1
|
Shi G, Lin Y, Wu Y, Zhou J, Cao L, Chen J, Li Y, Tan N, Zhong S. Bacteroides fragilis Supplementation Deteriorated Metabolic Dysfunction, Inflammation, and Aorta Atherosclerosis by Inducing Gut Microbiota Dysbiosis in Animal Model. Nutrients 2022; 14:nu14112199. [PMID: 35684000 PMCID: PMC9183096 DOI: 10.3390/nu14112199] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The gut microbial ecosystem is an important factor that regulates host health and the onset of chronic diseases, such as inflammatory bowel diseases, obesity, hyperlipidemia, and diabetes mellitus, which are important risk factors for atherosclerosis. However, the links among diet, microbiota composition, and atherosclerotic progression are unclear. Methods and results: Four-week-old mice (-/- mice, C57Bl/6) were randomly divided into two groups, namely, supplementation with culture medium (control, CTR) and Bacteroides fragilis (BFS), and were fed a high-fat diet. The gut microbiota abundance in feces was evaluated using the 16S rDNA cloning library construction, sequencing, and bioinformatics analysis. The atherosclerotic lesion was estimated using Oil Red O staining. Levels of CD36, a scavenger receptor implicated in atherosclerosis, and F4/80, a macrophage marker in small intestine, were quantified by quantitative real-time PCR. Compared with the CTR group, the BFS group showed increased food intake, fasting blood glucose level, body weight, low-density lipoprotein level, and aortic atherosclerotic lesions. BFS dramatically reduced Lactobacillaceae (LAC) abundance and increased Desulfovibrionaceae (DSV) abundance. The mRNA expression levels of CD36 and F4/80 in small intestine and aorta tissue in the BFS group were significantly higher than those in the CTR group. Conclusions: gut microbiota dysbiosis was induced by BFS. It was characterized by reduced LAC and increased DSV abundance and led to the deterioration of glucose/lipid metabolic dysfunction and inflammatory response, which likely promoted aorta plaque formation and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Guoxiang Shi
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Hypertension Research Institute, Nanchang 335100, China
| | - Yubi Lin
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Yuanyuan Wu
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Jing Zhou
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Lixiang Cao
- School of Medicine, Sun Yat-sen University, Guangzhou 510317, China;
| | - Jiyan Chen
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Yong Li
- Department of Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510317, China
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| | - Ning Tan
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| | - Shilong Zhong
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| |
Collapse
|
2
|
Kishimoto Y, Aoyama M, Saita E, Ikegami Y, Ohmori R, Kondo K, Momiyama Y. Associations Between Plasma Kinin B1 Receptor Levels and the Presence and Severity of Coronary Artery Disease. J Atheroscler Thromb 2021; 28:1195-1203. [PMID: 33132295 PMCID: PMC8592707 DOI: 10.5551/jat.59899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim:
Kinin B1 receptor (KB1R) was shown to be up-regulated in human carotid atherosclerotic lesions. Serum KB1R levels were also reported to be high in patients with stroke. However, KB1R deficiency increased atherosclerotic lesions. Therefore, the role of KB1R in atherosclerosis remains unclear. Moreover, no study has reported blood KB1R levels in patients with coronary artery disease (CAD).
Methods:
We measured plasma KB1R levels in 375 patients undergoing coronary angiography. The severity of CAD was represented as the numbers of >50% stenotic vessels and segments and the severity score.
Results:
CAD was found in 197 patients, of whom 89 had 1-vessel disease (1-VD), 62 had 2-VD, and 46 had 3-VD. Plasma KB1R levels were higher in 197 patients with CAD than in 178 without CAD (median 83.3 vs. 73.7 pg/mL,
p
<0.01). A stepwise increase in KB1R levels was found depending on the number of stenotic vessels: 77.1 in 1-VD, 87.8 in 2-VD, and 88.5 pg/mL in 3-VD (
p
<0.025). A high KB1R level (>90.0 pg/mL) was present in 30% of patients with CAD(-), 39% of 1-VD, 50% of 2-VD, and 48% of 3-VD (
p
<0.025). KB1R levels correlated with the number of stenotic segments and the severity score (r=0.14 and r=0.17,
p
<0.01). In multivariate analysis, KB1R levels were an independent factor associated with CAD. Odds ratio for CAD was 1.62 (95%CI=1.02-2.58) for high KB1R level >90.0 pg/mL.
Conclusion:
Plasma KB1R levels in patients with CAD were high and were associated with the presence and severity of CAD independent of atherosclerotic risk factors.
Collapse
Affiliation(s)
| | - Masayuki Aoyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Emi Saita
- Institute of Transformative Bio-Molecules, Nagoya University
| | - Yukinori Ikegami
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University
| | | | - Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| |
Collapse
|
3
|
Li K, Zemmrich C, Bramlage P, Persson AB, Sacirovic M, Ritter O, Buschmann E, Buschmann I, Hillmeister P. Effect of ACEI and ARB treatment on nitric oxide-dependent endothelial function. VASA 2021; 50:413-422. [PMID: 34428929 DOI: 10.1024/0301-1526/a000971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Angiotensin-converting-enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) are widely used as a first-line therapy for the treatment of cardiovascular disease. Here, ACEI modulate the bradykinin receptor (BDKRB1 and BDKRB2) system and NO-dependent endothelial function, thus determining cardiovascular health and regenerative arteriogenesis. The current study aims at evaluating nitric oxide-dependent endothelial function, and gene expression of bradykinin receptors in peripheral blood mononuclear cells (PBMC) from patients with ACEI or ARB treatment. Patients and methods: The WalkByLab has been established to screen cardiovascular patients for peripheral artery disease and coronary artery disease. In total 177 patients from WalkByLab with heterogenous disease and risk status were randomly selected, divided according to their medication history into the following groups: 1. ACEI group, 2. ARB group or 3. non-ACE/ARB group. Total plasma nitrite/nitrate (NO) levels were measured, endothelial function was evaluated by assessing flow meditated dilation (FMD). PBMC were isolated from peripheral whole blood, and gene expression (qRT-PCR) of bradykinin receptors and angiotensin converting enzyme were assessed. Results: Plasma total NO concentration in the ACEI group (24.66±16.28, µmol/l) was increased as compared to the ARB group (18.57±11.58, µmol/l, P=0.0046) and non-ACE/ARB group (16.83±8.64, µmol/l, P=0.0127) in patients between 40 to 90 years of age. However, FMD values (%) in the ACEI group (7.07±2.40, %) were similar as compared to the ARB (6.35±2.13, %) and non-ACE/ARB group (6.51±2.15, %), but significantly negatively correlated with age. Interestingly, BDKRB1 mRNA level was significantly higher and BDKRB2 mRNA level lower in the ACEI group (BDKRB1 3.88-fold±1.05, BDKRB2 0.22-fold±0.04) as compared to the non-ACE/ARB group (BDKRB1 1.00-fold±0.39, P<0.0001, BDKRB2 1.00-fold±0.45, P=0.0136). Conclusions: ACEI treatment enhances total nitrite/nitrate concentration, furthermore, upregulates BDKRB1 in PBMC, but downregulates BDKRB2 mRNA expression. FMD is a strong determinant of vascular aging and is sensitive to underlying heterogenous cardiovascular diseases.
Collapse
Affiliation(s)
- Kangbo Li
- Department for Angiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Deutsches Angiologie Zentrum Brandenburg-Berlin (DAZB), Brandenburg an der Havel, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Claudia Zemmrich
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Anja Bondke Persson
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Mesud Sacirovic
- Department for Angiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Deutsches Angiologie Zentrum Brandenburg-Berlin (DAZB), Brandenburg an der Havel, Germany
| | - Oliver Ritter
- Department for Cardiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Brandenburg an der Havel, Germany.,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Brandenburg Medical School Theodor Fontane, Germany
| | - Eva Buschmann
- Department of Cardiology, University Clinic Graz, Austria
| | - Ivo Buschmann
- Department for Angiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Deutsches Angiologie Zentrum Brandenburg-Berlin (DAZB), Brandenburg an der Havel, Germany.,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Brandenburg Medical School Theodor Fontane, Germany
| | - Philipp Hillmeister
- Department for Angiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Deutsches Angiologie Zentrum Brandenburg-Berlin (DAZB), Brandenburg an der Havel, Germany.,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Brandenburg Medical School Theodor Fontane, Germany
| |
Collapse
|
4
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 723] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
5
|
Scharfstein J, Ramos PIP, Barral-Netto M. G Protein-Coupled Kinin Receptors and Immunity Against Pathogens. Adv Immunol 2017; 136:29-84. [PMID: 28950949 DOI: 10.1016/bs.ai.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For decades, immunologists have considered the complement system as a paradigm of a proteolytic cascade that, acting cooperatively with the immune system, enhances host defense against infectious organisms. In recent years, advances made in thrombosis research disclosed a functional link between activated neutrophils, monocytes, and platelet-driven thrombogenesis. Forging a physical barrier, the fibrin scaffolds generated by synergism between the extrinsic and intrinsic (contact) pathways of coagulation entrap microbes within microvessels, limiting the systemic spread of infection while enhancing the clearance of pathogens by activated leukocytes. Insight from mice models of thrombosis linked fibrin formation via the intrinsic pathway to the autoactivation of factor XII (FXII) by negatively charged "contact" substances, such as platelet-derived polyphosphates and DNA from neutrophil extracellular traps. Following cleavage by FXIIa, activated plasma kallikrein (PK) initiates inflammation by liberating the nonapeptide bradykinin (BK) from an internal domain of high molecular weight kininogen (HK). Acting as a paracrine mediator, BK induces vasodilation and increases microvascular permeability via activation of endothelial B2R, a constitutively expressed subtype of kinin receptor. During infection, neutrophil-driven extravasation of plasma fuels inflammation via extravascular activation of the kallikrein-kinin system (KKS). Whether liberated by plasma-borne PK, tissue kallikrein, and/or microbial-derived proteases, the short-lived kinins activate immature dendritic cells via B2R, thus linking the infection-associated innate immunity/inflammation to the adaptive arm of immunity. As inflammation persists, a GPI-linked carboxypeptidase M removes the C-terminal arginine from the primary kinin, converting the B2R agonist into a high-affinity ligand for B1R, a GPCR subtype that is transcriptionally upregulated in injured/inflamed tissues. As reviewed here, lessons taken from studies of kinin receptor function in experimental infections have shed light on the complex proteolytic circuits that, acting at the endothelial interface, reciprocally couple immunity to the proinflammatory KKS.
Collapse
Affiliation(s)
- Julio Scharfstein
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Center of Health Sciences (CCS), Cidade Universitária, Rio de Janeiro, Brazil.
| | - Pablo I P Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | |
Collapse
|
6
|
Mesquita TRR, Campos-Mota GP, Lemos VS, Cruz JS, de Jesus ICG, Camargo EA, Pesquero JL, Pesquero JB, Capettini LDSA, Lauton-Santos S. Vascular Kinin B 1 and B 2 Receptors Determine Endothelial Dysfunction through Neuronal Nitric Oxide Synthase. Front Physiol 2017; 8:228. [PMID: 28503149 PMCID: PMC5408093 DOI: 10.3389/fphys.2017.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023] Open
Abstract
B1- and B2-kinin receptors are G protein-coupled receptors that play an important role in the vascular function. Therefore, the present study was designed to evaluate the participation of kinin receptors in the acetylcholine (ACh)-induced vascular relaxation, focusing on the protein-protein interaction involving kinin receptors with endothelial and neuronal nitric oxide synthases (eNOS and nNOS). Vascular reactivity, nitric oxide (NO·) and reactive oxygen species (ROS) generation, co-immunoprecipitation were assessed in thoracic aorta from male wild-type (WT), B1- (B1R−/−), B2- (B2R−/−) knockout mice. Some vascular reactivity experiments were also performed in a double kinin receptors knockout mice (B1B2R−/−). For pharmacological studies, selective B1- and B2-kinin receptors antagonists, NOS inhibitors and superoxide dismutase (SOD) mimetic were used. First, we show that B1- and B2-kinin receptors form heteromers with nNOS and eNOS in thoracic aorta. To investigate the functionality of these protein-protein interactions, we took advantage of pharmacological tools and knockout mice. Importantly, our results show that kinin receptors regulate ACh-induced relaxation via nNOS signaling in thoracic aorta with no changes in NO· donor-induced relaxation. Interestingly, B1B2R−/− presented similar level of vascular dysfunction as found in B1R−/− or B2R−/− mice. In accordance, aortic rings from B1R−/− or B2R−/− mice exhibit decreased NO· bioavailability and increased superoxide generation compared to WT mice, suggesting the involvement of excessive ROS generation in the endothelial dysfunction of B1R−/− and B2R−/− mice. Alongside, we show that impaired endothelial vasorelaxation induced by ACh in B1R−/− or B2R−/− mice was rescued by the SOD mimetic compound. Taken together, our findings show that B1- and B2-kinin receptors regulate the endothelium-dependent vasodilation of ACh through nNOS activity and indicate that molecular disturbance of short-range interaction between B1- and B2-kinin receptors with nNOS might be involved in the oxidative pathogenesis of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Gianne P Campos-Mota
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Virgínia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Itamar C G de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Enilton A Camargo
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | - Jorge L Pesquero
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - João B Pesquero
- Department of Biophysics, Federal University of São PauloSão Paulo, Brazil
| | | | | |
Collapse
|
7
|
Moran CS, Rush CM, Dougan T, Jose RJ, Biros E, Norman PE, Gera L, Golledge J. Modulation of Kinin B2 Receptor Signaling Controls Aortic Dilatation and Rupture in the Angiotensin II-Infused Apolipoprotein E-Deficient Mouse. Arterioscler Thromb Vasc Biol 2016; 36:898-907. [PMID: 26966276 DOI: 10.1161/atvbaha.115.306945] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults. Activity of the local kallikrein-kinin system may be important in cardiovascular disease. The effect of kinin B2 receptor (B2R) agonist and antagonist peptides on experimental AAA was investigated. APPROACH AND RESULTS AAA was induced in apolipoprotein E-deficient mice via infusion of angiotensin II (1.0 μg/kg per minute SC). B2R agonists or antagonists were given via injection (2 mg/kg IP) every other day. The B2R agonist (B9772) promoted aortic rupture in response to angiotensin II associated with an increase in neutrophil infiltration of the aorta in comparison to controls. Mice receiving a B2R/kinin B1 receptor antagonist (B9430) were relatively protected from aortic rupture. Neutrophil depletion abrogated the ability of the B2R agonist to promote aortic rupture. Progression of angiotensin II-induced aortic dilatation was inhibited in mice receiving a B2R antagonist (B9330). Secretion of metalloproteinase-2 and -9, osteoprotegerin, and osteopontin by human AAA explant was reduced in the presence of the B2R antagonist (B9330). B2R agonist and antagonist peptides enhanced and inhibited, respectively, angiotensin II-induced neutrophil activation and aortic smooth muscle cell inflammatory phenotype. The B2R antagonist (B9330; 5 μg) delivered directly to the aortic wall 1 week post-AAA induction with calcium phosphate in a rat model reduced aneurysm growth associated with downregulation of aortic metalloproteinase-9. CONCLUSIONS B2R signaling promotes aortic rupture within a mouse model associated with the ability to stimulate inflammatory phenotypes of neutrophils and vascular smooth muscle cells. B2R antagonism could be a potential therapy for AAA.
Collapse
Affiliation(s)
- Corey S Moran
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry (C.S.M., T.D., R.J.J., E.B., J.G.), and Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences (C.M.R.), James Cook University, Townsville, Queensland, Australia; Department of Biochemistry, University of Colorado Denver, Aurora (L.G.); School of Surgery, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia (P.E.N.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Catherine M Rush
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry (C.S.M., T.D., R.J.J., E.B., J.G.), and Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences (C.M.R.), James Cook University, Townsville, Queensland, Australia; Department of Biochemistry, University of Colorado Denver, Aurora (L.G.); School of Surgery, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia (P.E.N.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Tammy Dougan
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry (C.S.M., T.D., R.J.J., E.B., J.G.), and Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences (C.M.R.), James Cook University, Townsville, Queensland, Australia; Department of Biochemistry, University of Colorado Denver, Aurora (L.G.); School of Surgery, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia (P.E.N.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Roby J Jose
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry (C.S.M., T.D., R.J.J., E.B., J.G.), and Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences (C.M.R.), James Cook University, Townsville, Queensland, Australia; Department of Biochemistry, University of Colorado Denver, Aurora (L.G.); School of Surgery, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia (P.E.N.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry (C.S.M., T.D., R.J.J., E.B., J.G.), and Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences (C.M.R.), James Cook University, Townsville, Queensland, Australia; Department of Biochemistry, University of Colorado Denver, Aurora (L.G.); School of Surgery, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia (P.E.N.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Paul E Norman
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry (C.S.M., T.D., R.J.J., E.B., J.G.), and Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences (C.M.R.), James Cook University, Townsville, Queensland, Australia; Department of Biochemistry, University of Colorado Denver, Aurora (L.G.); School of Surgery, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia (P.E.N.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Lajos Gera
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry (C.S.M., T.D., R.J.J., E.B., J.G.), and Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences (C.M.R.), James Cook University, Townsville, Queensland, Australia; Department of Biochemistry, University of Colorado Denver, Aurora (L.G.); School of Surgery, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia (P.E.N.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine & Dentistry (C.S.M., T.D., R.J.J., E.B., J.G.), and Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences (C.M.R.), James Cook University, Townsville, Queensland, Australia; Department of Biochemistry, University of Colorado Denver, Aurora (L.G.); School of Surgery, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia (P.E.N.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.).
| |
Collapse
|
8
|
Trachet B, Fraga-Silva RA, Jacquet PA, Stergiopulos N, Segers P. Incidence, severity, mortality, and confounding factors for dissecting AAA detection in angiotensin II-infused mice: a meta-analysis. Cardiovasc Res 2015; 108:159-70. [PMID: 26307626 DOI: 10.1093/cvr/cvv215] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/25/2015] [Indexed: 01/25/2023] Open
Abstract
AIMS While angiotensin II-infused mice are the most popular model for preclinical aneurysm research, representative data on incidence, severity, and mortality of dissecting abdominal aortic aneurysms (AAAs) have never been established, and the influence of confounding factors is unknown. METHODS AND RESULTS We performed a meta-analysis including 194 manuscripts representing 1679 saline-infused, 4729 non-treated angiotensin II-infused, and 4057 treated angiotensin II-infused mice. Incidence (60%) and mortality (20%) rates are reported overall as well as for grade I (22%), grade II (26%), grade III (29%), and grade IV (24%) aneurysms. Dissecting AAA incidence was significantly (P < 0.05) influenced by sex, age, genetic background, infusion time, and dose of angiotensin II. Mortality was influenced by sex, genetic background, and dose, but not by age or infusion time. Surprisingly, both incidence and mortality were significantly different (P < 0.05) when comparing angiotensin II-infused mice in descriptive studies (56% incidence and 19% mortality) with angiotensin II-infused mice that served as control animals in treatment studies designed to either enhance (35% incidence and 13% mortality) or reduce (73% incidence and 25% mortality) dissecting AAA formation. After stratification to account for confounding factors (selection bias), the observed effect was still present for incidence, but not for mortality. Possible underlying causes are detection bias (non-uniform definition for detection and quantification of dissecting AAA in mice) or publication bias (studies with negative results, related to incidence in the control group, not being published). CONCLUSIONS Our data provide a new meta-analysis-based reference for incidence and mortality of dissecting AAA in angiotensin II-infused mice, and indicate that treatment studies using this mouse model should be interpreted with caution.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech - bioMMeda, Ghent University-iMinds Medical IT, Ghent, Belgium Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rodrigo A Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe A Jacquet
- Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick Segers
- IBiTech - bioMMeda, Ghent University-iMinds Medical IT, Ghent, Belgium
| |
Collapse
|
9
|
Amouroux G, Pan J, Jenni S, Zhang C, Zhang Z, Hundal-Jabal N, Colpo N, Liu Z, Bénard F, Lin KS. Imaging Bradykinin B1 Receptor with 68Ga-Labeled [des-Arg10]Kallidin Derivatives: Effect of the Linker on Biodistribution and Tumor Uptake. Mol Pharm 2015; 12:2879-88. [DOI: 10.1021/acs.molpharmaceut.5b00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guillaume Amouroux
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jinhe Pan
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Silvia Jenni
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Chengcheng Zhang
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Navjit Hundal-Jabal
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nadine Colpo
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Zhibo Liu
- Chemistry
Department, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| |
Collapse
|
10
|
Lin KS, Amouroux G, Pan J, Zhang Z, Jenni S, Lau J, Liu Z, Hundal-Jabal N, Colpo N, Bénard F. Comparative Studies of Three 68Ga-Labeled [Des-Arg10]Kallidin Derivatives for Imaging Bradykinin B1 Receptor Expression with PET. J Nucl Med 2015; 56:622-7. [DOI: 10.2967/jnumed.114.152132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
|
11
|
Maegdefessel L, Dalman RL, Tsao PS. Pathogenesis of Abdominal Aortic Aneurysms: MicroRNAs, Proteases, Genetic Associations. Annu Rev Med 2014; 65:49-62. [DOI: 10.1146/annurev-med-101712-174206] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ronald L. Dalman
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California 94305;
| | - Philip S. Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305;
- VA Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
12
|
Girolami JP, Blaes N, Bouby N, Alhenc-Gelas F. Genetic manipulation and genetic variation of the kallikrein-kinin system: impact on cardiovascular and renal diseases. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:145-196. [PMID: 25130042 DOI: 10.1007/978-3-319-06683-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic manipulation of the kallikrein-kinin system (KKS) in mice, with either gain or loss of function, and study of human genetic variability in KKS components which has been well documented at the phenotypic and genomic level, have allowed recognizing the physiological role of KKS in health and in disease. This role has been especially documented in the cardiovascular system and the kidney. Kinins are produced at slow rate in most organs in resting condition and/or inactivated quickly. Yet the KKS is involved in arterial function and in renal tubular function. In several pathological situations, kinin production increases, kinin receptor synthesis is upregulated, and kinins play an important role, whether beneficial or detrimental, in disease outcome. In the setting of ischemic, diabetic or hemodynamic aggression, kinin release by tissue kallikrein protects against organ damage, through B2 and/or B1 bradykinin receptor activation, depending on organ and disease. This has been well documented for the ischemic or diabetic heart, kidney and skeletal muscle, where KKS activity reduces oxidative stress, limits necrosis or fibrosis and promotes angiogenesis. On the other hand, in some pathological situations where plasma prekallikrein is inappropriately activated, excess kinin release in local or systemic circulation is detrimental, through oedema or hypotension. Putative therapeutic application of these clinical and experimental findings through current pharmacological development is discussed in the chapter.
Collapse
|
13
|
Bradykinin in health and disease: proceedings of the Bradykinin Symposium 2012, Berlin 23-24 August 2012. Inflamm Res 2013; 63:173-8. [PMID: 24316865 DOI: 10.1007/s00011-013-0693-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022] Open
|
14
|
Abstract
PURPOSE OF REVIEW Family history is a risk factor for abdominal aortic aneurysm (AAA), suggesting that genetic factors play an important role in AAA development, growth and rupture. Identification of these factors could improve understanding of the AAA pathogenesis and be useful to identify at risk individuals. RECENT FINDINGS Many approaches are used to examine genetic determinants of AAA, including genome-wide association studies (GWAS) and DNA linkage studies. Two recent GWAS have identified genetic markers associated with an increased risk of AAA located within the genes for DAB2 interacting protein (DAB2IP) and low density lipoprotein receptor-related protein 1 (LRP1). In addition, a marker on 9p21 associated with other vascular diseases is also strongly associated with AAA. The exact means by which these genes currently control AAA risk is not clear; however, in support of these findings, mice with vascular smooth muscle cell deficiency of Lrp1 are prone to aneurysm development. Further current work is concentrated on other molecular mechanisms relevant in AAA pathogenesis, including noncoding RNAs such as microRNAs. SUMMARY Current studies assessing genetic mechanisms for AAA have significant potential to identify novel mechanisms involved in AAA pathogenesis of high relevance to better clinical management of the disease.
Collapse
|
15
|
Lack of kinin B1 receptor potentiates leptin action in the liver. J Mol Med (Berl) 2013; 91:851-60. [DOI: 10.1007/s00109-013-1004-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 01/08/2013] [Accepted: 01/21/2013] [Indexed: 12/18/2022]
|
16
|
Protective role of AT(2) and B(1) receptors in kinin B(2)-receptor-knockout mice with myocardial infarction. Clin Sci (Lond) 2012; 124:87-96. [PMID: 22849668 DOI: 10.1042/cs20120341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AT(2)Rs [AngII (angiotensin II) type 2 receptors] contribute to the cardioprotective effects of angiotensin II receptor blockers, possibly via kinins acting on the B(1)R (B(1) receptor) and B(2)R (B(2) receptor). Recent studies have shown that a lack of B(2)R up-regulates B(1)R and AT(2)R; however, the pathophysiological relevance of such an event remains unclear. We hypothesized that up-regulation of AT(2)R and B(1)R compensates for the loss of B(2)R. Blockade of AT(2)R and/or B(1)R worsens cardiac remodelling and dysfunction following MI (myocardial infarction) in B(2)R(-/-) (B(2)-receptor-knockout mice). B(2)R(-/-) mice and WT (wild-type) controls were subjected to sham MI or MI and treated for 4 weeks with (i) vehicle, (ii) a B(1)R-ant (B(1)R antagonist; 300 μg/kg of body weight per day), (iii) an AT(2)R-ant [AT(2) receptor antagonist (PD123319); 20 mg/kg of body weight per day], or (iv) B(1)R-ant+AT(2)R-ant. B(2)R(-/-) mice had a greater MCSA (myocyte cross-sectional area) and ICF (interstitial collagen fraction) at baseline and after MI compared with WT controls. Cardiac function and increase in macrophage infiltration, TGFβ(1) (transforming growth factor β(1)) expression and ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation post-MI were similar in both strains. Blockade of AT(2)R or B(1)R worsened cardiac remodelling, hypertrophy and dysfunction associated with increased inflammation and ERK1/2 phosphorylation and decreased NO excretion in B(2)R(-/-) mice, which were exacerbated by dual blockade of B(1)R and AT(2)R. No such effects were seen in WT mice. Our results suggest that, in the absence of B(2)R, both B(1)R and AT(2)R play important compensatory roles in preventing deterioration of cardiac function and remodelling post-MI possibly via suppression of inflammation, TGFβ(1) and ERK1/2 signalling.
Collapse
|
17
|
Affiliation(s)
- P. Hillmeister
- Experimental and Clinical Research Center; Center for Cardiovascular Research; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| | - P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| |
Collapse
|
18
|
Mori MA, Sales VM, Motta FL, Fonseca RG, Alenina N, Guadagnini D, Schadock I, Silva ED, Torres HAM, dos Santos EL, Castro CH, D’Almeida V, Andreotti S, Campaña AB, Sertié RAL, Saad MJA, Lima FB, Bader M, Pesquero JB. Kinin B1 receptor in adipocytes regulates glucose tolerance and predisposition to obesity. PLoS One 2012; 7:e44782. [PMID: 23024762 PMCID: PMC3443087 DOI: 10.1371/journal.pone.0044782] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B(1) receptor knockout mice (B(1) (-/-)) are leaner and exhibit improved insulin sensitivity. METHODOLOGY/PRINCIPAL FINDINGS Here we show that kinin B(1) receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B(1) receptors. In these cells, treatment with the B(1) receptor agonist des-Arg(9)-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B(1) (-/-) mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B(1) receptor was limited to cells of the adipose tissue (aP2-B(1)/B(1) (-/-)). Similarly to B(1) (-/-) mice, aP2-B(1)/B(1) (-/-) mice were leaner than wild type controls. However, exclusive expression of the kinin B(1) receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B(1) (-/-) mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B(1) receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B(1)/B(1) (-/-) when compared to B(1) (-/-) mice. When subjected to high fat diet, aP2-B(1)/B(1) (-/-) mice gained more weight than B(1) (-/-) littermates, becoming as obese as the wild types. CONCLUSIONS/SIGNIFICANCE Thus, kinin B(1) receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity.
Collapse
Affiliation(s)
- Marcelo A. Mori
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Fabiana Louise Motta
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Raphael Gomes Fonseca
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ines Schadock
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Elton Dias Silva
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Hugo A. M. Torres
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Vânia D’Almeida
- Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| | - Sandra Andreotti
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Mario J. A. Saad
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Fabio Bessa Lima
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Lu H, Balakrishnan A, Howatt DA, Wu C, Charnigo R, Liau G, Cassis LA, Daugherty A. Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis. Br J Pharmacol 2012; 165:2000-2008. [PMID: 22014125 DOI: 10.1111/j.1476-5381.2011.01712.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of the renin angiotensin system (RAS) has been consistently demonstrated to reduce atherosclerosis. However, there has been no direct comparison among the three available pharmacological modes of inhibiting the RAS, which are inhibitors of renin, ACE and angiotensin II type 1 receptor. The purpose of this study was to determine the relative effects of these three modes of pharmacological RAS inhibition in reducing atherosclerosis by determining the dose-response relationships. EXPERIMENTAL APPROACH Male LDL receptor -/- mice were administered either vehicle or any of three doses of aliskiren, enalapril or losartan through s.c. infusion for 12 weeks. All mice were fed a saturated fat-enriched diet during drug infusions. Systolic and diastolic BPs were measured during the study using a non-invasive tail-cuff system. Plasma cholesterol and renin concentrations, atherosclerotic lesions, and renal angiotensin II concentrations were determined at the termination of the study. KEY RESULTS Plasma renin concentrations were increased by all three drugs. None of the drugs changed plasma cholesterol concentrations. All drugs produced a dose-related decrease in BP. All three drugs also profoundly reduced atherosclerosis in a dose-dependent manner. The highest dose of each drug markedly attenuated lesion size, with no significant differences between the different drugs. The highest dose of each drug also similarly reduced renal angiotensin II concentrations. CONCLUSION AND IMPLICATIONS Drugs that inhibit the RAS, irrespective of their mode of inhibition, profoundly affect atherosclerotic lesion development in a dose-dependent manner.
Collapse
Affiliation(s)
- Hong Lu
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Anju Balakrishnan
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Deborah A Howatt
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Congqing Wu
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Richard Charnigo
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Gene Liau
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Lisa A Cassis
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Alan Daugherty
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
20
|
Brugts JJ, de Maat MPM, Danser AHJ, Boersma E, Simoons ML. Individualised therapy of angiotensin converting enzyme (ACE) inhibitors in stable coronary artery disease: overview of the primary results of the PERindopril GENEtic association (PERGENE) study. Neth Heart J 2012; 20:24-32. [PMID: 21688035 PMCID: PMC3247631 DOI: 10.1007/s12471-011-0173-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In patients with stable coronary artery disease (CAD) without overt heart failure, ACE inhibitors are among the most commonly used drugs as these agents have been proven effective in reducing the risk of cardiovascular events. Considerable individual variations in the blood pressure response to ACE inhibitors are observed and as such heterogeneity in clinical treatment effect would be likely as well. Assessing the consistency of treatment benefit is essential for the rational and cost-effective prescription of ACE inhibitors. Information on heterogeneities in treatment effect between subgroups of patients could be used to develop an evidence-based guidance for the installation of ACE-inhibitor therapy. Obviously, therapy should only be applied in those patients who most likely will benefit. Attempts to develop such treatment guidance by using clinical characteristics have been unsuccessful. No heterogeneity in risk reduction by ACE inhibitors has been observed in relation to relevant clinical characteristics. A new approach to such 'guided-therapy' could be to integrate more patient-specific characteristics such as the patients' genetic information. If proven feasible, pharmacogenetic profiling could optimise patients' benefit of treatment and reduce unnecessary treatment of patients. Cardiovascular pharmacogenetic research of ACE inhibitors in coronary artery disease patients is in a formative stage and studies are limited. The PERGENE study is a large pharmacogenetic substudy of the EUROPA trial, aimed to assess the achievability of pharmacogenetic profiling. We provide an overview of the main results of the PERGENE study in terms of the genetic determinants of treatment benefit and blood pressure response. The main results of the PERGENE study show a pharmacogenetic profile related to the treatment benefit of perindopril identifying responders and non-responders to treatment.
Collapse
Affiliation(s)
- J J Brugts
- Department of Cardiology, Erasmus MC Thoraxcenter, 's Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands,
| | | | | | | | | |
Collapse
|
21
|
Maurer M, Bader M, Bas M, Bossi F, Cicardi M, Cugno M, Howarth P, Kaplan A, Kojda G, Leeb-Lundberg F, Lötvall J, Magerl M. New topics in bradykinin research. Allergy 2011; 66:1397-406. [PMID: 21859431 DOI: 10.1111/j.1398-9995.2011.02686.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bradykinin has been implicated to contribute to allergic inflammation and the pathogenesis of allergic conditions. It binds to endothelial B(1) and B(2) receptors and exerts potent pharmacological and physiological effects, notably, decreased blood pressure, increased vascular permeability and the promotion of classical symptoms of inflammation such as vasodilation, hyperthermia, oedema and pain. Towards potential clinical benefit, bradykinin has also been shown to exert potent antithrombogenic, antiproliferative and antifibrogenic effects. The development of pharmacologically active substances, such as bradykinin receptor blockers, opens up new therapeutic options that require further research into bradykinin. This review presents current understanding surrounding the role of bradykinin in nonallergic angioedema and other conditions seen by allergists and emergency physicians, and its potential role as a therapeutic target.
Collapse
Affiliation(s)
- M Maurer
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité- Universitätsmedizin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hillmeister P, Gatzke N, Dülsner A, Bader M, Schadock I, Hoefer I, Hamann I, Infante-Duarte C, Jung G, Troidl K, Urban D, Stawowy P, Frentsch M, Li M, Nagorka S, Wang H, Shi Y, le Noble F, Buschmann I. Arteriogenesis Is Modulated By Bradykinin Receptor Signaling. Circ Res 2011; 109:524-33. [DOI: 10.1161/circresaha.111.240986] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Positive outward remodeling of pre-existing collateral arteries into functional conductance arteries, arteriogenesis, is a major endogenous rescue mechanism to prevent cardiovascular ischemia. Collateral arterial growth is accompanied by expression of kinin precursor. However, the role of kinin signaling via the kinin receptors (B1R and B2R) in arteriogenesis is unclear.
Objective:
The purpose of this study was to elucidate the functional role and mechanism of bradykinin receptor signaling in arteriogenesis.
Methods and Results:
Bradykinin receptors positively affected arteriogenesis, with the contribution of B1R being more pronounced than B2R. In mice, arteriogenesis upon femoral artery occlusion was significantly reduced in B1R mutant mice as evidenced by reduced microspheres and laser Doppler flow perfusion measurements. Transplantation of wild-type bone marrow cells into irradiated B1R mutant mice restored arteriogenesis, whereas bone marrow chimeric mice generated by reconstituting wild-type mice with B1R mutant bone marrow showed reduced arteriogenesis after femoral artery occlusion. In the rat brain 3-vessel occlusion arteriogenesis model, pharmacological blockade of B1R inhibited arteriogenesis and stimulation of B1R enhanced arteriogenesis. In the rat, femoral artery ligation combined with arterial venous shunt model resulted in flow-driven arteriogenesis, and treatment with B1R antagonist R715 decreased vascular remodeling and leukocyte invasion (monocytes) into the perivascular tissue. In monocyte migration assays, in vitro B1R agonists enhanced migration of monocytes.
Conclusions:
Kinin receptors act as positive modulators of arteriogenesis in mice and rats. B1R can be blocked or therapeutically stimulated by B1R antagonists or agonists, respectively, involving a contribution of peripheral immune cells (monocytes) linking hemodynamic conditions with inflammatory pathways.
Collapse
Affiliation(s)
- Philipp Hillmeister
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Nora Gatzke
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - André Dülsner
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Michael Bader
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Ines Schadock
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Imo Hoefer
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Isabell Hamann
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Carmen Infante-Duarte
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Georg Jung
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Kerstin Troidl
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Daniel Urban
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Philipp Stawowy
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Marco Frentsch
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Meijing Li
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Stephanie Nagorka
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Haitao Wang
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Yu Shi
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Ferdinand le Noble
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| | - Ivo Buschmann
- From the Experimental and Clinical Research Center of the Charite and the Max Delbrueck Center for Molecular Medicine (P.H., A.D., M.L., H.W., Y.S., F.l.N., I.B.), Berlin, Germany; Center for Cardiovascular Research (P.H., N.G., A.D., M.L., S.N., I.B.), Charité, Berlin, Germany; Center for Stroke Research Berlin (P.H., F.l.N., I.B.), Charité, Berlin, Germany; Experimental Neuroimmunology (I.H., C.I.D.), Max Delbrueck Center (M.B., I.S.), Berlin, Germany; Department of Experimental Cardiology (I.H.),
| |
Collapse
|
23
|
Abstract
UNLABELLED Vasculitis is a systemic autoimmune inflammatory disease, characterized by inflammation in and around vessel walls leading to perturbed vessel patency and tissue damage. Many different organs may be involved. In this review, pathogenetic mechanisms of vasculitis are discussed, with special reference to activation of the kinin system. Mechanisms of kinin system activation are described, ultimately leading to release of kinins from high molecular weight kininogen. These vasoactive peptides promote inflammation. CONCLUSION Kinin system activation during vasculitis promotes inflammation.
Collapse
Affiliation(s)
- Robin Kahn
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | |
Collapse
|
24
|
Biros E, Norman PE, Walker PJ, Nataatmadja M, West M, Golledge J. A single nucleotide polymorphism in exon 3 of the kallikrein 1 gene is associated with large but not small abdominal aortic aneurysm. Atherosclerosis 2011; 217:452-7. [PMID: 21571276 DOI: 10.1016/j.atherosclerosis.2011.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a late onset degenerative condition with an inherited component thought to be due to multiple risk alleles. A locus on chromosomes 19q13 has been previously associated with AAA. The gene encoding kallikrein 1 (KLK1) is located on chromosome 19q13 and the single nucleotide polymorphism (SNP) rs5516 has been previously shown to lead to structural changes in the KLK1 transcription regulatory region. The aim of this study was to investigate whether rs5516 was associated with AAA and aortic diameter. METHODS We performed a case-control study on two independent subject groups from Western Australia (n=1304) and Queensland (n=325) of which 609 and 225 had an AAA, respectively. In addition, we analysed RNA extracted from abdominal aortic biopsies from 12 patients undergoing AAA surgery and 6 organ donors. RESULTS After adjusting for other risk factors the G allele of the rs5516 polymorphism was associated with large but not small AAA using a dominant model in the Western Australian men and a recessive model in Queensland subjects. In subjects with large AAA the G allele was associated with aortic diameter. The short splice variant of KLK1 was upregulated within AAA compared to control biopsies. CONCLUSION This study suggests that a genetic polymorphism in KLK1 may contribute to the risk of developing later stage AAA.
Collapse
Affiliation(s)
- Erik Biros
- Vascular Biology Unit, School of Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Swedenborg J, Mäyränpää MI, Kovanen PT. Mast cells: important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2011; 31:734-40. [PMID: 21205988 DOI: 10.1161/atvbaha.110.213157] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mast cells (MCs) regulate inflammation and immunity. Their granular content includes heparin, histamine, and several enzymes (tryptase, chymase, carboxypeptidase, and cathepsin G). In addition, activated MCs synthesize and release eicosanoids and a large number of cytokines and chemokines. Recent findings suggest a role of MCs in abdominal aortic aneurysms (AAAs) in humans, where they are found in the media and adventitia. Experimentally induced AAA in MC-deficient animals and animals treated with MC inhibitors demonstrate that MCs are involved in the pathogenesis of AAA via several different mechanisms. MC-dependent activation of metalloproteinases and the renin-angiotensin system, contribution to smooth muscle cell apoptosis, and release of proteolytic enzymes are some key examples. Human studies indicate that MCs are the main source of cathepsin G in AAAs and contribute to activation of the renin-angiotensin system via chymase and cathepsin G. Activated MCs also contribute to neovascularization, inflammation, and atherosclerosis, all hallmarks of AAA. Thus, we may envision that MC stabilizing agents, as well as leukotriene receptor antagonists and histamine receptor blockers already in clinical use for treatment of other diseases, could also be tested for their efficacy in preventing development and growth of AAA.
Collapse
Affiliation(s)
- Jesper Swedenborg
- Department of Vascular Surgery, Karolinska University Hospital N1:06, 17176 Stockholm, Sweden.
| | | | | |
Collapse
|
26
|
Brugts JJ, Boersma E, Simoons ML. Tailored therapy of ACE inhibitors in stable coronary artery disease: pharmacogenetic profiling of treatment benefit. Pharmacogenomics 2010; 11:1115-26. [PMID: 20712529 DOI: 10.2217/pgs.10.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are among the most commonly used drugs in stable coronary artery disease as these agents have been proven to be effective for reducing the risk of cardiovascular morbidity and mortality. As with other drugs, individual variation in treatment benefit is likely. Such heterogeneity could be used to target ACE-inhibitor therapy to those patients most likely to benefit from treatment. However, prior attempts to target ACE-inhibitor therapy to those patients who are most likely to benefit of such prophylactic treatment in secondary prevention using clinical characteristics or the level of baseline risk appeared not to be useful. A new approach of 'tailored therapy' could be to integrate more patient-specific characteristics, such as the genetic information of patients. Pharmacogenetic research of ACE inhibitors in coronary artery disease patients is at a formative stage, and studies are limited. The Perindopril Genetic association (PERGENE) study is a large pharmacogenetic substudy of the randomized placebo-controlled European trial On Reduction of Cardiac Events with Perindopril in Patients with Stable Coronary Artery disease (EUROPA) trial, aimed to assess the feasibility of pharmacogenetic profiling of ACE-inhibitor therapy by perindopril. This article summarizes the recent findings of the PERGENE study and pharmacogenetic research of the treatment benefit of perindopril in stable coronary artery disease.
Collapse
Affiliation(s)
- Jasper J Brugts
- Department of Cardiology, Erasmus MC Thoraxcenter, 's Gravendijkwal 230, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
27
|
Luft FC. Aneurysm formation and bradykinin. J Mol Med (Berl) 2009; 87:941-3. [PMID: 19707733 DOI: 10.1007/s00109-009-0517-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 11/26/2022]
|