurigo nodularis. The relationship appears to be bidirectional. Chronic psychological stress has been shown to sustain hyperactivity of the sympathetic branch of the autonomic nervous system. Chronic stress is proinflammatory and in the context of several dermatologic disorders may be associated with an increase in dermal nerve fiber density, mast cells, nerve growth factor and calcitonin-gene-related peptide (CGRP). Furthermore, CGRP elicits a TH2-polarized T-cell response that is a hallmark of chronic pruritic conditions such as atopic dermatitis and prurigo nodularis. This TH2 response contributes directly to acute pruritus as well as the sensitization of cutaneous sensory neurons that are critical for chronic pruritus. Prurigo nodularis is a debilitating skin disorder featuring prominent nerve structural, neuropeptide, and TH2 cytokine aberrations that is a model deserving of future study.
Collapse
Affiliation(s)
- Jesse Joel Keller
- Department of Dermatology, Oregon Health & Science University, 3303 S Bond Ave CH16D, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Hanč P, Messou MA, Wang Y, von Andrian UH. Control of myeloid cell functions by nociceptors. Front Immunol 2023; 14:1127571. [PMID: 37006298 PMCID: PMC10064072 DOI: 10.3389/fimmu.2023.1127571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
The immune system has evolved to protect the host from infectious agents, parasites, and tumor growth, and to ensure the maintenance of homeostasis. Similarly, the primary function of the somatosensory branch of the peripheral nervous system is to collect and interpret sensory information about the environment, allowing the organism to react to or avoid situations that could otherwise have deleterious effects. Consequently, a teleological argument can be made that it is of advantage for the two systems to cooperate and form an “integrated defense system” that benefits from the unique strengths of both subsystems. Indeed, nociceptors, sensory neurons that detect noxious stimuli and elicit the sensation of pain or itch, exhibit potent immunomodulatory capabilities. Depending on the context and the cellular identity of their communication partners, nociceptors can play both pro- or anti-inflammatory roles, promote tissue repair or aggravate inflammatory damage, improve resistance to pathogens or impair their clearance. In light of such variability, it is not surprising that the full extent of interactions between nociceptors and the immune system remains to be established. Nonetheless, the field of peripheral neuroimmunology is advancing at a rapid pace, and general rules that appear to govern the outcomes of such neuroimmune interactions are beginning to emerge. Thus, in this review, we summarize our current understanding of the interaction between nociceptors and, specifically, the myeloid cells of the innate immune system, while pointing out some of the outstanding questions and unresolved controversies in the field. We focus on such interactions within the densely innervated barrier tissues, which can serve as points of entry for infectious agents and, where known, highlight the molecular mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Yidi Wang
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| |
Collapse
|
7
|
The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle. Front Neuroendocrinol 2022; 66:101008. [PMID: 35660551 DOI: 10.1016/j.yfrne.2022.101008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
While popular belief harbors little doubt that perceived stress can cause hair loss and premature graying, the scientific evidence for this is arguably much thinner. Here, we investigate whether these phenomena are real, and show that the cyclic growth and pigmentation of the hair follicle (HF) provides a tractable model system for dissecting how perceived stress modulates aspects of human physiology. Local production of stress-associated neurohormones and neurotrophins coalesces with neurotransmitters and neuropeptides released from HF-associated sensory and autonomic nerve endings, forming a complex local stress-response system that regulates perifollicular neurogenic inflammation, interacts with the HF microbiome and controls mitochondrial function. This local system integrates into the central stress response systems, allowing the study of systemic stress responses affecting organ function by quantifying stress mediator content of hair. Focusing on selected mediators in this "brain-HF axis" under stress conditions, we distill general principles of HF dysfunction induced by perceived stress.
Collapse
|
8
|
Zhu Y, Duan S, Wang M, Deng Z, Li J. Neuroimmune Interaction: A Widespread Mutual Regulation and the Weapons for Barrier Organs. Front Cell Dev Biol 2022; 10:906755. [PMID: 35646918 PMCID: PMC9130600 DOI: 10.3389/fcell.2022.906755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Since the embryo, the nervous system and immune system have been interacting to regulate each other’s development and working together to resist harmful stimuli. However, oversensitive neural response and uncontrolled immune attack are major causes of various diseases, especially in barrier organs, while neural-immune interaction makes it worse. As the first defense line, the barrier organs give a guarantee to maintain homeostasis in external environment. And the dense nerve innervation and abundant immune cell population in barrier organs facilitate the neuroimmune interaction, which is the physiological basis of multiple neuroimmune-related diseases. Neuroimmune-related diseases often have complex mechanisms and require a combination of drugs, posing challenges in finding etiology and treatment. Therefore, it is of great significance to illustrate the specific mechanism and exact way of neuro-immune interaction. In this review, we first described the mutual regulation of the two principal systems and then focused on neuro-immune interaction in the barrier organs, including intestinal tract, lungs and skin, to clarify the mechanisms and provide ideas for clinical etiology exploration and treatment.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Shixin Duan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| |
Collapse
|
9
|
Keratinocytes take part in the regulation of substance P in melanogenesis through the HPA axis. J Dermatol Sci 2022; 106:141-149. [PMID: 35525773 DOI: 10.1016/j.jdermsci.2022.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Clinical findings have shown that skin depigmentation disorder such as vitiligo may be closely associated with the release of central and peripheral substance P (SP) resulted from chronic psychological stress or sudden mental blow. But the regulatory role of SP and its receptor, tachykinin receptor in the pathogenesis of vitiligo is unclear. OBJECTIVES To investigate the function and mechanism of SP in melanogenesis. METHODS The chronic mental stress was used to explore the intrinsic association between psychological factors, SP and melanogenesis disorder. The effect of SP on melanogenesis through hypothalamic pituitary adrenocortical (HPA) axis was studied by skin culture in vitro. The conditioned medium experiment demonstrated the indirect effect of SP on melanogenesis of B16F10 cells through HaCaT cells. The ability to produce melanin was evaluated by detecting melanin and tyrosinase activity. qRT-PCR, western blotting and immunohistochemistry were used to detect the expression of related genes and proteins in melanogenesis and HPA axis. RESULTS Increased SP expression and reduction of melanogenesis in the skin of mice were observed under mental stress. Melanogenesis was suppressed in the cultured human skin treated with SP due to the down-regulation of melanin-related proteins and HPA axis genes. The melanogenesis of B16F10 cells was inhibited by the conditioned medium of HaCaT cells treated with SP. CONCLUSIONS Overall, these results indicate that excess SP originated from mental stress interferes with melanogenesis through keratinocytes in the skin. The HPA axis is the key downstream to perceive the SP signaling and furtherly regulate the melanogenesis.
Collapse
|
10
|
Siwicka-Gieroba D, Dabrowski W. Credibility of the Neutrophil-to-Lymphocyte Count Ratio in Severe Traumatic Brain Injury. Life (Basel) 2021; 11:life11121352. [PMID: 34947883 PMCID: PMC8706648 DOI: 10.3390/life11121352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation as well as a marker of secondary injury associated with neutrophil activation. Recent studies have documented that an NLR value on admission might be effective for predicting outcome and mortality in severe brain injury patients.
Collapse
|
11
|
Pierre O, Fouchard M, Le Goux N, Buscaglia P, Leschiera R, Lewis RJ, Mignen O, Fluhr JW, Misery L, Le Garrec R. Pacific-Ciguatoxin-2 and Brevetoxin-1 Induce the Sensitization of Sensory Receptors Mediating Pain and Pruritus in Sensory Neurons. Mar Drugs 2021; 19:387. [PMID: 34356812 PMCID: PMC8306505 DOI: 10.3390/md19070387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022] Open
Abstract
Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.
Collapse
Affiliation(s)
- Ophélie Pierre
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Maxime Fouchard
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Nelig Le Goux
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Paul Buscaglia
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Raphaël Leschiera
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Olivier Mignen
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Joachim W. Fluhr
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
- Department of Dermatology and Allergology, Universitaetsmedizin Charité Berlin, D-10117 Berlin, Germany
| | - Laurent Misery
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaële Le Garrec
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| |
Collapse
|
12
|
Fischer TW, Bergmann A, Kruse N, Kleszczynski K, Skobowiat C, Slominski AT, Paus R. New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic-pituitary-adrenal (HPA) axis (CRH-R1/2, IP 3 -R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75 NTR and TrkA) in ex vivo human male androgenetic scalp hair follicles. Br J Dermatol 2021; 184:96-110. [PMID: 32271938 PMCID: PMC7962141 DOI: 10.1111/bjd.19115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Human hair is highly responsive to stress, and human scalp hair follicles (HFs) contain a peripheral neuroendocrine equivalent of the systemic hypothalamic-pituitary-adrenal (HPA) stress axis. Androgenetic alopecia (AGA) is supposed to be aggravated by stress. We used corticotropin-releasing hormone (CRH), which triggers the HPA axis, to induce a stress response in human ex vivo male AGA HFs. Caffeine is known to reverse testosterone-mediated hair growth inhibition in the same hair organ culture model. OBJECTIVES To investigate whether caffeine would antagonize CRH-mediated stress in these HFs. METHODS HFs from balding vertex area scalp biopsies of men affected by AGA were incubated with CRH (10-7 mol L-1 ) with or without caffeine (0·001% or 0·005%). RESULTS Compared to controls, CRH significantly enhanced the expression of catagen-inducing transforming growth factor-β2 (TGF-β2) (P < 0·001), CRH receptors 1 and 2 (CRH-R1/2) (P < 0·01), adrenocorticotropic hormone (ACTH) (P < 0·001) and melanocortin receptor 2 (MC-R2) (P < 0·001), and additional stress-associated parameters, substance P and p75 neurotrophin receptor (p75NTR ). CRH inhibited matrix keratinocyte proliferation and expression of anagen-promoting insulin-like growth factor-1 (IGF-1) and the pro-proliferative nerve growth factor receptor NGF-tyrosine kinase receptor A (TrkA). Caffeine significantly counteracted all described stress effects and additionally enhanced inositol trisphosphate receptor (IP3 -R), for the first time detected in human HFs. CONCLUSIONS These findings provide the first evidence in ex vivo human AGA HFs that the stress mediator CRH induces not only a complex intrafollicular HPA response, but also a non-HPA-related stress response. Moreover, we show that these effects can be effectively antagonized by caffeine. Thus, these data strongly support the hypothesis that stress can impair human hair physiology and induce hair loss, and that caffeine may effectively counteract stress-induced hair damage and possibly prevent stress-induced hair loss.
Collapse
Affiliation(s)
- T W Fischer
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - A Bergmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - N Kruse
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - K Kleszczynski
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - C Skobowiat
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| | - R Paus
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Zhang X, He Y. The Role of Nociceptive Neurons in the Pathogenesis of Psoriasis. Front Immunol 2020; 11:1984. [PMID: 33133059 PMCID: PMC7550422 DOI: 10.3389/fimmu.2020.01984] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. Emerging evidence shows that neurogenic inflammation, induced by nociceptive neurons and T helper 17 cell (Th17) responses, has a fundamental role in maintaining the changes in the immune system due to psoriasis. Nociceptive neurons, specific primary sensory nerves, have a multi-faceted role in detecting noxious stimuli, maintaining homeostasis, and regulating the immunity responses in the skin. Therefore, it is critical to understand the connections and interplay between the nociceptive neurons and the immune system in psoriasis. Here, we review works on the altered innervation that occurs in psoriasis. We examine how these distinct sensory neurons and their signal transducers participate in regulating inflammation. Numerous clinical studies report the dysfunction of nociceptive neurons in psoriasis. We discuss the mechanism behind the inconsistent activation of nociceptive neurons. Moreover, we review how neuropeptides, involved in regulating Th17 responses and the role of nociceptive neurons, regulate immunity in psoriasis. Understanding how nociceptive neurons regulate immune responses enhances our knowledge of the neuroimmunity involved in the pathogenesis of psoriasis and may form the basis for new approaches to treat it.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Zhang Y, Zhang H, Jiang B, Yan S, Lu J. A promising therapeutic target for psoriasis: Neuropeptides in human skin. Int Immunopharmacol 2020; 87:106755. [PMID: 32736190 DOI: 10.1016/j.intimp.2020.106755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease featured by excessive proliferation of keratinocytes, clearly defined round erythema and dry, scaly plaques, long-term inflammatory cells infiltration in skin lesions. However, the physiopathological mechanism of psoriasis is still not clearly understood. Neuropeptides, a class of peptides secreted by the nervous system, may play important roles in promoting excessive proliferation of keratinocyte, enhancing angiogenesis, vasodilation, plasma extravasation and chemotaxis of inflammatory cells during the development of psoriasis. To understand the pathogenesis of neuropeptides in psoriasis, we summarized the function of several common neuropeptides in psoriasis and hypothesize neuropeptides may serve as therapeutic potential novel targets in psoriasis.
Collapse
Affiliation(s)
- Yue Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hanyi Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Boyue Jiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Siyu Yan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Pondeljak N, Lugović-Mihić L. Stress-induced Interaction of Skin Immune Cells, Hormones, and Neurotransmitters. Clin Ther 2020; 42:757-770. [PMID: 32276734 DOI: 10.1016/j.clinthera.2020.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Although scientific articles mention the impact of psychological stress on skin diseases, few review the latest research on factors involved in this correlation. The skin actively responds to psychological stress, with involvement of skin immune cells, hormones, neurotransmitters. Skin immune cells actively regulate tissue inflammation with their proinflammatory and anti-inflammatory effects. Stress-induced skin reactions primarily include cytokine secretion (e.g. interleukin-6, interleukin-1, interferon-γ) and activation of skins peripheral corticotropin-releasing hormone (CRH)-proopiomelanocortin (POMC)-adrenocorticotropic hormone (ACTH)-corticosteroids axis, which leads to acute/chronic secretion of corticosteroids in the skin. METHODS This narrative review presents the current knowledge and latest findings regarding the impact of psychological stress on skin diseases, including information concerning psychoneuroimmune factors in stress-induced skin responses. Recent articles published in English available through the PubMed database and other prominent literature are discussed. FINDINGS Stress mediators, including cortisol, ACTH, and CRH from hypothalamus-pituitary-adrenal axis activation, induce various skin immune responses. Skin cells themselves can secrete these hormones and participate in skin inflammation. Thus, the local skin CRH-POMC-ACTH-corticosteroids axis plays a prominent role in stress-induced responses. Also, keratinocytes and fibroblasts produce hypothalamic and pituitary signal peptides and express receptors for them (CRH with receptors and POMC degradation peptides with melanocortin receptors), which allows them to respond to CRH by activating the POMC gene, which is then followed by ACTH and subsequently corticosteroids excretion. In addition, keratinocytes can express receptors for neurotransmitters (e.g. adrenaline, noradrenaline, dopamine, histamine, acetylcholine), neurotrophins, and neuropeptides (e.g. substance P, nerve growth factor), which are important in linking psychoneuroimmunologic mechanisms. IMPLICATIONS Psychoneuroimmunology provides an understanding that the skin is target and source of stress mediators. This locally expressed complex stress-induced network has been confirmed as active in many skin diseases (e.g. vulgar psoriasis, atopic dermatitis, chronic urticaria, human papillomavirus infections/warts, hair loss, acne). Skin reactions to stress and its influence on skin diseases may have implications for disease severity and exacerbation frequency, given the effect of locally secreted corticosteroids and other mediators that affect skin integrity, inflammation, and healing potential. Studies have also shown that introducing psychiatric treatment (drugs or psychotherapeutic methods) can have positive effects on dermatologic diseases influenced by psychological stress exposure. We hope this review provides clinicians and scientists with more complete background for further research in this field of skin psychoneuroimmunology.
Collapse
Affiliation(s)
- Nives Pondeljak
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Liborija Lugović-Mihić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia.
| |
Collapse
|
16
|
Alcohol extract from Vernonia anthelmintica willd (L.) seed counteracts stress-induced murine hair follicle growth inhibition. Altern Ther Health Med 2019; 19:372. [PMID: 31847849 PMCID: PMC6918677 DOI: 10.1186/s12906-019-2744-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/04/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Vernonia anthelmintica (L.) willd is a traditional urgur herb in China for a long history. Its alcohol extract (AVE) has been proved to promote hair follicle growth in C57BL/6 mice. We conducted this study to investigate the hair-growth effects of AVE in stressed mice and its possible mechanism of action. METHODS The hair-follicle growth effects of AVE were examined by in vivo and in vitro study. We exposed C57BL/6 male mice to chronic restraint stress to induce murine hair follicle growth inhibition. The effects of AVE were examined by histological analysis, immunofluorescence for Ki67 and cytokeratin 19 immunoreactivity, western blot assay in tyrosinase and related proteins expressions and immunofluorescence for nerve fibers. In organ culture of mouse vibrissae follicles, we used substance P as a catagen-inducing factor of hair follicle growth, and measured the elongation of hair shafts and expression of neurokinin-1 receptor protein by application of AVE. RESULTS Our results showed that AVE counteract murine hair follicle growth inhibition caused by chronic restraint stress via inducing the conversion of telogen to anagen and inhibiting catagen premature, increasing bulb keratinocytes and bulge stem cells proliferation, promoting melanogenesis, and reducing the numbers of substance P and calcitonin gene-related peptide nerve fibers. Furthermore, AVE also counteracted murine hair follicle growth inhibition caused by substance P in organ culture. CONCLUSION These results suggest that AVE counteract stress-induced hair follicle growth inhibition in C57BL/6 mice in vivo and in vitro, and may be an effective new candidate for treatment of stress-induced hair loss.
Collapse
|
17
|
Kwon CW, Fried RG, Nousari Y, Ritchlin C, Tausk F. Psoriasis: Psychosomatic, somatopsychic, or both? Clin Dermatol 2018; 36:698-703. [DOI: 10.1016/j.clindermatol.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Gene Expression of Neurotrophins and Their Receptors in Keloids. Ann Plast Surg 2018; 81:646-652. [PMID: 30325834 DOI: 10.1097/sap.0000000000001648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to assess gene expression of neurotrophins and their receptors in keloids. Skin samples of normal skin and keloids were obtained from patients in the control (n = 12) and keloid (n = 12) groups, respectively. Ribonucleic acid was extracted from the skin specimens, purified, evaluated by spectrophotometry, and used to synthesize complementary DNA. Real-time quantitative polymerase chain reaction analysis of 84 human neurotrophin genes and their receptors was performed. Twelve genes, including heat shock 27-kDa protein 1, gastrin-releasing peptide receptor, corticotropin-releasing hormone receptor 2, neuropeptide Y Y2 receptor, interleukin 6 signal transducer, nerve growth factor, metallothionein 3, B-cell chronic lymphocytic leukemia/lymphoma 2, cholecystokinin A receptor, persephin, galanin receptor 2, and fibroblast growth factor receptor 3, were down-regulated in keloid tissue compared with normal skin. The genes 27-kDa heat shock protein 1, gastrin-releasing peptide receptor, corticotropin-releasing hormone receptor 2, nerve growth factor, metallothionein 3, B-cell chronic lymphocytic leukemia/lymphoma 2, and persephin protein were considered priority genes associated with keloid formation.
Collapse
|
19
|
Lu YY, Lu CC, Yu WW, Zhang L, Wang QR, Zhang CL, Wu CH. Keloid risk in patients with atopic dermatitis: a nationwide retrospective cohort study in Taiwan. BMJ Open 2018; 8:e022865. [PMID: 30021755 PMCID: PMC6059319 DOI: 10.1136/bmjopen-2018-022865] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The pathogenesis of keloid is largely unknown. Because keloid and atopic dermatitis have overlapping pathophysiological mechanisms, we aimed to evaluate keloid risk in patients with atopic dermatitis. STUDY DESIGN Population-based retrospective cohort study. SETTING The Taiwan National Health Insurance Research Database was used to analyse data for people who had been diagnosed with atopic dermatitis. PARTICIPANTS We identified 8371 patients with newly diagnosed atopic dermatitis during 1996-2010. An additional 33 484 controls without atopic dermatitis were randomly identified and frequency matched at a one-to-four ratio. PRIMARY AND SECONDARY OUTCOME MEASURE The association between atopic dermatitis and keloid risk was estimated using Cox proportional hazard regression models. RESULTS After adjustment for covariates, the atopic dermatitis patients have a 3.19-fold greater risk of developing keloid compared with the non-atopic dermatitis group (3.19vs1.07 per 1000 person-years, respectively). During the study period, 163 patients with atopic dermatitis and 532 patients without atopic dermatitis developed keloid. Notably, keloid risk increased with severity of atopic dermatitis, particularly in patients with moderate to severe atopic dermatitis. CONCLUSIONS Our results indicate that patients with atopic dermatitis had a higher than normal risk of developing keloid and suggest that atopic dermatitis may be an independent risk factor for keloid.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Cosmetic Applications and Management Department, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ching Lu
- Department of Orthopedics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Wen Yu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Li Zhang
- Department of Neurosurgery, Zhangjiagang First People’s Hospital, Zhangjiagang, China
| | - Qing-Rui Wang
- Department of Neurosurgery, Qinghe County Central Hospital, Qinghe, China
| | - Cong-Liang Zhang
- Department of Cardiology, Hebei Quyang Renji Hospital, Quyang, China
| | - Chieh-Hsin Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018; 159:1992-2007. [PMID: 29546369 PMCID: PMC5905393 DOI: 10.1210/en.2017-03230] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
- Correspondence: Andrzej T. Slominski, MD, PhD, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294. E-mail:
| | | | - Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy P Szaflarski
- Departments of Neurology and Neurobiology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
21
|
Vegas O, Poligone B, Blackcloud P, Gilmore ES, VanBuskirk J, Ritchlin CT, Pentland AP, Walter SA, Nousari Y, Tausk F. Chronic social stress Ameliorates psoriasiform dermatitis through upregulation of the Hypothalamic-Pituitary-Adrenal axis. Brain Behav Immun 2018; 68:238-247. [PMID: 29080684 PMCID: PMC5767548 DOI: 10.1016/j.bbi.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/24/2023] Open
Abstract
Acute stress is a physiological response of an organism to adverse conditions, contributing to survival; however, persistence through time may lead to disease. Indeed, exacerbation of inflammatory conditions such as psoriasis has been reported to follow stressors in susceptible patients. Because chronic stress cannot ethically be elicited in patients under controlled laboratory conditions, we studied genetically modified mice that naturally develop psoriasiform dermatitis, and subjected them to an ethological chronic social contact stress paradigm. Although we found elevated pro-inflammatory neuropeptide production of substance P (SP), calcitonin-gene-related peptide (CGRP) and nerve-growth factor (NGF) mRNA in the dorsal root ganglia (DRG) as well as pro-inflammatory cytokines in response to the social stressor, stress paradoxically prevented the development of the skin lesions. This effect of stress could be reversed by the treatment with glucocorticoid (GC) receptor blockers, suggesting that it was mediated through the upregulation of corticosterone secretion. Extrapolating to humans, the worsening of disease in susceptible patients with psoriasis could be attributed to a defect in the Hypothalamic-Pituitary-Adrenal (HPA) axis with an impaired production of GC during situations of adversity, thus rendering them unable to counteract the pro-inflammatory effects of chronic stressors.
Collapse
Affiliation(s)
- Oscar Vegas
- Facultad de Psicología, Universidad del País Vasco UPV/EHU, San Sebastián, Spain.
| | - Brian Poligone
- Rochester General Hospital Research Institute, Center for Cancer & Blood Disorder, Rochester, NY
| | - Paul Blackcloud
- Sloan Kettering Memorial Hospital, Department of Medicine, New York, NY, United States.
| | | | - JoAnne VanBuskirk
- University of Rochester, Department of Dermatology, Rochester, NY, United States.
| | | | | | - Scott A. Walter
- Boston Medical Center, Department of Dermatology, Boston, MA
| | - Yasmine Nousari
- Integral Rheumatology and Immunology Specialists, Plantation FL
| | - Francisco Tausk
- University of Rochester, Department of Dermatology, Rochester, NY, United States.
| |
Collapse
|
22
|
Cognitive impairment in patients with severe psoriasis. Postepy Dermatol Alergol 2017; 34:120-125. [PMID: 28507490 PMCID: PMC5420603 DOI: 10.5114/ada.2017.67074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/03/2016] [Indexed: 02/08/2023] Open
Abstract
Introduction Psoriasis is a chronic inflammatory skin disease, in which an important role is played by psychological factors. Aim To evaluate the frontal cognitive functions in patients with psoriasis. Material and methods The study included 188 subjects (97 patients with psoriasis and 91 healthy controls). To assess the dorsolateral prefrontal cortex functions, the Trail Making Test and the Stroop test were applied. Severity of psoriasis was assessed by means of the PASI index. Results Compared to healthy subjects, psoriatics scored lower in neuropsychological tests assessing memory and executive functions. Conclusions Cognitive dysfunction disclosed by neuropsychological assessment of frontal functions was evident in patients with psoriasis.
Collapse
|
23
|
Zhou J, Ling J, Ping F. Interferon-γ Attenuates 5-Hydroxytryptamine-Induced Melanogenesis in Primary Melanocyte. Biol Pharm Bull 2017; 39:1091-9. [PMID: 27374284 DOI: 10.1248/bpb.b15-00914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interferon-γ (IFN-γ) is an important cytokine which can be secreted by keratinocytes or macrophages induced by UVB irradiation in skin. Mammalian skin cells have the capability to produce and metabolize 5-hydroxytryptamine (5-HT) whose cutaneous effects are mediated by the interactions with 5-HT receptors. Treatment with 5-HT resulted in a dose-dependent increase of tyrosinase (TYR) activity and melanin contents in normal human foreskin-derived epidermal melanocytes (NHEM), while with IFN-γ a decreased effect resulted. These regulatory results were due to changes of the expression levels of microphthalmia-associated transcription factor (MITF) and its downstream TYR, tyrosinase-related protein 1 (TRP-1) and dopachrome tautomerase (DCT). We proved here that 5-HTR1A/2A participated in the regulation of melanogenesis. IFN-γ could offset the pro-melanogenesis effect of 5-HT in NHEM and the intensity of this neutralization was unanticipated below the baseline level. IFN-γ neutralized the up-regulation effect of 5-HT on MITF and downstream TYR, TRP-1 and DCT. Though functioning as 5-HT1A/2A receptor during the melanogenesis process, IFN-γ played no role in 5-HT1A/2A receptor expressions. Our results also demonstrated that the inhibition of IFN-γ was reversible after its removal. Confusingly, the effect of cross-talk between 5-HT and IFN-γ on NHEM melanogenesis was irreversible. Whether treated with 5-HT for 5 d or 12 d, the pigmentation level neither recovered after displacing the IFN-γ-containing medium. In addition, IFN-γ was able to inhibit the inductive effect of 5-HT on NHEM migration. Taken together, the suppression of IFN-γ on 5-HT-induced melanogenesis further suggests the negative role of IFN-γ in inflammation-associated pigmentary changes.
Collapse
Affiliation(s)
- Jia Zhou
- School of Pharmaceutical Science, Jiangnan University
| | | | | |
Collapse
|
24
|
Paus R. Exploring the “brain-skin connection”: Leads and lessons from the hair follicle. Curr Res Transl Med 2016; 64:207-214. [DOI: 10.1016/j.retram.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022]
|
25
|
Reduced stress and inflammatory responsiveness in experienced meditators compared to a matched healthy control group. Psychoneuroendocrinology 2016; 68:117-25. [PMID: 26970711 PMCID: PMC4851883 DOI: 10.1016/j.psyneuen.2016.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/28/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
Abstract
Psychological stress is a major contributor to symptom exacerbation across many chronic inflammatory conditions and can acutely provoke increases in inflammation in healthy individuals. With the rise in rates of inflammation-related medical conditions, evidence for behavioral approaches that reduce stress reactivity is of value. Here, we compare 31 experienced meditators, with an average of approximately 9000 lifetime hours of meditation practice (M age=51years) to an age- and sex-matched control group (n=37; M age=48years) on measures of stress- and inflammatory responsivity, and measures of psychological health. The Trier Social Stress Test (TSST) was used to induce psychological stress and a neurogenic inflammatory response was produced using topical application of capsaicin cream to forearm skin. Size of the capsaicin-induced flare response and increase in salivary cortisol and alpha amylase were used to quantify the magnitude of inflammatory and stress responses, respectively. Results show that experienced meditators have lower TSST-evoked cortisol (62.62±2.52 vs. 70.38±2.33; p<.05) and perceived stress (4.18±.41 vs. 5.56±.30; p<.01), as well as a smaller neurogenic inflammatory response (81.55±4.6 vs. 96.76±4.26; p<.05), compared to the control group. Moreover, experienced meditators reported higher levels of psychological factors associated with wellbeing and resilience. These results suggest that the long-term practice of meditation may reduce stress reactivity and could be of therapeutic benefit in chronic inflammatory conditions characterized by neurogenic inflammation.
Collapse
|
26
|
Zhou J, Geng KK, Ping FF, Gao YY, Liu L, Feng BN. Cross-talk between 5-hydroxytryptamine and substance P in the melanogensis and apoptosis of B16F10 melanoma cells. Eur J Pharmacol 2016; 775:106-12. [PMID: 26872989 DOI: 10.1016/j.ejphar.2016.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 11/30/2022]
Abstract
Skin pigmentation is a complex process controlled by many different factors. Substance P (SP) regulates many biological functions, including melanogenesis and stress. Our previous study indicated that regulation of SP on melanocyte function was mediated by neurokinin 1 receptor (NK1 receptor). Substantial evidence has accumulated that psychological stress can be associated with skin pigmentation, so that the impact of 5-hydroxytryptamine (5-HT), one of the important factors participating in stress process, on melanogenesis has also been concerned. It has been reported that 5-HT induces melanin synthesis via 5-HT2A receptor. Furthermore, 5-HT2A receptor and NK1 receptor are G-protein coupled receptors (GPCRs) and both expressed on melanocyte, the present study was designed to investigate whether SP has influence on the adjustment function of 5-HT. Our data demonstrated that, SP inhibited 5-HT2A receptor expression to neutralize the pro-melanogenesis effect of 5-HT on B16F10 cells. The up-regulation of NK1 receptor expression was simultaneous with the down-regulation of 5-HT2A receptor treated by SP. This inhibition of 5-HT2A receptor expression by SP could be reversed by NK1 receptor antagonist Spantide I. Our studies indicated that SP could directly induce B16F10 cells apoptosis in vitro. 5-HT and 5-HT2A receptor agonist could mitigate this apoptotic effect of SP. It is the strong evidence of possible cross-talk between GPCRs and giving enlightenments when screening desirable drugs for target receptors.
Collapse
Affiliation(s)
- Jia Zhou
- School of Pharmaceutical Science, Jiangnan University, Wuxi, PR China
| | - Kun-kun Geng
- Patent Examination Cooperation Jiangsu Center of the Patent Office, SIPO, Suzhou, PR China
| | - Feng-feng Ping
- Department of Clinical Laboratory Science, Wuxi People's Hospital, Wuxi, PR China
| | - Yue-ying Gao
- School of Pharmaceutical Science, Jiangnan University, Wuxi, PR China
| | - Lei Liu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, PR China
| | - Bai-nian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi, PR China.
| |
Collapse
|
27
|
Chiba T, Oka Y, Kambe T, Koizumi N, Abe K, Kawakami K, Utsunomiya I, Taguchi K. Paclitaxel-induced peripheral neuropathy increases substance P release in rat spinal cord. Eur J Pharmacol 2016; 770:46-51. [DOI: 10.1016/j.ejphar.2015.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
|
28
|
Calcitonin gene-related peptide cooperates with substance P to inhibit melanogenesis and induces apoptosis of B16F10 cells. Cytokine 2015; 74:137-44. [PMID: 25982845 DOI: 10.1016/j.cyto.2015.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Skin is the largest organ in human body and works as biologically active barrier to provide critical preservation of body homeostasis. The skin is highly innervated by a plenitude of nerve fiber subpopulations, each carrying one or more neuronal mediators. Melanocyte itself also intimately contact with nerve fibers to form 'synaptic-like structure' and its functions may be directly regulated by the mediators contained in terminals of intra-epidermal nerve fibers. Clinical and biochemical studies have suggested that calcitonin gene-related peptide (CGRP) is involved in vitiligo skin. The present study was designed to investigate the effect of CGRP on epidermal melanocytes. After treatment with CGRP ranging from 0 to 500 ng/mL for 48 h, tyrosinase activity and melanogenesis were with little changes compared to treatment with medium only in B16F10 cells. Treatment with 500 ng/mL of CGRP cooperates with substance P (SP) (0.1-10 nM) to decrease tyrosinase activity and decrease melanin biosynthesis in B16F10 cells in a concentration-dependent manner. Furthermore, CGRP (8-37) antagonizes the synergistic effect of CGRP. The effect of CGRP on the cell apoptosis was examined. Treatments with 0-500 ng/mL of CGRP for 24 h, the expression levels of cleaved caspase-3, total caspase-3, cleaved caspase-9 and total caspase-9 were increased in a concentration-dependent manner. And 500 ng/mL of CGRP induced B16F10 cell apoptosis showed by TUNEL assay. In addition, Bax expression was up-regulated and Bcl-2 down-regulated in response to CGRP treatment. Hence, the Bax/Bcl-2 ratio was significantly increased. These in vitro observations indicate the pro-apoptotic impact of CGRP on B16F10 cell.
Collapse
|
29
|
Hochman B, Isoldi FC, Furtado F, Ferreira LM. New approach to the understanding of keloid: psychoneuroimmune-endocrine aspects. Clin Cosmet Investig Dermatol 2015; 8:67-73. [PMID: 25709489 PMCID: PMC4329995 DOI: 10.2147/ccid.s49195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The skin is a dynamic and complex organ that relies on the interrelation among different cell types, macromolecules, and signaling pathways. Further, the skin has interactions with its own appendages and other organs such as the sebaceous glands and hair follicles, the kidney, and adrenal glands; systems such as the central nervous system; and axes such as the hypothalamic–pituitary–adrenal axis. These continuous connections give the skin its versatility, and when an injury is caused, some triggers start a cascade of events designed to restore its integrity. Nowadays, it is known that this psychoneuroimmune–endocrine intercommunication modulates both the homeostatic condition and the healing process. In this sense, the skin conditions before a trauma, whether of endogenous (acne) or exogenous origin (injury or surgical incision), could regulate the process of tissue repair. Most skin diseases such as psoriasis and atopic dermatitis, among others, have in their pathophysiology a psychogenic component that triggers integrated actions in the nervous, immune, and endocrine systems. However, fibroproliferative disorders of wound healing, such as hypertrophic scar and keloid, are not yet included in this listing, despite showing correlation with stress, especially with the psychosocial character. This review, by understanding the “brain–skin connection”, presents evidence that allows us to understand the keloid as a psychomediated disease.
Collapse
Affiliation(s)
- Bernardo Hochman
- Plastic Surgery Division, Federal University of São Paulo, São Paulo, Brazil
| | | | - Fabianne Furtado
- Plastic Surgery Division, Federal University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
30
|
Peters EMJ, Michenko A, Kupfer J, Kummer W, Wiegand S, Niemeier V, Potekaev N, Lvov A, Gieler U. Mental stress in atopic dermatitis--neuronal plasticity and the cholinergic system are affected in atopic dermatitis and in response to acute experimental mental stress in a randomized controlled pilot study. PLoS One 2014; 9:e113552. [PMID: 25464511 PMCID: PMC4252053 DOI: 10.1371/journal.pone.0113552] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
RATIONALE In mouse models for atopic dermatitis (AD) hypothalamus pituitary adrenal axis (HPA) dysfunction and neuropeptide-dependent neurogenic inflammation explain stress-aggravated flares to some extent. Lately, cholinergic signaling has emerged as a link between innate and adaptive immunity as well as stress responses in chronic inflammatory diseases. Here we aim to determine in humans the impact of acute stress on neuro-immune interaction as well as on the non-neuronal cholinergic system (NNCS). METHODS Skin biopsies were obtained from 22 individuals (AD patients and matched healthy control subjects) before and after the Trier social stress test (TSST). To assess neuro-immune interaction, nerve fiber (NF)-density, NF-mast cell contacts and mast cell activation were determined by immunohistomorphometry. To evaluate NNCS effects, expression of secreted mammal Ly-6/urokinase-type plasminogen activator receptor-related protein (SLURP) 1 and 2 (endogenous nicotinic acetylcholine receptor ligands) and their main corresponding receptors were assessed by quantitative RT-PCR. RESULTS With respect to neuro-immune interaction we found higher numbers of NGF+ dermal NF in lesional compared to non-lesional AD but lower numbers of Gap43+ growing NF at baseline. Mast cell-NF contacts correlated with SCORAD and itch in lesional skin. With respect to the NNCS, nicotinic acetylcholine receptor α7 (α7nAChR) mRNA was significantly lower in lesional AD skin at baseline. After TSST, PGP 9.5+ NF numbers dropped in lesional AD as did their contacts with mast cells. NGF+ NF now correlated with SCORAD and mast cell-NF contacts with itch in non-lesional skin. At the same time, SLURP-2 levels increased in lesional AD skin. CONCLUSIONS In humans chronic inflammatory and highly acute psycho-emotional stress interact to modulate cutaneous neuro-immune communication and NNCS marker expression. These findings may have consequences for understanding and treatment of chronic inflammatory diseases in the future.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antigens, Ly/biosynthesis
- Antigens, Ly/metabolism
- Biopsy
- Dermatitis, Atopic/complications
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/physiopathology
- Humans
- Immunity, Innate
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/physiopathology
- Mast Cells/metabolism
- Mast Cells/pathology
- Mice
- Middle Aged
- Nerve Fibers/metabolism
- Nerve Fibers/pathology
- Neuronal Plasticity/immunology
- Receptors, Nicotinic/biosynthesis
- Receptors, Nicotinic/metabolism
- Stress, Psychological/complications
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Urokinase-Type Plasminogen Activator/biosynthesis
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Eva Milena Johanne Peters
- Psychoneuroimmunology Laboratory, Joint appointment a) Center for Internal Medicine and Dermatology, Universitätsmedizin-Charité, Berlin, and b) Department of Psychosomatic Medicine, Justus-Liebig-University, Giessen, Germany
| | - Anna Michenko
- Psychoneuroimmunology Laboratory, Joint appointment a) Center for Internal Medicine and Dermatology, Universitätsmedizin-Charité, Berlin, and b) Department of Psychosomatic Medicine, Justus-Liebig-University, Giessen, Germany
- Department of Dermatology, I. M. Sechenov Moscow Medical University, Moscow, Russia
| | - Jörg Kupfer
- Institute of Medical Psychology, Justus-Liebig University, Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Silke Wiegand
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Volker Niemeier
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| | - Nikolay Potekaev
- Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology, Moscow, Russia
| | - Andrey Lvov
- Department of Dermatology, I. M. Sechenov Moscow Medical University, Moscow, Russia
| | - Uwe Gieler
- Department of Psychosomatics and Psychotherapy, Justus-Liebig-University, Giessen, Germany
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| |
Collapse
|
31
|
Frank P, Barrientos G, Tirado-González I, Cohen M, Moschansky P, Peters EM, Klapp BF, Rose M, Tometten M, Blois SM. Balanced levels of nerve growth factor are required for normal pregnancy progression. Reproduction 2014; 148:179-89. [PMID: 24825909 DOI: 10.1530/rep-14-0112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nerve growth factor (NGF), the first identified member of the family of neurotrophins, is thought to play a critical role in the initiation of the decidual response in stress-challenged pregnant mice. However, the contribution of this pathway to physiological events during the establishment and maintenance of pregnancy remains largely elusive. Using NGF depletion and supplementation strategies alternatively, in this study, we demonstrated that a successful pregnancy is sensitive to disturbances in NGF levels in mice. Treatment with NGF further boosted fetal loss rates in the high-abortion rate CBA/J x DBA/2J mouse model by amplifying a local inflammatory response through recruitment of NGF-expressing immune cells, increased decidual innervation with substance P(+) nerve fibres and a Th1 cytokine shift. Similarly, treatment with a NGF-neutralising antibody in BALB/c-mated CBA/J mice, a normal-pregnancy model, also induced abortions associated with increased infiltration of tropomyosin kinase receptor A-expressing NK cells to the decidua. Importantly, in neither of the models, pregnancy loss was associated with defective ovarian function, angiogenesis or placental development. We further demonstrated that spontaneous abortion in humans is associated with up-regulated synthesis and an aberrant distribution of NGF in placental tissue. Thus, a local threshold of NGF expression seems to be necessary to ensure maternal tolerance in healthy pregnancies, but when surpassed may result in fetal rejection due to exacerbated inflammation.
Collapse
Affiliation(s)
- Pierre Frank
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gabriela Barrientos
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Irene Tirado-González
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marie Cohen
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Petra Moschansky
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Eva M Peters
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, GermanyLaboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Burghard F Klapp
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Rose
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Tometten
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sandra M Blois
- Laboratory of Reproductive MedicineDepartment of Psychosomatic Medicine and Psychotherapy, Charité Centre 12 Internal Medicine and Dermatology, Medicine University of Berlin, Berlin, GermanyLaboratoire d'HormonologieDepartment of Gynaecology and Obstetrics, Geneva, SwitzerlandDepartment of Psychosomatic MedicinePsycho-Neuro-Immunology, University Giessen, Giessen, GermanyDepartment of Medical OncologyWest German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
32
|
Indo Y. Nerve growth factor, pain, itch and inflammation: lessons from congenital insensitivity to pain with anhidrosis. Expert Rev Neurother 2014; 10:1707-24. [DOI: 10.1586/ern.10.154] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Nerve-derived transmitters including peptides influence cutaneous immunology. Brain Behav Immun 2013; 34:1-10. [PMID: 23517710 PMCID: PMC3750093 DOI: 10.1016/j.bbi.2013.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 01/01/2023] Open
Abstract
Clinical observations suggest that the nervous and immune systems are closely related. For example, inflammatory skin disorders; such as psoriasis, atopic dermatitis, rosacea and acne; are widely believed to be exacerbated by stress. A growing body of research now suggests that neuropeptides and neurotransmitters serve as a link between these two systems. Neuropeptides and neurotransmitters are released by nerves innervating the skin to influence important actors of the immune system, such as Langerhans cells and mast cells, which are located within close anatomic proximity. Catecholamines and other sympathetic transmitters that are released in response to activation of the sympathetic nervous system are also able to reach the skin and affect immune cells. Neuropeptides appear to direct the outcome of Langerhans cell antigen presentation with regard to the subtypes of Th cells generated and neuropeptides induce the degranulation of mast cells, among other effects. Additionally, endothelial cells, which release many inflammatory mediators and express cell surface molecules that allow leukocytes to exit the bloodstream, appear to be regulated by certain neuropeptides and transmitters. This review focuses on the evidence that products of nerves have important regulatory activities on antigen presentation, mast cell function and endothelial cell biology. These activities are highly likely to have clinical and therapeutic relevance.
Collapse
|
34
|
Liezmann C, Stock D, Peters EMJ. Stress induced neuroendocrine-immune plasticity: A role for the spleen in peripheral inflammatory disease and inflammaging? DERMATO-ENDOCRINOLOGY 2013; 4:271-9. [PMID: 23467333 PMCID: PMC3583888 DOI: 10.4161/derm.22023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Research over the past decade has revealed close interaction between the nervous and immune systems in regulation of peripheral inflammation linking psychosocial stress with chronic somatic disease and aging. Moreover emerging data suggests that chronic inflammations lead to a pro-inflammatory status underlying premature aging called inflammaging. In this context, the spleen can be seen as a switch board monitoring peripherally derived neuroendocrine-immune mediators in the blood and keeping up a close communication with the central stress response via its mainly sympathetic innervation. The effect aims at balanced and well-timed stress axis activation and immune adaptation in acute peripheral inflammatory events. Constant adjustment to the needs generated by environmental and endogenous challenges is provided by neuroendocrine-immune plasticity. However, maladaptive plasticity induced e.g., by chronic stress-axis activation and excessive non-neuronal derived neuroendocrine mediators may be at the heart of the observed stress sensitivity promote inflammaging under chronic inflammatory conditions. We here review the role of neurotransmitters, neuropeptides and neurotrophins as stress mediators modulating the immune response in the spleen and their potential role in inflammaging.
Collapse
Affiliation(s)
- Christiane Liezmann
- Department of Psychosomatic Medicine; Psychoneuroimmunology Laboratory; Justus-Liebig University; Giessen, Germany
| | | | | |
Collapse
|
35
|
Roggenkamp D, Köpnick S, Stäb F, Wenck H, Schmelz M, Neufang G. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol 2013; 133:1620-8. [PMID: 23283070 DOI: 10.1038/jid.2012.464] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atopic eczema is a chronic inflammatory skin disease characterized by cutaneous nerve fiber sprouting and epidermal hyperplasia, pointing to an involvement of the peripheral nervous system in cutaneous homeostasis. However, the interaction of sensory neurons and skin cells is poorly understood. Using an innervated skin model, we investigated the influence of sensory neurons on epidermal morphogenesis. Neurons induced the proliferation of keratinocytes, resulting in an increase in the epidermal thickness. Inhibition of calcitonin gene-related peptide (CGRP), but not substance P (SP) signaling, reversed this effect. Human CGRP enhanced keratinocyte proliferation and epidermal thickness in skin models, demonstrating a key role of CGRP in modulating epidermal morphogenesis, whereas SP had only a moderate effect. Innervated skin models composed of atopic skin cells showed increased neurite outgrowth, accompanied by elevated CGRP release. As atopic keratinocytes were sensitized to CGRP owing to higher expression levels of the CGRP receptor components, receptor activity-modifying protein 1 (RAMP1) and receptor component protein (RCP), atopic innervated skin models displayed a thicker epidermis than did healthy controls. We conclude that neural CGRP controls local keratinocyte growth. Our results show that the crosstalk of the cutaneous peripheral nervous system and skin cells significantly influences epidermal morphogenesis and homeostasis in healthy and atopic skin.
Collapse
|
36
|
Yu R, Huang Y, Zhang X, Zhou Y. Potential role of neurogenic inflammatory factors in the pathogenesis of vitiligo. J Cutan Med Surg 2012; 16:230-44. [PMID: 22784515 DOI: 10.1177/120347541201600404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Vitiligo is a highly complex multifactorial condition of the skin that has an unclear mechanism of pathogenesis. OBJECTIVE This review summarizes the role of various neurogenic inflammatory factors significantly upregulated in vitiligo. METHODS A literature review was conducted of all pertinent data regarding neuropeptides that are altered in vitiligo and their possible role in the destruction of melanocytes. RESULTS The close associations between the skin, immune system, and nervous system, along with specific changes demonstrated in vitiligo patients, support a pathogenic mechanism of vitiligo that involves neuroimmunologic factors, the release of which can be governed by mental stress. CONCLUSION Neuropeptides and nerve growth factors are critical regulators of emotional response and may precipitate the onset and development of vitiligo in certain predisposed individuals. More studies are required to investigate whether a direct link exists between genetics, mental stress, and neurogenic factors in vitiligo.
Collapse
Affiliation(s)
- Richard Yu
- Molecular Medicine Laboratory and Chieng Genomics Centre, Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC
| | | | | | | |
Collapse
|
37
|
Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis. Dermatol Res Pract 2012; 2012:403908. [PMID: 22969795 PMCID: PMC3437281 DOI: 10.1155/2012/403908] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 01/17/2023] Open
Abstract
Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.
Collapse
|
38
|
Furtado F, Hochman B, Farber PL, Muller MC, Hayashi LF, Ferreira LM. Psychological stress as a risk factor for postoperative keloid recurrence. J Psychosom Res 2012; 72:282-7. [PMID: 22405222 DOI: 10.1016/j.jpsychores.2011.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate psychological stress on the prognosis of the postoperative recurrence of keloids. METHODS Patients with keloids (n=25), candidates for surgical resection and postoperative radiotherapy, had their psychological stress evaluated on the day before the surgical procedure. The parameters evaluated were pain and itching (Visual Numerical Scale), quality of life (Questionnaire QualiFibro/Cirurgia Plástica-UNIFESP), perceived stress (Perceived Stress Scale), depression and anxiety (Hospital Depression and Anxiety Scale), salivary cortisol and minimum and maximum galvanic skin responses (GSR) at rest and under stress (i.e., while the questionnaires were being filled out). Patients were evaluated during the 3rd, 6th, 9th and 12th months of postoperative care. During each return visit, two experts classified the lesions as non-recurrent and recurrent. RESULTS The recurrence group presented the greatest values in GSR during a stressful situation. The chance of recurrence increased by 34% at each increase of 1000 arbitrary units in maximum GSR during stress. CONCLUSION Psychological stress influenced the recurrence of keloids.
Collapse
Affiliation(s)
- Fabianne Furtado
- Postgraduate Program in Plastic Surgery, Universidade Federal de São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Botulinum neurotoxin A decreases infiltrating cutaneous lymphocytes and improves acanthosis in the KC-Tie2 mouse model. J Invest Dermatol 2012; 132:1927-30. [PMID: 22418873 PMCID: PMC3375348 DOI: 10.1038/jid.2012.60] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells. J Invest Dermatol 2012; 132:1892-900. [PMID: 22418869 DOI: 10.1038/jid.2012.44] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skin of patients suffering from atopic eczema displays a higher epidermal nerve fiber density, associated with neurogenic inflammation and pruritus. Using an in vitro coculture system, allowing a spatially compartmented culture of somata from porcine dorsal root ganglion neurons and human primary skin cells, we investigated the influence of dermal fibroblasts and keratinocytes on neurite outgrowth. In comparison with dermal fibroblasts, keratinocytes induced more branched and less calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers. By adding neutralizing antibodies, we showed that nerve growth factor (NGF) and glial cell-line-derived neurotrophic factor (GDNF) are pivotal neurotrophic factors of skin cell-induced neurite outgrowth. Keratinocytes and dermal fibroblasts secreted different ratios of neurotrophic factors, influencing morphology and CGRP immunoreactivity of neurites. To investigate changes of the peripheral nervous system in the pathogenesis of atopic eczema in vitro, we analyzed neurite outgrowth mediated by atopic skin cells. Atopic keratinocytes produced elevated levels of NGF and mediated an increased outgrowth of CGRP-positive sensory fibers. Our results demonstrate the impact of dermal fibroblasts and keratinocytes on skin innervation and emphasize the role of keratinocytes as key players of hyperinnervation in atopic eczema.
Collapse
|
41
|
Papoiu AD, Wang H, Nattkemper L, Tey HL, Ishiuji Y, Chan YH, Schmelz M, Yosipovitch G. A study of serum concentrations and dermal levels of NGF in atopic dermatitis and healthy subjects. Neuropeptides 2011; 45:417-22. [PMID: 21893340 PMCID: PMC3659813 DOI: 10.1016/j.npep.2011.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/22/2011] [Accepted: 07/21/2011] [Indexed: 01/24/2023]
Abstract
Nerve growth factor (NGF) was reported to be increased in the serum and skin of atopic dermatitis (AD) patients, to the extent that serum nerve growth factor levels were proposed to serve as a marker of disease severity. We studied NGF levels in the serum and dermis using skin microdialysis and attempted to correlate them with disease severity. We also examined if potential differences between morning and evening levels of NGF can explain the phenomenon of nocturnal itch. In addition, neurogenic inflammation and itch were induced using histamine iontophoresis in lesional and non-lesional skin and the effect of experimental itch on dermal NGF concentration was examined. We found that systemic (serum) and eczematous skin levels of NGF in AD are significantly lower in comparison to healthy controls. Serum NGF decreases from morning to late afternoon in both groups. Interestingly, serum NGF levels were correlated to disease severity in the morning in AD, although the NGF concentration in AD were significantly lower than in the healthy group. The local itch and neurogenic inflammation induction via experimental histamine reduced local NGF levels in the eczema and non-lesional skin in atopics, but not in the healthy controls, where it was slightly increased. The higher the clinical severity of the eczema, a significantly less pronounced effect of neurogenic inflammation on the local levels of NGF was found. The availability of measurable NGF might be reduced by a higher expression of NGF receptors. The fluctuations of NGF levels during the day suggest a complex modulation of this neurotrophin, potentially linked to stress or to an altered neurophysiological mechanism.
Collapse
Affiliation(s)
- Alexandru D.P. Papoiu
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Hui Wang
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Leigh Nattkemper
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Hong Liang Tey
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yozo Ishiuji
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yiong-Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Clinical Research Centre, 10 Medical Drive, Singapore 117597, Singapore
| | - Martin Schmelz
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Gil Yosipovitch
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Corresponding author at: Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA. Tel.: +1 (336) 716 2901; fax: +1 (336) 716 7732. (G. Yosipovitch)
| |
Collapse
|
42
|
Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Invest Dermatol 2011; 131:1530-8. [PMID: 21471984 PMCID: PMC3116081 DOI: 10.1038/jid.2011.60] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nervous system involvement in psoriasis pathogenesis is supported by increases in nerve fiber numbers and neuropeptides in psoriatic skin and by reports detailing spontaneous plaque remission following nerve injury. Using the KC-Tie2 psoriasiform mouse model, we investigated the mechanisms by which nerve injury leads to inflammatory skin disease remission. Cutaneous nerves innervating dorsal skin of KC-Tie2 animals were surgically axotomized and beginning 1 day after denervation, CD11c(+) cell numbers decreased by 40% followed by a 30% improvement in acanthosis at 7 days and a 30% decrease in CD4(+) T-cell numbers by 10 days. Restoration of substance P (SP) signaling in denervated KC-Tie2 skin prevented decreases in CD11c(+) and CD4(+) cells, but had no effect on acanthosis; restoration of calcitonin gene-related peptide (CGRP) signaling reversed the improvement in acanthosis and prevented denervated-mediated decreases in CD4(+) cells. Under innervated conditions, small-molecule inhibition of SP in KC-Tie2 animals resulted in similar decreases to those observed following surgical denervation for cutaneous CD11c(+) and CD4(+) cell numbers; whereas small-molecule inhibition of CGRP resulted in significant reductions in CD4(+) cell numbers and acanthosis. These data demonstrate that sensory nerve-derived peptides mediate psoriasiform dendritic cell and T-cell infiltration and acanthosis and introduce targeting nerve-immunocyte/KC interactions as potential psoriasis therapeutic treatment strategies.
Collapse
Affiliation(s)
- Stephen M Ostrowski
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
43
|
Wu ZM, Chen YF, Qiu PN, Ling SC. Correlation between the distribution of SP and CGRP immunopositive neurons in dorsal root ganglia and the afferent sensation of preputial frenulum. Anat Rec (Hoboken) 2010; 294:479-86. [PMID: 21337713 DOI: 10.1002/ar.21327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 10/16/2010] [Accepted: 11/09/2010] [Indexed: 11/08/2022]
Abstract
The aim of this study was to explore the distribution of substance P (SP) and calcitonin gene-related peptide (CGRP) immunoreactive nerve terminals in the penis prepuce and the preputial frenulum. The possible correlation between SP- and CGRP-immunopositive neurons in dorsal root ganglia (DRG) and the afferent sensation of the penile preputial frenulum is also discussed. Immunohistochemistry showed SP- and CGRP-positive nerve terminals in the epidermal basal layer of the prepuce and frenulum in adult human males. The majority of the nerve terminals presented as bundles of different lengths and a few as enlarged nodosities. The density of SP- and CGRP-immunopositive nerve terminals in the preputial frenulum was significantly higher than those in the penis prepuce (P<0.01). Fluoro-Gold (FG) retrograde tracing method was used to trace the origin of nerve terminals in Sprague-Dawley rats. SP and CGRP immunofluorescence labeling was employed to detect the distribution of SP- and CGRP-immunoreactive neurons in DRG. FG retro-labeled neurons were localized in L(6) -DRG and S(1) -DRG. All the FG/SP and FG/CGRP double-labeled neurons were medium or small-sized. One-third of the FG-labeled neurons were SP-immunoreactive, and a half of them CGRP-immunoreactive in L(6) -DRG and S(1) -DRG, respectively. The FG/SP/CGRP-labeled neurons accounted for one fifth of the FG retro-labeled neurons. Taken together, these data suggest that the SP- and CGRP-immunopositive nerve fibers may participate in the transmission of afferent sensation in the preputial frenulum.
Collapse
Affiliation(s)
- Zhong-Min Wu
- Department of Anatomy, School of Medicine of Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
44
|
Pavlovic S, Liezmann C, Blois SM, Joachim R, Kruse J, Romani N, Klapp BF, Peters EMJ. Substance P Is a Key Mediator of Stress-Induced Protection from Allergic Sensitization via Modified Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2010; 186:848-55. [DOI: 10.4049/jimmunol.0903878] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
Schreml S, Kaiser E, Landthaler M, Szeimies RM, Babilas P. Amyloid in skin and brain: What′s the link? Exp Dermatol 2010; 19:953-7. [DOI: 10.1111/j.1600-0625.2010.01166.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Chapman BP, Moynihan J. The brain-skin connection: role of psychosocial factors and neuropeptides in psoriasis. Expert Rev Clin Immunol 2010; 5:623-7. [PMID: 20477685 DOI: 10.1586/eci.09.56] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Cheng HT, Dauch JR, Oh SS, Hayes JM, Hong Y, Feldman EL. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes. Mol Pain 2010; 6:28. [PMID: 20482876 PMCID: PMC2881061 DOI: 10.1186/1744-8069-6-28] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/19/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Painful Diabetic Neuropathy (PDN) affects more than 25% of patients with type 2 diabetes; however, the pathogenesis remains unclear due to lack of knowledge of the molecular mechanisms leading to PDN. In our current study, we use an animal model of type 2 diabetes in order to understand the roles of p38 in PDN. Previously, we have demonstrated that the C57BLK db/db (db/db) mouse, a model of type 2 diabetes that carries the loss-of-function leptin receptor mutant, develops mechanical allodynia in the hind paws during the early stage (6-12 wk of age) of diabetes. Using this timeline of PDN, we can investigate the signaling mechanisms underlying mechanical allodynia in the db/db mouse. RESULTS We studied the role of p38 in lumbar dorsal root ganglia (LDRG) during the development of mechanical allodynia in db/db mice. p38 phosphorylation was detected by immunoblots at the early stage of mechanical allodynia in LDRG of diabetic mice. Phosphorylated p38 (pp38) immunoreactivity was detected mostly in the small- to medium-sized LDRG neurons during the time period of mechanical allodynia. Treatment with an antibody against nerve growth factor (NGF) significantly inhibited p38 phosphorylation in LDRG of diabetic mice. In addition, we detected higher levels of inflammatory mediators, including cyclooxygenase (COX) 2, inducible nitric oxide synthases (iNOS), and tumor necrosis factor (TNF)-alpha in LDRG neurons of db/db mice compared to non-diabetic db+ mice. Intrathecal delivery of SB203580, a p38 inhibitor, significantly inhibited the development of mechanical allodynia and the upregulation of COX2, iNOS and TNF-alpha. CONCLUSIONS Our findings suggest that NGF activated-p38 phosphorylation mediates mechanical allodynia in the db/db mouse by upregulation of multiple inflammatory mediators in LDRG.
Collapse
Affiliation(s)
- Hsinlin T Cheng
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Arck P, Handjiski B, Hagen E, Pincus M, Bruenahl C, Bienenstock J, Paus R. Is there a ‘gut-brain-skin axis’? Exp Dermatol 2010; 19:401-5. [DOI: 10.1111/j.1600-0625.2009.01060.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Nerve growth factor mediates mechanical allodynia in a mouse model of type 2 diabetes. J Neuropathol Exp Neurol 2009; 68:1229-43. [PMID: 19816194 DOI: 10.1097/nen.0b013e3181bef710] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
C57BLKS db/db (db/db) mice develop a neuropathy with features of human type 2 diabetic neuropathy. Here, we demonstrate that these mice develop transient mechanical allodynia at the early stage of diabetes. We hypothesized that nerve growth factor (NGF), which enhances the expression of key mediators of nociception (i.e. substance P [SP] and calcitonin gene-related peptide), contributes to the development of mechanical allodynia in these mice. We found that NGF, SP, and calcitonin gene-related peptide gene expression is upregulated in the dorsal root ganglion (DRG) of db/db mice before or during the period that they develop mechanical allodynia. There were more small- to medium-sized NGF-immunopositive DRG neurons in db/db mice than in control db+ mice; these neurons also expressed SP, consistent with its role in nociception. Nerve growth factor expression in the hind paw skin was also increased in a variety of dermal cell types and nerve fibers, suggesting the contribution of a peripheral source of NGF to mechanical allodynia. The upregulation of NGF coincided with enhanced tropomyosin-related kinase A receptor phosphorylation in the DRG. Finally, an antibody against NGF inhibited mechanical allodynia and decreased the numbers of SP-positive DRG neurons in db/db mice. These results suggest that inhibition of NGF action is a potential strategy for treating painful diabetic neuropathy.
Collapse
|
50
|
|