1
|
Saddique MN, Qadri M, Ain NU, Farhan E, Shahid F, Benyamin J, Bashir MA, Jain H, Iqbal J. Safety and effectiveness of interference RNA (RNAi) based therapeutics in cardiac failure: A systematic review. Heart Lung 2024; 68:298-304. [PMID: 39214039 DOI: 10.1016/j.hrtlng.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Heart failure is a major worldwide health concern and leading cause of mortality. RNAi interventions hold promise for patients resistant to conventional drugs due to their off-target effects and lack of specificity. OBJECTIVES To examine the safety and effectiveness of RNAi therapeutics in treating heart failure. METHODS The PubMed, Embase, Scopus and Cochrane databases were searched using appropriate keyword from inception until December 31, 2023. A total of 14 studies fulfilling predefined selection criteria were included for qualitative synthesis. RESULTS We found that in patients with cardiac amyloidosis, patisiran and revusiran showed considerable improvements in cardiac output and left ventricular wall thickness. In animal studies, Nox2-siRNA showed effectiveness in regaining heart function. Furthermore, cardiomyocyte count and left ventricular function were improved by DUSP5 siRNA + T3 therapy and meg3 inhibition after myocardial infarction (MI). RNAi showed minimal adverse effects like peripheral neuropathy, hepatotoxicity, urinary tract infection, vaginal infection, diarrhea, abdominal pain arrhythmias, conduction disorders, and cardiotoxicity (LV wall thinning, heart failure) and improved cardiac biomarkers. CONCLUSION RNAi therapeutics are novel treatment option for improving cardiac function because their high target specificity, ability to target genes that conventional drugs struggle to reach and potential for long-lasting effects. Further research on optimizing delivery methods, improving target specificity, evaluating long-term safety profiles and cost-effectiveness to fully realize their potential.
Collapse
Affiliation(s)
| | - Maria Qadri
- Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | - Noor Ul Ain
- FMH College of Medicine and Dentistry, Lahore 54000, Pakistan
| | - Eesha Farhan
- Karachi Institute of Medical Sciences, Karachi 75510, Pakistan
| | - Fatima Shahid
- King Edward Medical University, Lahore 54000, Pakistan
| | | | | | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Javed Iqbal
- Nursing Department, Communicable Disease Center-Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
2
|
Xu L, Yao S, Ding YE, Xie M, Feng D, Sha P, Tan L, Bei F, Yao Y. Designing and optimizing AAV-mediated gene therapy for neurodegenerative diseases: from bench to bedside. J Transl Med 2024; 22:866. [PMID: 39334366 PMCID: PMC11429861 DOI: 10.1186/s12967-024-05661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as an attractive tool for gene delivery, and demonstrated tremendous promise in gene therapy and gene editing-therapeutic modalities with potential "one-and-done" treatment benefits compared to conventional drugs. Given their tropisms for the central nervous system (CNS) across various species including humans, rAAVs have been extensively investigated in both pre-clinical and clinical studies targeting neurodegenerative disease. However, major challenges remain in the application of rAAVs for CNS gene therapy, such as suboptimal vector design, low CNS transduction efficiency and specificity, and therapy-induced immunotoxicity. Therefore, continuing efforts are being made to optimize the rAAV vectors from their "core" genetic payloads to their "coat" or capsid structure. In this review, we describe current approaches for rAAV vector design tailored for transgene expression in the CNS, summarize the development of CNS-targeting AAV serotypes, and highlight recent advancements in AAV capsid engineering, aimed at generating a new generation of rAAVs with improved CNS tropism. Additionally, we discuss various administration routes for delivering rAAVs to the CNS and provide an overview of AAV-mediated gene therapies currently under investigation in clinical trials for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Xu
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yifan Evan Ding
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dingqi Feng
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, China
| | - Pengfei Sha
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lu Tan
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yizheng Yao
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells 2023; 12:2660. [PMID: 37998395 PMCID: PMC10670380 DOI: 10.3390/cells12222660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA;
| | - Roger Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, 65 Landsdowne St, Suite 143, Cambridge, MA 02139, USA;
| | - Ulf Landmesser
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
4
|
Innate Immunity in Cardiovascular Diseases-Identification of Novel Molecular Players and Targets. J Clin Med 2023; 12:jcm12010335. [PMID: 36615135 PMCID: PMC9821340 DOI: 10.3390/jcm12010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
During the past few years, unexpected developments have driven studies in the field of clinical immunology. One driver of immense impact was the outbreak of a pandemic caused by the novel virus SARS-CoV-2. Excellent recent reviews address diverse aspects of immunological re-search into cardiovascular diseases. Here, we specifically focus on selected studies taking advantage of advanced state-of-the-art molecular genetic methods ranging from genome-wide epi/transcriptome mapping and variant scanning to optogenetics and chemogenetics. First, we discuss the emerging clinical relevance of advanced diagnostics for cardiovascular diseases, including those associated with COVID-19-with a focus on the role of inflammation in cardiomyopathies and arrhythmias. Second, we consider newly identified immunological interactions at organ and system levels which affect cardiovascular pathogenesis. Thus, studies into immune influences arising from the intestinal system are moving towards therapeutic exploitation. Further, powerful new research tools have enabled novel insight into brain-immune system interactions at unprecedented resolution. This latter line of investigation emphasizes the strength of influence of emotional stress-acting through defined brain regions-upon viral and cardiovascular disorders. Several challenges need to be overcome before the full impact of these far-reaching new findings will hit the clinical arena.
Collapse
|
5
|
Petrov N, Stoyanova M, Stoyanova A, Nikolova I, Grozdanov P, Galabov A. Gene silencing of VP1 gene of coxsackievirus B3 neurotropic strain Nancy by dsRNAs and siRNAs. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2082320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Nikolay Petrov
- Laboratory of Virology, Department of Natural Sciences, New Bulgarian University, Sofia, Bulgaria
| | - Mariya Stoyanova
- Department of Plant Protection, Institute of Soil Science, Agrotechnologies and Plant Protection “N. Pushkarov”, Agricultural Academy, Sofia, Bulgaria
| | - Adelina Stoyanova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivanka Nikolova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petar Grozdanov
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Angel Galabov
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
6
|
Pinkert S, Pryshliak M, Pappritz K, Knoch K, Hazini A, Dieringer B, Schaar K, Dong F, Hinze L, Lin J, Lassner D, Klopfleisch R, Solimena M, Tschöpe C, Kaya Z, El-Shafeey M, Beling A, Kurreck J, Van Linthout S, Klingel K, Fechner H. Development of a new mouse model for coxsackievirus-induced myocarditis by attenuating coxsackievirus B3 virulence in the pancreas. Cardiovasc Res 2021; 116:1756-1766. [PMID: 31598635 DOI: 10.1093/cvr/cvz259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
AIMS The coxsackievirus B3 (CVB3) mouse myocarditis model is the standard model for investigation of virus-induced myocarditis but the pancreas, rather than the heart, is the most susceptible organ in mouse. The aim of this study was to develop a CVB3 mouse myocarditis model in which animals develop myocarditis while attenuating viral infection of the pancreas and the development of severe pancreatitis. METHODS AND RESULTS We developed the recombinant CVB3 variant H3N-375TS by inserting target sites (TS) of miR-375, which is specifically expressed in the pancreas, into the 3'UTR of the genome of the pancreo- and cardiotropic CVB3 variant H3. In vitro evaluation showed that H3N-375TS was suppressed in pancreatic miR-375-expressing EndoC-βH1 cells >5 log10, whereas its replication was not suppressed in isolated primary embryonic mouse cardiomyocytes. In vivo, intraperitoneal (i.p.) administration of H3N-375TS to NMRI mice did not result in pancreatic or cardiac infection. In contrast, intravenous (i.v.) administration of H3N-375TS to NMRI and Balb/C mice resulted in myocardial infection and acute and chronic myocarditis, whereas the virus was not detected in the pancreas and the pancreatic tissue was not damaged. Acute myocarditis was characterized by myocardial injury, inflammation with mononuclear cells, induction of proinflammatory cytokines, and detection of replicating H3N-375TS in the heart. Mice with chronic myocarditis showed myocardial fibrosis and persistence of H3N-375TS genomic RNA but no replicating virus in the heart. Moreover, H3N-375TS infected mice showed distinctly less suffering compared with mice that developed pancreatitis and myocarditis after i.p. or i.v application of control virus. CONCLUSION In this study, we demonstrate that by use of the miR-375-sensitive CVB3 variant H3N-375TS, CVB3 myocarditis can be established without the animals developing severe systemic infection and pancreatitis. As the H3N-375TS myocarditis model depends on pancreas-attenuated H3N-375TS, it can easily be used in different mouse strains and for various applications.
Collapse
Affiliation(s)
- Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Markian Pryshliak
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Kathleen Pappritz
- Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrer Str. 15, 13353 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Klaus Knoch
- Faculty of Medicine, Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ahmet Hazini
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Katrin Schaar
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Fengquan Dong
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Luisa Hinze
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Jie Lin
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Dirk Lassner
- Institut Kardiale Diagnostik und Therapie (IKDT), Moltkestraße 31, 12203 Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Kaiserswerther Str. 16-18, 14195 Berlin, Germany
| | - Michele Solimena
- Faculty of Medicine, Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Charitéplatz 1, 10117 Berlin, Germany
| | - Ziya Kaya
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Muhammad El-Shafeey
- Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrer Str. 15, 13353 Berlin, Germany.,Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Antje Beling
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrer Str. 15, 13353 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Charitéplatz 1, 10117 Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| |
Collapse
|
7
|
Hazini A, Dieringer B, Pryshliak M, Knoch KP, Heimann L, Tolksdorf B, Pappritz K, El-Shafeey M, Solimena M, Beling A, Kurreck J, Klingel K, Fechner H. miR-375- and miR-1-Regulated Coxsackievirus B3 Has No Pancreas and Heart Toxicity But Strong Antitumor Efficiency in Colorectal Carcinomas. Hum Gene Ther 2021; 32:216-230. [PMID: 33481658 DOI: 10.1089/hum.2020.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Coxsackievirus B3 (CVB3) has strong oncolytic activity in colorectal carcinoma but it also infects the pancreas and the heart. To improve the safety of the virus, here we investigated whether pancreas and cardiac toxicity can be prevented by insertion of target sites (TS), which are complementary to miR-375 and miR-1 into the viral genome. Although miR-375 and miR-1 are abundantly expressed in the pancreas and in the heart, respectively, their expression levels are low in colorectal carcinomas, which allows the carcinomas to be selectively attacked. To investigate the importance of the microRNAs, two viruses were engineered, H3N-375TS containing only miR-375TS and H3N-375/1TS containing miR-375TS and miR-1TS. In vitro, both viruses replicated in and lysed colorectal carcinoma cells, similar to a nontargeted control virus H3N-39TS, whereas they were strongly attenuated in cell lines transiently or endogenously expressing the corresponding microRNAs. In vivo, the control virus H3N-39TS induced strong infection of the pancreas and the heart, which led to fatal disease within 4 days after a single intratumoral virus injection in mice xenografted with colorectal DLD-1 cell tumors. In contrast, three intratumoral injections of H3N-375TS or H3N-375/1TS failed to induce virus-induced sickness. In the animals, both viruses were completely ablated from the pancreas and H3N-375/1TS was also ablated from the heart, whereas the cardiac titers of H3N-375TS were strongly reduced. Long-term investigations of the DLD-1 tumor model confirmed lack of virus-induced adverse effects in H3N-375TS- and H3N-375/1TS-treated mice. There was no mortality, and the pancreas and the heart were free of pathological alterations. Regarding the therapeutic efficiency, the treated animals showed high and long-lasting H3N-375TS and H3N-375/1TS persistence in the tumor and significantly slower tumor growth. These data demonstrate that miR-375- and miR-1-mediated virus detargeting from the pancreas and heart is a highly effective strategy to prevent toxicity of oncolytic CVB3.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Markian Pryshliak
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Lisanne Heimann
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Beatrice Tolksdorf
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Kathleen Pappritz
- Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Muhammad El-Shafeey
- Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Antje Beling
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Valdor M, Wagner A, Fischer H, Röhrs V, Schröder W, Bahrenberg G, Welbers A, Fechner H, Kurreck J, Tzschentke TM, Christoph T. RNA interference-mediated silencing of Kv7.2 in rat dorsal root ganglion neurons abolishes the anti-nociceptive effect of a selective channel opener. J Pharmacol Toxicol Methods 2020; 103:106693. [DOI: 10.1016/j.vascn.2020.106693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
|
9
|
Course MM, Gudsnuk K, Desai N, Chamberlain JR, Valdmanis PN. Endogenous MicroRNA Competition as a Mechanism of shRNA-Induced Cardiotoxicity. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:572-580. [PMID: 31927330 PMCID: PMC6957822 DOI: 10.1016/j.omtn.2019.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
Gene knockdown using short hairpin RNAs (shRNAs) is a promising strategy for targeting dominant mutations; however, delivering too much shRNA can disrupt the processing of endogenous microRNAs (miRNAs) and lead to toxicity. Here, we sought to understand the effect that excessive shRNAs have on muscle miRNAs by treating mice with recombinant adeno-associated viral vectors (rAAVs) that produce shRNAs with 19-nt or 21-nt stem sequences. Small RNA sequencing of their muscle and liver tissues revealed that shRNA expression was highest in the heart, where mice experienced substantial cardiomyopathy when shRNAs accumulated to 51.2% ± 13.7% of total small RNAs. With the same treatment, shRNAs in other muscle tissues reached only 12.1% ± 5.0% of total small RNAs. Regardless of treatment, the predominant heart miRNAs remained relatively stable across samples. Instead, the lower-expressed miR-451, one of the few miRNAs processed independently of Dicer, changed in relation to shRNA level and toxicity. Our data suggest that a protective mechanism exists in cardiac tissue for maintaining the levels of most miRNAs in response to shRNA delivery, in contrast with what has been shown in the liver. Quantifying miRNA profiles after excessive shRNA delivery illuminates the host response to rAAV-shRNA, allowing for safer and more robust therapeutic gene knockdown.
Collapse
Affiliation(s)
- Meredith M Course
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathryn Gudsnuk
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Nitin Desai
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Joel R Chamberlain
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
10
|
Pinkert S, Dieringer B, Klopfleisch R, Savvatis K, Van Linthout S, Pryshliak M, Tschöpe C, Klingel K, Kurreck J, Beling A, Fechner H. Early Treatment of Coxsackievirus B3-Infected Animals With Soluble Coxsackievirus-Adenovirus Receptor Inhibits Development of Chronic Coxsackievirus B3 Cardiomyopathy. Circ Heart Fail 2019; 12:e005250. [PMID: 31718319 DOI: 10.1161/circheartfailure.119.005250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Coxsackie-B-viruses (CVB) are frequent causes of acute myocarditis and dilated cardiomyopathy, but an effective antiviral therapy is still not available. Previously, we and others have demonstrated that treatment with an engineered sCAR-Fc (soluble coxsackievirus-adenovirus receptor fused to the carboxyl-terminus of human IgG) efficiently neutralizes CVB3 and inhibits the development of cardiac dysfunction in mice with acute CVB3-induced myocarditis. In this study, we analyzed the potential of sCAR-Fc for treatment of chronic CVB3-induced myocarditis in an outbred NMRI mouse model. METHODS NMRI mice were infected with the CVB3 strain 31-1-93 and treated with a sCAR-Fc expressing adeno-associated virus 9 vector 1, 3, and 7 days after CVB3 infection. Chronic myocarditis was analyzed on day 28 after infection. RESULTS Initial investigations showed that NMRI mice develop pronounced chronic myocarditis between day 18 and day 28 after infection with the CVB3 strain 31-1-93. Chronic cardiac infection was characterized by inflammation and fibrosis as well as persistence of viral genomes in the heart tissue and by cardiac dysfunction. Treatment of NMRI mice resulted in a distinct reduction of cardiac inflammation and fibrosis and almost complete elimination of virus RNA from the heart by day 28 after infection. Moreover, hemodynamic measurement revealed improved cardiac contractility and diastolic relaxation in treated mice compared with mice treated with a control vector (mean±SD; maximal pressure, 81.9±9.2 versus 69.4±8.6 mm Hg, P=0.02; left ventricular ejection fraction, 68.9±8.5 versus 54.2±11.5%, P=0.02; dP/dtmax, 7275.2±1674 versus 4432.6±1107 mm Hg/s, P=0.004; dP/dtmin, -4046.9±776 versus -3146.3±642 mm Hg/s, P=0.046). The therapeutic potential of sCAR-Fc is limited, however, since postponed start of sCAR-Fc treatment either 3 or 7 days after infection could not attenuate myocardial injury. CONCLUSIONS Early therapeutic employment of sCAR-Fc, initiated at the beginning of the primary viremia, inhibits the development of chronic CVB3-induced myocarditis and improves the cardiac function to a level equivalent to that of uninfected animals.
Collapse
Affiliation(s)
- Sandra Pinkert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Germany (S.P., A.B.).,Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Germany (R.K.)
| | - Konstantinos Savvatis
- Inherited Cardiovascular Diseases Unit, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (K.S.).,William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London (K.S.)
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Germany (S.V.L., C.T.)
| | - Markian Pryshliak
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Germany (S.V.L., C.T.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Germany (K.K.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| | - Antje Beling
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (A.B.)
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., B.D., M.P., J.K., H.F.)
| |
Collapse
|
11
|
van den Hoogenhof MMG, van der Made I, de Groot NE, Damanafshan A, van Amersfoorth SCM, Zentilin L, Giacca M, Pinto YM, Creemers EE. AAV9-mediated Rbm24 overexpression induces fibrosis in the mouse heart. Sci Rep 2018; 8:11696. [PMID: 30076363 PMCID: PMC6076270 DOI: 10.1038/s41598-018-29552-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
The RNA-binding protein Rbm24 has recently been identified as a pivotal splicing factor in the developing heart. Loss of Rbm24 in mice disrupts cardiac development by governing a large number of muscle-specific splicing events. Since Rbm24 knockout mice are embryonically lethal, the role of Rbm24 in the adult heart remained unexplored. Here, we used adeno-associated viruses (AAV9) to investigate the effect of increased Rbm24 levels in adult mouse heart. Using high-resolution microarrays, we found 893 differentially expressed genes and 1102 differential splicing events in 714 genes in hearts overexpressing Rbm24. We found splicing differences in cardiac genes, such as PDZ and Lim domain 5, Phospholamban, and Titin, but did not find splicing differences in previously identified embryonic splicing targets of Rbm24, such as skNAC, αNAC, and Coro6. Gene ontology enrichment analysis demonstrated increased expression of extracellular matrix (ECM)-related and immune response genes. Moreover, we found increased expression of Tgfβ-signaling genes, suggesting enhanced Tgfβ-signaling in these hearts. Ultimately, this increased activation of cardiac fibroblasts, as evidenced by robust expression of Periostin in the heart, and induced extensive cardiac fibrosis. These results indicate that Rbm24 may function as a regulator of cardiac fibrosis, potentially through the regulation of TgfβR1 and TgfβR2 expression.
Collapse
Affiliation(s)
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Nina E de Groot
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Amin Damanafshan
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | | | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Yigal M Pinto
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Poller W, Haghikia A, Kasner M, Kaya Z, Bavendiek U, Wedemeier H, Epple HJ, Skurk C, Landmesser U. Cardiovascular Involvement in Chronic Hepatitis C Virus Infections - Insight from Novel Antiviral Therapies. J Clin Transl Hepatol 2018; 6:161-167. [PMID: 29951361 PMCID: PMC6018314 DOI: 10.14218/jcth.2017.00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 12/11/2022] Open
Abstract
Whereas statistical association of hepatitis C virus (HCV) infection with cardiomyopathy is long known, establishment of a causal relationship has not been achieved so far. Patients with advanced heart failure (HF) are mostly unable to tolerate interferon (IFN)-based treatment, resulting in limited experience regarding the possible pathogenic role of HCV in this patient group. HCV infection often triggers disease in a broad spectrum of extrahepatic organs, with innate immune and autoimmune pathogenic processes involved. The fact that worldwide more than 70 million patients are chronically infected with HCV illustrates the possible clinical impact arising if cardiomyopathies were induced or aggravated by HCV, resulting in progressive HF or severe arrhythmias. A novel path has been opened to finally resolve the long-standing question of cause-effect relationship between HCV infection and cardiac dysfunction, by the recent development of IFN-free, highly efficient, and well tolerable anti-HCV regimens. The new direct-acting antiviral (DAA) agents are highly virus-specific and lack unspecific side-effects upon cardiac function which have always confounded the interpretation of IFN treatment data. The actual frequency of unexplained HF in chronic HCV infection will be determined from a planned large-scale study. Whereas such patients probably constitute a rather small fraction of all those harboring HCV, they have major clinical relevance. It is not yet known which fraction of these patients will significantly benefit from HCV eradication, but this issue will be addressed now in a prospective study.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
- *Correspondence to: Wolfgang Poller, Department of Cardiology, Campus Benjamin Franklin, Charite Centrum 11, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin 12200, Germany. Tel: +49-30-450-513765, Fax: +49-30-450-513984, E-mail:
| | - Arash Haghikia
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| | - Mario Kasner
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, University Hospital, Heidelberg, Germany
| | | | | | - Hans-Jörg Epple
- Department of Gastroenterology, Infectiology and Rheumatology, CC 13, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| |
Collapse
|
13
|
Hazini A, Pryshliak M, Brückner V, Klingel K, Sauter M, Pinkert S, Kurreck J, Fechner H. Heparan Sulfate Binding Coxsackievirus B3 Strain PD: A Novel Avirulent Oncolytic Agent Against Human Colorectal Carcinoma. Hum Gene Ther 2018; 29:1301-1314. [PMID: 29739251 DOI: 10.1089/hum.2018.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coxsackievirus B3 (CVB3), a single-stranded RNA virus of the picornavirus family, has been described as a novel oncolytic virus. However, the CVB3 strain used induced hepatitis and myocarditis in vivo. It was hypothesized that oncolytic activity and safety of CVB3 depends on the virus strain and its specific receptor tropism. Different laboratory strains of CVB3 (Nancy, 31-1-93, and H3), which use the coxsackievirus and adenovirus receptor (CAR), and the strain PD, which uses N- and 6-O-sulfated heparan sulfate (HS) for entry into the cells, were investigated for their potential to lyse tumor cells and for their safety profile. The investigations were carried out in colorectal carcinoma. In vitro investigations showed variable infection efficiency and lysis of colorectal carcinoma cell lines by the CVB3 strains. The most efficient strain was PD, which was the only one that could lyse all investigated colorectal carcinoma cell lines. Lytic activity of CAR-dependent CVB3 did not correlate with CAR expression on cells, whereas there was a clear correlation between lytic activity of PD and its ability to bind to HS at the cell surface of colorectal carcinoma cells. Intratumoral injection of Nancy, 31-1-93, or PD into subcutaneous colorectal DLD1 cell tumors in BALB/c nude mice resulted in strong inhibition of tumor growth. The effect was seen in the injected tumor, as well as in a non-injected, contralateral tumor. However, all animals treated with 31-1-93 and Nancy developed systemic infection and died or were moribund and sacrificed within 8 days post virus injection. In contrast, five of the six animals treated with PD showed no signs of a systemic viral infection, and PD was not detected in any organ. The data demonstrate the potential of PD as a new oncolytic virus and HS-binding of PD as a key feature of oncolytic activity and improved safety.
Collapse
Affiliation(s)
- Ahmet Hazini
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany .,2 Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University , Davutpasa Campus, Istanbul, Turkey
| | - Markian Pryshliak
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Vanessa Brückner
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Karin Klingel
- 3 Department of Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen , Tübingen, Germany
| | - Martina Sauter
- 3 Department of Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen , Tübingen, Germany
| | - Sandra Pinkert
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Jens Kurreck
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Henry Fechner
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| |
Collapse
|
14
|
Sharma M, Mishra B, Saikia UN, Bahl A, Ratho RK. Inhibition of coxsackievirus infection in cardiomyocytes by small dsRNA targeting its cognate coxsackievirus adenovirus receptor. Indian J Med Res 2018; 146:520-527. [PMID: 29434067 PMCID: PMC5819035 DOI: 10.4103/ijmr.ijmr_761_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background & objectives: Coxsackievirus B (CVB), a member of human Enterovirus group, is the most common cause of viral myocarditis. Coxsackievirus adenovirus receptor (CAR) is identified as a key determinant for the entry of CVB in the target cells. Thus, blockade of receptor by RNA interference (RNAi) may inhibit the entry and pathogenesis of CVB in cardiac cells. The present study was aimed to determine the effect of CAR small dsRNA (siRNA) on coxsackieviral load and CAR expression in coxsackievirus-infected cardiomyocytes. Methods: Transfection efficiency in rat cardiomyocytes (H9c2) was determined by the fluorescent microscopy and flow cytometry. CAR siRNA dose was optimized based on cell viability and relative CAR messenger RNA (mRNA) expression. Cardiomyocytes were transfected with CAR siRNA followed by infection with 100 multiplicity of infection of CVB, which were harvested after 24, 48 and 72 h post-infection (p.i.). RNA was extracted for relative CAR mRNA expression. Cells were freeze-thawed thrice for estimating coxsackieviral load. Results: The efficiency of transfection was optimized to be >80 per cent and CAR siRNA dose of 60 pmol was standardized. The knockdown of CAR by siRNA decreased its expression twice the expression in normal cardiomyocytes after 24 h p.i. of CVB. The treatment with CAR siRNA resulted in significant two log reduction of CVB load in cardiomyocytes infected with CVB at 24 h p.i. and retained till 72 h p.i. Interpretation & conclusions: The inhibition of CAR by siRNA was found to be effective against CVB in cardiomyocytes. However, this treatment strategy has to be evaluated in vivo to develop a new treatment strategy for patients suffering with viral myocarditis.
Collapse
Affiliation(s)
- Mirnalini Sharma
- Department of Virology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Baijayantimala Mishra
- Department of Virology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - R K Ratho
- Department of Virology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
15
|
Abstract
Silencing of cardiac genes by RNA interference (RNAi) has developed into a powerful new method to treat cardiac diseases. Small interfering (si)RNAs are the inducers of RNAi, but cultured primary cardiomyocytes and heart are highly resistant to siRNA transfection. This can be overcome by delivery of small hairpin (sh)RNAs or artificial microRNA (amiRNAs) by cardiotropic adeno-associated virus (AAV) vectors. Here we describe as example of the silencing of a cardiac gene, the generation and cloning of shRNA, and amiRNAs directed against the cardiac protein phospholamban. We further describe the generation of AAV shuttle plasmids with self complementary vector genomes, the production of AAV vectors in roller bottles, and their purification via iodixanol gradient centrifugation and concentration with filter systems. Finally we describe the preparation of primary neonatal rat cardiomyocytes (PNRC), the transduction of PNRC with AAV vectors, and the maintenance of the transduced cell culture.
Collapse
Affiliation(s)
- Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| | - Roland Vetter
- Institute of Clinical Pharmacology & Toxicology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology & Pneumology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| |
Collapse
|
16
|
Valdor M, Wagner A, Röhrs V, Berg J, Fechner H, Schröder W, Tzschentke TM, Bahrenberg G, Christoph T, Kurreck J. RNA interference-based functional knockdown of the voltage-gated potassium channel Kv7.2 in dorsal root ganglion neurons after in vitro and in vivo gene transfer by adeno-associated virus vectors. Mol Pain 2017; 14:1744806917749669. [PMID: 29212407 PMCID: PMC5805000 DOI: 10.1177/1744806917749669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.
Collapse
Affiliation(s)
- Markus Valdor
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Anke Wagner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Viola Röhrs
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Johanna Berg
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Henry Fechner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Wolfgang Schröder
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Thomas M Tzschentke
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | | | - Thomas Christoph
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Jens Kurreck
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| |
Collapse
|
17
|
Anti-adenoviral Artificial MicroRNAs Expressed from AAV9 Vectors Inhibit Human Adenovirus Infection in Immunosuppressed Syrian Hamsters. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:300-316. [PMID: 28918031 PMCID: PMC5537171 DOI: 10.1016/j.omtn.2017.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Infections of immunocompromised patients with human adenoviruses (hAd) can develop into life-threatening conditions, whereas drugs with anti-adenoviral efficiency are not clinically approved and have limited efficacy. Small double-stranded RNAs that induce RNAi represent a new class of promising anti-adenoviral therapeutics. However, as yet, their efficiency to treat hAd5 infections has only been investigated in vitro. In this study, we analyzed artificial microRNAs (amiRs) delivered by self-complementary adeno-associated virus (scAAV) vectors for treatment of hAd5 infections in immunosuppressed Syrian hamsters. In vitro evaluation of amiRs targeting the E1A, pTP, IVa2, and hexon genes of hAd5 revealed that two scAAV vectors containing three copies of amiR-pTP and three copies of amiR-E1A, or six copies of amiR-pTP, efficiently inhibited hAd5 replication and improved the viability of hAd5-infected cells. Prophylactic application of amiR-pTP/amiR-E1A- and amiR-pTP-expressing scAAV9 vectors, respectively, to immunosuppressed Syrian hamsters resulted in the reduction of hAd5 levels in the liver of up to two orders of magnitude and in reduction of liver damage. Concomitant application of the vectors also resulted in a decrease of hepatic hAd5 infection. No side effects were observed. These data demonstrate anti-adenoviral RNAi as a promising new approach to combat hAd5 infection.
Collapse
|
18
|
Ai F, Zheng J, Zhang Y, Fan T. Inhibition of 12/15-LO ameliorates CVB3-induced myocarditis by activating Nrf2. Chem Biol Interact 2017; 272:65-71. [DOI: 10.1016/j.cbi.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/29/2022]
|
19
|
Shenegelegn Mern D, Tschugg A, Hartmann S, Thomé C. Self-complementary adeno-associated virus serotype 6 mediated knockdown of ADAMTS4 induces long-term and effective enhancement of aggrecan in degenerative human nucleus pulposus cells: A new therapeutic approach for intervertebral disc disorders. PLoS One 2017; 12:e0172181. [PMID: 28207788 PMCID: PMC5313142 DOI: 10.1371/journal.pone.0172181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Inhibition of intervertebral disc (IVD) degeneration, which is often accompanied by painful inflammatory and immunopathological processes, is challenging. Current IVD gene therapeutic approaches are based on adenoviral gene delivery systems, which are limited by immune reactions to their viral proteins. Their applications in IVDs near to sensitive neural structure could provoke toxicity and immunological side-effects with neurological deficits. Self-complementary adeno-associated virus (scAAV) vectors, which do not express any viral gene and are not linked with any known disease in humans, are attractive therapeutic gene delivery vectors in degenerative IVDs. However, scAAV-based silencing of catabolic or inflammatory factor has not yet been investigated in human IVD cells. Therefore, we used scAAV6, the most suitable serotype for transduction of human nucleus pulposus (NP) cells, to knockdown the major catabolic gene (ADAMTS4) of IVD degeneration. IVD degeneration grades were determined by preoperative magnetic resonance imaging. Lumbar NP tissues of degeneration grade III were removed from 12 patients by nucleotomy. NP cells were isolated and cultured with low-glucose. Titre of recombinant scAAV6 vectors targeting ADAMTS4, transduction efficiencies, transduction units, cell viabilities and expression levels of target genes were analysed using quantitative PCR, fluorescence microscopy, fluorescence-activated cell sorting, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assays, quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assays during 48 days of post-transduction. Transduction efficiencies between 98.2% and 37.4% and transduction units between 611 and 245 TU/cell were verified during 48 days of post-transduction (p<0.001). scAAV6-mediated knockdown of ADAMTS4 with maximum 87.7% and minimum 40.1% was confirmed on day 8 and 48 with enhanced the level of aggrecan 48.5% and 30.2% respectively (p<0.001). scAAV6-mediated knockdown of ADAMTS4 showed no impact on cell viability and expression levels of other inflammatory catabolic proteins. Thus, our results are promising and may help to design long-term and less immunogenic gene therapeutic approaches in IVD disorders, which usually need prolonged therapeutic period between weeks and months.
Collapse
Affiliation(s)
| | - Anja Tschugg
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| | - Sebastian Hartmann
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
20
|
The Coxsackievirus and Adenovirus Receptor: Glycosylation and the Extracellular D2 Domain Are Not Required for Coxsackievirus B3 Infection. J Virol 2016; 90:5601-5610. [PMID: 27030267 DOI: 10.1128/jvi.00315-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/23/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily (IgSF) and functions as a receptor for coxsackie B viruses (CVBs). The extracellular portion of CAR comprises two glycosylated immunoglobulin-like domains, D1 and D2. CAR-D1 binds to the virus and is essential for virus infection; however, it is not known whether D2 is also important for infection, and the role of glycosylation has not been explored. To understand the function of these structural components in CAR-mediated CVB3 infection, we generated a panel of human (h) CAR deletion and substitution mutants and analyzed their functionality as CVB receptors, examining both virus binding and replication. Lack of glycosylation of the CAR-D1 or -D2 domains did not adversely affect CVB3 binding or infection, indicating that the glycosylation of CAR is not required for its receptor functions. Deletion of the D2 domain reduced CVB3 binding, with a proportionate reduction in the efficiency of virus infection. Replacement of D2 with the homologous D2 domain from chicken CAR, or with the heterologous type C2 immunoglobulin-like domain from IgSF11, another IgSF member, fully restored receptor function; however, replacement of CAR-D2 with domains from CD155 or CD80 restored function only in part. These data indicate that glycosylation of the extracellular domain of hCAR plays no role in CVB3 receptor function and that CAR-D2 is not specifically required. The D2 domain may function largely as a spacer permitting virus access to D1; however, the data may also suggest that D2 affects virus binding by influencing the conformation of D1. IMPORTANCE An important step in virus infection is the initial interaction of the virus with its cellular receptor. Although the role in infection of the extracellular CAR-D1, cytoplasmic, and transmembrane domains have been analyzed extensively, nothing is known about the function of CAR-D2 and the extracellular glycosylation of CAR. Our data indicate that glycosylation of the extracellular CAR domain has only minor importance for the function of CAR as CVB3 receptor and that the D2 domain is not essential per se but contributes to receptor function by promoting the exposure of the D1 domain on the cell surface. These results contribute to our understanding of the coxsackievirus-receptor interactions.
Collapse
|
21
|
Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med 2016; 6:37-54. [PMID: 27226955 PMCID: PMC4873559 DOI: 10.5493/wjem.v6.i2.37] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases.
Collapse
|
22
|
Intravascular AAV9 Administration for Delivering RNA Silencing Constructs to the CNS and Periphery. Methods Mol Biol 2016; 1364:261-75. [PMID: 26472457 PMCID: PMC5519340 DOI: 10.1007/978-1-4939-3112-5_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Viral vector delivery of RNA silencing constructs, when administered into vasculature, typically results in poor central nervous system (CNS) transduction due to the inability of the vector to cross the blood-brain barrier (BBB). However, adeno-associated virus serotype 9 (AAV9) has the ability to cross the BBB and robustly transduce brain parenchyma and peripheral tissues at biologically meaningful levels when injected intravenously. Recent work by our lab has shown that this method can be used to deliver RNA silencing constructs, resulting in significant reductions in gene expression in multiple brain regions and in peripheral tissues. Here, we outline a method for delivery of AAV9 vectors expressing RNA interference (RNAi) constructs that lead to robust simultaneous transduction of mouse peripheral tissues and the CNS following a single injection into the jugular vein. Additionally, we outline methods for necropsy and immunofluorescence to detect AAV9 transduction patterns in the rodent CNS following a vascular delivery.
Collapse
|
23
|
Mern DS, Thomé C. Identification and characterization of human nucleus pulposus cell specific serotypes of adeno-associated virus for gene therapeutic approaches of intervertebral disc disorders. BMC Musculoskelet Disord 2015; 16:341. [PMID: 26552484 PMCID: PMC4640218 DOI: 10.1186/s12891-015-0799-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Background Intervertebral disc (IVD) disorders are often accompanied by painful inflammatory and immunopathological processes. Nucleus pulposus (NP) cells play a pivotal role in maintenance of IVD by organizing the expression of anabolic, catabolic, anti-catabolic and inflammatory cytokines. Human NP cells have been targeted by gene therapeutic approaches using lentiviral or adenoviral systems that could be critical due to genome incorporation or immunological side effects. Adeno-associated viruses (AAVs), which do not express any viral gene and are not linked with any known disease in humans, are attractive gene delivery vectors. However, their lack of specific tissue tropism and preexisting immune response are main problems for therapeutic applications. Heretofore, AAVs have not been studied in human IVD research. Therefore, we attempted to identify NP cell specific AAV serotype by targeting human NP cells with different self-complementary AAV (scAAV) serotypes. Identification and characterization of the proper serotype is crucial to establish less immunogenic and safer gene therapeutic approaches of IVD disorders. Methods Preoperative magnetic resonance imaging (MRI) was used for grading of IVD degeneration. NP cells were isolated, cultured with low-glucose and transduced with green fluorescent protein (GFP) packing scAAV serotypes (scAAV1-8) in a dose-dependent manner. scAAV titers were determined by quantitative polymerase chain reaction (qPCR). Transduction efficiencies were determined by fluorescence microscopy and fluorescence-activated cell sorting within 48 days of post-transduction. The 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine NP cell viability. Three-dimensional (3D) cell culture and enzyme-linked immunosorbant assay (ELISA) were performed to examine the expression levels of inflammatory, catabolic and matrix proteins in NP cells. Results scAAV6, scAAV2 and scAAV3 showed high and prolonged transgene GFP expressions with transdution efficiencies of 98.6 %, 91.5 % and 89.6 % respectively (p ≤ 0.002). Unlike scAAV6, the serotypes scAAV2 and scAAV3 declined the viability of NP cells by about 25 % and 10 % respectively (p ≤ 0.001). Moreover, scAAV6 did not affect the expression of the inflammatory, catabolic and matrix proteins. Conclusions As original primary research evaluating AAVs in degenerative human IVDs, this study identified scAAV6 as a proper serotype for high, stable and non-immunogenic target gene expression in human NP cells. The data could be very important to design efficient and safer gene therapeutic approaches of IVD disorders.
Collapse
Affiliation(s)
- Demissew S Mern
- Department of Neurosurgery, Innsbruck Medical University, Anichstrasse 35, Innsbruck, A-6020, Austria.
| | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Anichstrasse 35, Innsbruck, A-6020, Austria.
| |
Collapse
|
24
|
Wagner A, Röhrs V, Materne EM, Hiller T, Kedzierski R, Fechner H, Lauster R, Kurreck J. Use of a three-dimensional humanized liver model for the study of viral gene vectors. J Biotechnol 2015; 212:134-43. [PMID: 26356676 DOI: 10.1016/j.jbiotec.2015.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/17/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Reconstituted three-dimensional (3D) liver models obtained by engrafting hepatic cells into an extracellular matrix (ECM) are valuable tools to study tissue regeneration, drug action and toxicology ex vivo. The aim of the present study was to establish a system for the functional investigation of a viral vector in a 3D liver model composed of human HepG2 cells on a rat ECM. An adeno-associated viral (AAV) vector expressing the Emerald green fluorescent protein (EmGFP) and a short hairpin RNA (shRNA) directed against human cyclophilin b (hCycB) was injected into the portal vein of 3D liver models. Application of the vector did not exert toxic effects, as shown by analysis of metabolic parameters. Six days after transduction, fluorescence microscopy analysis of EmGFP production revealed widespread distribution of the AAV vectors. After optimization of the recellularization and transduction conditions, averages of 55 and 90 internalized vector genomes per cell in two replicates of the liver model were achieved, as determined by quantitative PCR analysis. Functionality of the AAV vector was confirmed by efficient shRNA-mediated knockdown of hCycB by 70-90%. Our study provides a proof-of-concept that a recellularized biological ECM provides a valuable model to study viral vectors ex vivo.
Collapse
Affiliation(s)
- Anke Wagner
- Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Viola Röhrs
- Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Eva-Maria Materne
- Department of Medical Biotechnology, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Thomas Hiller
- Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Radoslaw Kedzierski
- Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Roland Lauster
- Department of Medical Biotechnology, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany.
| |
Collapse
|
25
|
Pozzuto T, Röger C, Kurreck J, Fechner H. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir. Antiviral Res 2015; 120:72-8. [PMID: 26026665 DOI: 10.1016/j.antiviral.2015.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 01/04/2023]
Abstract
Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs.
Collapse
Affiliation(s)
- Tanja Pozzuto
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Carsten Röger
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| |
Collapse
|
26
|
Röger C, Pozzuto T, Klopfleisch R, Kurreck J, Pinkert S, Fechner H. Expression of an engineered soluble coxsackievirus and adenovirus receptor by a dimeric AAV9 vector inhibits adenovirus infection in mice. Gene Ther 2015; 22:458-66. [PMID: 25786873 DOI: 10.1038/gt.2015.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/07/2015] [Accepted: 01/29/2015] [Indexed: 12/28/2022]
Abstract
Immunosuppressed (IS) patients, such as recipients of hematopoietic stem cell transplantation, occasionally develop severe and fatal adenovirus (Ad) infections. Here, we analyzed the potential of a virus receptor trap based on a soluble coxsackievirus and Ad receptor (sCAR) for inhibition of Ad infection. In vitro, a dimeric fusion protein, sCAR-Fc, consisting of the extracellular domain of CAR and the Fc portion of human IgG1 and a monomeric sCAR lacking the Fc domain, were expressed in cell culture. More sCAR was secreted into the cell culture supernatant than sCAR-Fc, but it had lower Ad neutralization activity than sCAR-Fc. Further investigations showed that sCAR-Fc reduced the Ad infection by a 100-fold and Ad-induced cytotoxicity by ~20-fold. Not only was Ad infection inhibited by sCAR-Fc applied prior to infection, it also inhibited infection when used to treat ongoing Ad infection. In vivo, sCAR-Fc was delivered to IS mice by an AAV9 vector, resulting in persistent and high (>40 μg ml(-1)) sCAR-Fc serum levels. The sCAR-Fc serum concentration was sufficient to significantly inhibit hepatic and cardiac wild-type Ad5 infection. Treatment with sCAR-Fc did not induce side effects. Thus, sCAR-Fc virus receptor trap may be a promising novel therapeutic for treatment of Ad infections.
Collapse
Affiliation(s)
- C Röger
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - T Pozzuto
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - R Klopfleisch
- Department of Vetrinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, Berlin, Germany
| | - J Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - S Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - H Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| |
Collapse
|
27
|
Stein EA, Pinkert S, Becher PM, Geisler A, Zeichhardt H, Klopfleisch R, Poller W, Tschöpe C, Lassner D, Fechner H, Kurreck J. Combination of RNA Interference and Virus Receptor Trap Exerts Additive Antiviral Activity in Coxsackievirus B3-induced Myocarditis in Mice. J Infect Dis 2014; 211:613-22. [DOI: 10.1093/infdis/jiu504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
28
|
Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014; 114:1827-46. [PMID: 24855205 DOI: 10.1161/circresaha.114.302331] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.
Collapse
Affiliation(s)
- Serena Zacchigna
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Lorena Zentilin
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Mauro Giacca
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.).
| |
Collapse
|
29
|
Weber ND, Stone D, Sedlak RH, De Silva Feelixge HS, Roychoudhury P, Schiffer JT, Aubert M, Jerome KR. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication. PLoS One 2014. [PMID: 24827459 DOI: 10.1371/journal.pone.009757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.
Collapse
Affiliation(s)
- Nicholas D Weber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America; Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ruth Hall Sedlak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Harshana S De Silva Feelixge
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America; Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle, Washington, United States of America; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America; Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America; Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
30
|
Weber ND, Stone D, Sedlak RH, De Silva Feelixge HS, Roychoudhury P, Schiffer JT, Aubert M, Jerome KR. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication. PLoS One 2014; 9:e97579. [PMID: 24827459 PMCID: PMC4020843 DOI: 10.1371/journal.pone.0097579] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023] Open
Abstract
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.
Collapse
Affiliation(s)
- Nicholas D. Weber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ruth Hall Sedlak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Harshana S. De Silva Feelixge
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Interspecies differences in virus uptake versus cardiac function of the coxsackievirus and adenovirus receptor. J Virol 2014; 88:7345-56. [PMID: 24741103 DOI: 10.1128/jvi.00104-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail links CAR to the cytoskeleton and intracellular signaling cascades. In the heart, CAR is crucial for embryonic development, electrophysiology, and coxsackievirus B infection. Noncardiac functions are less well understood, in part due to the lack of suitable animal models. Here, we generated a transgenic mouse that rescued the otherwise embryonic-lethal CAR knockout (KO) phenotype by expressing chicken CAR exclusively in the heart. Using this rescue model, we addressed interspecies differences in coxsackievirus uptake and noncardiac functions of CAR. Survival of the noncardiac CAR KO (ncKO) mouse indicates an essential role for CAR in the developing heart but not in other tissues. In adult animals, cardiac activity was normal, suggesting that chicken CAR can replace the physiological functions of mouse CAR in the cardiomyocyte. However, chicken CAR did not mediate virus entry in vivo, so that hearts expressing chicken instead of mouse CAR were protected from infection and myocarditis. Comparison of sequence homology and modeling of the D1 domain indicate differences between mammalian and chicken CAR that relate to the sites important for virus binding but not those involved in homodimerization. Thus, CAR-directed anticoxsackievirus therapy with only minor adverse effects in noncardiac tissue could be further improved by selectively targeting the virus-host interaction while maintaining cardiac function. IMPORTANCE Coxsackievirus B3 (CVB3) is one of the most common human pathogens causing myocarditis. Its receptor, the coxsackievirus and adenovirus receptor (CAR), not only mediates virus uptake but also relates to cytoskeletal organization and intracellular signaling. Animals without CAR die prenatally with major cardiac malformations. In the adult heart, CAR is important for virus entry and electrical conduction, but its nonmuscle functions are largely unknown. Here, we show that chicken CAR expression exclusively in the heart can rescue the otherwise embryonic-lethal CAR knockout phenotype but does not support CVB3 infection of adult cardiomyocytes. Our findings have implications for the evolution of virus-host versus physiological interactions involving CAR and could help to improve future coxsackievirus-directed therapies inhibiting virus replication while maintaining CAR's cellular functions.
Collapse
|
32
|
Größl T, Hammer E, Bien-Möller S, Geisler A, Pinkert S, Röger C, Poller W, Kurreck J, Völker U, Vetter R, Fechner H. A novel artificial microRNA expressing AAV vector for phospholamban silencing in cardiomyocytes improves Ca2+ uptake into the sarcoplasmic reticulum. PLoS One 2014; 9:e92188. [PMID: 24670775 PMCID: PMC3966758 DOI: 10.1371/journal.pone.0092188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/19/2014] [Indexed: 01/09/2023] Open
Abstract
In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB) expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr) improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr) directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr) from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM) over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR) vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.
Collapse
Affiliation(s)
- Tobias Größl
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Bien-Möller
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Carsten Röger
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology & Pneumology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Roland Vetter
- Institute of Clinical Pharmacology & Toxicology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
33
|
Mason JB, Gurda BL, Engiles JB, Hankenson KD, Wilson JM, Richardson DW. Multiple recombinant adeno-associated viral vector serotypes display persistent in vivo gene expression in vector-transduced rat stifle joints. Hum Gene Ther Methods 2013; 24:185-94. [PMID: 23659250 DOI: 10.1089/hgtb.2012.199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Our aim was to investigate serotype-specific cell and tissue-transduction tropisms, transgene expression levels and longevity, and immunogenicity of candidate rAAV serotypes in rat osteochondral cells, tissues, and stifle joints. In vitro, we used six rAAV serotypes and two promoters to transduce synoviocytes and chondrocytes. Serotypes rAAV2/5 and 2/2 yielded the highest transduction efficiency 4 days after transduction. No differences were detected between cytomegalovirus and chicken β-actin promoters. In vivo, intra-articular injection was used to introduce four rAAV serotypes into 4-month-old rats in the left stifle joint. Eleven months later, serotype 2/5 vector, diluted with saline or surfactant, was injected into the right stifle joint of the same rats. Rats were analyzed up to 12 months after initial injection. Bioluminescence was detected at 7 days and all serotypes tested displayed bioluminescence above controls after 1 year in the left stifle. Gene expression was detected in the right stifle joints of all rats with the exception of rats previously injected with serotype 2/5. We observed no difference irrespective of whether the luciferin was injected subcutaneously or intraperitoneally. However, surfactant-diluted vectors led to increased gene expression compared with saline-diluted vectors. Cell- and tissue-specific transduction was observed in rat stifles injected with an nLacZ-containing rAAV. Transduction was greatest in stromal tissues and mesenchymal cell types. Exposure to a specific serotype did not inhibit subsequent transduction with a different serotype at a second vector injection. Including surfactant as a vector diluent increased gene expression within the stifle joint and should be considered for in vivo gene therapy applications.
Collapse
Affiliation(s)
- Jeffrey B Mason
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348-1692, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Wagner A, Röhrs V, Kedzierski R, Fechner H, Kurreck J. A novel method for the quantification of adeno-associated virus vectors for RNA interference applications using quantitative polymerase chain reaction and purified genomic adeno-associated virus DNA as a standard. Hum Gene Ther Methods 2013; 24:355-63. [PMID: 23987130 DOI: 10.1089/hgtb.2013.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are promising tools in gene therapy, but accurate quantification of the vector dose remains a critical issue for their successful application. We therefore aimed at the precise determination of the titer of self-complementary AAV (scAAV) vectors to improve the reliability of RNA interference (RNAi)-mediated knockdown approaches. Vector titers were initially determined by quantitative polymerase chain reaction (qPCR) using four primer sets targeting different regions within the AAV vector genome (VG) and either coiled or linearized plasmid standards. Despite very low variability between replicates in each assay, these quantification experiments revealed up to 20-fold variation in vector titers. Therefore, we developed a novel approach for the reproducible determination of titers of scAAV vectors based on the use of purified genomic vector DNA as a standard (scAAVStd). Consistent results were obtained in qPCR assays using the four primer sets mentioned above. RNAi-mediated silencing of human cyclophilin B (hCycB) by short hairpin RNA-expressing scAAV vectors was investigated in HeLa cells using two independent vector preparations. We found that the required vector titers for efficient knockdown differed by a factor of 3.5 between both preparations. Hence, we also investigated the number of internalized scAAV vectors, termed transduction units (TUs). TUs were determined by qPCR applying the scAAVStd. Very similar values for 80% hCycB knockdown were obtained for the two AAV vector preparations. Thus, only the determination of TUs, rather than vector concentration, allows for reproducible results in functional analyses using AAV vectors.
Collapse
Affiliation(s)
- Anke Wagner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin 13355, Germany
| | | | | | | | | |
Collapse
|
35
|
Piras BA, O’Connor DM, French BA. Systemic delivery of shRNA by AAV9 provides highly efficient knockdown of ubiquitously expressed GFP in mouse heart, but not liver. PLoS One 2013; 8:e75894. [PMID: 24086659 PMCID: PMC3782464 DOI: 10.1371/journal.pone.0075894] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/17/2013] [Indexed: 01/09/2023] Open
Abstract
AAV9 is a powerful gene delivery vehicle capable of providing long-term gene expression in a variety of cell types, particularly cardiomyocytes. The use of AAV-delivery for RNA interference is an intense area of research, but a comprehensive analysis of knockdown in cardiac and liver tissues after systemic delivery of AAV9 has yet to be reported. We sought to address this question by using AAV9 to deliver a short-hairpin RNA targeting the enhanced green fluorescent protein (GFP) in transgenic mice that constitutively overexpress GFP in all tissues. The expression cassette was initially tested in vitro and we demonstrated a 61% reduction in mRNA and a 90% reduction in GFP protein in dual-transfected 293 cells. Next, the expression cassette was packaged as single-stranded genomes in AAV9 capsids to test cardiac GFP knockdown with several doses ranging from 1.8×10(10) to 1.8×10(11) viral genomes per mouse and a dose-dependent response was obtained. We then analyzed GFP expression in both heart and liver after delivery of 4.4×10(11) viral genomes per mouse. We found that while cardiac knockdown was highly efficient, with a 77% reduction in GFP mRNA and a 71% reduction in protein versus control-treated mice, there was no change in liver expression. This was despite a 4.5-fold greater number of viral genomes in the liver than in the heart. This study demonstrates that single-stranded AAV9 vectors expressing shRNA can be used to achieve highly efficient cardiac-selective knockdown of GFP expression that is sustained for at least 7 weeks after the systemic injection of 8 day old mice, with no change in liver expression and no evidence of liver damage despite high viral genome presence in the liver.
Collapse
Affiliation(s)
- Bryan A. Piras
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel M. O’Connor
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Brent A. French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Radiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine/Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
36
|
Abstract
Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.
Collapse
Affiliation(s)
- Wolfgang Poller
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Tank
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Gast
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
37
|
Yao H, Zhang Y, He F, Wang C, Xiao Z, Zou J, Wang F, Liu Z. Short hairpin RNA targeting 2B gene of coxsackievirus B3 exhibits potential antiviral effects both in vitro and in vivo. BMC Infect Dis 2012; 12:177. [PMID: 22863145 PMCID: PMC3482581 DOI: 10.1186/1471-2334-12-177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 07/28/2012] [Indexed: 11/20/2022] Open
Abstract
Background Coxsackievirus B3 is an important infectious agent of viral myocarditis, pancreatitis and aseptic meningitis, but there are no specific antiviral therapeutic reagents in clinical use. RNA interference-based technology has been developed to prevent the viral infection. Methods To evaluate the impact of RNA interference on viral replication, cytopathogenicity and animal survival, short hairpin RNAs targeting the viral 2B region (shRNA-2B) expressed by a recombinant vector (pGCL-2B) or a recombinant lentivirus (Lenti-2B) were tansfected in HeLa cells or transduced in mice infected with CVB3. Results ShRNA-2B exhibited a significant effect on inhibition of viral production in HeLa cells. Furthermore, shRNA-2B improved mouse survival rate, reduced the viral tissues titers and attenuated tissue damage compared with those of the shRNA-NC treated control group. Lenti-2B displayed more effective role in inhibition of viral replication than pGCL-2B in vivo. Conclusions Coxsackievirus B3 2B is an effective target of gene silencing against coxsackievirus B3 infection, suggesting that shRNA-2B is a potential agent for further development into a treatment for enterviral diseases.
Collapse
Affiliation(s)
- Hailan Yao
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
DiMattia MA, Nam HJ, Van Vliet K, Mitchell M, Bennett A, Gurda BL, McKenna R, Olson NH, Sinkovits RS, Potter M, Byrne BJ, Aslanidi G, Zolotukhin S, Muzyczka N, Baker TS, Agbandje-McKenna M. Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol 2012; 86:6947-58. [PMID: 22496238 PMCID: PMC3393551 DOI: 10.1128/jvi.07232-11] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/03/2012] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus serotype 9 (AAV9) has enhanced capsid-associated tropism for cardiac muscle and the ability to cross the blood-brain barrier compared to other AAV serotypes. To help identify the structural features facilitating these properties, we have used cryo-electron microscopy (cryo-EM) and three-dimensional image reconstruction (cryo-reconstruction) and X-ray crystallography to determine the structure of the AAV9 capsid at 9.7- and 2.8-Å resolutions, respectively. The AAV9 capsid exhibits the surface topology conserved in all AAVs: depressions at each icosahedral two-fold symmetry axis and surrounding each five-fold axis, three separate protrusions surrounding each three-fold axis, and a channel at each five-fold axis. The AAV9 viral protein (VP) has a conserved core structure, consisting of an eight-stranded, β-barrel motif and the αA helix, which are present in all parvovirus structures. The AAV9 VP differs in nine variable surface regions (VR-I to -IX) compared to AAV4, but at only three (VR-I, VR-II, and VR-IV) compared to AAV2 and AAV8. VR-I differences modify the raised region of the capsid surface between the two-fold and five-fold depressions. The VR-IV difference produces smaller three-fold protrusions in AAV9 that are less "pointed" than AAV2 and AAV8. Significantly, residues in the AAV9 VRs have been identified as important determinants of cellular tropism and transduction and dictate its antigenic diversity from AAV2. Hence, the AAV9 VRs likely confer the unique infection phenotypes of this serotype.
Collapse
Affiliation(s)
- Michael A. DiMattia
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hyun-Joo Nam
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kim Van Vliet
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Matthew Mitchell
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Brittney L. Gurda
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Norman H. Olson
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California—San Diego, La Jolla, California, USA
| | - Robert S. Sinkovits
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California—San Diego, La Jolla, California, USA
| | - Mark Potter
- Department of Pediatrics and Powell Gene Therapy Center, Division of Cell and Molecular Therapy, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Barry J. Byrne
- Department of Pediatrics and Powell Gene Therapy Center, Division of Cell and Molecular Therapy, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - George Aslanidi
- Department of Pediatrics and Powell Gene Therapy Center, Division of Cell and Molecular Therapy, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sergei Zolotukhin
- Department of Pediatrics and Powell Gene Therapy Center, Division of Cell and Molecular Therapy, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Nicholas Muzyczka
- Department of Molecular Genetics and Microbiology and Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Timothy S. Baker
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California—San Diego, La Jolla, California, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Dayton RD, Wang DB, Klein RL. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin Biol Ther 2012; 12:757-66. [PMID: 22519910 DOI: 10.1517/14712598.2012.681463] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Straightforward studies compared adeno-associated virus (AAV) serotypes to determine the most appropriate one for robust expression in the CNS. AAV9 was efficient when directly injected into the brain, but more surprisingly, AAV9 produced global expression in the brain and spinal cord after a peripheral, systemic route of administration to neonatal mice. AREAS COVERED Topics include AAV9 gene delivery from intraparenchymal, intravenous, intrathecal and intrauterine routes of administration, and related preclinical studies and disease models. Systemic AAV9 gene transfer yields remarkably consistent neuronal expression, though only in early development. AAV9 is versatile to study neuropathological proteins: microtubule-associated protein tau and transactive response DNA-binding protein 43 kDa (TDP-43). EXPERT OPINION AAV9 will be more widely used based on current data, although other natural serotypes and recombineered vectors may also support or improve upon wide-scale expression. A peripheral-to-central gene delivery that can affect the entire CNS without having to inject the CNS is promising for basic functional experiments, and potentially for gene therapy. Systemic or intra-cerebrospinal fluid routes of AAV9 administration should be considered for spinal muscular atrophy, lysosomal storage diseases and amyotrophic lateral sclerosis, if more neuronal expression can be achieved in adults, or if glial expression can be exploited.
Collapse
Affiliation(s)
- Robert D Dayton
- Department of Pharmacology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
40
|
Abstract
Twelve AAV serotypes have been described so far in human and nonhuman primate (NHP) populations while surprisingly high diversity of AAV sequences is detected in tissue biopsies. The analysis of these novel AAV sequences has indicated a rapid evolution of the viral genome both by accumulation of mutations and recombination. This chapter describes how this rich resource of naturally evolved sequences is used to derive gene transfer vectors with a wide array of activities depending on the nature of the cap gene used in the packaging system. AAV2-based recombinant genomes have been packaged in dozens of different capsid types, resulting in a wide array of "pseudotyped vectors" that constitute a rich resource for the development of gene therapy clinical trials. We describe a polymerase chain reaction-based molecular rescue method for novel AAV isolation that uses primers designed to recognize the highly conserved regions in known AAV isolates and generate amplicons across the hypervariable regions of novel AAV genomes present in the analyzed sample.
Collapse
|
41
|
Fechner H, Pinkert S, Geisler A, Poller W, Kurreck J. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules 2011; 16:8475-503. [PMID: 21989310 PMCID: PMC6264230 DOI: 10.3390/molecules16108475] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/16/2023] Open
Abstract
Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.
Collapse
Affiliation(s)
- Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
- Author to whom correspondence should be addressed; ; Tel.: +49-30-31472181; Fax: +49-30-31427502
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| | - Anja Geisler
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Wolfgang Poller
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| |
Collapse
|
42
|
Virus-host coevolution in a persistently coxsackievirus B3-infected cardiomyocyte cell line. J Virol 2011; 85:13409-19. [PMID: 21976640 DOI: 10.1128/jvi.00621-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coevolution of virus and host is a process that emerges in persistent virus infections. Here we studied the coevolutionary development of coxsackievirus B3 (CVB3) and cardiac myocytes representing the major target cells of CVB3 in the heart in a newly established persistently CVB3-infected murine cardiac myocyte cell line, HL-1(CVB3). CVB3 persistence in HL-1(CVB3) cells represented a typical carrier-state infection with high levels (10(6) to 10(8) PFU/ml) of infectious virus produced from only a small proportion (approximately 10%) of infected cells. CVB3 persistence was characterized by the evolution of a CVB3 variant (CVB3-HL1) that displayed strongly increased cytotoxicity in the naive HL-1 cell line and showed increased replication rates in cultured primary cardiac myocytes of mouse, rat, and naive HL-1 cells in vitro, whereas it was unable to establish murine cardiac infection in vivo. Resistance of HL-1(CVB3) cells to CVB3-HL1 was associated with reduction of coxsackievirus and adenovirus receptor (CAR) expression. Decreasing host cell CAR expression was partially overcome by the CVB3-HL1 variant through CAR-independent entry into resistant cells. Moreover, CVB3-HL1 conserved the ability to infect cells via CAR. The employment of a soluble CAR variant resulted in the complete cure of HL-1(CVB3) cells with respect to the adapted virus. In conclusion, this is the first report of a CVB3 carrier-state infection in a cardiomyocyte cell line, revealing natural coevolution of CAR downregulation with CAR-independent viral entry in resistant host cells as an important mechanism of induction of CVB3 persistence.
Collapse
|
43
|
Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One 2011; 6:e21215. [PMID: 21698212 PMCID: PMC3115994 DOI: 10.1371/journal.pone.0021215] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 05/23/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myocarditis is the major heart disease in infants and young adults. It is very commonly caused by coxsackievirus B3 (CVB3) infection; however, no specific treatment or vaccine is available at present. RNA interference (RNAi)-based anti-viral therapy has shown potential to inhibit viral replication, but this strategy faces two major challenges; viral mutational escape from drug suppression and targeted delivery of the reagents to specific cell populations. METHODOLOGY/PRINCIPAL FINDINGS In this study, we designed artificial microRNAs (AmiRs) targeting the 3'untranslated region (3'UTR) of CVB3 genome with mismatches to the central region of their targeting sites. Antiviral evaluation showed that AmiR-1 and AmiR-2 reduced CVB3 (Kandolf and CG strains) replication approximately 100-fold in both HeLa cells and HL-1 cardiomyocytes. To achieve specific delivery, we linked AmiRs to the folate-conjugated bacterial phage packaging RNA (pRNA) and delivered the complexes into HeLa cells, a folate receptor positive cancer cells widely used as an in vitro model for CVB3 infection, via folate-mediated specific internalization. We found that our designed pRNA-AmiRs conjugates were tolerable to target mutations and have great potential to suppress viral mutational escape with little effect on triggering interferon induction. CONCLUSION/SIGNIFICANCE This study provides important clues for designing AmiRs targeting the 3'UTR of viral genome. It also proves the feasibility of specific deliver of AmiRs using conjugated pRNA vehicles. These small AmiRs combined with pRNA-folate conjugates could form a promising system for antiviral drug development.
Collapse
|
44
|
Kontrogianni-Konstantopoulos A. Resisting resistin; it's good for the heart. J Mol Cell Cardiol 2011; 51:141-3. [PMID: 21635896 DOI: 10.1016/j.yjmcc.2011.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 11/30/2022]
|
45
|
Abstract
BACKGROUND RNA interference (RNAi) has become the method of choice for researchers wishing to target specific genes for silencing and has provided immense potential as therapeutic tools. This narrative review article aimed to understand potential benefits and limitations of RNAi technique for clinical application and in vivo studies through reading the articles published during the recent 3 years. MATERIALS AND METHODS Medline database was searched by using 'siRNA' or 'RNAi' and 'in vivo' with limits of dates 'published in the last 3 years', language 'English' and article type 'clinical trial' for obtaining articles on in vivo studies on the use of RNAi technique. Characteristics of clinical trials on siRNA registered at the http://www.ClinicalTrials.gov were analysed. RESULTS The only three clinical studies published so far and many in vivo studies in animals showed that the RNAi technique is safe and effective in treatment of cancers of many organ/systems and various other diseases including viral infection, arterial restenosis and some hereditary diseases with considerable benefits such as high specificity, many possible routes of administration and possibility of silencing multiple genes at the same time. Limitations and uncertainty include efficiency of cellular uptake, specific guidance to the target tissue or cell, long-term safety, sustained efficacy and rapid clearance from the body. CONCLUSIONS RNAi technique will become an important and potent weapon for fighting against various diseases. RNAi technique has benefits and limitations in its potential clinical applications. Overcoming the obstacles is still a formidable task.
Collapse
Affiliation(s)
- Shao-Hua Chen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
46
|
Kage H, Sugimoto K, Sano A, Kitagawa H, Nagase T, Ohishi N, Takai D. Suppression of transforming growth factor β1 in lung alveolar epithelium-derived cells using adeno-associated virus type 2/5 vectors to carry short hairpin RNA. Exp Lung Res 2011; 37:175-85. [PMID: 21269064 DOI: 10.3109/01902148.2010.529985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since the discovery of RNA interference, short interfering RNA (siRNA) has become a standard research tool. However, expression of siRNA in lung alveolar epithelial cells has remained a problem. Adeno-associated virus (AAV) vectors are known to have low toxicity, and AAV type 5 vectors transduce these cells efficiently. In this study, LacZ expression was higher using AAV2/5-LacZ and LA-4 cells compared with transfection of plasmid or transduction to 3T12-3 cells. The authors designed 10 different siRNAs against mouse transforming growth factor β1 (Tgfβ1), selected one with the highest knockdown efficiency, and transduced the AAV vectors carrying the short hairpin RNA (shRNA) to target cells. The AAV vectors transduced LA-4 cells 50 times more efficiently than 3T12-3 cells, and suppression of Tgfβ1 protein expression was similar, at approximately 50%. Knockdown of mRNA was only seen in LA-4 cells. Inhibition of Tgfβ1 resulted in higher number of LA-4 cells, lower number of 3T12-3 cells, and decreased procollagen expression in LA-4 cells. Higher transduction was seen in H23 cells than in H1975 cells, and low transduction was seen MH-S cells. This study shows that AAV2/5 can be used to carry shRNA and suppress gene function in lung alveolar epithelium-derived cells.
Collapse
Affiliation(s)
- Hidenori Kage
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Vaccine protection against lethal homologous and heterologous challenge using recombinant AAV vectors expressing codon-optimized genes from pandemic swine origin influenza virus (SOIV). Vaccine 2010; 29:1690-9. [PMID: 21195079 DOI: 10.1016/j.vaccine.2010.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/16/2010] [Accepted: 12/14/2010] [Indexed: 12/12/2022]
Abstract
The recent H1N1 influenza pandemic and the inevitable delay between identification of the virus and production of the specific vaccine have highlighted the urgent need for new generation influenza vaccines that can preemptively induce broad immunity to different strains of the virus. In this study we have produced AAV-based vectors expressing the A/Mexico/4603/2009 (H1N1) hemagglutinin (HA), nucleocapsid (NP) and the matrix protein M1 and have evaluated their ability to induce specific immune response and protect mice against homologous and heterologous challenge. Each of the vaccine vectors elicited potent cellular and humoral immune responses in mice. Although immunization with AAV-M1 did not improve survival after challenge with the homologous strain, immunization with the AAV-H1 and AAV-NP vectors resulted in survival of all mice, as did inoculation with a combination of all three vectors. Furthermore, trivalent vaccination also conferred partial protection against challenge with the highly heterologous and virulent A/PR/8/34 strain of H1N1 influenza.
Collapse
|
48
|
Rothe D, Wajant G, Grunert HP, Zeichhardt H, Fechner H, Kurreck J. Rapid construction of adeno-associated virus vectors expressing multiple short hairpin RNAs with high antiviral activity against echovirus 30. Oligonucleotides 2010; 20:191-8. [PMID: 20649454 DOI: 10.1089/oli.2010.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA interference has proven to be a powerful tool to inhibit viruses. For the prevention of viral escape, multiple short hairpin RNAs (shRNAs) will have to be employed. This article describes a rapid procedure for the generation of shRNA expression cassettes by parallel cloning as well as a simple strategy for the combination of selected units. After delivery of the shRNA expression cassettes with adeno-associated virus vectors, inhibition of echovirus 30 as well as silencing of an important cellular cofactor of virus replication were achieved. The procedure has the potential to be generally applicable for silencing of multiple endogenous targets or viruses.
Collapse
Affiliation(s)
- Diana Rothe
- Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Despite significant advances in treatments, cardiovascular disease (CVD) remains the leading cause of human morbidity and mortality in developed countries. The development of novel and efficient treatment strategies requires an understanding of the basic molecular mechanisms underlying cardiac function. MicroRNAs (miRNAs) are a family of small nonprotein-coding RNAs that have emerged as important regulators in cardiac and vascular developmental and pathological processes, including cardiac arrhythmia, fibrosis, hypertrophy and ischemia, heart failure and vascular atherosclerosis. The miRNA acts as an adaptor for the miRNA-induced silencing complex (miRISC) to specifically recognize and regulate particular mRNAs. Mature miRNAs recognize their target mRNAs by base-pairing interactions between nucleotides 2 and 8 of the miRNA (the seed region) and complementary nucleotides in the 3'-untranslated region (3'-UTR) of mRNAs and miRISCs subsequently inhibit gene expression by targeting mRNAs for translational repression or cleavage. In this review we summarize the basic mechanisms of action of miRNAs as they are related to cardiac arrhythmia and address the potential for miRNAs to be therapeutically manipulated in the treatment of arrhythmias.
Collapse
|
50
|
Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R, Fechner H, Müller OJ. microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther 2010; 18:199-209. [PMID: 21048795 DOI: 10.1038/gt.2010.141] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adeno-associated virus (AAV) vectors with capsids of AAV serotype 9 enable an efficient transduction of the heart upon intravenous injection of adult mice but also transduce the liver. The aim of this study was to improve specificity of AAV9 vector-mediated cardiac gene transfer by microRNA (miR)-dependent control of transgene expression. We constructed plasmids and AAV vectors containing target sites (TSs) of liver-specific miR122, miR192 and miR148a in the 3' untranslated region (3'UTR) of a luciferase expression cassette. Luciferase expression was efficiently suppressed in liver cell lines expressing high levels of the corresponding miRs, whereas luciferase expression was unaffected in cardiac myocytes. Intravenous injections of AAV9 vectors bearing three repeats of miR122 TS in the 3'UTR of an enhanced green fluorescent expression (EGFP) expression cassette resulted in the absence of EGFP expression in the liver of adult mice, whereas the control vectors without miR TS displayed significant hepatic EGFP expression. EGFP expression levels in the heart, however, were comparable between miR122-regulated and control vectors. The liver-specific de-targeting in vivo using miR122 was even more efficient than transcriptional targeting with a cardiac cytomegalovirus (CMV)-enhanced myosin light chain (MLC) promoter. These data indicate that miR-regulated targeting is a powerful new tool to further improve cardiospecificity of AAV9 vectors.
Collapse
Affiliation(s)
- A Geisler
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|