1
|
Bouzidi A, Krouma A. RETRACTED ARTICLE: Impact of lead and zinc heavy metal pollution on the growth and phytoremediation potential of Sulla carnosa in Sebkha el Kalbia, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32350-w. [PMID: 38424244 DOI: 10.1007/s11356-024-32350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Amal Bouzidi
- Laboratory of Ecosystems and Biodiversity in Arid Land of Tunisia, Faculty of Sciences, University of Sfax, Sfax, Tunisia.
| | - Abdelmajid Krouma
- Faculty of Sciences and Techniques of Sidi Bouzid, University of Kairouan, Sidi Bouzid, Tunisia
| |
Collapse
|
2
|
Polverino A, Grimaldi M, Sorrentino P, Jacini F, D'Ursi AM, Sorrentino G. Effects of Acetylcholine on β-Amyloid-Induced cPLA2 Activation in the TB Neuroectodermal Cell Line: Implications for the Pathogenesis of Alzheimer's Disease. Cell Mol Neurobiol 2018; 38:817-826. [PMID: 28993924 PMCID: PMC11481997 DOI: 10.1007/s10571-017-0555-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
The role of β-amyloid (Aβ) in the pathogenesis of Alzheimer's disease (AD) is still considered crucial. The state of Aβ aggregation is critical in promoting neuronal loss and neuronal function impairment. Recently, we demonstrated that Acetylcholine (ACh) is neuroprotective against the toxic effects of Aβ in the cholinergic LAN-2 cells. In biophysical experiments, ACh promotes the soluble Aβ peptide conformation rather than the aggregation-prone β-sheet conformation. In order to better understand the biological role of ACh in AD, we studied the effect of Aβ on the phosphorylation of the cytosolic phospholipase A2 (cPLA2) in the TB neuroectodermal cell line, which differentiates toward a neuronal phenotype when cultured in the presence of retinoic acid (RA). We chose the phosphorylated form of cPLA2 (Ser505, Phospho-cPLA2) as a biomarker to test the influence of ACh on the effects of Aβ in both undifferentiated and RA-differentiated TB cells. Our results show that TB cells are responsive to Aβ. Moreover, in undifferentiated cells 1 h treatment with Aβ induces a 2.5-fold increase of the Phospho-cPLA2 level compared to the control after 24 h in vitro, while no significant difference is observed between Aβ-treated and non-treated cells after 4 and 7 days in vitro. The RA-differentiated cells are not sensitive to Aβ. In TB cell line ACh is able to blunt the effects of Aβ. The ability of ACh to protect non-cholinergic cells against Aβ reinforces the hypothesis that, in addition to its role in cholinergic transmission, ACh could also act as a neuroprotective agent.
Collapse
Affiliation(s)
- Arianna Polverino
- Department of Motor Sciences and Wellness, University of Naples Parthenope, Via Medina, 40, 80133, Naples, NA, Italy
- Institute of Diagnosis and Treatment Hermitage, Via Cupa delle Tozzole, 2, 80131, Naples, NA, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, SA, Italy
| | - Pierpaolo Sorrentino
- Department of Engineering, University of Naples Parthenope, Centro Direzionale di Napoli, isola C4, 80143, Naples, NA, Italy
| | - Francesca Jacini
- Department of Motor Sciences and Wellness, University of Naples Parthenope, Via Medina, 40, 80133, Naples, NA, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, SA, Italy
| | - Giuseppe Sorrentino
- Department of Motor Sciences and Wellness, University of Naples Parthenope, Via Medina, 40, 80133, Naples, NA, Italy.
- Institute of Diagnosis and Treatment Hermitage, Via Cupa delle Tozzole, 2, 80131, Naples, NA, Italy.
| |
Collapse
|
3
|
Evangelisti E, Cascella R, Becatti M, Marrazza G, Dobson CM, Chiti F, Stefani M, Cecchi C. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Sci Rep 2016; 6:32721. [PMID: 27619987 PMCID: PMC5020652 DOI: 10.1038/srep32721] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca2+ across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane.
Collapse
Affiliation(s)
- Elisa Evangelisti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
4
|
Akcakaya H, Dal F, Tok S, Cinar SA, Nurten R. K562 cells display different vulnerability to H2O2induced oxidative stress in differing cell cycle phases. Cell Biol Int 2014; 39:201-9. [DOI: 10.1002/cbin.10360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 08/01/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Handan Akcakaya
- Department of Biophysics; Istanbul Medical Faculty; Istanbul University; Istanbul Turkey
| | - Fulya Dal
- Department of Biophysics; Istanbul Medical Faculty; Istanbul University; Istanbul Turkey
| | - Sabiha Tok
- Department of Biophysics; Istanbul Medical Faculty; Istanbul University; Istanbul Turkey
| | - Suzan-Adin Cinar
- Department of Immunology; Institute of Experimental Medicine; Istanbul University; Istanbul Turkey
| | - Rustem Nurten
- Department of Biophysics; Istanbul Medical Faculty; Istanbul University; Istanbul Turkey
| |
Collapse
|
5
|
Ma KL, Song LK, Yuan YH, Zhang Y, Han N, Gao K, Chen NH. The nuclear accumulation of alpha-synuclein is mediated by importin alpha and promotes neurotoxicity by accelerating the cell cycle. Neuropharmacology 2014; 82:132-142. [PMID: 23973294 DOI: 10.1016/j.neuropharm.2013.07.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/21/2013] [Accepted: 07/30/2013] [Indexed: 01/29/2023]
Abstract
α-Synuclein (α-syn), a 14 kDa pre-synaptic protein, is widely involved in the Parkinson's disease (PD) pathogenesis. Recent studies have shown that the nuclear accumulation of α-syn might have a toxic effect. The main purpose of the present study was to explore which amino acid residues in α-syn are associated with its nuclear accumulation, the molecule(s) mediated the nuclear import of α-syn, and the role of α-syn accumulated in the nucleus. It has been noted that the nuclear import of α-syn may be mediated by importin α and that both the amino acid residues 1-60 and 103-140 of α-syn were indispensable for its nuclear import. After imported into the nucleus, the accumulated α-syn played a toxic role in both the PC12 cells and the C57 mice. Furthermore, α-syn-nuclear localization signal-injected mice showed behavioral symptoms associated with PD. Further studies performed in vitro showed that the toxicity of α-syn in the nucleus might be due to an interference of the cell cycle. Thus, it can be concluded that α-syn can accumulate in nucleus, which is mediated by importin α, and promote neurotoxicity by accelerating the cell cycle.
Collapse
Affiliation(s)
- Kai-Li Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, PR China
| | - Lian-Kun Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, PR China
| | - Ning Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Kai Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
6
|
Galano E, Arciello A, Piccoli R, Monti DM, Amoresano A. A proteomic approach to investigate the effects of cadmium and lead on human primary renal cells. Metallomics 2014; 6:587-97. [DOI: 10.1039/c3mt00344b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadmium and lead affect the viability of primary human renal cells, inducing alterations in the cellular proteome.
Collapse
Affiliation(s)
- Eugenio Galano
- Department of Chemical Sciences
- University of Naples “Federico II”
- Naples, Italy
- National Institute of Biostructures and Biosystems (INBB)
- Rome, Italy
| | - Angela Arciello
- Department of Chemical Sciences
- University of Naples “Federico II”
- Naples, Italy
- National Institute of Biostructures and Biosystems (INBB)
- Rome, Italy
| | - Renata Piccoli
- Department of Chemical Sciences
- University of Naples “Federico II”
- Naples, Italy
- National Institute of Biostructures and Biosystems (INBB)
- Rome, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences
- University of Naples “Federico II”
- Naples, Italy
- National Institute of Biostructures and Biosystems (INBB)
- Rome, Italy
| | - Angela Amoresano
- Department of Chemical Sciences
- University of Naples “Federico II”
- Naples, Italy
- National Institute of Biostructures and Biosystems (INBB)
- Rome, Italy
| |
Collapse
|
7
|
Janefjord E, Mååg JLV, Harvey BS, Smid SD. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro. Cell Mol Neurobiol 2014; 34:31-42. [PMID: 24030360 PMCID: PMC11488945 DOI: 10.1007/s10571-013-9984-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1-42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ(9)-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1-42. Aβ1-42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.
Collapse
Affiliation(s)
- Emelie Janefjord
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Jesper L. V. Mååg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Benjamin S. Harvey
- Discipline of Pharmacology, Faculty of Health Sciences, School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Scott D. Smid
- Discipline of Pharmacology, Faculty of Health Sciences, School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
8
|
Cecchi C, Stefani M. The amyloid-cell membrane system. The interplay between the biophysical features of oligomers/fibrils and cell membrane defines amyloid toxicity. Biophys Chem 2013; 182:30-43. [PMID: 23820236 DOI: 10.1016/j.bpc.2013.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/14/2022]
Abstract
Amyloid cytotoxicity, structure and polymorphisms are themes of increasing importance. Present knowledge considers any peptide/protein able to undergo misfolding and aggregation generating intrinsically cytotoxic amyloids. It also describes growth and structure of amyloid fibrils and their possible disassembly, whereas reduced information is available on oligomer structure. Recent research has highlighted the importance of the environmental conditions as determinants of the amyloid polymorphisms and cytotoxicity. Another body of evidence describes chemical or biological surfaces as key sites of protein misfolding and aggregation or of interaction with amyloids and the resulting biochemical modifications inducing cell functional/viability impairment. In particular, the membrane lipid composition appears to modulate cell response to toxic amyloids, thus contributing to explain the variable vulnerability to the same amyloids of different cell types. Finally, a recent view describes amyloid toxicity as an emerging property dependent on a complex interplay between the biophysical features of early aggregates and the interacting cell membranes taken as a whole system.
Collapse
Affiliation(s)
- Cristina Cecchi
- Department of Biomedical Experimental and Clinical Sciences and Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| | | |
Collapse
|
9
|
Structural features and cytotoxicity of amyloid oligomers: Implications in Alzheimer's disease and other diseases with amyloid deposits. Prog Neurobiol 2012; 99:226-45. [DOI: 10.1016/j.pneurobio.2012.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 12/22/2022]
|
10
|
Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers. Proc Natl Acad Sci U S A 2012; 109:12479-84. [PMID: 22802614 DOI: 10.1073/pnas.1117799109] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chaperones are the primary regulators of the proteostasis network and are known to facilitate protein folding, inhibit protein aggregation, and promote disaggregation and clearance of misfolded aggregates inside cells. We have tested the effects of five chaperones on the toxicity of misfolded oligomers preformed from three different proteins added extracellularly to cultured cells. All the chaperones were found to decrease oligomer toxicity significantly, even at very low chaperone/protein molar ratios, provided that they were added extracellularly rather than being overexpressed in the cytosol. Infrared spectroscopy and site-directed labeling experiments using pyrene ruled out structural reorganizations within the discrete oligomers. Rather, confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and chaperones. Moreover, atomic force microscopy imaging indicated that larger assemblies of oligomers are formed in the presence of the chaperones. This suggests that the chaperones bind to the oligomers and promote their assembly into larger species, with consequent shielding of the reactive surfaces and a decrease in their diffusional mobility. Overall, the data indicate a generic ability of chaperones to neutralize extracellular misfolded oligomers efficiently and reveal that further assembly of protein oligomers into larger species can be an effective strategy to neutralize such extracellular species.
Collapse
|
11
|
Saridaki T, Zampagni M, Mannini B, Evangelisti E, Taddei N, Cecchi C, Chiti F. Glycosaminoglycans (GAGs) suppress the toxicity of HypF-N prefibrillar aggregates. J Mol Biol 2012; 421:616-30. [PMID: 22326346 DOI: 10.1016/j.jmb.2012.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/08/2012] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
Abstract
A group of diverse human pathologies is associated with proteins unable to retain their native state and convert into prefibrillar and fibrillar amyloid aggregates that are then deposited in the extracellular space. Glycosaminoglycans (GAGs) have been found to physically associate with these deposits and also to promote their formation in vitro. However, the effect of GAGs on the toxicity of these aggregates has been investigated in only one protein system, the amyloid β peptide associated with Alzheimer's disease. In this study, we investigate whether GAGs affect the toxicity of the N-terminal domain of Escherichia coli HypF (HypF-N) oligomers on Chinese hamster ovarian cells and the mechanism by which such suppression is mediated. The results show that heparin and other GAGs inhibit the toxicity observed by HypF-N oligomers in a dose-dependent manner. GAGs were not found to bind preformed HypF-N oligomers, change their morphological and structural characteristics or disaggregate them. Nevertheless, they were found to bind to the cells' surface and prevent the interaction of the oligomers with the cells. Overall, the results indicate that GAGs have a generic ability to inhibit the toxicity of aberrant protein oligomers and that such toxicity suppression can occur through different mechanisms, such as through binding to the oligomers with consequent loss of interaction of the oligomers to the GAGs present on the cell surface, as proposed previously for amyloid β aggregates, or through mechanisms independent of direct GAG-oligomer binding, as shown here for HypF-N aggregates.
Collapse
Affiliation(s)
- Theodora Saridaki
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Neri T, Bucciantini M, Rosti V, Raimondi S, Relini A, Massa M, Zuccotti M, Donadei S, Stefani M, Redi CA, Merlini G, Stoppini M, Garagna S, Bellotti V. Embryonic stem and haematopoietic progenitor cells resist to Aβ oligomer toxicity and maintain the differentiation potency in culture. Amyloid 2010; 17:137-45. [PMID: 21067308 DOI: 10.3109/13506129.2010.530138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Regenerative medicine deals with the possible use of stem cells to repair tissues damaged by aging and related diseases, including amyloidoses. In the latter case, the toxicity of the amyloid deposits can, in principle, question the possibility to graft specific tissues by undifferentiated cells. To assess whether stem cells are vulnerable to amyloid toxicity, we exposed, in culture, murine embryonic stem (ES) cells and haematopoietic progenitor (HP) cells to oligomers of the amyloidogenic peptide Aβ42 at concentrations previously shown to be cytotoxic to several other cell types. These stem cells did not display any sign of apoptosis and their survival, proliferation and differentiation were not affected by the oligomers although the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that ES, but not HP, cells displayed some impaired ability to reduce the tetrazole salts possibly as a result of transient oxidative stress. Our results support a remarkable resistance of the investigated stem cells against amyloids and hence their potential use in cell therapy of Alzheimer's disease and, possibly, other amyloid diseases.
Collapse
Affiliation(s)
- Tui Neri
- Dipartimento di Biologia Animale, Centro di Ricerca Interdipartimentale di Ingegneria Tissutale, University of Pavia, Pavia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cova E, Ghiroldi A, Guareschi S, Mazzini G, Gagliardi S, Davin A, Bianchi M, Ceroni M, Cereda C. G93A SOD1 alters cell cycle in a cellular model of Amyotrophic Lateral Sclerosis. Cell Signal 2010; 22:1477-84. [PMID: 20561900 DOI: 10.1016/j.cellsig.2010.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/26/2010] [Indexed: 12/14/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative multifactorial disease characterized, like other diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) or frontotemporal dementia (FTD), by the degeneration of specific neuronal cell populations. Motor neuron loss is distinctive of ALS. However, the causes of onset and progression of motor neuron death are still largely unknown. In about 2% of all cases, mutations in the gene encoding for the Cu/Zn superoxide dismutase (SOD1) are implicated in the disease. Several alterations in the expression or activation of cell cycle proteins have been described in the neurodegenerative diseases and related to cell death. In this work we show that mutant SOD1 can alter cell cycle in a cellular model of ALS. Our findings suggest that modifications in the cell cycle progression could be due to an increased interaction between mutant G93A SOD1 and Bcl-2 through the cyclins regulator p27. As previously described in post mitotic neurons, cell cycle alterations could fatally lead to cell death.
Collapse
Affiliation(s)
- Emanuela Cova
- Laboratory of Experimental Neurobiology, IRCCS, National Neurological Institute C. Mondino, Via Mondino, 2, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Campioni S, Mannini B, Zampagni M, Pensalfini A, Parrini C, Evangelisti E, Relini A, Stefani M, Dobson CM, Cecchi C, Chiti F. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat Chem Biol 2010; 6:140-7. [DOI: 10.1038/nchembio.283] [Citation(s) in RCA: 452] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/06/2009] [Indexed: 12/30/2022]
|
15
|
Cecchi C, Nichino D, Zampagni M, Bernacchioni C, Evangelisti E, Pensalfini A, Liguri G, Gliozzi A, Stefani M, Relini A. A protective role for lipid raft cholesterol against amyloid-induced membrane damage in human neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2204-16. [DOI: 10.1016/j.bbamem.2009.07.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/16/2009] [Accepted: 07/23/2009] [Indexed: 12/14/2022]
|
16
|
Stefani M. Protein folding and misfolding on surfaces. Int J Mol Sci 2008; 9:2515-2542. [PMID: 19330090 PMCID: PMC2635651 DOI: 10.3390/ijms9122515] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/03/2008] [Accepted: 12/08/2008] [Indexed: 01/08/2023] Open
Abstract
Protein folding, misfolding and aggregation, as well as the way misfolded and aggregated proteins affects cell viability are emerging as key themes in molecular and structural biology and in molecular medicine. Recent advances in the knowledge of the biophysical basis of protein folding have led to propose the energy landscape theory which provides a consistent framework to better understand how a protein folds rapidly and efficiently to the compact, biologically active structure. The increased knowledge on protein folding has highlighted its strict relation to protein misfolding and aggregation, either process being in close competition with the other, both relying on the same physicochemical basis. The theory has also provided information to better understand the structural and environmental factors affecting protein folding resulting in protein misfolding and aggregation into ordered or disordered polymeric assemblies. Among these, particular importance is given to the effects of surfaces. The latter, in some cases make possible rapid and efficient protein folding but most often recruit proteins/peptides increasing their local concentration thus favouring misfolding and accelerating the rate of nucleation. It is also emerging that surfaces can modify the path of protein misfolding and aggregation generating oligomers and polymers structurally different from those arising in the bulk solution and endowed with different physical properties and cytotoxicities.
Collapse
Affiliation(s)
- Massimo Stefani
- Department of Biochemical Sciences and Research Centre on the Molecular Basis of Neurodegeneration (CIMN), University of Florence, Florence, Italy
| |
Collapse
|
17
|
Giorgetti S, Raimondi S, Cassinelli S, Bucciantini M, Stefani M, Gregorini G, Albonico G, Moratti R, Montagna G, Stoppini M, Bellotti V. 2-Microglobulin is potentially neurotoxic, but the blood brain barrier is likely to protect the brain from its toxicity. Nephrol Dial Transplant 2008; 24:1176-81. [DOI: 10.1093/ndt/gfn623] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Differentiation increases the resistance of neuronal cells to amyloid toxicity. Neurochem Res 2008; 33:2516-31. [PMID: 18307032 DOI: 10.1007/s11064-008-9627-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
A substantial lack of information is recognized on the features underlying the variable susceptibility to amyloid aggregate toxicity of cells with different phenotypes. Recently, we showed that different cell types are variously affected by early aggregates of a prokaryotic hydrogenase domain (HypF-N). In the present study we investigated whether differentiation affects cell susceptibility to amyloid injury using a human neurotypic SH-SY5Y cell differentiation model. We found that retinoic acid-differentiated cells were significantly more resistant against Abeta1-40, Abeta1-42 and HypF-N prefibrillar aggregate toxicity respect to undifferentiated cells treated similarly. Earlier and sharper increases in cytosolic Ca(2+) and ROS with marked lipid peroxidation and mitochondrial dysfunction were also detected in exposed undifferentiated cells resulting in apoptosis activation. The reduced vulnerability of differentiated cells matched a more efficient Ca(2+)-ATPase equipment and a higher total antioxidant capacity. Finally, increasing the content of membrane cholesterol resulted in a remarkable reduction of vulnerability and ability to bind the aggregates in either undifferentiated and differentiated cells.
Collapse
|
19
|
Cecchi C, Rosati F, Pensalfini A, Formigli L, Nosi D, Liguri G, Dichiara F, Morello M, Danza G, Pieraccini G, Peri A, Serio M, Stefani M. Seladin-1/DHCR24 protects neuroblastoma cells against Abeta toxicity by increasing membrane cholesterol content. J Cell Mol Med 2008; 12:1990-2002. [PMID: 18194465 PMCID: PMC4506165 DOI: 10.1111/j.1582-4934.2008.00216.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The role of brain cholesterol in Alzheimer's disease (AD) is currently a matter of debate. Experimental evidence suggests that reducing circulating and brain cholesterol protects against AD, however recent data indicate that low membrane cholesterol results in neurode-generation and that the cholesterol synthesis catalyst seladin-1 is down-regulated in AD-affected brain regions. We previously reported a significant correlation between resistance to amyloid toxicity and content of membrane cholesterol in differing cultured cell types. Here we provide evidence that Abeta42 pre-fibrillar aggregates accumulate more slowly and in reduced amount at the plasma membrane of human SH-SY5Y neuroblastoma cells overexpressing seladin-1 or treated with PEG-cholesterol than at the membrane of control cells. The accumulation was significantly increased in cholesterol-depleted cells following treatment with the specific seladin-1 inhibitor 5,22E-cholestadien-3-ol or with methyl-beta-cyclodextrin. The resistance to amyloid toxicity and the early cytosolic Ca2+ rise following exposure to Abeta42 aggregates were increased and prevented, respectively, by increasing membrane cholesterol whereas the opposite effects were found in cholesterol-depleted cells. These results suggest that seladin-1-dependent cholesterol synthesis reduces membrane-aggregate interaction and cell damage associated to amyloid-induced imbalance of cytosolic Ca2+. Our findings extend recently reported data indicating that seladin-1 overexpression directly enhances the resistance to Abeta toxicity featuring seladin-1/DHCR 24 as a possible new susceptibility gene for sporadic AD.
Collapse
Affiliation(s)
- C Cecchi
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|