1
|
Li X, Simo L, Zhao Q, Kim E, Ding Y, Geng X. Endothelial Cells and the Blood-Brain Barrier: Critical Determinants of Ineffective Reperfusion in Stroke. Eur J Neurosci 2025; 61:e16663. [PMID: 39935212 PMCID: PMC11814926 DOI: 10.1111/ejn.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 02/13/2025]
Abstract
Ineffective reperfusion remains a critical challenge in neurointerventional treatment following ischemic stroke, with the integrity of the blood-brain barrier (BBB) being a key determinant of patient outcomes. This review explores the distinctive characteristics and roles of brain endothelial cells (ECs) in the context of stroke and ineffective reperfusion. We examine the unique properties of brain ECs compared to their counterparts in other tissues, focusing on their pathophysiological changes, functional impairments and the inflammatory cascades that follow stroke. Differences in gene expression between brain ECs and those in other organs offer deeper insights into their role in neuroprotective therapies. Additionally, drawing parallels between brain ECs and ECs from organs with similar ischemia-reperfusion injury profiles may inspire novel therapeutic approaches. This review highlights the critical importance of understanding the nuanced roles of ECs in BBB regulation, which ultimately impacts reperfusion outcomes.
Collapse
Affiliation(s)
- Xiang Li
- Luhe Institute of NeuroscienceCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Leticia Simo
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Qianhui Zhao
- Luhe Institute of NeuroscienceCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Enoch Gene Kim
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Xiaokun Geng
- Luhe Institute of NeuroscienceCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
2
|
Zhang L, Wang Z, Wu Y, Zhang B, Wang Z, Chen S, Meng X, Yu P, Zhou S. RasGRP4 aggravates ischemia-reperfusion injury in diabetic kidneys by mediating communication between macrophages and T cells. JCI Insight 2024; 10:e187653. [PMID: 39656542 PMCID: PMC11790033 DOI: 10.1172/jci.insight.187653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Diabetes mellitus (DM) is acknowledged as an independent risk factor for acute kidney injury. Ras guanine nucleotide-releasing protein-4 (RasGRP4) exerts a notable role in modulating immune-inflammatory responses and kidney disease progression in diabetes. Herein, we delved into the specific role and mechanism of RasGRP4 in diabetic renal ischemia-reperfusion injury. Diabetes was induced by a high-fat diet and streptozocin (STZ) injections, followed by creating an ischemia-reperfusion kidney injury via renal pedicle clamping and reperfusion. In vitro, a high glucose and hypoxia-reoxygenation modeled cellular inflammatory injury. We found RasGRP4-KO mice, compared with C57BL/6J (WT) mice, showed markedly less renal dysfunction and fibrosis in diabetic ischemia-reperfusion injury. There was a significant decrease in the renal infiltration of M1 macrophages and Th17 cells, along with downregulated IL-17 pathway proteins and effectors. In vitro, RasGRP4 deletion restrained M1 macrophage polarization and Th17 cell differentiation, inhibiting the IL-17 signaling pathway in HK-2 cells. Hyperglycemia intensified renal inflammation state. Together, RasGRP4, through the regulation of interactions among M1 macrophages, CD4+ T cells, and HK-2 cells, formed a cascade that intensified the inflammatory storm activity, ultimately exacerbating the inflammatory injury of diabetic ischemia-reperfusion kidneys. DM intensified this inflammatory injury mechanism, worsening the injury from renal ischemia-reperfusion.
Collapse
Affiliation(s)
- Li Zhang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Zhanglong Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Yunqi Wu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Binshan Zhang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Zhongli Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Sisi Chen
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Xuying Meng
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Pei Yu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Saijun Zhou
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| |
Collapse
|
3
|
Villa G, Fiorentino M, Cappellini E, Lassola S, De Rosa S. Renal implications of pneumoperitoneum in laparoscopic surgery: mechanisms, risk factors, and preventive strategies. Korean J Anesthesiol 2024; 77:575-586. [PMID: 38664893 PMCID: PMC11637592 DOI: 10.4097/kja.24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
Pneumoperitoneum, which is established for laparoscopic surgery, has systemic implications on the renal system and may contribute to acute kidney injury or postoperative renal dysfunction. Specifically, when the pressure exceeds 10 mmHg, pneumoperitoneum decreases renal blood flow, leading to renal dysfunction and temporary oliguria. The renal effects of pneumoperitoneum stem from both the direct effects of increased intra-abdominal pressure and indirect factors such as carbon dioxide absorption, neuroendocrine influences, and tissue damage resulting from oxidative stress. While pneumoperitoneum can exacerbate renal dysfunction in patients with pre-existing kidney issues, preserving the function of the remaining kidney is crucial in certain procedures such as laparoscopic live donor nephrectomy. However, available evidence on the effects of pneumoperitoneum on renal function is limited and of moderate quality. This review focuses on exploring the pathophysiological hypotheses underlying kidney damage, mechanisms leading to oliguria and kidney damage, and fluid management strategies for surgical patients during pneumoperitoneum.
Collapse
Affiliation(s)
- Gianluca Villa
- Department of Health Sciences, Anesthesiology Intensive Care and Pain Medicine, University of Florence, Florence, Italy
- Department of Anesthesia and Intensive Care, Oncological Anesthesia and Intensive Care, AOU Careggi, Florence, Italy
| | - Marco Fiorentino
- Department of Precision and Regenerative Medicine and Ionian Area, Nephrology Unit, University of Bari, Italy
| | - Eleonora Cappellini
- Department of Health Sciences, Anesthesiology Intensive Care and Pain Medicine, University of Florence, Florence, Italy
| | - Sergio Lassola
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Italy
| | - Silvia De Rosa
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Italy
- Center for Medical Sciences - CISMed, University of Trento, Trento, Italy
| |
Collapse
|
4
|
Buxeda A, Crespo M, Chamoun B, Gimeno J, Torres IB, Redondo-Pachón D, Riera M, Burballa C, Pascual J, Mengel M, Adam BA, Pérez-Sáez MJ. Clinical and molecular spectrum of v-lesion. Am J Transplant 2024; 24:2007-2021. [PMID: 39084462 DOI: 10.1016/j.ajt.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Isolated v-lesion presents diagnostic stratification and clinical challenges. We characterized allograft outcomes for this entity based on posttransplant time (early: ≤1 month vs late: >1 month) and compared its molecular phenotype with other v+ rejection forms. Using the NanoString B-HOT panel, we analyzed 92 archival formalin-fixed paraffin-embedded tissue kidney biopsies from 3 centers: isolated v-lesion (n = 23), antibody-mediated rejection (ABMR) v+ (n = 26), T cell-mediated rejection (TCMR) v+ (n = 10), mixed rejection v+ (n = 23), and normal tissue (n = 10). Six gene sets (ABMR, DSAST, ENDAT, TCMR, early/acute injury, late injury) were assessed. Early isolated v-lesions had the poorest 1-year death-censored graft survival compared with late isolated v-lesions or other rejections (P = .034). Gene set analysis showed lower TCMR-related gene expression in isolated v+ groups than TCMR and mixed rejection (P < .001). Both early- and late isolated v-lesions had lower ABMR-related gene expression than ABMR, mixed rejection, and TCMR (P ≤ .022). Late isolated v-lesions showed reduced DSAST and ENDAT gene expression versus ABMR (P ≤ .046) and decreased early/acute injury gene expression than early isolated v+, ABMR, TCMR, and mixed rejection (P ≤ .026). In conclusion, isolated v-lesions exhibit distinct gene expression patterns versus other rejection v+ forms. Early isolated v+ is associated with poorer prognosis and increased early/acute injury gene expression than late isolated v+, suggesting distinct etiologies.
Collapse
Affiliation(s)
- Anna Buxeda
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain.
| | - Betty Chamoun
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Department of Nephrology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Irina B Torres
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Marta Riera
- Department of Nephrology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Carla Burballa
- Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Julio Pascual
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
5
|
Yan R, Yang H, Jiang X, Lai X. Renal Protective Effect of Umbelliferone on Acute Kidney Injury in Rats via Alteration of HO-1/Nrf2 and NF-κB Signaling Pathway. DOKL BIOCHEM BIOPHYS 2024; 518:442-451. [PMID: 39196533 DOI: 10.1134/s160767292460043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 08/29/2024]
Abstract
Acute kidney injury (AKI), formerly known as acute renal failure, refers to a sudden and often reversible decline in kidney function. Inflammatory reaction and oxidative stress play a crucial role in the expansion of renal disease. In this experimental study, we scrutinized the renal protective effect of umbelliferone against gentamicin induced renal injury in the rats and explore the mechanism. Wistar rats were used in this study and Gentamicin was used for the induction the AKI in the rats and rats were received the oral administration of umbelliferone. The body weight, organ weight, renal, oxidative stress, cytokines, inflammatory parameters were estimated. The mRNA expression caspase-3, Bax, Bcl-2, TNF-α, IL-1β, IL-6, IL-10, HO-1, and Nrf2 were estimated. Umbelliferone remarkably improved the body weight and altered the absolute and relative weight of hepatic and renal tissue. Umbelliferone significantly suppressed the level of BUN, Scr, magnesium, calcium, phosphorus, sodium, and potassium along with altered the level of oxidative stress parameters like CAT, SOD, GSH, LPO, and GPx. Umbelliferone altered the level of cytokines viz., TNF-α, Il-1β, IL-6, IL-10; inflammatory parameters like PGE2, COX-2, TGF-β, NF-κB, respectively. Umbelliferone significantly altered the mRNA expression of caspase-3, Bax, Bcl-2, TNF-α, IL-1β, IL-6, IL-10, HO-1, and Nrf2. The result showed the renal protective effect of umbelliferone against gentamycin induced renal disease via alteration of HO-1/Nrf2 and NF-κB Signaling Pathway.
Collapse
Affiliation(s)
- RuiJuan Yan
- Department of Emergency Medicine, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, China
| | - Hui Yang
- Department of Respiratory, Qingdao, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, China
| | - XiaoQi Jiang
- Department of Respiratory, Qingdao, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, China
| | - XiaoDong Lai
- Department of Urology Surgery, Qingdao, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), 266000, Qingdao, China.
| |
Collapse
|
6
|
Chang SS, Cheng CC, Chen YR, Chen FW, Cheng YM, Wang JM. Epithelial CEBPD activates fibronectin and enhances macrophage adhesion in renal ischemia-reperfusion injury. Cell Death Discov 2024; 10:328. [PMID: 39025831 PMCID: PMC11258324 DOI: 10.1038/s41420-024-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a cause of acute kidney injury in patients after renal transplantation and leads to high morbidity and mortality. Damaged kidney resident cells release cytokines and chemokines, which rapidly recruit leukocytes. Fibronectin (FN-1) contributes to immune cell migration, adhesion and growth in inflamed tissues. CCAAT/enhancer-binding protein delta is responsive to inflammatory cytokines and stresses and plays functional roles in cell motility, extracellular matrix production and immune responses. We found that the expression of CCAAT/enhancer-binding protein delta was increased in renal epithelial cells in IRI mice compared with sham mice. Following IRI, the colocalization of FN-1 with the macrophage marker F4/80 was increased in renal injury model wild-type mice but was significantly attenuated in Cebpd-deficient mice. Inactivation of CEBPD can repress hypoxia-induced FN-1 expression in HK-2 cells. Moreover, the inactivation of CEBPD and FN-1 also reduces macrophage accumulation in HK-2 cells. These findings suggest that the involvement of CEBPD in macrophage accumulation through the activation of FN-1 expression and the inhibition of CEBPD can protect against renal IRI.
Collapse
Affiliation(s)
- Shen-Shin Chang
- Division of Transplantation, Department of Surgery, National Chung Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Chun Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Ren Chen
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Feng-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Min Cheng
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, 700, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
7
|
Sabet Sarvestani F, Afshari A, Azarpira N. The role of non-protein-coding RNAs in ischemic acute kidney injury. Front Immunol 2024; 15:1230742. [PMID: 38390339 PMCID: PMC10881863 DOI: 10.3389/fimmu.2024.1230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Acute kidney injury (AKI) is a condition characterized by a rapid decline in kidney function within a span of 48 hours. It is influenced by various factors including inflammation, oxidative stress, excessive calcium levels within cells, activation of the renin-angiotensin system, and dysfunction in microcirculation. Ischemia-reperfusion injury (IRI) is recognized as a major cause of AKI; however, the precise mechanisms behind this process are not yet fully understood and effective treatments are still needed. To enhance the accuracy of diagnosing AKI during its early stages, the utilization of innovative markers is crucial. Numerous studies suggest that certain noncoding RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), play a central role in regulating gene expression and protein synthesis. These ncRNAs are closely associated with the development and recovery of AKI and have been detected in both kidney tissue and bodily fluids. Furthermore, specific ncRNAs may serve as diagnostic markers and potential targets for therapeutic interventions in AKI. This review aims to summarize the functional roles and changes observed in noncoding RNAs during ischemic AKI, as well as explore their therapeutic potential.
Collapse
Affiliation(s)
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, Kuca K, Kumar D, Amarowicz R. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother 2023; 165:115183. [PMID: 37487442 DOI: 10.1016/j.biopha.2023.115183] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis has evolved as an enormous health issue amongst critically ill patients. It is a major risk factor that results in multiple organ failure and shock. Acute kidney injury (AKI) is one of the most frequent complications underlying sepsis, which portends a heavy burden of mortality and morbidity. Thus, the present review is aimed to provide an insight into the recent progression in the molecular mechanisms targeting dysregulated immune response and cellular dysfunction involved in the development of sepsis-associated AKI, accentuating the phytoconstituents as eligible candidates for attenuating the onset and progression of sepsis-associated AKI. The pathogenesis of sepsis-mediated AKI entails a complicated mechanism and is likely to involve a distinct constellation of hemodynamic, inflammatory, and immune mechanisms. Novel biomarkers like neutrophil gelatinase-associated lipocalin, soluble triggering receptor expressed on myeloid cells 1, procalcitonin, alpha-1-microglobulin, and presepsin can help in a more sensitive diagnosis of sepsis-associated AKI. Many bioactive compounds like curcumin, resveratrol, baicalin, quercetin, and polydatin are reported to play an important role in the prevention and management of sepsis-associated AKI by decreasing serum creatinine, blood urea nitrogen, cystatin C, lipid peroxidation, oxidative stress, IL-1β, TNF-α, NF-κB, and increasing the activity of antioxidant enzymes and level of PPARγ. The plant bioactive compounds could be developed into a drug-developing candidate in managing sepsis-mediated acute kidney injury after detailed follow-up studies. Lastly, the gut-kidney axis may be a more promising therapeutic target against the onset of septic AKI, but a deeper understanding of the molecular pathways is still required.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Sugandh Sinha
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India.
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ajay Kumar Gautam
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
9
|
Li L, Wang S, Wang W. Knockdown of ELF4 aggravates renal injury in ischemia/reperfusion mice through promotion of pyroptosis, inflammation, oxidative stress, and endoplasmic reticulum stress. BMC Mol Cell Biol 2023; 24:22. [PMID: 37474923 PMCID: PMC10360327 DOI: 10.1186/s12860-023-00485-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Renal ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Dysfunction of E74-like ETS transcription factor 4 (ELF4) leads to inflammation. This research intended to look into the function and mechanisms of ELF4 in I/R and oxygen-glucose deprivation/reperfusion (OGD/R) model. RESULTS In I/R and OGD/R model, ELF4 expression was downregulated. ELF4 knockout aggravated I/R-induced kidney injury, oxidative stress (OS), endoplasmic reticulum stress (ERS), apoptosis, inflammation, and pyroptosis in mice. In HK-2 cells treated with OGD/R, suppression of ELF4 expression inhibited cell proliferation and promoted cell apoptosis, OS, ERS, inflammation, and pyroptosis. Moreover, ELF4 overexpression led to the opposite results. CONCLUSION ELF4 deficiency aggravated I/R induced AKI, which was involved in apoptosis, OS, ERS, inflammation, and pyroptosis. Targeting ELF4 may be a promising new therapeutic strategy for preventing inflammation after IR-AKI.
Collapse
Affiliation(s)
- Li Li
- Department of Nephrology, Jinan City People's Hospital, No. 001, Changshao North Road, Laiwu District, Jinan, Shandong, 271199, People's Republic of China.
| | - Shunying Wang
- Department of Cadre Health Section, Jinan City People's Hospital, Jinan, Shandong, 271199, People's Republic of China
| | - Wenming Wang
- Department of Cadre Health Section, Jinan City People's Hospital, Jinan, Shandong, 271199, People's Republic of China
| |
Collapse
|
10
|
Yang W, Li X, He L, Zhu S, Lai S, Zhang X, Huang Z, Yu B, Cui C, Wang Q. Empagliflozin improves renal ischemia-reperfusion injury by reducing inflammation and enhancing mitochondrial fusion through AMPK-OPA1 pathway promotion. Cell Mol Biol Lett 2023; 28:42. [PMID: 37202752 DOI: 10.1186/s11658-023-00457-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) is one reason for renal transplantation failure. Recent studies have shown that mitochondrial dynamics is closely related to IRI, and that inhibition or reversal of mitochondrial division protects organs against IRI. Optic atrophy protein 1 (OPA1), an important factor in mitochondrial fusion, has been shown to be upregulated by sodium-glucose cotransporter 2 inhibitor (SGLT2i). Also, the antiinflammatory effects of SGLT2i have been demonstrated in renal cells. Thus, we hypothesized that empagliflozin could prevent IRI through inhibiting mitochondrial division and reducing inflammation. METHODS Using hematoxylin-eosin staining, enzyme linked immunosorbent assay (ELISA), flow cytometry, immunofluorescent staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining, real-time PCR, RNA-sequencing, and western blot, we analyzed renal tubular tissue from in vivo and in vitro experiments. RESULTS Through animal experiments and sequencing analysis, we first confirmed the protection against IRI and the regulation of mitochondrial dynamics-related factors and inflammatory factors by empagliflozin pretreatment. Then, through hypoxia/reoxygenation (H/R) cellular experiments, we confirmed that empagliflozin could inhibit mitochondrial shortening and division and upregulate OPA1 in human renal tubular epithelial cell line (HK-2) cells. Subsequently, we knocked down OPA1, and mitochondrial division and shortening were observed, which could be alleviated by empagliflozin treatment. Combined with the previous results, we concluded that OPA1 downregulation leads to mitochondrial division and shortening, and empagliflozin can alleviate the condition by upregulating OPA1. We further explored the pathway through which empagliflozin functions. Related studies have shown the activation of AMPK pathway by empagliflozin and the close correlation between the AMPK pathway and OPA1. In our study, we blocked the AMPK pathway, and OPA1 upregulation by empagliflozin was not observed, thus demonstrating the dependence of empagliflozin on the AMPK pathway. CONCLUSION The results indicated that empagliflozin could prevent or alleviate renal IRI through antiinflammatory effects and the AMPK-OPA1 pathway. Ischemia-reperfusion injury is an inevitable challenge in organ transplantation. It is necessary to develop a new therapeutic strategy for IRI prevention in addition to refining the transplantation process. In this study, we confirmed the preventive and protective effects of empagliflozin in renal ischemia-reperfusion injury. Based on these findings, empagliflozin is promising to be a preventive agent for renal ischemia-reperfusion injury and can be applied for preemptive administration in kidney transplantation.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaoli Li
- Department of the Eighth Healthcare, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Liujie He
- Naval Medical University, Shanghai, 200433, China
| | - Shuyang Zhu
- Naval Medical University, Shanghai, 200433, China
| | - Shicong Lai
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaopeng Zhang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Zixiong Huang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Biyue Yu
- School of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Chunping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Qiang Wang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
11
|
Gui Y, Palanza Z, Fu H, Zhou D. Acute kidney injury in diabetes mellitus: Epidemiology, diagnostic, and therapeutic concepts. FASEB J 2023; 37:e22884. [PMID: 36943403 PMCID: PMC10602403 DOI: 10.1096/fj.202201340rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Acute kidney injury (AKI) and diabetes mellitus (DM) are public health problems that cause a high socioeconomic burden worldwide. In recent years, the landscape of AKI etiology has shifted: Emerging evidence has demonstrated that DM is an independent risk factor for the onset of AKI, while an alternative perspective considers AKI as a bona fide complication of DM. Therefore, it is necessary to systematically characterize the features of AKI in DM. In this review, we summarized the epidemiology of AKI in DM. While focusing on circulation- and tissue-specific microenvironment changes after DM, we described the active cellular and molecular mechanisms of increased kidney susceptibility to AKI under DM stress. We also reviewed the current diagnostic and therapeutic strategies for AKI in DM recommended in the clinic. Updated recognition of the epidemiology, pathophysiology, diagnosis, and medications of AKI in DM is believed to reveal a path to mitigate the frequency of AKI and DM comorbidity that will ultimately improve the quality of life in DM patients.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
12
|
Rowe CJ, Walsh SA, Dragon AH, Rhodes AM, Pak OL, Ronzier E, Levi B, Potter BK, Spreadborough PJ, Davis TA. Tourniquet-induced ischemia creates increased risk of organ dysfunction and mortality following delayed limb amputation. Injury 2023:S0020-1383(23)00179-1. [PMID: 36906480 DOI: 10.1016/j.injury.2023.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 03/13/2023]
Abstract
Tourniquets are critical for the control of traumatic extremity hemorrhage. In this study, we sought to determine, in a rodent blast-related extremity amputation model, the impact of prolonged tourniquet application and delayed limb amputation on survival, systemic inflammation, and remote end organ injury. Adult male Sprague Dawley rats were subjected to blast overpressure (120±7 kPa) and orthopedic extremity injury consisting femur fracture, one-minute soft tissue crush injury (20 psi), ± 180 min of tourniquet-induced hindlimb ischemia followed by delayed (60 min of reperfusion) hindlimb amputation (dHLA). All animals in the non-tourniquet group survived whereas 7/21 (33%) of the animals in the tourniquet group died within the first 72 h with no deaths observed between 72 and 168 h post-injury. Tourniquet induced ischemia-reperfusion injury (tIRI) likewise resulted in a more robust systemic inflammation (cytokines and chemokines) and concomitant remote pulmonary, renal, and hepatic dysfunction (BUN, CR, ALT. AST, IRI/inflammation-mediated genes). These results indicate prolonged tourniquet application and dHLA increases risk of complications from tIRI, leading to greater risk of local and systemic complications including organ dysfunction or death. We thus need enhanced strategies to mitigate the systemic effects of tIRI, particularly in the military prolonged field care (PFC) setting. Furthermore, future work is needed to extend the window within which tourniquet deflation to assess limb viability remains feasible, as well as new, limb-specific or systemic point of care tests to better assess the risks of tourniquet deflation with limb preservation in order to optimize patient care and save both limb and life.
Collapse
Affiliation(s)
- Cassie J Rowe
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, United States
| | - Sarah A Walsh
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Andrea H Dragon
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, United States
| | - Alisha M Rhodes
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, United States
| | - Olivia L Pak
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, United States
| | - Elsa Ronzier
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, United States
| | - Benjamin Levi
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, United States
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Philip J Spreadborough
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| |
Collapse
|
13
|
Identification of the Subtypes of Renal Ischemia-Reperfusion Injury Based on Pyroptosis-Related Genes. Biomolecules 2023; 13:biom13020275. [PMID: 36830644 PMCID: PMC9952921 DOI: 10.3390/biom13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) often occurs in the process of kidney transplantation, which significantly impacts the subsequent treatment and prognosis of patients. The prognosis of patients with different subtypes of IRI is quite different. Therefore, in this paper, the gene expression data of multiple IRI samples were downloaded from the GEO database, and a double Laplacian orthogonal non-negative matrix factorization (DL-ONMF) algorithm was proposed to classify them. In this algorithm, various regularization constraints are added based on the non-negative matrix factorization algorithm, and the prior information is fused into the algorithm from different perspectives. The connectivity information between different samples and features is added to the algorithm by Laplacian regularization constraints on samples and features. In addition, orthogonality constraints on the basis matrix and coefficient matrix obtained by the algorithm decomposition are added to reduce the influence of redundant samples and redundant features on the results. Based on the DL-ONMF algorithm for clustering, two PRGs-related IRI isoforms were obtained in this paper. The results of immunoassays showed that the immune microenvironment was different among PRGS-related IRI types. Based on the differentially expressed PRGs between subtypes, we used LASSO and SVM-RFE algorithms to construct a diagnostic model related to renal transplantation. ROC analysis showed that the diagnostic model could predict the outcome of renal transplant patients with high accuracy. In conclusion, this paper presents an algorithm, DL-ONMF, which can identify subtypes with different disease characteristics. Comprehensive bioinformatic analysis showed that pyroptosis might affect the outcome of kidney transplantation by participating in the immune response of IRI.
Collapse
|
14
|
Cao Y, Chen J, Liu F, Qi G, Zhao Y, Xu S, Wang J, Zhu T, Zhang Y, Jia Y. Formyl peptide receptor 2 activation by mitochondrial formyl peptides stimulates the neutrophil proinflammatory response via the ERK pathway and exacerbates ischemia-reperfusion injury. Cell Mol Biol Lett 2023; 28:4. [PMID: 36658472 PMCID: PMC9854225 DOI: 10.1186/s11658-023-00416-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an inevitable process in renal transplantation that significantly increases the risk of delayed graft function, acute rejection, and even graft loss. Formyl peptide receptor 2 (FPR2) is an important receptor in multiple septic and aseptic injuries, but its functions in kidney IRI are still unclear. This study was designed to reveal the pathological role of FPR2 in kidney IRI and its functional mechanisms. METHODS To explore the mechanism of FPR2 in kidney IRI, the model rats were sacrificed after IRI surgery. Immunofluorescence, enzyme-linked immunosorbent assays, and western blotting were used to detect differences in the expression of FPR2 and its ligands between the IRI and control groups. WRW4 (WRWWWW-NH2), a specific antagonist of FPR2, was administered to kidney IRI rats. Kidney function and pathological damage were detected to assess kidney injury and recovery. Flow cytometry was used to quantitatively compare neutrophil infiltration among the experimental groups. Mitochondrial formyl peptides (mtFPs) were synthesized and administered to primary rat neutrophils together with the specific FPR family antagonist WRW4 to verify our hypothesis in vitro. Western blotting and cell function assays were used to examine the functions and signaling pathways that FPR2 mediates in neutrophils. RESULTS FPR2 was activated mainly by mtFPs during the acute phase of IRI, mediating neutrophil migration and reactive oxygen species production in the rat kidney through the ERK1/2 pathway. FPR2 blockade in the early phase protected rat kidneys from IRI. CONCLUSIONS mtFPs activated FPR2 during the acute phase of IRI and mediated rat kidney injury by activating the migration and reactive oxygen species generation of neutrophils through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Yirui Cao
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Juntao Chen
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Feng Liu
- grid.411405.50000 0004 1757 8861Department of Integrative Medicine, Huashan Hospital Fudan University, Shanghai, People’s Republic of China
| | - Guisheng Qi
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Zhao
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Shihao Xu
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiyan Wang
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yi Zhang
- grid.413087.90000 0004 1755 3939Zhongshan Hospital Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichen Jia
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Castro LUC, Otsuki DA, Sanches TR, Souza FL, Santinho MAR, da Silva C, Noronha IDL, Duarte-Neto AN, Gomes SA, Malbouisson LMS, Andrade L. Terlipressin combined with conservative fluid management attenuates hemorrhagic shock-induced acute kidney injury in rats. Sci Rep 2022; 12:20443. [PMID: 36443404 PMCID: PMC9705717 DOI: 10.1038/s41598-022-24982-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Hemorrhagic shock (HS), a major cause of trauma-related mortality, is mainly treated by crystalloid fluid administration, typically with lactated Ringer's (LR). Despite beneficial hemodynamic effects, such as the restoration of mean arterial pressure (MAP), LR administration has major side effects, including organ damage due to edema. One strategy to avoid such effects is pre-hospitalization intravenous administration of the potent vasoconstrictor terlipressin, which can restore hemodynamic stability/homeostasis and has anti-inflammatory effects. Wistar rats were subjected to HS for 60 min, at a target MAP of 30-40 mmHg, thereafter being allocated to receive LR infusion at 3 times the volume of the blood withdrawn (liberal fluid management); at 2 times the volume (conservative fluid management), plus terlipressin (10 µg/100 g body weight); and at an equal volume (conservative fluid management), plus terlipressin (10 µg/100 g body weight). A control group comprised rats not subjected to HS and receiving no fluid resuscitation or treatment. At 15 min after fluid resuscitation/treatment, the blood previously withdrawn was reinfused. At 24 h after HS, MAP was higher among the terlipressin-treated animals. Terlipressin also improved post-HS survival and provided significant improvements in glomerular/tubular function (creatinine clearance), neutrophil gelatinase-associated lipocalin expression, fractional excretion of sodium, aquaporin 2 expression, tubular injury, macrophage infiltration, interleukin 6 levels, interleukin 18 levels, and nuclear factor kappa B expression. In terlipressin-treated animals, there was also significantly higher angiotensin II type 1 receptor expression and normalization of arginine vasopressin 1a receptor expression. Terlipressin associated with conservative fluid management could be a viable therapy for HS-induced acute kidney injury, likely attenuating such injury by modulating the inflammatory response via the arginine vasopressin 1a receptor.
Collapse
Affiliation(s)
- Leticia Urbano Cardoso Castro
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| | - Denise Aya Otsuki
- grid.11899.380000 0004 1937 0722Laboratory of Anesthesiology, Division of Anesthesiology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Talita Rojas Sanches
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| | - Felipe Lima Souza
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Mirela Aparecida Rodrigues Santinho
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| | - Cleonice da Silva
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Irene de Lourdes Noronha
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Amaro Nunes Duarte-Neto
- grid.11899.380000 0004 1937 0722Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Samirah Abreu Gomes
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz-Marcelo Sá Malbouisson
- grid.11899.380000 0004 1937 0722Laboratory of Anesthesiology, Division of Anesthesiology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lucia Andrade
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| |
Collapse
|
16
|
Su X, Liu B, Wang S, Wang Y, Zhang Z, Zhou H, Li F. NLRP3 inflammasome: A potential therapeutic target to minimize renal ischemia/reperfusion injury during transplantation. Transpl Immunol 2022; 75:101718. [PMID: 36126906 DOI: 10.1016/j.trim.2022.101718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022]
Abstract
Renal transplantation is currently the best treatment option for patients with end-stage kidney disease. Ischemia/reperfusion injury (IRI), which is an inevitable event during renal transplantation, has a profound impact on the function of transplanted kidneys. It has been well demonstrated that innate immune system plays an important role in the process of renal IRI. As a critical component of innate immune system, Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has received great attention from scientific community over the past decade. The main function of NLRP3 inflammasome is mediating activation of caspase-1 and maturation of interleukin (IL)-1β and IL-18. In this review, we summarize the associated molecular signaling events about NLRP3 inflammasome in renal IRI, and highlight the possibility of targeting NLRP3 inflammasome to minimize renal IRI during transplantation.
Collapse
Affiliation(s)
- Xiaochen Su
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Bin Liu
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shangguo Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yuxiong Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zehua Zhang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Faping Li
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
17
|
Juncos LA, Wieruszewski PM, Kashani K. Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. Compr Physiol 2022; 12:3767-3780. [PMID: 36073750 DOI: 10.1002/cphy.c210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.
Collapse
Affiliation(s)
- Luis A Juncos
- Division of Nephrology, Central Arkansas Veterans' Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Patrick M Wieruszewski
- Division of Hospital Pharmacy, Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Fard A, Pearson R, Lathan R, Mark PB, Clancy MJ. Perfusate Composition and Duration of Ex-Vivo Normothermic Perfusion in Kidney Transplantation: A Systematic Review. Transpl Int 2022; 35:10236. [PMID: 35634582 PMCID: PMC9130468 DOI: 10.3389/ti.2022.10236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/14/2022] [Indexed: 01/02/2023]
Abstract
Ex-vivo normothermic perfusion (EVNP) is an emerging strategy in kidney preservation that enables resuscitation and viability assessment under pseudo-physiological conditions prior to transplantation. The optimal perfusate composition and duration, however, remain undefined. A systematic literature search (Embase; Medline; Scopus; and BIOSIS Previews) was conducted. We identified 1,811 unique articles dating from January 1956 to July 2021, from which 24 studies were deemed eligible for qualitative analysis. The perfusate commonly used in clinical practice consisted of leukocyte-depleted, packed red blood cells suspended in Ringer’s lactate solution with Mannitol, dexamethasone, heparin, sodium bicarbonate and a specific nutrient solution supplemented with insulin, glucose, multivitamins and vasodilators. There is increasing support in preclinical studies for non-blood cell-based perfusates, including Steen solution, synthetic haem-based oxygen carriers and acellular perfusates with supraphysiological carbogen mixtures that support adequate oxygenation whilst also enabling gradual rewarming. Extended durations of perfusion (up to 24 h) were also feasible in animal models. Direct comparison between studies was not possible due to study heterogeneity. Current evidence demonstrates safety with the aforementioned widely used protocol, however, extracellular base solutions with adequate oxygenation, supplemented with nutrient and metabolic substrates, show promise by providing a suitable environment for prolonged preservation and resuscitation.Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021231381, identifier PROSPERO 2021 CRD42021231381
Collapse
Affiliation(s)
- Amir Fard
- Institute of Cardiovascular and Molecular Sciences, Glasgow University, Glasgow, United Kingdom
- Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Robert Pearson
- Queen Elizabeth University Hospital, Glasgow, United Kingdom
- *Correspondence: Robert Pearson, , orcid.org/0000-0003-4199-3099
| | - Rashida Lathan
- Institute of Cardiovascular and Molecular Sciences, Glasgow University, Glasgow, United Kingdom
| | - Patrick B. Mark
- Institute of Cardiovascular and Molecular Sciences, Glasgow University, Glasgow, United Kingdom
| | - Marc J. Clancy
- Queen Elizabeth University Hospital, Glasgow, United Kingdom
| |
Collapse
|
19
|
Tang S, Xie X, Wang M, Yang L, Wei W. Protective effects of asiaticoside on renal ischemia reperfusion injury in vivo and in vitro. Bioengineered 2022; 13:10235-10243. [PMID: 35435108 PMCID: PMC9161827 DOI: 10.1080/21655979.2022.2061302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ischemia/reperfusion injury (I/R) is the main causes of acute kidney injury (AKI), which is a global health concern. Evidence suggests that asiaticoside plays vital roles on anti-inflammatory and, anti-kidney fibrosis effects, and promotes tissue repair. However, the effects of asiaticoside on AKI caused by ischemia-reperfusion have not been well defined. Herein, we explored the protective effect of asiaticoside on renal ischemia-reperfusion injury (IRI) using in vivo and in vitro studies, and elucidated the potential mechanism of asiaticoside-mediated repair. Results showed that asiaticoside attenuated the levels of blood urea nitrogen (BUN) and serum creatinine (Scr) in the IRI model. Meanwhile, asiaticoside reduced the secretion of IL-6, IL-1β and TNF-α, but increased IL-10 secretion in a dose-dependent manner. Treating Raw264.7 cells with lipopolysaccharide (LPS) induced an inflammatory response, but the LPS-induced effects were attenuated after administering asiaticoside. Furthermore, asiaticoside significantly inhibited the expression of inducible Nitric Oxide Synthase (iNOS) and promoted the expression of Arginase1 induced by LPS, which are the polarization marker proteins. In conclusion, this study shows that asiaticoside possesses protective action in AKI after ischemia-reperfusion, due to the inhibition of inflammatory mediators and promoting transformation of macrophages from M1 type to M2 type.
Collapse
Affiliation(s)
| | | | - Ming Wang
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, People’s Republic of China,310000
| | - Lili Yang
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, People’s Republic of China,310000
| | - Wei Wei
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, People’s Republic of China,310000
| |
Collapse
|
20
|
Park J, Kim SU, Choi HJ, Hong SH, Chae MS. Predictive Role of the D-Dimer Level in Acute Kidney Injury in Living Donor Liver Transplantation: A Retrospective Observational Cohort Study. J Clin Med 2022; 11:450. [PMID: 35054144 PMCID: PMC8779454 DOI: 10.3390/jcm11020450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to determine the association between serum D-dimer levels and the risk of acute kidney injury (AKI) in patients undergoing living donor liver transplantation (LDLT). Clinical data of 675 patients undergoing LDLT were retrospectively analyzed. The exclusion criteria included a history of kidney dysfunction, emergency cases, and missing data. The final study population of 617 patients was divided into the normal and high D-dimer groups (cutoff: 0.5 mg/L). After LDLT, 145 patients (23.5%) developed AKI. A high D-dimer level (>0.5 mg/L) was an independent predictor of postoperative development of AKI in the multivariate analysis when combined with diabetes mellitus [DM], platelet count, and hourly urine output. AKI was significantly higher in the high D-dimer group than in the normal D-dimer group (odds ratio [OR], 2.792; 95% confidence interval [CI], 1.227-6.353). Patients with a high D-dimer exhibited a higher incidence of early allograft dysfunction, longer intensive care unit stay, and a higher mortality rate. These results could improve the risk stratification of postoperative AKI development by encouraging the determination of preoperative D-dimer levels in patients undergoing LDLT.
Collapse
Affiliation(s)
- Jaesik Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.P.); (S.H.H.)
| | - Sung Un Kim
- Department of Anesthesiology and Pain Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea;
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Sang Hyun Hong
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.P.); (S.H.H.)
| | - Min Suk Chae
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.P.); (S.H.H.)
| |
Collapse
|
21
|
Oudmaijer CAJ, Minnee RC, Pol RA, van den Boogaard WMC, Komninos DSJ, van de Wetering J, van Heugten MH, Hoorn EJ, Sanders JSF, Hoeijmakers JHJ, Vermeij WP, IJzermans JNM. Fasting before living-kidney donation: effect on donor well-being and postoperative recovery: study protocol of a multicenter randomized controlled trial. Trials 2022; 23:18. [PMID: 34991694 PMCID: PMC8733810 DOI: 10.1186/s13063-021-05950-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the main effectors on the quality of life of living-kidney donors is postoperative fatigue. Caloric restriction (CR) and short-term fasting (STF) are associated with improved fitness and increased resistance to acute stress. CR/STF increases the expression of cytoprotective genes, increases immunomodulation via increased anti-inflammatory cytokine production, and decreases the expression of pro-inflammatory markers. As such, nutritional preconditioning by CR or STF represents a non-invasive and cost-effective method that could mitigate the effects of acute surgery-induced stress and postoperative fatigue. To investigate whether preoperative STF contributes to a reduction in fatigue after living-kidney donation, a randomized clinical trial is indicated. METHODS We aim to determine whether 2.5 days of fasting reduces postoperative fatigue score in subjects undergoing living-kidney donation. In this randomized study, the intervention group will follow a preoperative fasting regime for 2.5 days with a low-dose laxative, while the control group will receive standard care. The main study endpoint is postoperative fatigue, 4 weeks after living-kidney donation. Secondary endpoints include the effect of preoperative fasting on postoperative hospital admission time, the feasibility of STF, and the postoperative recovery of donor and recipient kidney function. This study will provide us with knowledge of the feasibility of STF and confirm its effect on postoperative recovery. DISCUSSION Our study will provide clinically relevant information on the merits of caloric restriction for living-kidney donors and recipients. We expect to reduce the postoperative fatigue in living-kidney donors and improve the postoperative recovery of living-kidney recipients. It will provide evidence on the clinical merits and potential caveats of preoperative dietary interventions. TRIAL REGISTRATION Netherlands Trial Register NL9262 . EudraCT 2020-005445-16 . MEC Erasmus MC MEC-2020-0778. CCMO NL74623.078.21.
Collapse
Affiliation(s)
- C. A. J. Oudmaijer
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, RG-220, 3015 GD Rotterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - R. C. Minnee
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, RG-220, 3015 GD Rotterdam, the Netherlands
| | - R. A. Pol
- Department of Transplantation Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - W. M. C. van den Boogaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - D. S. J. Komninos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - J. van de Wetering
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M. H. van Heugten
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - E. J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J. S. F. Sanders
- Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Groningen, Groningen, the Netherlands
| | - J. H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - W. P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - J. N. M. IJzermans
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, RG-220, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
22
|
Zhang D, Wang Y, Zeng S, Zhang M, Zhang X, Wang Y, Zhang Z, Wang X, Hu X. Integrated Analysis of Prognostic Genes Associated With Ischemia-Reperfusion Injury in Renal Transplantation. Front Immunol 2021; 12:747020. [PMID: 34557203 PMCID: PMC8452995 DOI: 10.3389/fimmu.2021.747020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background Ischemia–reperfusion injury (IRI) remains an inevitable and major challenge in renal transplantation. The current study aims to obtain deep insights into underlying mechanisms and seek prognostic genes as potential therapeutic targets for renal IRI (RIRI). Methods After systematically screening the Gene Expression Omnibus (GEO) database, we collected gene expression profiles of over 1,000 specimens from 11 independent cohorts. Differentially expressed genes (DEGs) were identified by comparing allograft kidney biopsies taken before and after reperfusion in the discovery cohort and further validated in another two independent transplant cohorts. Then, graft survival analysis and immune cell analysis of DEGs were performed in another independent renal transplant cohort with long-term follow-ups to further screen out prognostic genes. Cell type and time course analyses were performed for investigating the expression pattern of prognostic genes in more dimensions utilizing a mouse RIRI model. Finally, two novel genes firstly identified in RIRI were verified in the mouse model and comprehensively analyzed to investigate potential mechanisms. Results Twenty DEGs upregulated in the process of RIRI throughout different donor types (living donors, cardiac and brain death donors) were successfully identified and validated. Among them, upregulation of 10 genes was associated with poor long-term allograft outcomes and exhibited strong correlations with prognostic immune cells, like macrophages. Furthermore, certain genes were found to be only differentially expressed in specific cell types and remained with high expression levels even months after RIRI in the mouse model, which processed the potential to serve as therapeutic targets. Importantly, two newly identified genes in RIRI, Btg2 and Rhob, were successfully confirmed in the mouse model and found to have strong connections with NF-κB signaling. Conclusions We successfully identified and validated 10 IRI-associated prognostic genes in renal transplantation across different donor types, and two novel genes with crucial roles in RIRI were recognized for the first time. Our findings offered promising potential therapeutic targets for RIRI in renal transplantation.
Collapse
Affiliation(s)
- Di Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Yicun Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Song Zeng
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Min Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Yuxuan Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Zijian Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Early-Isolated V Lesion in Kidney Allograft: Acute Rejection or Ischemic Injury? A Case Report of Primary Nonfunction and Graft Loss. Transplant Proc 2021; 53:2536-2538. [PMID: 34465423 DOI: 10.1016/j.transproceed.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 01/25/2023]
Abstract
Intimal arteritis (v-lesion) is a negative prognostic factor for kidney allograft survival. Early isolated v-lesions do not always represent a pathologic marker of acute T cell- or antibody-mediated rejection. In particular, in the case of transplant negative for C4d and donor-specific antibodies, such a finding can suggest an ischemic-reperfusion injury. There is an intense debate in the literature concerning the origin of this histologic feature. In the present study, we analyze how this argument can have a clinical relevance. Here we report a case of a 61-year-old woman with end-stage renal disease due to autosomal dominant polycystic kidney disease. The patient underwent kidney transplant from expanded criteria donor. Organs from expanded criteria donors are more prone to ischemic-reperfusion injury. Postoperative course was characterized by primary nonfunction of the graft. A first biopsy showed early isolated v-lesion in otherwise normal renal parenchymal. Simultaneously, a computed tomography scan revealed stenosis of the main renal artery. An endovascular stent was placed. Despite improved vascularization of the graft, no clinical response was observed and the patient remained anuric. A second biopsy was performed, showing T-cell mediated rejection (Banff Classification 1A). Despite pulse steroid, the patient lost the graft.
Collapse
|
24
|
Reid S, Scholey JW. Recent Approaches to Targeting Canonical NF κB Signaling in the Early Inflammatory Response to Renal IRI. J Am Soc Nephrol 2021; 32:2117-2124. [PMID: 34108233 PMCID: PMC8729839 DOI: 10.1681/asn.2021010069] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is the most common cause of in-hospital AKI and is associated with increased morbidity and mortality. IRI is associated with an early phase of inflammation primarily regulated by the canonical NFκB signaling pathway. Despite recent advances in our understanding of the pathogenesis of IRI, few therapeutic strategies have emerged. The purpose of this manuscript is to review interventions targeting NFκB after IRI.
Collapse
Affiliation(s)
- Shelby Reid
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - James W. Scholey
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Sui M, Xu D, Zhao W, Lu H, Chen R, Duan Y, Li Y, Zhu Y, Zhang L, Zeng L. CIRBP promotes ferroptosis by interacting with ELAVL1 and activating ferritinophagy during renal ischaemia-reperfusion injury. J Cell Mol Med 2021; 25:6203-6216. [PMID: 34114349 PMCID: PMC8256344 DOI: 10.1111/jcmm.16567] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 12/21/2022] Open
Abstract
Renal ischaemia-reperfusion (IR) is a major cause of acute kidney injury (AKI). Cold-inducible RNA-binding protein (CIRBP) may contribute to AKI because its deficiency protects against renal IR injury in a mechanism believed to involve ferroptosis. We aimed to investigate whether ferroptosis is associated with CIRBP-mediated renal damage. The differential expression of CIRBP was examined in tubular epithelial (HK2) cells during hypoxia-reoxygenation (HR) or in response to erastin, an inducer of ferroptosis. CIRBP expression was increased in response to HR or erastin in HK2 cells but the silencing of CIRBP inhibited HR and erastin-induced ferroptosis together with ferritinophagy. We discovered an interaction between CIRBP and ELAVL1 using STRING software, which was verified through co-immunoprecipitation and fluorescence colocalization assays. We found that ELAVL1 is a critical regulator in the activation of ferritinophagy and the promotion of ferroptosis. HR or erastin also induced the expression of ELAVL1. An autophagy inhibitor (hydroxychloroquine) or si-ELAVL1 transfection reversed CIRBP-enhanced ferritinophagy activation and ferroptosis in HK2 cells under HR. Injection of anti-CIRBP antibody into a mouse model of IR inhibited ferroptosis and decreased renal IR injury in vivo. In summary, our results provide evidence that ferritinophagy-mediated ferroptosis could be responsible for CIRBP-enhanced renal IR injury.
Collapse
Affiliation(s)
- Mingxing Sui
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Da Xu
- Department of UrologyThe Third Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Wenyu Zhao
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Hanlan Lu
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Rui Chen
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Yazhe Duan
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Yanhua Li
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Youhua Zhu
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
- The Committee of Experts of China Organ DonationBeijingChina
| | - Lei Zhang
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Li Zeng
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| |
Collapse
|
26
|
Effect of Intravenous Lidocaine on Inflammatory and Apoptotic Response of Ischemia-Reperfusion Injury in Pigs Undergoing Lung Resection Surgery. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6630232. [PMID: 34195274 PMCID: PMC8203341 DOI: 10.1155/2021/6630232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/27/2021] [Indexed: 01/02/2023]
Abstract
Background Ischemia-reperfusion injury is one of the most critical phenomena in lung transplantation and causes primary graft failure. Its pathophysiology remains incompletely understood, although the inflammatory response and apoptosis play key roles. Lidocaine has anti-inflammatory properties. The aim of this research is to evaluate the effect of intravenous lidocaine on the inflammatory and apoptotic responses in lung ischemia-reperfusion injury. Methods We studied the histological and immunohistochemical changes in an experimental model of lung transplantation in pigs. Twelve pigs underwent left pneumonectomy, cranial lobectomy, caudal lobe reimplantation, and 60 minutes of graft reperfusion. Six of the pigs made up the control group, while six other pigs received 1.5 mg/kg of intravenous lidocaine after induction and a 1.5 mg/kg/h intravenous lidocaine infusion during surgery. In addition, six more pigs underwent simulated surgery. Lung biopsies were collected from the left caudal lobe 60 minutes after reperfusion. We conducted a double study on these biopsies and assessed the degree of inflammation, predominant cell type (monocyte-macrophage, lymphocytes, or polymorphous), the degree of congestion, and tissue edema by hematoxylin and eosin stain. We also conducted an immunohistochemical analysis with antibodies against CD68 antigens, monocyte chemoattractant protein-1 (MCP-1), Bcl-2, and caspase-9. Results The lungs subjected to ischemia-reperfusion injury exhibited a higher degree of inflammatory infiltration. The predominant cell type was monocyte-macrophage cells. Both findings were mitigated by intravenous lidocaine administration. Immunohistochemical detection of anti-CD68 and anti-MCP-1 showed higher infiltration in the lungs subjected to ischemia-reperfusion injury, while intravenous lidocaine decreased the expression. Ischemia-reperfusion induced apoptotic changes and decreased Bcl-2 expression. The group treated with lidocaine showed an increased number of Bcl-2-positive cells. No differences were observed in caspase-9 expression. Conclusions In our animal model, intravenous lidocaine was associated with an attenuation of the histological markers of lung damage in the early stages of reperfusion.
Collapse
|
27
|
The Immunomodulatory Effect of the Gut Microbiota in Kidney Disease. J Immunol Res 2021; 2021:5516035. [PMID: 34095319 PMCID: PMC8140847 DOI: 10.1155/2021/5516035] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The human gut microbiota is a complex cluster composed of 100 trillion microorganisms, which holds a symbiotic relationship with the host under normal circumstances. Intestinal flora can facilitate the treatment of human metabolic dysfunctions and interact with the intestinal tract, which could influence intestinal tolerance, immunity, and sensitivity to inflammation. In recent years, significant interests have evolved on the association of intestinal microbiota and kidney diseases within the academic circle. Abnormal changes in intestinal microbiota, known as dysbiosis, can affect the integrity of the intestinal barrier, resulting in the bacterial translocation, production, and accumulation of dysbiotic gut-derived metabolites, such as urea, indoxyl sulfate (IS), and p-cresyl sulfate (PCS). These processes lead to the abnormal activation of immune cells; overproduction of antibodies, immune complexes, and inflammatory factors; and inflammatory cell infiltration that can directly or indirectly cause damage to the renal parenchyma. The aim of this review is to summarize the role of intestinal flora in the development and progression of several renal diseases, such as lupus nephritis, chronic kidney disease, diabetic nephropathy, and renal ischemia-reperfusion injury. Further research on these mechanisms should provide insights into the therapeutic potential of regulating intestinal flora and intervening related molecular targets for the abovementioned nephropathy.
Collapse
|
28
|
Ali R, Patel S, Hussain T. Angiotensin type 2 receptor activation limits kidney injury during the early phase and induces Treg cells during the late phase of renal ischemia. Am J Physiol Renal Physiol 2021; 320:F814-F825. [PMID: 33719572 PMCID: PMC8424555 DOI: 10.1152/ajprenal.00507.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 01/30/2023] Open
Abstract
Kidney infiltrating immune cells such as monocytes, neutrophils, and T cells play critical roles in renal ischemia-reperfusion (IR) injury and repair. Recently, the angiotensin II type 2 receptor (AT2R) has been implicated in protecting kidneys against injury and monocyte infiltration, particularly in chronic kidney disease. However, the role of AT2R in IR injury and repair phases and T cell modulation is unknown. To address this question, Sprague-Dawley rats were subjected to IR with or without AT2R agonist C21 treatment. IR caused early (2 h postreperfusion) renal functional injury (proteinuria, plasma urea, and creatinine) and enhanced immune cells (T cells and CD4 T cells) infiltration and levels of the proinflammatory cytokines monocyte chemoattractant protein-1, TNF-α, and IL-6. C21 treatment reversed these changes but increased the anti-inflammatory IL-10 level. On day 3, C21 treatment increased CD4+FoxP3+ (regulatory T cells) and CD4+IL-10+ cells and reduced kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in the kidney compared with the IR control, suggesting the involvement of AT2R in kidney repair. These data indicate that AT2R activation protects the kidney against IR injury and immune cell infiltration in the early phase and modulates CD4 T cells toward the regulatory T cell phenotype, which may have long-term beneficial effects on kidney function.NEW & NOTEWORTHY The angiotensin II type 2 receptor agonist C21 has been known to have a renoprotective role in various kidney pathologies. C21 treatment (before renal ischemia) attenuated postischemic kidney injury, kidney dysfunction, and immune cell infiltration during the injury phase. Also, C21 treatment modulated the kidney microenvironment by enhancing anti-inflammatory responses mainly mediated by IL-10. During the repair phase, C21 treatment enhanced IL-10-secreting CD4 T cells and FoxP3-secreting regulatory T cells in Sprague-Dawley rats.
Collapse
MESH Headings
- Acute Kidney Injury/immunology
- Acute Kidney Injury/metabolism
- Acute Kidney Injury/pathology
- Acute Kidney Injury/prevention & control
- Animals
- Anti-Inflammatory Agents/pharmacology
- Chemotaxis, Leukocyte/drug effects
- Cytokines/metabolism
- Disease Models, Animal
- Kidney/drug effects
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Phenotype
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Reperfusion Injury/immunology
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Signal Transduction
- Sulfonamides/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thiophenes/pharmacology
- Time Factors
- Rats
Collapse
Affiliation(s)
- Riyasat Ali
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
29
|
Zhang J, Li Q, Zou YR, Wu SK, Lu XH, Li GS, Wang J. HMGB1-TLR4-IL-23-IL-17A axis accelerates renal ischemia-reperfusion injury via the recruitment and migration of neutrophils. Int Immunopharmacol 2021; 94:107433. [PMID: 33592404 DOI: 10.1016/j.intimp.2021.107433] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is an important cause of setting off acute kidney injury. Neutrophil-mediated immunomodulation has a pivotal role in the evolving of IRI. The HMGB1-TLR4-IL-23-IL-17A axis gives rise to neutrophil activation. Therefore, in the study, the role of the HMGB1-TLR4-IL-23-IL-17A axis in IRI was evaluated. Cell viability, inflammation, apoptosis, oxidative stress, survival, renal function and pathology, and the activation of macrophages and neutrophils were measured. Moreover, we evaluated the acetylation, translocation, and secretion of HMGB1 as well as levels of TLR-4, IL-23, IL-17A, and neutrophil chemokines (KC, LIX, and MIP-2). In vivo, anti-HMGB1 antibody decreased the acetylation, translocation, and secretion of HMGB1, reduced the expression of TLR-4, IL-23, IL-17A, KC, LIX, and MIP-2, alleviated the activation of macrophages and neutrophils, improved the survival rate and renal dysfunction, and decreased inflammation, apoptosis, oxidative stress, and pathological injury of the kidney. However, the intervention with recombinant HMGB1(R-HMGB1) significantly abolish the above effect of anti-HMGB1 in IRI. Neutralization IL-23 or IL-17A can alleviated the neutrophils mediated renal dysfunction by suppressing inflammation, apoptosis, and oxidative stress in IRI. In vitro, we confirmed that hypoxic/deoxygenation (H/R) induces the secretion of HMGB1 though acetylation on HK-2 and HMGB1 promotes the secretion of IL-23 in a HMGB1/TLR-4-dependent manner on macrophages. Together, these results implied that the HMGB1-TLR4-IL-23-IL-17A axis regulates inflammation, oxidative stress, apoptosis, and renal injury in IRI by promoting the recruitment and migration of neutrophils.
Collapse
Affiliation(s)
- Jiong Zhang
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, Chengdu 610072, China
| | - Qing Li
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, Chengdu 610072, China; Department of Nephrology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu 610051, China
| | - Yu-Rong Zou
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, Chengdu 610072, China
| | - Shu-Kun Wu
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, Chengdu 610072, China
| | - Xiang-Heng Lu
- Queen Mary Colleges, Medical College of Nanchang University, Nanchang, China
| | - Gui-Sen Li
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, Chengdu 610072, China.
| | - Jia Wang
- General Medicine Center and University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| |
Collapse
|
30
|
Tai H, Jiang XL, Lan ZM, Li Y, Kong L, Yao SC, Song N, Lv MJ, Wu J, Yang P, Xiao XS, Yang GL, Kuang JS, Jia LQ. Tanshinone IIA combined with CsA inhibit myocardial cell apoptosis induced by renal ischemia-reperfusion injury in obese rats. BMC Complement Med Ther 2021; 21:100. [PMID: 33752661 PMCID: PMC7986523 DOI: 10.1186/s12906-021-03270-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Acute myocardial injury (AMI), which is induced by renal ischemia-reperfusion (IR), is a significant cause of acute kidney injury (AKI)-related associated death. Obesity increases the severity and frequency of AMI and AKI. Tanshinone IIA (TIIA) combined with cyclosporine A (CsA) pretreatment was used to alleviate myocardial cell apoptosis induced by renal IR, and to determine whether TIIA combined with CsA would attenuate myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats. METHODS Male rates were fed a high fat diet for 8 weeks to generate obesity. AKI was induced by 30 min of kidney ischemia followed 24 h of reperfusion. Obese rats were given TIIA (10 mg/kg·d) for 2 weeks and CsA (5 mg/kg) 30 min before renal IR. After 24 h of reperfusion, the rats were anaesthetized, the blood were fetched from the abdominal aorta and kidney were fetched from abdominal cavity, then related indicators were examined. RESULTS TIIA combined with CsA can alleviate the pathohistological injury and apoptosis induced by renal IR in myocardial cells. TIIA combined with CsA improved cardiac function after renal ischemia (30 min)-reperfusion (24 h) in obese rats. At the same time, TIIA combined with CsA improved mitochondrial function. Abnormal function of mitochondria was supported by decreases in respiration controlling rate (RCR), intracellular adenosine triphosphate (ATP), oxygen consumption rate, and mitochondrial membrane potential (MMP), and increases in mitochondrial reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore (mPTP), mitochondrial DNA damage, and mitochondrial respiratory chain complex enzymes. The injury of mitochondrial dynamic function was assessed by decrease in dynamin-related protein 1 (Drp1), and increases in mitofusin1/2 (Mfn1/2), and mitochondrial biogenesis injury was assessed by decreases in PPARγ coactivator-1-α (PGC-1), nucleo respiratory factor1 (Nrf1), and transcription factor A of mitochondrial (TFam). CONCLUSION We used isolated mitochondria from rat myocardial tissues to demonstrate that myocardial mitochondrial dysfunction occurred along with renal IR to induce myocardial cell apoptosis; obesity aggravated apoptosis. TIIA combined with CsA attenuated myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats.
Collapse
Affiliation(s)
- He Tai
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiao-Lin Jiang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Department of Nephrology, The fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Zhi-Ming Lan
- Department of Medical laboratory, The fourth of Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Yue Li
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Si-Cheng Yao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Nan Song
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mei-Jun Lv
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jin Wu
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ping Yang
- Department of Cardiovascular Medicine, The Affiliated Hospital of Liaoning Traditional Chinese Medicine, Shenyang, China
| | - Xuan-Si Xiao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Guan-Lin Yang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jin-Song Kuang
- Department of Endocrinology and Metabolic, Shenyang the Fourth Hospital of People, Shenyang, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| |
Collapse
|
31
|
Jeon J, Lee K, Yang KE, Lee JE, Kwon GY, Huh W, Kim DJ, Kim YG, Jang HR. Dietary Modification Alters the Intrarenal Immunologic Micromilieu and Susceptibility to Ischemic Acute Kidney Injury. Front Immunol 2021; 12:621176. [PMID: 33777001 PMCID: PMC7991094 DOI: 10.3389/fimmu.2021.621176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
The versatility of the intrarenal immunologic micromilieu through dietary modification and the subsequent effects on susceptibility to ischemic acute kidney injury (AKI) are unclear. We investigated the effects of high-salt (HS) or high-fat (HF) diet on intrarenal immunologic micromilieu and development of ischemic AKI using murine ischemic AKI and human kidney-2 (HK-2) cell hypoxia models. Four different diet regimens [control, HF, HS, and high-fat diet with high-salt (HF+HS)] were provided individually to groups of 9-week-old male C57BL/6 mice for 1 or 6 weeks. After a bilateral ischemia-reperfusion injury (BIRI) operation, mice were sacrificed on day 2 and renal injury was assessed with intrarenal leukocyte infiltration. Human kidney-2 cells were treated with NaCl or lipids. The HF diet increased body weight and total cholesterol, whereas the HF+HS did not. Although the HF or HS diet did not change total leukocyte infiltration at 6 weeks, the HF diet and HF+HS diet increased intrarenal CD8 T cells. Plasma cells increased in the HF and HS diet groups. The expression of proinflammatory cytokines including TNF-α, IFN-γ, MCP-1, and RANTES was increased by the HF or HS diet, and intrarenal VEGF decreased in the HS and HF+HS diet groups at 6 weeks. Deterioration of renal function following BIRI tended to be aggravated by the HF or HS diet. High NaCl concentration suppressed proliferation and enhanced expression of TLR-2 in hypoxic HK-2 cells. The HF or HS diet can enhance susceptibility to ischemic AKI by inducing proinflammatory changes to the intrarenal immunologic micromilieu.
Collapse
Affiliation(s)
- Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeong Eun Yang
- Division of Scientific Instrumentation and Management, Korea Basic Science Institute, Daejeon, South Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dae Joong Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoon-Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Wang R, Wang Y, Harris DCH, Cao Q. Innate lymphoid cells in kidney diseases. Kidney Int 2020; 99:1077-1087. [PMID: 33387602 DOI: 10.1016/j.kint.2020.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
It is well known that innate immune cells, including dendritic cells, macrophages, and natural killer cells, contribute to pathogenesis and protection in various kidney diseases. The understanding of innate immunity has been advanced recently by the discovery of a new group of innate lymphoid cells (ILCs), including ILC1, ILC2, and ILC3. ILCs lack adaptive antigen receptors, yet can be triggered by various pathogens and rapidly provide an abundant source of immunomodulatory cytokines to exert immediate immune reactions and direct subsequent innate and adaptive immune responses. ILCs play critical roles in immunity, tissue homeostasis, and pathological inflammation. In this review, we highlight the biological function of ILC subpopulations in the normal kidney, and their important roles in acute and chronic kidney diseases, thus demonstrating the emerging importance of ILC-regulated immunity in this special organ and providing insights for future research directions and therapeutic interventions.
Collapse
Affiliation(s)
- Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
33
|
MFG-E8-derived peptide attenuates inflammation and injury after renal ischemia-reperfusion in mice. Heliyon 2020; 6:e05794. [PMID: 33409388 PMCID: PMC7773867 DOI: 10.1016/j.heliyon.2020.e05794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 01/14/2023] Open
Abstract
Background Renal ischemia-reperfusion (renal I/R) injury may lead to acute kidney injury (AKI). After renal I/R, proinflammatory mediators cause immune cell infiltration and further injury. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) is a protein involved in cell-cell and cell-matrix interactions. MSP68 is an MFG-E8-derived peptide that inhibits neutrophil adhesion and migration. Here, we evaluated whether MSP68 attenuates renal I/R injury. Materials and methods Adult C57BL/6 mice were subjected to bilateral renal ischemia for 30 min followed by reperfusion and intraperitoneal administration of saline (vehicle) or MSP68 (5 mg/kg). Sham animals underwent laparotomy without renal I/R. The blood collected and studied for BUN, creatinine, and LDH by colorimetry. The kidneys were analyzed for IL-6 and TNFα by qPCR, ELISA, histological injury, and apoptosis by TUNEL. Results At 24 h after surgery, serum levels of BUN, creatinine, and LDH were markedly higher in vehicle-treated renal I/R mice than in sham mice, but significantly lower in MSP68-treated renal I/R mice. Similarly, compared to sham, renal levels of IL-6 mRNA and protein and TNFα protein were markedly higher in vehicle-treated renal I/R mice, but significantly lower in MSP68-treated renal I/R mice. Vehicle-treated renal I/R mice also had severe renal tubular histological injury, which was significantly lower in MSP68-treated renal I/R mice. Additionally, the kidneys of vehicle-treated renal I/R mice had a 93-fold increase in TUNEL-positive cells, which were reduced by 35% in mice treated with MSP68. Conclusion MSP68 has the potential to be developed as novel therapeutic agent for patients with AKI.
Collapse
|
34
|
Javaherforooshzadeh F, Bhandori H, Jarirahmadi S, Bakhtiari N. Investigating the Effect of Near Infra-Red Spectroscopy (NIRS) on Early Diagnosis of Cardiac Surgery-Associated Acute Kidney Injury. Anesth Pain Med 2020; 10:e109863. [PMID: 34150576 PMCID: PMC8207845 DOI: 10.5812/aapm.109863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023] Open
Abstract
Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is a major adverse effect of cardiac surgery. The early detection of this complication can improve the quality of postoperative care and help prevent this phenomenon. Methods In this prospective descriptive-analytical study, 148 patients were enrolled, 107 of whom were selected for analysis between February and September 2019 in the Cardiac Surgery Unit of Golestan Hospital, Ahvaz, Iran. Kidney tissue oxygen saturation was measured at multiple definite times during surgery. Hemoglobin, blood urea nitrogen, creatinine, and lactate were measured during and 48 hours after the surgery. Results Forty-one patients were diagnosed with CSA-AKI according to the KDIGO criteria. Parametric and non-parametric analyses showed no significant difference between the CSA-AKI and non-CSA-AKI groups in the demographic parameters. Repeated measures ANOVA showed no significant difference in parameters, except for BUN. Repeated measures ANOVA showed a significant difference between both groups and time factors (P < 0.001, P = 0.0006, respectively). The ROC curve analyses showed that in a single point of time, the difference in the middle of CPB time from baseline had a high value in the prediction of AKI (AUC: 0.764; CI: 0.57 - 0.951). Conclusions Kidney saturation monitoring could be considered in cardiac surgery for the rapid detection of CSA-AKI. Although kidney tissue saturation is not correlated directly to the arterial oxygen saturation, the physician and the surgery team can predict the chance of acute kidney injury.
Collapse
Affiliation(s)
- Fatemeh Javaherforooshzadeh
- Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Corresponding Author: Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hojatolah Bhandori
- Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Jarirahmadi
- Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Corresponding Author: Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
35
|
Inhibition of BRD4 Reduces Neutrophil Activation and Adhesion to the Vascular Endothelium Following Ischemia Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21249620. [PMID: 33348732 PMCID: PMC7767067 DOI: 10.3390/ijms21249620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI) is associated with inflammation, including neutrophil infiltration that exacerbates the initial ischemic insult. The molecular pathways involved are poorly characterized and there is currently no treatment. We performed an in silico analysis demonstrating changes in NFκB-mediated gene expression in early renal IRI. We then evaluated NFκB-blockade with a BRD4 inhibitor on neutrophil adhesion to endothelial cells in vitro, and tested BRD4 inhibition in an in vivo IRI model. BRD4 inhibition attenuated neutrophil adhesion to activated endothelial cells. In vivo, IRI led to increased expression of cytokines and adhesion molecules at 6 h post-IRI with sustained up-regulated expression to 48 h post-IRI. These effects were attenuated, in part, with BRD4 inhibition. Absolute neutrophil counts increased significantly in the bone marrow, blood, and kidney 24 h post-IRI. Activated neutrophils increased in the blood and kidney at 6 h post-IRI and remained elevated in the kidney until 48 h post-IRI. BRD4 inhibition reduced both total and activated neutrophil counts in the kidney. IRI-induced tubular injury correlated with neutrophil accumulation and was reduced by BRD4 inhibition. In summary, BRD4 inhibition has important systemic and renal effects on neutrophils, and these effects are associated with reduced renal injury.
Collapse
|
36
|
Jang HR, Lee K, Jeon J, Kim JR, Lee JE, Kwon GY, Kim YG, Kim DJ, Ko JW, Huh W. Poly (ADP-Ribose) Polymerase Inhibitor Treatment as a Novel Therapy Attenuating Renal Ischemia-Reperfusion Injury. Front Immunol 2020; 11:564288. [PMID: 33178190 PMCID: PMC7597449 DOI: 10.3389/fimmu.2020.564288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 01/17/2023] Open
Abstract
Intrarenal robust inflammatory response following ischemia-reperfusion injury (IRI) is a major factor in the pathogenesis of renal injury in ischemic acute kidney injury (AKI). Although numerous studies have investigated various agents of immune modulation or suppression for ischemic AKI, few showed reproducible effects. We hypothesized that poly (ADP-ribose) polymerase (PARP) inhibitor may favorably change post-ischemic intrarenal immunologic micromilieu by reducing damage-associated molecular pattern (DAMP) signals and improve renal outcome in ischemic AKI. The effects of JPI-289 (a PARP inhibitor) on early renal injury in a murine IRI model and hypoxic HK-2 cell model were investigated. Bilateral IRI surgery was performed in three groups of 9-week-old male C57BL/6 mice (control, JPI-289 50 mg/kg, and JPI-289 100 mg/kg; n = 9–10 in each group). Saline or JPI-289 was intraperitoneally injected. Renal function deterioration was significantly attenuated in the JPI-289 treatment groups in a dose-dependent manner. Inflammatory cell infiltration and proinflammatory cytokine/chemokine expressions in the post-ischemic kidneys were also attenuated by JPI-289 treatment. JPI-289 treatment at 0.5 and 0.75 μg/ml facilitated the proliferation of hypoxic HK-2 cells. PARP inhibition with JPI-289 treatment showed favorable effects in ischemic AKI by attenuating intrarenal inflammatory cascade in a murine model and facilitating proliferation of hypoxic HK-2 cells.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung-Ryul Kim
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoon-Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dae Joong Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jae-Wook Ko
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
Karimi Z, Janfeshan S, Kargar Abarghouei E, Hashemi SS. Therapeutic effects of bone marrow mesenchymal stem cells via modulation of TLR2 and TLR4 on renal ischemia-reperfusion injury in male Sprague-Dawley rats. ACTA ACUST UNITED AC 2020; 11:219-226. [PMID: 34336610 PMCID: PMC8314037 DOI: 10.34172/bi.2021.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/04/2020] [Accepted: 05/16/2020] [Indexed: 11/09/2022]
Abstract
Introduction: Acute kidney injury (AKI) induced by renal ischemia-reperfusion (I/R) injury is a pro-inflammatory process that activates toll-like receptors (TLRs). Stem cell therapy holds a great promise for kidney repair. Therefore, we investigated the immunomodulatory role of bone marrow stromal cells (BMSCs) on TLR2 and TLR4 expression in AKI in male Sprague-Dawley rats. Methods: BMSCs were isolated from the bone marrow of male rats, cultured in DMEM, and characterized using appropriate markers before transplantation. Renal I/R was induced by 45 minutes bilateral ischemia followed by 24 hours of reperfusion. Rats received intraperitoneal injections of BMSCs (1.5 × 106 cells, i.p, per rat) immediately after termination of renal ischemia. Serum samples were collected pre-and post-stem cells injection for assessment of blood urea nitrogen (BUN) and creatinine (Cr) levels. The kidneys were harvested after 24 hours of reperfusion for structural and molecular analysis. Results: Renal I/R caused severe tissue injuries and increased the level of BUN (166.5 ± 12.9 vs. 18.25 ± 1.75) and Cr (3.7 ± 0.22 vs. 0.87 ± 0.06) compared to the sham group. In addition, mRNA expression of TLR2 and TLR4 elevated in the renal I/R group. Administration of BMSCs improved the functional and structural state of the kidney induced by I/R and down-regulated TLR2 and TLR4 gene expression. Conclusion: The results showed a highly significant renoprotection by BMSCs that indicates their therapeutic potential in I/R injures. These effects are most likely associated with the TLR2/4 signaling pathway via modulation of the inflammatory response cascades.
Collapse
Affiliation(s)
- Zeinab Karimi
- Shiraz Nephro-Urology Research Center (SNURC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center (SNURC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elias Kargar Abarghouei
- Department of Anatomical Sciences, Faculty of Medicine, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Nezamoleslami S, Sheibani M, Jahanshahi F, Mumtaz F, Abbasi A, Dehpour AR. Protective effect of dapsone against renal ischemia-reperfusion injury in rat. Immunopharmacol Immunotoxicol 2020; 42:272-279. [PMID: 32321337 DOI: 10.1080/08923973.2020.1755308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Ischemia/reperfusion can cause injury to tissues and compromise functionality of organs due to inflammatory processes. Significantly, development of these effects in kidney tissue has been a challenging issue that leads to acute renal injury. In this study, anti-inflammatory, anti-oxidative, and protective features of dapsone on kidney ischemia/reperfusion injury were investigated.Material and methods: Renal ischemia was induced in rats by bilateral renal arteries clamping for 45 min followed by 24 h reperfusion phase. The effects of different doses of dapsone (1, 3, 10 mg/kg) on ischemia/reperfusion injury in kidney tissue were investigated by targeting BUN, Creatinine, LDH, MDA, MPO, IL-1β, TNF-α, and NFκB. In addition histopathological examination was performed by H&E staining method.Results and discussion: Comparing the findings of this study showed significant reduction in BUN and LDH in 10 mg/kg dapsone received groups, and Cr, MDA, and MPO in 3 mg/kg dapsone received groups. The serum level of TNF-α was significantly decreased with both doses of 3 and 10 mg/kg dapsone. The same results were observed in the serum level of IL-1β and NFκB. Besides, remarkable improvement in histological damages was also observed with dapsone treatment.Conclusion: These results support the hypothesis that the positive effects of dapsone on the renal ischemia/reperfusion injury are mediated by modulating inflammatory cascades.
Collapse
Affiliation(s)
- Sadaf Nezamoleslami
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanshahi
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ata Abbasi
- Department of Pathology, Urmia University of Medical sciences (UMSU), Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Liu Z, Liu X, Yang Q, Yu L, Chang Y, Qu M. Neutrophil membrane-enveloped nanoparticles for the amelioration of renal ischemia-reperfusion injury in mice. Acta Biomater 2020; 104:158-166. [PMID: 31954188 DOI: 10.1016/j.actbio.2020.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
Ischemia-reperfusion (I/R) injury initiates and exacerbates a series of oxidative and inflammatory events, and causes high morbidity and mortality. Despite the progress made with recent clinical use of anti-malarial drugs, the response rate of I/R injury treatment remains unsatisfactory. Here, we showed a neutrophil membrane-enveloped Coenzyme Q (N-NPCoQ10) nanoparticle strategy for I/R injury treatment. We validated the physicochemical and biological reproducibility of the nanoparticles and tested the protective effects of N-NPCoQ10 in oxygen-glucose deprivation/reperfusion model and renal I/R injury mouse model. N-NPCoQ10 nanoparticles administration exhibited synergistic protective effect against I/R injury, which significantly reduced oxidative damage in vitro and in vivo, inhibited renal cell apoptosis, attenuated inflammatory response in renal I/R injury model, and finally improved renal function of I/R injury mice. The N-NPCoQ10 nanoparticles administration provides an efficient way to deliver anti-oxidant that suppresses oxidative damages and neutralize proinflammatory cytokines during renal I/R injury, which might be a potential strategy for renal acute kidney injury treatment. STATEMENT OF SIGNIFICANCE: The neutrophil membrane-enveloped Coenzyme Q nanoparticles (N-NPCoQ10) provides an efficient way to protect oxidative, inflammatory, and apoptotic reaction in renal I/R injury, which might be a potential strategy for renal acute kidney injury treatment.
Collapse
|
40
|
Chen YT, Yang CC, Lin KC, Chen KH, Sung PH, Shao PL, Li YC, Chiang JY, Yip HK. Preactivated and disaggregated shape-changed platelets protect kidney against from ischemia-reperfusion injury in rat through attenuating inflammation reaction. J Tissue Eng Regen Med 2019; 13:2155-2168. [PMID: 31502757 DOI: 10.1002/term.2960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/29/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
This study tested the hypothesis that preactivated and disaggregated shape-changed platelet (PreD-SCP) therapy significantly protected rat kidney from ischemia-reperfusion (IR) injury. Adult-male Sprague-Dawley rats (n = 24) were equally categorized into Groups 1 (sham-operated control [SC]), 2 (SC + PreD-SCP), 3 (IR only), and 4 (IR + PreD-SCP). By 72 hr after IR procedure, the circulatory levels of creatinine, blood urine nitrogen and inflammatory biomarkers (interleukin [IL]-6/tumor necrosis factor [TNF]-α), and ratio of urine protein to urine creatinine were significantly higher in Group 3 than in other groups and significantly higher in Group 4 than in Groups 1 and 2, but they showed no different between Groups 1 and 2 (all p < .001). The microscopic findings showed that the expressions of kidney injury score, cellular inflammation (MMP-9/CD14//F4/80), and fibrotic area were identical to the circulatory inflammation, whereas the integrity of podocyte components (ZO-1/synaptopodin/podocin) exhibited an opposite to circulatory inflammation among the four groups (all p < .0001). The protein expressions of inflammatory (TNF-α/IL-1ß/NF-κB/iNOS/TRAF6/MyD88/TLR-4), apoptotic/cell death (mitochondrial Bax/cleaved caspase-3/p-53), oxidized protein, mitogen-activated protein kinase family (p-38/p-JNK/p-c-JUN), and mitochondrial-damaged biomarkers displayed a similar pattern, whereas the antiapoptotic (Bcl-2/Bcl-XL) and integrity of mitochondrial biomarkers followed an opposite trend to circulatory inflammation among the four groups (all p < .001). PreD-SCP therapy effectively protected the kidney against IR injury.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Bhattacharjee RN, Ruthirakanthan A, Sun Q, Richard-Mohamed M, Luke S, Jiang L, Aquil S, Sharma H, Tun-Abraham ME, Alharbi B, Haig A, Sener A, Luke PPW. Subnormothermic Oxygenated Perfusion Optimally Preserves Donor Kidneys Ex Vivo. Kidney Int Rep 2019; 4:1323-1333. [PMID: 31517151 PMCID: PMC6732735 DOI: 10.1016/j.ekir.2019.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023] Open
Abstract
Introduction The current methods of preserving donor kidneys in nonoxygenated cold conditions minimally protect the kidney against ischemia-reperfusion injury (IRI), a major source of complications in clinical transplantation. However, preserving kidneys with oxygenated perfusion is not currently feasible due to the lack of an ideal perfusion mechanism that facilitates perfusion with blood at warm temperature. Here, we have designed an innovative renal pump circuit system that can perfuse blood or acellular oxygen carrier under flexible temperatures, pressures, and oxygenation. We have tested this apparatus to study optimal conditions of storage of our porcine model of donation after cardiac death (DCD) kidneys. Methods Porcine kidneys were retrieved after 30 minutes of cross-clamping renal pedicles in situ. Cessation of blood mimics postcardiac death in humans and simulates DCD warm ischemic injury. Procured kidneys were flushed and subjected to static cold storage (SCS) for 4 hours. For warm perfusion, kidneys were cannulated for pulsatile oxygenated perfusion with blood:PlasmaLyte for 4 hours at 15 °C, 22 °C, and 37 °C. To mimic posttransplant scenario, all kidneys were reperfused with blood for an additional 4 hours at 37 °C. Results Compared with all other groups, 22 °C perfusion resulted in significant reduction of acute tubular necrosis (ATN), apoptosis, kidney damage markers, Toll-like receptor signaling, and cytokine production. It was associated with maximal renal blood flow and urine output. Kidneys stored at 15 °C thrombosed within 2 hours under this condition. Martius Scarlet Blue staining confirmed that 22 °C was the optimal temperature to minimize hemorrhage and blood clots. Conclusion Our novel study shows that oxygenated perfusion at near-room-temperature provides optimal donor kidney storage conditions.
Collapse
Affiliation(s)
- Rabindra N Bhattacharjee
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada.,Department of Surgery, London Health Sciences Centre, London, Ontario, Canada.,Western University, London Health Sciences Centre, London, Ontario, Canada
| | | | - Qizhi Sun
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Mahms Richard-Mohamed
- Multi Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | - Sean Luke
- Western University, London Health Sciences Centre, London, Ontario, Canada
| | - Larry Jiang
- Western University, London Health Sciences Centre, London, Ontario, Canada
| | - Shahid Aquil
- Multi Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | - Hemant Sharma
- Multi Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | - Mauro E Tun-Abraham
- Multi Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | - Bijad Alharbi
- Multi Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | - Aaron Haig
- Western University, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Alp Sener
- Department of Surgery, London Health Sciences Centre, London, Ontario, Canada.,Western University, London Health Sciences Centre, London, Ontario, Canada.,Multi Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | - Patrick P W Luke
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada.,Department of Surgery, London Health Sciences Centre, London, Ontario, Canada.,Western University, London Health Sciences Centre, London, Ontario, Canada.,Multi Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
42
|
Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol 2019; 77:4-22. [DOI: 10.1016/j.matbio.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
|
43
|
Li J, Tan YJ, Wang MZ, Sun Y, Li GY, Wang QL, Yao JC, Yue J, Liu Z, Zhang GM, Ren YS. Loganetin protects against rhabdomyolysis-induced acute kidney injury by modulating the toll-like receptor 4 signalling pathway. Br J Pharmacol 2019; 176:1106-1121. [PMID: 30706443 DOI: 10.1111/bph.14595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/10/2018] [Accepted: 01/01/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute kidney injury (AKI) is a rapid renal dysfunctional disease, for which no effective drugs or therapies are available to improve prognosis. Loganetin is a natural product with unknown bioactivities. Here, we identified a new protective effect and mechanism of Loganetin in a mouse model of AKI induced by rhabdomyolysis. EXPERIMENTAL APPROACH AKI was induced using glycerol by i.m. injection in mice models. Thirty minutes and 24 and 48 hr after injection of glycerol, the mice received 2 and 18 mg·kg-1 of Loganetin i.p. respectively. Then mice blood and kidney were collected for various biochemical and histopathological studies. Mechanistic studies on modulation of AKI by Loganetin were performed using HK-2 cells and Toll-like receptor 4 (TLR4) knockout mice. KEY RESULTS In the Loganetin treated group, kidney damage and mortality rate were declined, and blood urea nitrogen and serum creatinine were much lower. Loganetin prevented damage to the tubular structures induced by glycerol and decreased apoptotic cells at the corticomedullary junction. In HK-2 cells, Loganetin could inhibit NF-κB pathway and pro-apoptotic genes expression. However, TLR4 was silenced by a specific shRNA, and the inhibitory effect of Loganetin in HK-2 cells vanished. Loganetin also down-regulated the expression of inflammation factors by suppressing TLR4 activity. CONCLUSION AND IMPLICATIONS All the results suggested that TLR4 plays a critical role in AKI development, and Loganetin ameliorates AKI by inhibiting TLR4 activity and blocking the JNK/p38 pathway, which provides a new strategy for AKI treatment.
Collapse
Affiliation(s)
- Jie Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu-Jun Tan
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Ming-Zhi Wang
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Ying Sun
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guang-Yan Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Qi-Long Wang
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jing-Chun Yao
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Zhong Liu
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Gui-Min Zhang
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu-Shan Ren
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
44
|
CORM-401 Reduces Ischemia Reperfusion Injury in an Ex Vivo Renal Porcine Model of the Donation After Circulatory Death. Transplantation 2019; 102:1066-1074. [PMID: 29677080 DOI: 10.1097/tp.0000000000002201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Carbon monoxide (CO) inhalation protects organ by reducing inflammation and cell death during transplantation processes in animal model. However, using CO in clinical transplantation is difficult due to its delivery in a controlled manner. A manganese-containing CO releasing molecules (CORM)-401 has recently been synthesized which can efficiently deliver 3 molar equivalents of CO. We report the ability of this anti-inflammatory CORM-401 to reduce ischemia reperfusion injury associated with prolonged cold storage of renal allografts obtained from donation after circulatory death in a porcine model of transplantation. METHODS To stimulate donation after circulatory death condition, kidneys from large male Landrace pig were retrieved after 1 hour warm ischemia in situ by cross-clamping the renal pedicle. Procured kidneys, after a brief flushing with histidine-tryptophan-ketoglutarate solution were subjected to pulsatile perfusion at 4°C with University of Wisconsin solution for 4 hours and both kidneys were treated with either 200 μM CORM-401 or inactive CORM-401, respectively. Kidneys were then reperfused with normothermic isogeneic porcine blood through oxygenated pulsatile perfusion for 10 hours. Urine was collected, vascular flow was assessed during reperfusion and histopathology was assessed after 10 hours of reperfusion. RESULTS We have found that CORM-401 administration reduced urinary protein excretion, attenuated kidney damage markers (kidney damage marker-1 and neutrophil gelatinase-associated lipocalin), and reduced ATN and dUTP nick end labeling staining in histopathologic sections. CORM-401 also prevented intrarenal hemorrhage and vascular clotting during reperfusion. Mechanistically, CORM-401 appeared to exert anti-inflammatory actions by suppressing Toll-like receptors 2, 4, and 6. CONCLUSIONS Carbon monoxide releasing molecules-401 provides renal protection after cold storage of kidneys and provides a novel clinically relevant ex vivo organ preservation strategy.
Collapse
|
45
|
Abstract
The molecular mechanisms in acute tubular injury (ATI) are complex and enigmatic. Moreover, we currently lack validated tissue injury markers that can be integrated into the kidney biopsy analysis to guide nephrologists in their patient's management of AKI. Although recognizing the ATI lesion by light microscopy is fairly straightforward, the staging of tubular lesions in the context of clinical time course and etiologic mechanism currently is not adapted to the renal pathology practice. To the clinician, the exact time point when an ischemic or toxic injury has occurred often is not known and cannot be discerned from the review of the biopsy sample. Moreover, the assessment of the different types of organized necrosis as the underlying cell death mechanism, which can be targeted using specific inhibitors, has not yet reached clinical practice. The renal pathology laboratory is uniquely qualified to assess the time course and etiology of ATI using established analytic techniques, such as immunohistochemistry and electron microscopy. Recent advances in the understanding of pathophysiological mechanisms of ATI and the important role that certain types of tubular cell organelles play in different stages of the ATI lesions may allow differentiation of early versus late ATI. Furthermore, the determination of respective cell injury pathways may help to differentiate ischemic versus toxic etiology in a reliable fashion. In the future, such a kidney biopsy-based classification system of ATI could guide the nephrologist's management of patients in regard to treatment modality and drug choice.
Collapse
Affiliation(s)
- Gilbert W Moeckel
- Renal Pathology and Electron Microscopy Laboratory, Department of Pathology, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
46
|
The Protective Effect of A Short Peptide Derived From Cold-Inducible RNA-Binding Protein in Renal Ischemia-Reperfusion Injury. Shock 2019; 49:269-276. [PMID: 28930914 DOI: 10.1097/shk.0000000000000988] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extracellular cold-inducible RNA-binding protein (CIRP) functions as damage-associated molecular pattern and has been demonstrated to be responsible in part for the damage occurring after renal ischemia-reperfusion (I/R). A short peptide derived from CIRP, named C23, binds to myeloid differentiation factor 2, a Toll-like receptor 4 coreceptor. We hypothesize that C23 reduces renal ischemia-reperfusion (RIR) injury by blocking CIRP. We observed that pretreatment with C23 significantly decreased the levels of recombinant mouse CIRP-induced tumor necrosis factor-α (TNF-α) in a dose-dependent fashion in cultured macrophages. C57BL/6 mice were subjected to bilateral renal pedicle clamps for 35 min to induce ischemia, followed by reperfusion for 24 h and harvest of blood and renal tissue. C23 peptide (8 mg/kg) or vehicle was injected intraperitoneally at the beginning of reperfusion. Plasma TNF-α, interleukin 1 beta (IL-1β), and IL-6 levels were decreased in C23-treated RIR mice as compared with vehicle-treated mice by 74%, 85%, and 68%, respectively. Expressions of TNF-α and keratinocyte chemoattractant in the kidneys from C23-treated mice were decreased by 55% and 60%, respectively. Expression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in the kidney of C23-treated mice were significantly reduced by 46% and 55%, respectively. Renal tissue histological assessments revealed significant reduction in damage score by 44% in C23-treated mice. Finally, a survival study revealed a significant survival advantage with a 70% survival rate in C23 group vs. 37% in vehicle group. Thus, C23 has potential as a novel therapy for the patients suffering from I/R-induced renal injury.
Collapse
|
47
|
Sun J, Yu S, Chen J, Xing Z, Zha T, Fan M, Zeng D, Xing W. Assessment of delayed graft function using susceptibility-weighted imaging in the early period after kidney transplantation: a feasibility study. Abdom Radiol (NY) 2019; 44:218-226. [PMID: 30054685 DOI: 10.1007/s00261-018-1709-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE This study aimed to explore the feasibility of susceptibility-weighted imaging (SWI) for evaluating delayed graft function (DGF) during the early posttransplantation period. METHODS Sixty-nine recipients who accepted allograft renal transplantation underwent SWI during the second posttransplantation week. Renal allograft function was estimated via the glomerular filtration rate. Recipients with and without DGF were identified. For each transplanted kidney, the presence of abnormal signal intensity lesions (ASILs), excluding benign lesions, on SWI was assessed. Renal allograft function was compared between the recipients with and without ASILs. The correlation between ASILs and renal allograft function was tested by Spearman's rank correlation analysis. RESULTS Thirty-four recipients were diagnosed with DGF, while 35 recipients showed no DGF. In the DGF group, 16 recipients had low-intensity ASILs, primarily at the corticomedullary junction of transplanted kidneys on SWI, and no ASILs were found in 18 recipients. In the non-DGF group, none of the recipients showed ASILs on SWI. In the DGF group, the renal allograft function among the 16 recipients with low-intensity ASILs was significantly lower than that among the other 18 recipients (8.5 ± 4.2 vs. 19.7 ± 9.7 mL/min, P < 0.001). The presence of low-intensity ASILs on SWI showed a moderate negative correlation with renal allograft function in recipients with DGF (r = - 0.553, P = 0.001). CONCLUSION SWI can be used to evaluate DGF in the early post-kidney transplantation period.
Collapse
|
48
|
Qiu S, Chen X, Pang Y, Zhang Z. Lipocalin-2 protects against renal ischemia/reperfusion injury in mice through autophagy activation mediated by HIF1α and NF-κb crosstalk. Biomed Pharmacother 2018; 108:244-253. [DOI: 10.1016/j.biopha.2018.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022] Open
|
49
|
Yang M, Chen G, Zhang X, Ding Z, Miao Y, Yang Y, Chen ZK, Jiang F, Chang S, Zhou P. A novel MyD88 inhibitor attenuates allograft rejection after heterotopic tracheal transplantation in mice. Transpl Immunol 2018; 53:1-6. [PMID: 30472390 DOI: 10.1016/j.trim.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND After lung transplantation, the major complication limiting the long-term survival of allografts is obliterative bronchiolitis (OB), characterized by chronic rejection. Innate immune responses contribute to the development of OB. In this study, we used a murine heterotopic tracheal transplantation mouse model to examine the effects of a newtype of innate immune inhibitor, TJ-M2010-5. METHODS Syngeneic tracheal grafts were transplanted heterotopically from C57BL/6 mice to C57BL/6 mice. Allografts from BALB/c mice were transplanted to C57BL/6 mice. The allograft recipients were treated with TJ-M2010-5, and anti-mouse CD154 (MR-1). The grafts were harvested at 7, 14, and 28 days and evaluated by histological and real-time RT-PCR analyses. RESULTS In untreated allografts, almost all epithelial cells fell off at 7 days and tracheal occlusion reached a peak at 28 days. However, the loss of the epithelium and airway obstruction were significantly improved in mice treated with TJ-M2010-5 combined with MR-1. The relative mRNA expression levels of pro-inflammatory cytokines were upregulated in allogeneic tracheal grafts, and treatment with the two drugs reduced the production of pro-inflammatory cytokines and infiltration of inflammatory cells. CONCLUSIONS In heterotopic tracheal transplantation models, TJ-M2010-5 combined with MR-1 could ameliorate the development of OB.
Collapse
Affiliation(s)
- Min Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 43003, China
| | - Gen Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Zhang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zuochuan Ding
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 43003, China
| | - Yan Miao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 43003, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 43003, China
| | - Zhonghua Klaus Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 43003, China
| | - Fengchao Jiang
- Academy of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 43003, China.
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 43003, China.
| |
Collapse
|
50
|
Meng Y, Jiang Z, Li N, Zhao Z, Cheng T, Yao Y, Wang L, Liu Y, Deng X. Protective Effects of Methane-Rich Saline on Renal Ischemic-Reperfusion Injury in a Mouse Model. Med Sci Monit 2018; 24:7794-7801. [PMID: 30379804 PMCID: PMC6223098 DOI: 10.12659/msm.911156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Renal ischemic-reperfusion (RIR) injury remains a major cause of acute kidney injury, with increased in-hospital mortality and risks for chronic kidney disease. Previous studies have proposed that oxidative stress, inflammation, and renal apoptosis are the most common causes of injury, whereas recent research proved that methane, the simplest alkane generated by an enteric microorganism or accompanying the production of reactive oxygen species (ROS), can alleviate inflammation and oxidative stress and reduce apoptosis in different organs. MATERIAL AND METHODS In the present study, we analyzed the possible effects of methane-rich saline in RIR injury in a mouse model and analyzed its possible protective effects on inflammation, oxidative stress, and apoptosis. RESULTS The results showed that treatment with methane significantly improved blood creatinine and blood urea nitrogen (BUN) levels and improved renal histology in RIR injury. Further experimentation proved that this protective effect was primarily manifested in decreased oxidative stress, less apoptosis, and reduced inflammation in renal tissues, as well as improved general responses. CONCLUSIONS Our present study proved the protective effects of methane in RIR injury and, together with previous research, confirmed the multi-organ protective effects. This may help to translate methane application and develop its use in organ ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Yan Meng
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Zhengyu Jiang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Na Li
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Zhenzhen Zhao
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Tingting Cheng
- Department of Anesthesiology, Ruijin Hospital North Affiliated to Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Ying Yao
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of People's Liberation Army (PLA), Fuzhou, Fujian, China (mainland)
| | - Yi Liu
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|