1
|
Hu S, Liu B, Shang J, Guo Q, Lu T, Zhou X, Zhou X, Wang X. Targeting PTGDS Promotes ferroptosis in peripheral T cell lymphoma through regulating HMOX1-mediated iron metabolism. Br J Cancer 2025; 132:384-400. [PMID: 39706989 PMCID: PMC11833084 DOI: 10.1038/s41416-024-02919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Peripheral T cell lymphoma (PTCL) is characterized by high heterogeneity, strong aggressiveness, and extremely poor prognosis. Ferroptosis, a novel form of programmed cell death, has been involved in tumor development and targeting ferroptosis holds great potential for tumor therapy. METHODS Lentiviral transfection was performed to regulate gene expression, followed by Tandem mass tag (TMT)-mass spectrometry and RNA-sequencing. Tumor xenograft models were established for in vivo experiments. RESULTS High expression of prostaglandin D2 synthase (PTGDS) was closely associated with poor prognosis of PTCL patients. PTGDS knockdown and AT56 treatment significantly inhibited the progression of PTCL through regulating cell viability, proliferation, apoptosis, cell cycle and invasion in vitro and in vivo. We further revealed that targeting PTGDS promoted ferroptosis process and enhanced the sensitivity of PTCL cells to ferroptosis inducers Sorafenib in vitro and in vivo. Mechanically, PTGDS interacted with heme-degrading enzymes HMOX1, and targeting PTGDS increased the level of iron and induced ferroptosis in PTCL through promoting HMOX1-mediated heme catabolism and ferritin autophagy process. Through the construction of H25A mutation, the specific gene site of HMOX1 corresponding to its role was identified. CONCLUSIONS Taken together, our findings firstly identified that targeting PTGDS promotes the ferroptosis in PTCL through regulating HMOX1-mediated iron metabolism, and highlighted novel therapeutic strategies to improve the efficacy of ferroptosis-targeted therapy in PTCL patients.
Collapse
MESH Headings
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Humans
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Animals
- Mice
- Iron/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/drug therapy
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Female
- Male
- Cell Proliferation
- Intramolecular Oxidoreductases/genetics
- Intramolecular Oxidoreductases/metabolism
- Intramolecular Oxidoreductases/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic
- Prognosis
- Sorafenib/pharmacology
Collapse
Affiliation(s)
- Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Juanjuan Shang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Qianqian Guo
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaoli Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
2
|
Vats R, Ungalara R, Dubey RK, Sundd P, Pradhan-Sundd T. Heme-Oxygenase 1 Mediated Activation of Cyp3A11 Protects Against Non-Steroidal Pain Analgesics Induced Acute Liver Damage in Sickle Cell Disease Mice. Cells 2025; 14:194. [PMID: 39936985 PMCID: PMC11817884 DOI: 10.3390/cells14030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Pain constitutes a significant comorbidity associated with sickle cell disease (SCD). Analgesics serve as the primary method for pain management; however, the long-term effects of these drugs on the liver of SCD patients remain not completely understood. Using real-time intravital imaging, we analyzed the effect of non-steroidal analgesics (NSA) in the liver of control and SS (SCD) mice. Remarkably, we found completely opposing effects in the liver of control and SS mice post-NSA treatment. Whereas SS mice were able to better tolerate the NSA treatment acutely compared to their littermate controls, in the long term, these mice showed delayed resolution of liver injury and exacerbated fibrosis compared to control mice. Mechanistically, we found that SS mice were protected from cytotoxicity caused by NSA at baseline due to the significant activation of hepatic Kupffer cells, which produced heme-oxygenase 1 (HO-1). HO-1 promoted the activation of the cytoprotective enzyme Cyp3A11, which inhibited hepatic damage caused by NSA. However, in the long term, depletion of hepatic Kupffer cells led to reduced expression of HO-1, which blocked the activation of Cyp3A11, resulting in fibrosis and a delay in the resolution of liver injury and inflammation. These preclinical data provide a strong proof-of-concept for HO-1 as well as Cyp3A11 as cytoprotectors against NSA-induced liver damage in the Townes model of SCD and support further development of these compounds as potential novel therapies for end-organ damage in SCD.
Collapse
Affiliation(s)
- Ravi Vats
- Versiti Blood Research Institute and Blood Center of Wisconsin, 8733 West Watertown Plank Road, Milwaukee, WI 53226, USA; (R.V.); (R.U.); (R.K.D.); (P.S.)
- Divisions of Cell Biology, Neurobiology and Anatomy and Bioengineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ramakrishna Ungalara
- Versiti Blood Research Institute and Blood Center of Wisconsin, 8733 West Watertown Plank Road, Milwaukee, WI 53226, USA; (R.V.); (R.U.); (R.K.D.); (P.S.)
- Divisions of Cell Biology, Neurobiology and Anatomy and Bioengineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rikesh K. Dubey
- Versiti Blood Research Institute and Blood Center of Wisconsin, 8733 West Watertown Plank Road, Milwaukee, WI 53226, USA; (R.V.); (R.U.); (R.K.D.); (P.S.)
- Divisions of Cell Biology, Neurobiology and Anatomy and Bioengineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Prithu Sundd
- Versiti Blood Research Institute and Blood Center of Wisconsin, 8733 West Watertown Plank Road, Milwaukee, WI 53226, USA; (R.V.); (R.U.); (R.K.D.); (P.S.)
- Divisions of Cell Biology, Neurobiology and Anatomy and Bioengineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tirthadipa Pradhan-Sundd
- Versiti Blood Research Institute and Blood Center of Wisconsin, 8733 West Watertown Plank Road, Milwaukee, WI 53226, USA; (R.V.); (R.U.); (R.K.D.); (P.S.)
- Divisions of Cell Biology, Neurobiology and Anatomy and Bioengineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Ivy ZK, Belcher JD, Khasabova IA, Chen C, Juliette JP, Abdulla F, Ruan C, Allen K, Nguyen J, Rogness VM, Beckman JD, Khasabov SG, Gupta K, Taylor RP, Simone DA, Vercellotti GM. Cold exposure induces vaso-occlusion and pain in sickle mice that depend on complement activation. Blood 2023; 142:1918-1927. [PMID: 37774369 PMCID: PMC10731576 DOI: 10.1182/blood.2022019282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
Vaso-occlusive pain episodes (VOE) cause severe pain in patients with sickle cell disease (SCD). Vaso-occlusive events promote ischemia/reperfusion pathobiology that activates complement. We hypothesized that complement activation is linked to VOE. We used cold to induce VOE in the Townes sickle homozygous for hemoglobin S (HbSS) mouse model and complement inhibitors to determine whether anaphylatoxin C5a mediates VOE. We used a dorsal skinfold chamber to measure microvascular stasis (vaso-occlusion) and von Frey filaments applied to the plantar surface of the hind paw to assess mechanical hyperalgesia in HbSS and control Townes mice homozygous for hemoglobin A (HbAA) mice after cold exposure at 10°C/50°F for 1 hour. Cold exposure induced more vaso-occlusion in nonhyperalgesic HbSS mice (33%) than in HbAA mice (11%) or HbSS mice left at room temperature (1%). Cold exposure also produced mechanical hyperalgesia as measured by paw withdrawal threshold in HbSS mice compared with that in HbAA mice or HbSS mice left at room temperature. Vaso-occlusion and hyperalgesia were associated with an increase in complement activation fragments Bb and C5a in plasma of HbSS mice after cold exposure. This was accompanied by an increase in proinflammatory NF-κB activation and VCAM-1 and ICAM-1 expression in the liver. Pretreatment of nonhyperalgesic HbSS mice before cold exposure with anti-C5 or anti-C5aR monoclonal antibodies (mAbs) decreased vaso-occlusion, mechanical hyperalgesia, complement activation, and liver inflammatory markers compared with pretreatment with control mAb. Anti-C5 or -C5aR mAb infusion also abrogated mechanical hyperalgesia in HbSS mice with ongoing hyperalgesia at baseline. These findings suggest that C5a promotes vaso-occlusion, pain, and inflammation during VOE and may play a role in chronic pain.
Collapse
Affiliation(s)
- Zalaya K. Ivy
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - John D. Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Iryna A. Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Joseph P. Juliette
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Fuad Abdulla
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Conglin Ruan
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Kaje Allen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Julia Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Victoria M. Rogness
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Joan D. Beckman
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Kalpna Gupta
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA
| | - Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Gregory M. Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
4
|
Beckman JD, Sparkenbaugh EM. The invisible string of coagulation, complement, iron, and inflammation in sickle cell disease. Curr Opin Hematol 2023; 30:153-158. [PMID: 37462409 PMCID: PMC10529498 DOI: 10.1097/moh.0000000000000773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW This review provides an update on recent advances in mechanistic studies of thromboinflammatory mechanisms that contribute to the disease pathology in sickle cell disease (SCD). There is a focus on novel pathways, clinical relevance, and translational potential of these findings. We hope to encourage more advances in this area to reduce organ damage in young patients prior to gene therapy, and to serve the aging SCD patient population. RECENT FINDINGS Novel insights into the roles of neutrophils, the ADAMTS-13/VWF axis, oxidative stress, and the intrinsic coagulation cascade, as well as relevant clinical trials, are discussed. SUMMARY Several studies implicate dysregulation of the ADAMTS-13/VWF axis as playing a major role in vaso-occlusive events (VOE) in SCD. Another highlight is reducing iron overload, which has beneficial effects on erythrocyte and neutrophil function that reduce VOE and inflammation. Multiple studies suggest that targeting HO-1/ROS in erythrocytes, platelets, and endothelium can attenuate disease pathology. New insights into coagulation activation identify intrinsic coagulation factor XII as a central regulator of many thromboinflammatory pathologies in SCD. The complement cascade and modulators of neutrophil function and release of neutrophil extracellular traps are also discussed.
Collapse
Affiliation(s)
- Joan D Beckman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Erica M Sparkenbaugh
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Blood Research Center, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Gbotosho OT, Li W, Joiner CH, Brown LAS, Hyacinth HI. The inflammatory profiles of pulmonary alveolar macrophages and alveolar type 2 cells in SCD. Exp Biol Med (Maywood) 2023; 248:1013-1023. [PMID: 37012678 PMCID: PMC10581160 DOI: 10.1177/15353702231157940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/15/2023] [Indexed: 04/05/2023] Open
Abstract
The lung microenvironment plays a crucial role in maintaining lung homeostasis as well as the initiation and resolution of both acute and chronic lung injury. Acute chest syndrome (ACS) is a complication of sickle cell disease (SCD) like acute lung injury. Both the endothelial cells and peripheral blood mononuclear cells are known to secrete proinflammatory cytokines elevated during ACS episodes. However, in SCD, the lung microenvironment that may favor excessive production of proinflammatory cytokines and the contribution of other lung resident cells, such as alveolar macrophages and alveolar type 2 epithelial (AT-2) cells, to ACS pathogenesis is not completely understood. Here, we sought to understand the pulmonary microenvironment and the proinflammatory profile of lung alveolar macrophages (LAMs) and AT-2 cells at steady state in Townes sickle cell (SS) mice compared to control mice (AA). In addition, we examined lung function and micromechanics molecules essential for pulmonary epithelial barrier function in these mice. Our results showed that bronchoalveolar lavage (BAL) fluid in SS mice had elevated protein levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-12 (p ⩽ 0.05) compared to AA controls. We showed for the first time, significantly increased protein levels of inflammatory mediators (Human antigen R (HuR), Toll-like receptor 4 (TLR4), MyD88, and PU.1) in AT-2 cells (1.4 to 2.2-fold) and LAM (17-21%) isolated from SS mice compared to AA control mice at steady state. There were also low levels of anti-inflammatory transcription factors (Nrf2 and PPARy) in SS mice compared to AA controls (p ⩽ 0.05). Finally, we found impaired lung function and a dysregulated composition of surfactant proteins (B and C). Our results demonstrate that SS mice at steady state had a compromised lung microenvironment with elevated expression of proinflammatory cytokines by AT-2 cells and LAM, as well as dysregulated expression of surfactant proteins necessary for maintaining the alveolar barrier integrity and lung function.
Collapse
Affiliation(s)
- Oluwabukola T Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Li
- Aflac Cancer & Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Clinton H Joiner
- Aflac Cancer & Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lou Ann S Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Tofovic SP. Purine Nucleoside Phosphorylase: A New Pharmacological Target in Sickle Cell Disease and Hemolytic Vasculopathy. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Belcher JD, Nataraja S, Abdulla F, Zhang P, Chen C, Nguyen J, Ruan C, Singh M, Demes S, Olson L, Stickens D, Stanwix J, Clarke E, Huang Y, Biddle M, Vercellotti GM. The BACH1 inhibitor ASP8731 inhibits inflammation and vaso-occlusion and induces fetal hemoglobin in sickle cell disease. Front Med (Lausanne) 2023; 10:1101501. [PMID: 37144034 PMCID: PMC10152901 DOI: 10.3389/fmed.2023.1101501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In sickle cell disease (SCD), heme released during intravascular hemolysis promotes oxidative stress, inflammation, and vaso-occlusion. Conversely, free heme can also activate expression of antioxidant and globin genes. Heme binds to the transcription factor BACH1, which represses NRF2-mediated gene transcription. ASP8731, is a selective small molecule inhibitor of BACH1. We investigated the ability of ASP8731 to modulate pathways involved in SCD pathophysiology. In HepG2 liver cells, ASP8731 increased HMOX1 and FTH1 mRNA. In pulmonary endothelial cells, ASP8731 decreased VCAM1 mRNA in response to TNF-α and blocked a decrease in glutathione in response to hemin. Townes-SS mice were gavaged once per day for 4 weeks with ASP8731, hydroxyurea (HU) or vehicle. Both ASP8731 and HU inhibited heme-mediated microvascular stasis and in combination, ASP8731 significantly reduced microvascular stasis compared to HU alone. In Townes-SS mice, ASP8731 and HU markedly increased heme oxygenase-1 and decreased hepatic ICAM-1, NF-kB phospho-p65 protein expression in the liver, and white blood cell counts. In addition, ASP8731 increased gamma-globin expression and HbF+ cells (F-cells) as compared to vehicle-treated mice. In human erythroid differentiated CD34+ cells, ASP8731 increased HGB mRNA and increased the percentage of F-cells 2-fold in manner similar to HU. ASP8731 and HU when given together induced more HbF+ cells compared to either drug alone. In CD34+ cells from one donor that was non-responsive to HU, ASP8731 induced HbF+ cells ~2-fold. ASP8731 and HU also increased HBG and HBA, but not HBB mRNA in erythroid differentiated CD34+ cells derived from SCD patients. These data indicate that BACH1 may offer a new therapeutic target to treat SCD.
Collapse
Affiliation(s)
- John D. Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: John D. Belcher,
| | | | - Fuad Abdulla
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Ping Zhang
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Chunsheng Chen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Conglin Ruan
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | | | - Shilpa Demes
- Astellas Pharma Global Development Inc., Northbrook, IL, United States
| | | | | | | | | | | | | | - Gregory M. Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
MASP-2 and MASP-3 inhibitors block complement activation, inflammation, and microvascular stasis in a murine model of vaso-occlusion in sickle cell disease. Transl Res 2022; 249:1-12. [PMID: 35878790 PMCID: PMC9996688 DOI: 10.1016/j.trsl.2022.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
Patients with sickle cell disease (SCD) have ongoing hemolysis that promotes endothelial injury, complement activation, inflammation, vaso-occlusion, ischemia-reperfusion pathophysiology, and pain. Complement activation markers are increased in SCD in steady-state and further increased during vaso-occlusive crisis (VOC). However, the mechanisms driving complement activation in SCD have not been completely elucidated. Ischemia-reperfusion and heme released from hemoglobin during hemolysis, events that characterize SCD pathophysiology, can activate the lectin pathway (LP) and alternative pathway (AP), respectively. Here we evaluated the role of LP and AP in Townes sickle (SS) mice using inhibitory monoclonal antibodies (mAb) to mannose binding lectin (MBL)-associated serine protease (MASP)-2 or MASP-3, respectively. Townes SS mice were pretreated with MASP-2 mAb, MASP-3 mAb, isotype control mAb, or PBS before they were challenged with hypoxia-reoxygenation or hemoglobin. Pretreatment of SS mice with MASP-2 or MASP-3 mAb, markedly reduced Bb fragments, C4d and C5a in plasma and complement deposition in the liver, kidneys, and lungs collected 4 hours after challenge compared to control mAb-treated mice. Consistent with complement inhibition, hepatic inflammation markers NF-ĸB phospho-p65, VCAM-1, ICAM-1, and E-selectin were significantly reduced in SS mice pretreated with MASP-2 or MASP-3 mAb. Importantly, MASP-2 or MASP-3 mAb pretreatment significantly inhibited microvascular stasis (vaso-occlusion) induced by hypoxia-reoxygenation or hemoglobin. These studies suggest that the LP and the AP are both playing a role in promoting inflammation and vaso-occlusion in SCD. Inhibiting complement activation via the LP or the AP might inhibit inflammation and prevent VOC in SCD patients.
Collapse
|
9
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
10
|
Vinchi F, Sparla R, Passos ST, Sharma R, Vance SZ, Zreid HS, Juaidi H, Manwani D, Yazdanbakhsh K, Nandi V, Silva AMN, Agarvas AR, Fibach E, Belcher JD, Vercellotti GM, Ghoti H, Muckenthaler MU. Vasculo-toxic and pro-inflammatory action of unbound haemoglobin, haem and iron in transfusion-dependent patients with haemolytic anaemias. Br J Haematol 2021; 193:637-658. [PMID: 33723861 PMCID: PMC8252605 DOI: 10.1111/bjh.17361] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that free haem and iron exert vasculo‐toxic and pro‐inflammatory effects by activating endothelial and immune cells. In the present retrospective study, we compared serum samples from transfusion‐dependent patients with β‐thalassaemia major and intermedia, hereditary spherocytosis and sickle cell disease (SCD). Haemolysis, transfusions and ineffective erythropoiesis contribute to haem and iron overload in haemolytic patients. In all cohorts we observed increased systemic haem and iron levels associated with scavenger depletion and toxic ‘free’ species formation. Endothelial dysfunction, oxidative stress and inflammation markers were significantly increased compared to healthy donors. In multivariable logistic regression analysis, oxidative stress markers remained significantly associated with both haem‐ and iron‐related parameters, while soluble vascular cell adhesion molecule 1 (sVCAM‐1), soluble endothelial selectin (sE‐selectin) and tumour necrosis factor α (TNFα) showed the strongest association with haem‐related parameters and soluble intercellular adhesion molecule 1 (sICAM‐1), sVCAM‐1, interleukin 6 (IL‐6) and vascular endothelial growth factor (VEGF) with iron‐related parameters. While hereditary spherocytosis was associated with the highest IL‐6 and TNFα levels, β‐thalassaemia major showed limited inflammation compared to SCD. The sVCAM1 increase was significantly lower in patients with SCD receiving exchange compared to simple transfusions. The present results support the involvement of free haem/iron species in the pathogenesis of vascular dysfunction and sterile inflammation in haemolytic diseases, irrespective of the underlying haemolytic mechanism, and highlight the potential therapeutic benefit of iron/haem scavenging therapies in these conditions.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, New York Blood Center, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg University, Heidelberg, Germany
| | - Richard Sparla
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Sara T Passos
- Iron Research Program, New York Blood Center, New York, NY, USA
| | - Richa Sharma
- Iron Research Program, New York Blood Center, New York, NY, USA
| | - S Zebulon Vance
- Iron Research Program, New York Blood Center, New York, NY, USA
| | - Hala S Zreid
- Department of Internal Medicine, Al Shifa Hospital, Gaza, Palestine
| | - Hesham Juaidi
- Department of Internal Medicine, Al Shifa Hospital, Gaza, Palestine
| | - Deepa Manwani
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,Pediatric Hematology, The Children's Hospital at Montefiore, New York, NY, USA
| | | | - Vijay Nandi
- Laboratory of Data Analytic Services, New York Blood Center, New York, NY, USA
| | - André M N Silva
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, University of Porto, Porto, Portugal
| | - Anand R Agarvas
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Eitan Fibach
- Department of Hematology, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Gregory M Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Husam Ghoti
- European Center for Cancer and Cell Therapy (ECCT), Nicosia, Cyprus
| | - Martina U Muckenthaler
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg University, Heidelberg, Germany.,Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
11
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Beckman JD, Abdullah F, Chen C, Kirchner R, Rivera-Rodriguez D, Kiser ZM, Nguyen A, Zhang P, Nguyen J, Hebbel RP, Belcher JD, Vercellotti GM. Endothelial TLR4 Expression Mediates Vaso-Occlusive Crisis in Sickle Cell Disease. Front Immunol 2021; 11:613278. [PMID: 33542720 PMCID: PMC7851052 DOI: 10.3389/fimmu.2020.613278] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
Heme, released from red blood cells in sickle cell disease (SCD), interacts with toll-like receptor 4 (TLR4) to activate NF-κB leading to the production of cytokines and adhesion molecules which promote inflammation, pain, and vaso-occlusion. In SCD, TLR4 inhibition has been shown to modulate heme-induced microvascular stasis and lung injury. We sought to delineate the role of endothelial verses hematopoietic TLR4 in SCD by developing a TLR4 null transgenic sickle mouse. We bred a global Tlr4-/- deficiency state into Townes-AA mice expressing normal human adult hemoglobin A and Townes-SS mice expressing sickle hemoglobin S. SS-Tlr4-/- had similar complete blood counts and serum chemistries as SS-Tlr4 +/+ mice. However, SS-Tlr4-/- mice developed significantly less microvascular stasis in dorsal skin fold chambers than SS-Tlr4 +/+ mice in response to challenges with heme, lipopolysaccharide (LPS), and hypoxia/reoxygenation (H/R). To define a potential mechanism for decreased microvascular stasis in SS-Tlr4-/- mice, we measured pro-inflammatory NF-κB and adhesion molecules in livers post-heme challenge. Compared to heme-challenged SS-Tlr4 +/+ livers, SS-Tlr4 -/- livers had lower adhesion molecule and cytokine mRNAs, NF-κB phospho-p65, and adhesion molecule protein expression. Furthermore, lung P-selectin and von Willebrand factor immunostaining was reduced. Next, to establish if endothelial or hematopoietic cell TLR4 signaling is critical to vaso-occlusive physiology, we created chimeric mice by transplanting SS-Tlr4 -/- or SS-Tlr4 +/+ bone marrow into AA-Tlr4 -/- or AA-Tlr4 +/+ recipients. Hemin-stimulated microvascular stasis was significantly decreased when the recipient was AA-Tlr4-/- . These data demonstrate that endothelial, but not hematopoietic, TLR4 expression is necessary to initiate vaso-occlusive physiology in SS mice.
Collapse
Affiliation(s)
- Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Fuad Abdullah
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Chunsheng Chen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Rachel Kirchner
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Dormarie Rivera-Rodriguez
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Zachary M Kiser
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Aithanh Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Ping Zhang
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Robert P Hebbel
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Gregory M Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Hebbel RP, Belcher JD, Vercellotti GM. The multifaceted role of ischemia/reperfusion in sickle cell anemia. J Clin Invest 2020; 130:1062-1072. [PMID: 32118586 DOI: 10.1172/jci133639] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sickle cell anemia is a unique disease dominated by hemolytic anemia and vaso-occlusive events. The latter trigger a version of ischemia/reperfusion (I/R) pathobiology that is singular in its origin, cyclicity, complexity, instability, perpetuity, and breadth of clinical consequences. Specific clinical features are probably attributable to local I/R injury (e.g., stroke syndromes) or remote organ injury (e.g., acute chest syndrome) or the systematization of inflammation (e.g., multifocal arteriopathy). Indeed, by fashioning an underlying template of endothelial dysfunction and vulnerability, the robust inflammatory systematization no doubt contributes to all sickle pathology. In this Review, we highlight I/R-targeting therapeutics shown to improve microvascular blood flow in sickle transgenic mice undergoing I/R, and we suggest how such insights might be translated into human therapeutic strategies.
Collapse
|
14
|
Amberger M, Ivics Z. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications. Bioessays 2020; 42:e2000136. [PMID: 32939778 DOI: 10.1002/bies.202000136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition-based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral-vector-based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof-of-concept RNA-guided transposition, further expand on possible applications in the future. In addition, innate advantages such as lack of preferential integration into genes reduce insertional mutagenesis-related safety concerns while comparably low manufacturing costs enable widespread implementation. Accordingly, the system is recognized as a powerful and versatile tool for genetic engineering and is playing a central role in an ever-expanding number of gene and cell therapy clinical trials with the potential to become a key technology to meet the growing demand for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Maximilian Amberger
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| |
Collapse
|
15
|
Hemolysis Derived Products Toxicity and Endothelium: Model of the Second Hit. Toxins (Basel) 2019; 11:toxins11110660. [PMID: 31766155 PMCID: PMC6891750 DOI: 10.3390/toxins11110660] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular diseases are multifactorial, often requiring multiple challenges, or ‘hits’, for their initiation. Intra-vascular hemolysis illustrates well the multiple-hit theory where a first event lyses red blood cells, releasing hemolysis-derived products, in particular cell-free heme which is highly toxic for the endothelium. Physiologically, hemolysis derived-products are rapidly neutralized by numerous defense systems, including haptoglobin and hemopexin which scavenge hemoglobin and heme, respectively. Likewise, cellular defense mechanisms are involved, including heme-oxygenase 1 upregulation which metabolizes heme. However, in cases of intra-vascular hemolysis, those systems are overwhelmed. Heme exerts toxic effects by acting as a damage-associated molecular pattern and promoting, together with hemoglobin, nitric oxide scavenging and ROS production. In addition, it activates the complement and the coagulation systems. Together, these processes lead to endothelial cell injury which triggers pro-thrombotic and pro-inflammatory phenotypes. Moreover, among endothelial cells, glomerular ones display a particular susceptibility explained by a weaker capacity to counteract hemolysis injury. In this review, we illustrate the ‘multiple-hit’ theory through the example of intra-vascular hemolysis, with a particular focus on cell-free heme, and we advance hypotheses explaining the glomerular susceptibility observed in hemolytic diseases. Finally, we describe therapeutic options for reducing endothelial injury in hemolytic diseases.
Collapse
|
16
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
17
|
Gbotosho OT, Ghosh S, Kapetanaki MG, Lin Y, Weidert F, Bullock GC, Ofori-Acquah SF, Kato GJ. Cardiac expression of HMOX1 and PGF in sickle cell mice and haem-treated wild type mice dominates organ expression profiles via Nrf2 (Nfe2l2). Br J Haematol 2019; 187:666-675. [PMID: 31389006 DOI: 10.1111/bjh.16129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
Haemolysis is a major feature of sickle cell disease (SCD) that contributes to organ damage. It is well established that haem, a product of haemolysis, induces expression of the enzyme that degrades it, haem oxygenase-1 (HMOX1). We have also shown that haem induces expression of placental growth factor (PGF), but the organ specificity of these responses has not been well-defined. As expected, we found high level expression of Hmox1 and Pgf transcripts in the reticuloendothelial system organs of transgenic sickle cell mice, but surprisingly strong expression in the heart (P < 0·0001). This pattern was largely replicated in wild type mice by intravenous injection of exogenous haem. In the heart, haem induced unexpectedly strong mRNA responses for Hmox1 (18-fold), Pgf (4-fold), and the haem transporter Slc48a1 (also termed Hrg1; 2·4-fold). This was comparable to the liver, the principal known haem-detoxifying organ. The NFE2L2 (also termed NRF2) transcription factor mediated much of the haem induction of Hmox1 and Hrg1 in all organs, but less so for Pgf. Our results indicate that the heart expresses haem response pathway genes at surprisingly high basal levels and shares with the liver a similar transcriptional response to circulating haem. The role of the heart in haem response should be investigated further.
Collapse
Affiliation(s)
- Oluwabukola T Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samit Ghosh
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Center for Translational and International Hematology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria G Kapetanaki
- Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yu Lin
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frances Weidert
- Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Grant C Bullock
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Solomon F Ofori-Acquah
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Center for Translational and International Hematology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Gregory J Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Liu Y, Zhong H, Vinchi F, Mendelson A, Yazdanbakhsh K. Patrolling monocytes in sickle cell hemolytic conditions. Transfus Clin Biol 2019; 26:128-129. [PMID: 30898432 PMCID: PMC6488014 DOI: 10.1016/j.tracli.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with sickle cell disease (SCD) suffer from intravascular hemolysis associated with vascular injury and dysfunction. Painful vaso-occlusive crisis (VOC) involving increased attachment of sickle erythrocytes and activated leukocytes to damaged vascular endothelium is a hallmark of SCD. Patrolling monocytes, which normally scavenge damaged cells and debris from the vasculature, express higher levels of anti-inflammatory heme oxygenase 1 (HO-1), a heme degrading enzyme with anti-cytotoxic and anti-inflammatory properties. Recent data show that patients with SCD have a novel subset of patrolling monocytes expressing very high levels of HO-1 (HO-1hi) which are decreased in numbers in patients who had a recent VOC episode. This patrolling monocyte subset was responsible for protection of endothelium against sickle RBC stasis in an experimental model. This raises the possibility that patrolling monocytes may also offer protection against vascular endothelium damage in hyperhemolytic conditions in SCD.
Collapse
Affiliation(s)
- Y Liu
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67(th) Street, NY10065 New York, United States.
| | - H Zhong
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67(th) Street, NY10065 New York, United States
| | - F Vinchi
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67(th) Street, NY10065 New York, United States
| | - A Mendelson
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67(th) Street, NY10065 New York, United States
| | - K Yazdanbakhsh
- Lindsley F. Kimball Research Institute, New York Blood Center, 310 East 67(th) Street, NY10065 New York, United States
| |
Collapse
|
19
|
Vercellotti GM, Dalmasso AP, Schaid TR, Nguyen J, Chen C, Ericson ME, Abdulla F, Killeen T, Lindorfer MA, Taylor RP, Belcher JD. Critical role of C5a in sickle cell disease. Am J Hematol 2019; 94:327-337. [PMID: 30569594 DOI: 10.1002/ajh.25384] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022]
Abstract
Innate immune complement activation may contribute to sickle cell disease (SCD) pathogenesis. Ischemia-reperfusion physiology is a key component of the inflammatory and vaso-occlusive milieu in SCD and is associated with complement activation. C5a is an anaphylatoxin, a potent pro-inflammatory mediator that can activate leukocytes, platelets, and endothelial cells, all of which play a role in vaso-occlusion. We hypothesize that hypoxia-reoxygenation (H/R) in SCD mice activates complement, promoting inflammation and vaso-occlusion. At baseline and after H/R, sickle Townes-SS mice had increased C3 activation fragments and C5b-9 deposition in kidneys, livers and lungs and alternative pathway Bb fragments in plasma compared to control AA-mice. Activated complement promoted vaso-occlusion (microvascular stasis) in SS-mice; infusion of zymosan-activated, but not heat-inactivated serum, induced substantial vaso-occlusion in the skin venules of SS-mice. Infusion of recombinant C5a induced stasis in SS, but not AA-mice that was blocked by anti-C5a receptor (C5aR) IgG. C5a-mediated stasis was accompanied by inflammatory responses in SS-mice including NF-κB activation and increased expression of TLR4 and adhesion molecules VCAM-1, ICAM-1, and E-selectin in the liver. Anti-C5aR IgG blocked these inflammatory responses. Also, C5a rapidly up-regulated Weibel-Palade body P-selectin and von Willebrand factor on the surface of human umbilical vein endothelial cells in vitro and on vascular endothelium in vivo. In SS-mice, a blocking antibody to P-selectin inhibited C5a-induced stasis. Similarly, an antibody to C5 that blocks murine C5 cleavage or an antibody that blocks C5aR inhibited H/R-induced stasis in SS-mice. These results suggest that inhibition of C5a may be beneficial in SCD.
Collapse
Affiliation(s)
- Gregory M. Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | | | - Terry R. Schaid
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Chunsheng Chen
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Marna E. Ericson
- Department of Dermatology; University of Minnesota; Minneapolis Minnesota
| | - Fuad Abdulla
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Trevor Killeen
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| | - Margaret A. Lindorfer
- Department of Biochemistry and Molecular Genetics; University of Virginia School of Medicine; Charlottesville Virginia
| | - Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics; University of Virginia School of Medicine; Charlottesville Virginia
| | - John D. Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation; University of Minnesota; Minneapolis Minnesota
| |
Collapse
|
20
|
Telen MJ, Malik P, Vercellotti GM. Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nat Rev Drug Discov 2019; 18:139-158. [PMID: 30514970 PMCID: PMC6645400 DOI: 10.1038/s41573-018-0003-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over 100 years, clinicians and scientists have been unravelling the consequences of the A to T substitution in the β-globin gene that produces haemoglobin S, which leads to the systemic manifestations of sickle cell disease (SCD), including vaso-occlusion, anaemia, haemolysis, organ injury and pain. However, despite growing understanding of the mechanisms of haemoglobin S polymerization and its effects on red blood cells, only two therapies for SCD - hydroxyurea and L-glutamine - are approved by the US Food and Drug Administration. Moreover, these treatment options do not fully address the manifestations of SCD, which arise from a complex network of interdependent pathophysiological processes. In this article, we review efforts to develop new drugs targeting these processes, including agents that reactivate fetal haemoglobin, anti-sickling agents, anti-adhesion agents, modulators of ischaemia-reperfusion and oxidative stress, agents that counteract free haemoglobin and haem, anti-inflammatory agents, anti-thrombotic agents and anti-platelet agents. We also discuss gene therapy, which holds promise of a cure, although its widespread application is currently limited by technical challenges and the expense of treatment. We thus propose that developing systems-oriented multi-agent strategies on the basis of SCD pathophysiology is needed to improve the quality of life and survival of people with SCD.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA.
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology and the Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Martins R, Carlos AR, Braza F, Thompson JA, Bastos-Amador P, Ramos S, Soares MP. Disease Tolerance as an Inherent Component of Immunity. Annu Rev Immunol 2019; 37:405-437. [PMID: 30673535 DOI: 10.1146/annurev-immunol-042718-041739] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.
Collapse
Affiliation(s)
- Rui Martins
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | | - Faouzi Braza
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | | | | - Susana Ramos
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | |
Collapse
|
22
|
New Therapeutic Options for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2019; 11:e2019002. [PMID: 30671208 PMCID: PMC6328043 DOI: 10.4084/mjhid.2019.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023] Open
Abstract
Sickle cell disease (SCD; ORPHA232; OMIM # 603903) is a chronic and invalidating disorder distributed worldwide, with high morbidity and mortality. Given the disease complexity and the multiplicity of pathophysiological targets, development of new therapeutic options is critical, despite the positive effects of hydroxyurea (HU), for many years the only approved drug for SCD. New therapeutic strategies might be divided into (1) pathophysiology-related novel therapies and (2) innovations in curative therapeutic options such as hematopoietic stem cell transplantation and gene therapy. The pathophysiology related novel therapies are: a) Agents which reduce sickling or prevent sickle red cell dehydration; b) Agents targeting SCD vasculopathy and sickle cell-endothelial adhesive events; c) Anti-oxidant agents. This review highlights new therapeutic strategies in SCD and discusses future developments, research implications, and possible innovative clinical trials.
Collapse
|
23
|
Resolution of sickle cell disease-associated inflammation and tissue damage with 17 R-resolvin D1. Blood 2018; 133:252-265. [PMID: 30404812 DOI: 10.1182/blood-2018-07-865378] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Resolvins (Rvs), endogenous lipid mediators, play a key role in the resolution of inflammation. Sickle cell disease (SCD), a genetic disorder of hemoglobin, is characterized by inflammatory and vaso-occlusive pathologies. We document altered proresolving events following hypoxia/reperfusion in humanized SCD mice. We demonstrate novel protective actions of 17R-resolvin D1 (17R-RvD1; 7S, 8R, 17R-trihydroxy-4Z, 9E, 11E, 13Z, 15E, 19Z-docosahexaenoic acid) in reducing ex vivo human SCD blood leukocyte recruitment by microvascular endothelial cells and in vivo neutrophil adhesion and transmigration. In SCD mice exposed to hypoxia/reoxygenation, oral administration of 17R -RvD1 reduces systemic/local inflammation and vascular dysfunction in lung and kidney. The mechanism of action of 17R-RvD1 involves (1) enhancement of SCD erythrocytes and polymorphonuclear leukocyte efferocytosis, (2) blunting of NF-κB activation, and (3) a reduction in inflammatory cytokines, vascular activation markers, and E-selectin expression. Thus, 17R-RvD1 might represent a new therapeutic strategy for the inflammatory vasculopathy of SCD.
Collapse
|
24
|
Oral carbon monoxide therapy in murine sickle cell disease: Beneficial effects on vaso-occlusion, inflammation and anemia. PLoS One 2018; 13:e0205194. [PMID: 30308028 PMCID: PMC6181332 DOI: 10.1371/journal.pone.0205194] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023] Open
Abstract
Carbon monoxide (CO) at low, non-toxic concentrations has been previously demonstrated to exert anti-inflammatory protection in murine models of sickle cell disease (SCD). However CO delivery by inhalation, CO-hemoglobin infusion or CO-releasing molecules presents problems for daily CO administration. Oral administration of a CO-saturated liquid avoids many of these issues and potentially provides a platform for self-administration to SCD patients. To test if orally-delivered CO could modulate SCD vaso-occlusion and inflammation, a liquid CO formulation (HBI-002) was administered by gavage (10 ml/kg) once-daily to NY1DD and Townes-SS transgenic mouse models of SCD. Baseline CO-hemoglobin (CO-Hb) levels were 1.6% and 1.8% in NY1DD and Townes-SS sickle mice and 0.6% in Townes-AS control mice. CO-Hb levels reached 5.4%, 4.7% and 3.0% within 5 minutes in NY1DD, SS and AS mice respectively after gavage with HBI-002. After ten treatments, each once-daily, hemoglobin levels rose from 5.3g/dL in vehicle-treated Townes-SS mice to 6.3g/dL in HBI-002-treated. Similarly, red blood cell (RBC) counts rose from 2.36 x 106/μL in vehicle-treated SS mice to 2.89 x 106/μL in HBI-002-treated mice. In concordance with these findings, hematocrits rose from 26.3% in vehicle-treated mice to 30.0% in HBI-002-treated mice. Reticulocyte counts were not significantly different between vehicle and HBI-002-treated SS mice implying less hemolysis and not an increase in RBC production. White blood cell counts decreased from 29.1 x 103/μL in vehicle-treated versus 20.3 x 103/μL in HBI-002-treated SS mice. Townes-SS mice treated with HBI-002 had markedly increased Nrf2 and HO-1 expression and decreased NF-κB activation compared to vehicle-treated mice. These anti-inflammatory effects were examined for the ability of HBI-002 (administered orally once-daily for up to 5 days) to inhibit vaso-occlusion induced by hypoxia-reoxygenation. In NY1DD and Townes-SS sickle mice, HBI-002 decreased microvascular stasis in a duration-dependent manner. Collectively, these findings support HBI-002 as a useful anti-inflammatory agent to treat SCD and warrants further development as a therapeutic.
Collapse
|
25
|
Hodge R, Narayanavari SA, Izsvák Z, Ivics Z. Wide Awake and Ready to Move: 20 Years of Non-Viral Therapeutic Genome Engineering with the Sleeping Beauty Transposon System. Hum Gene Ther 2018; 28:842-855. [PMID: 28870121 DOI: 10.1089/hum.2017.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene therapies will only become a widespread tool in the clinical treatment of human diseases with the advent of gene transfer vectors that integrate genetic information stably, safely, effectively, and economically. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. SB may well overcome some of the limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are being used in the majority of ongoing clinical trials. The SB system has achieved a high level of stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, representing crucial steps that may permit its clinical use in the near future. This article reviews the most important aspects of SB as a tool for gene therapy, including aspects of its vectorization and genomic integration. As an illustration, the clinical development of the SB system toward gene therapy of age-related macular degeneration and cancer immunotherapy is highlighted.
Collapse
Affiliation(s)
- Russ Hodge
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Suneel A Narayanavari
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zsuzsanna Izsvák
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zoltán Ivics
- 2 Division of Medical Biotechnology, Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
26
|
Bilan VP, Schneider F, Novelli EM, Kelley EE, Shiva S, Gladwin MT, Jackson EK, Tofovic SP. Experimental intravascular hemolysis induces hemodynamic and pathological pulmonary hypertension: association with accelerated purine metabolism. Pulm Circ 2018; 8:2045894018791557. [PMID: 30003836 PMCID: PMC6080084 DOI: 10.1177/2045894018791557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Pulmonary hypertension (PH) is emerging as a serious complication associated with
hemolytic disorders, and plexiform lesions (PXL) have been reported in patients
with sickle cell disease (SCD). We hypothesized that repetitive hemolysis per se
induces PH and angioproliferative vasculopathy and evaluated a new mechanism for
hemolysis-associated PH (HA-PH) that involves the release of adenosine deaminase
(ADA) and purine nucleoside phosphorylase (PNP) from erythrocytes. In healthy
rats, repetitive administration of hemolyzed autologous blood (HAB) for 10 days
produced reversible pulmonary parenchymal injury and vascular remodeling and PH.
Moreover, the combination of a single dose of Sugen-5416 (SU, 200 mg/kg) and
10-day HAB treatment resulted in severe and progressive obliterative PH and
formation of PXL (Day 26, right ventricular peak systolic pressure (mmHg):
26.1 ± 1.1, 41.5 ± 0.5 and 85.1 ± 5.9 in untreated, HAB treated and SU+HAB
treated rats, respectively). In rats, repetitive administration of HAB increased
plasma ADA activity and reduced urinary adenosine levels. Similarly, SCD
patients had higher plasma ADA and PNP activity and accelerated adenosine,
inosine, and guanosine metabolism than healthy controls. Our study provides
evidence that hemolysis per se leads to the development of angioproliferative
PH. We also report the development of a rat model of HA-PH that closely mimics
pulmonary vasculopathy seen in patients with HA-PH. Finally, this study suggests
that in hemolytic diseases released ADA and PNP may increase the risk of PH,
likely by abolishing the vasoprotective effects of adenosine, inosine and
guanosine. Further characterization of this new rat model of hemolysis-induced
angioproliferative PH and additional studies of the role of purines metabolism
in HA-PH are warranted.
Collapse
Affiliation(s)
- Victor P Bilan
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frank Schneider
- 4 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Enrico M Novelli
- 2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric E Kelley
- 5 Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Sruti Shiva
- 2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,6 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark T Gladwin
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin K Jackson
- 6 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stevan P Tofovic
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Abstract
The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
van Beers EJ, van Wijk R. Oxidative stress in sickle cell disease; more than a DAMP squib. Clin Hemorheol Microcirc 2018; 68:239-250. [PMID: 29614635 DOI: 10.3233/ch-189010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a monogenetic disorder marked by hemolytic anemia and vaso-occlusive complications. The hallmark of SCD is the intracellular polymerization of sickle hemoglobin (HbS) after deoxygenation, and the subsequent characteristic shape change (sickling) of red cells. Vaso-occlusion occurs after endothelial activation, expression of adhesion molecules and subsequent adhesion of leucocytes and sickle erythrocytes to the vascular wall. Here we review how oxidative stress from various sources influences this process. Emerging evidence points towards a dominant mechanism in which innate immune receptors, such as Toll like receptor 4, activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidases to produce reactive oxygen species (ROS) which in turn enables downstream pro-inflammatory signaling and subsequent endothelial activation. By serving as an iron donor for the Fenton reaction, heme radically increases the amount of ROS further, thereby increasing the signal originating from the innate immune receptor and downstream effects of innate immune receptor activation. In SCD this results in the production of pro-inflammatory cytokines, endothelial activation and leucocyte adhesion, and eventually vaso-occlusion. Any intervention to stop this cascade, including Toll like receptor blockade, NADPH oxidase inhibition, ROS reduction, heme scavenging, iron chelation, or anti-adhesion molecule antibodies has been successfully used in pre-clinical studies and holds promise for patients with SCD.
Collapse
Affiliation(s)
- Eduard J van Beers
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
29
|
Belcher JD, Chen C, Nguyen J, Abdulla F, Zhang P, Nguyen H, Nguyen P, Killeen T, Miescher SM, Brinkman N, Nath KA, Steer CJ, Vercellotti GM. Haptoglobin and hemopexin inhibit vaso-occlusion and inflammation in murine sickle cell disease: Role of heme oxygenase-1 induction. PLoS One 2018; 13:e0196455. [PMID: 29694434 PMCID: PMC5919001 DOI: 10.1371/journal.pone.0196455] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/15/2018] [Indexed: 01/29/2023] Open
Abstract
During hemolysis, hemoglobin and heme released from red blood cells promote oxidative stress, inflammation and thrombosis. Plasma haptoglobin and hemopexin scavenge free hemoglobin and heme, respectively, but can be depleted in hemolytic states. Haptoglobin and hemopexin supplementation protect tissues, including the vasculature, liver and kidneys. It is widely assumed that these protective effects are due primarily to hemoglobin and heme clearance from the vasculature. However, this simple assumption does not account for the consequent cytoprotective adaptation seen in cells and organs. To further address the mechanism, we used a hyperhemolytic murine model (Townes-SS) of sickle cell disease to examine cellular responses to haptoglobin and hemopexin supplementation. A single infusion of haptoglobin or hemopexin (± equimolar hemoglobin) in SS-mice increased heme oxygenase-1 (HO-1) in the liver, kidney and skin several fold within 1 hour and decreased nuclear NF-ĸB phospho-p65, and vaso-occlusion for 48 hours after infusion. Plasma hemoglobin and heme levels were not significantly changed 1 hour after infusion of haptoglobin or hemopexin. Haptoglobin and hemopexin also inhibited hypoxia/reoxygenation and lipopolysaccharide-induced vaso-occlusion in SS-mice. Inhibition of HO-1 activity with tin protoporphyrin blocked the protections afforded by haptoglobin and hemopexin in SS-mice. The HO-1 reaction product carbon monoxide, fully restored the protection, in part by inhibiting Weibel-Palade body mobilization of P-selectin and von Willebrand factor to endothelial cell surfaces. Thus, the mechanism by which haptoglobin and hemopexin supplementation in hyperhemolytic SS-mice induces cytoprotective cellular responses is linked to increased HO-1 activity.
Collapse
Affiliation(s)
- John D. Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Chunsheng Chen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fuad Abdulla
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ping Zhang
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hao Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Phong Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Trevor Killeen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Nathan Brinkman
- CSL Behring, Research & Development, Kankakee, Illinois, United States of America
| | - Karl A. Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Clifford J. Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gregory M. Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
30
|
Translational Advances of Hydrofection by Hydrodynamic Injection. Genes (Basel) 2018; 9:genes9030136. [PMID: 29494564 PMCID: PMC5867857 DOI: 10.3390/genes9030136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Hydrodynamic gene delivery has proven to be a safe and efficient procedure for gene transfer, able to mediate, in murine model, therapeutic levels of proteins encoded by the transfected gene. In different disease models and targeting distinct organs, it has been demonstrated to revert the pathologic symptoms and signs. The therapeutic potential of hydrofection led different groups to work on the clinical translation of the procedure. In order to prevent the hemodynamic side effects derived from the rapid injection of a large volume, the conditions had to be moderated to make them compatible with its use in mid-size animal models such as rat, hamster and rabbit and large animals as dog, pig and primates. Despite the different approaches performed to adapt the conditions of gene delivery, the results obtained in any of these mid-size and large animals have been poorer than those obtained in murine model. Among these different strategies to reduce the volume employed, the most effective one has been to exclude the vasculature of the target organ and inject the solution directly. This procedure has permitted, by catheterization and surgical procedures in large animals, achieving protein expression levels in tissue close to those achieved in gold standard models. These promising results and the possibility of employing these strategies to transfer gene constructs able to edit genes, such as CRISPR, have renewed the clinical interest of this procedure of gene transfer. In order to translate the hydrodynamic gene delivery to human use, it is demanding the standardization of the procedure conditions and the molecular parameters of evaluation in order to be able to compare the results and establish a homogeneous manner of expressing the data obtained, as ‘classic’ drugs.
Collapse
|
31
|
Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death Differ 2017; 25:573-588. [PMID: 29229999 PMCID: PMC5864215 DOI: 10.1038/s41418-017-0001-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022] Open
Abstract
Heme is required for cell respiration and survival. Nevertheless, its intracellular levels need to be finely regulated to avoid heme excess, which may catalyze the production of reactive oxygen species (ROS) and promote cell death. Here, we show that alteration of heme homeostasis in endothelial cells due to the loss of the heme exporter FLVCR1a, results in impaired angiogenesis. In vitro, FLVCR1a silencing in endothelial cells causes defective tubulogenesis and poor viability due to intracellular heme accumulation. Consistently, endothelial-specific Flvcr1a knockout mice show aberrant angiogenesis responsible for hemorrhages and embryonic lethality. Importantly, we demonstrate that impaired heme export leads to endothelial cell death by paraptosis and provide evidence that endoplasmic reticulum (ER) stress precedes heme-induced paraptosis. These findings highlight a crucial role for the cytosolic heme pool in the control of endothelial cell survival and in the regulation of the angiogenic process. Interfering with endothelial heme export represents a valuable model for a deeper understanding of the molecular mechanisms underlying heme-triggered paraptosis and, in the future, might provide a novel tool for the modulation of angiogenesis in pathophysiologic conditions.
Collapse
|
32
|
Preclinical and clinical advances in transposon-based gene therapy. Biosci Rep 2017; 37:BSR20160614. [PMID: 29089466 PMCID: PMC5715130 DOI: 10.1042/bsr20160614] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
Transposons derived from Sleeping Beauty (SB), piggyBac (PB), or Tol2 typically require cotransfection of transposon DNA with a transposase either as an expression plasmid or mRNA. Consequently, this results in genomic integration of the potentially therapeutic gene into chromosomes of the desired target cells, and thus conferring stable expression. Non-viral transfection methods are typically preferred to deliver the transposon components into the target cells. However, these methods do not match the efficacy typically attained with viral vectors and are sometimes associated with cellular toxicity evoked by the DNA itself. In recent years, the overall transposition efficacy has gradually increased by codon optimization of the transposase, generation of hyperactive transposases, and/or introduction of specific mutations in the transposon terminal repeats. Their versatility enabled the stable genetic engineering in many different primary cell types, including stem/progenitor cells and differentiated cell types. This prompted numerous preclinical proof-of-concept studies in disease models that demonstrated the potential of DNA transposons for ex vivo and in vivo gene therapy. One of the merits of transposon systems relates to their ability to deliver relatively large therapeutic transgenes that cannot readily be accommodated in viral vectors such as full-length dystrophin cDNA. These emerging insights paved the way toward the first transposon-based phase I/II clinical trials to treat hematologic cancer and other diseases. Though encouraging results were obtained, controlled pivotal clinical trials are needed to corroborate the efficacy and safety of transposon-based therapies.
Collapse
|
33
|
Tipanee J, VandenDriessche T, Chuah MK. Transposons: Moving Forward from Preclinical Studies to Clinical Trials. Hum Gene Ther 2017; 28:1087-1104. [DOI: 10.1089/hum.2017.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Kebriaei P, Izsvák Z, Narayanavari SA, Singh H, Ivics Z. Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet 2017; 33:852-870. [PMID: 28964527 DOI: 10.1016/j.tig.2017.08.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suneel A Narayanavari
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Harjeet Singh
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
35
|
Gomperts E, Belcher JD, Otterbein LE, Coates TD, Wood J, Skolnick BE, Levy H, Vercellotti GM. The role of carbon monoxide and heme oxygenase in the prevention of sickle cell disease vaso-occlusive crises. Am J Hematol 2017; 92:569-582. [PMID: 28378932 PMCID: PMC5723421 DOI: 10.1002/ajh.24750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022]
Abstract
Sickle Cell Disease (SCD) is a painful, lifelong hemoglobinopathy inherited as a missense point mutation in the hemoglobin (Hb) beta-globin gene. This disease has significant impact on quality of life and mortality, thus a substantial medical need exists to reduce the vaso-occlusive crises which underlie the pathophysiology of the disease. The concept that a gaseous molecule may exert biological function has been well known for over one hundred years. Carbon monoxide (CO), although studied in SCD for over 50 years, has recently emerged as a powerful cytoprotective biological response modifier capable of regulating a host of physiologic and therapeutic processes that, at low concentrations, exerts key physiological functions in various models of tissue inflammation and injury. CO is physiologically generated by the metabolism of heme by the heme oxygenase enzymes and is measurable in blood. A substantial amount of preclinical and clinical data with CO have been generated, which provide compelling support for CO as a potential therapeutic in a number of pathological conditions. Data underlying the therapeutic mechanisms of CO, including in SCD, have been generated by a plethora of in vitro and preclinical studies including multiple SCD mouse models. These data show CO to have key signaling impacts on a host of metallo-enzymes as well as key modulating genes that in sum, result in significant anti-inflammatory, anti-oxidant and anti-apoptotic effects as well as vasodilation and anti-adhesion of cells to the endothelium resulting in preservation of vascular flow. CO may also have a role as an anti-polymerization HbS agent. In addition, considerable scientific data in the non-SCD literature provide evidence for a beneficial impact of CO on cerebrovascular complications, suggesting that in SCD, CO could potentially limit these highly problematic neurologic outcomes. Research is needed and hopefully forthcoming, to carefully elucidate the safety and benefits of this potential therapy across the age spectrum of patients impacted by the host of pathophysiological complications of this devastating disease.
Collapse
Affiliation(s)
- Edward Gomperts
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - John D Belcher
- University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN, 55455, USA
| | - Leo E Otterbein
- Harvard Medical School; Beth Israel Deaconess Medical Center, 3 Blackfan Circle Center for Life Sciences, #630, Boston, MA, 02115, USA
| | - Thomas D Coates
- Children's Hospital Los Angeles; University of Southern California, 4650 Sunset Boulevard MS #54 Los Angeles, CA, 90027, USA
| | - John Wood
- Children's Hospital Los Angeles; University of Southern California, 4650 Sunset Boulevard MS #54 Los Angeles, CA, 90027, USA
| | - Brett E Skolnick
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - Howard Levy
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - Gregory M Vercellotti
- University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN, 55455, USA
| |
Collapse
|
36
|
Belcher JD, Chen C, Nguyen J, Zhang P, Abdulla F, Nguyen P, Killeen T, Xu P, O'Sullivan G, Nath KA, Vercellotti GM. Control of Oxidative Stress and Inflammation in Sickle Cell Disease with the Nrf2 Activator Dimethyl Fumarate. Antioxid Redox Signal 2017; 26:748-762. [PMID: 26914345 PMCID: PMC5421647 DOI: 10.1089/ars.2015.6571] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Heme derived from hemolysis is pro-oxidative and proinflammatory and promotes vaso-occlusion in murine models of sickle cell disease (SCD), suggesting that enhanced detoxification of heme may be beneficial. Nuclear factor erythroid-2-related factor-2 (Nrf2) transcription pathway is the principal cellular defense system responding to pro-oxidative and proinflammatory stress. Dimethyl fumarate (DMF), a drug approved for treatment of multiple sclerosis, provides neuroprotection by activating Nrf2-responsive genes. We hypothesized that induction of Nrf2 with DMF would be beneficial in murine SCD models. RESULTS DMF (30 mg/kg/day) or vehicle (0.08% methyl cellulose) was administered for 3-7 days to NY1DD and HbSS-Townes SCD mice. Vaso-occlusion, a hallmark of SCD, measured in sickle mice with dorsal skinfold chambers, was inhibited by DMF. The inhibitory effect of DMF was abrogated by the heme oxygenase-1 (HO-1) inhibitor tin protoporphyrin. DMF increased nuclear Nrf2 and cellular mRNA of Nrf2-responsive genes in livers and kidneys. DMF increased heme defenses, including HO-1, haptoglobin, hemopexin, and ferritin heavy chain, although plasma hemoglobin and heme levels were unchanged. DMF decreased markers of inflammation, including nuclear factor-kappa B phospho-p65, adhesion molecules, and toll-like receptor 4. DMF administered for 24 weeks to HbSS-Townes mice decreased hepatic necrosis, inflammatory cytokines, and irregularly shaped erythrocytes and increased hemoglobin F, but did not alter hematocrits, reticulocyte counts, lactate dehydrogenase, plasma heme, or spleen weights, indicating that the beneficial effects of DMF were not attributable to decreased hemolysis. INNOVATION These studies identify Nrf2 activation as a new therapeutic target for the treatment of SCD. CONCLUSION DMF activates Nrf2, enhances antioxidant defenses, and inhibits inflammation and vaso-occlusion in SCD mice. Antioxid. Redox Signal. 26, 748-762.
Collapse
Affiliation(s)
- John D Belcher
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Chunsheng Chen
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Julia Nguyen
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Ping Zhang
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Fuad Abdulla
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Phong Nguyen
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Trevor Killeen
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Pauline Xu
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Gerry O'Sullivan
- 2 Veterinary Population Medicine, University of Minnesota , St. Paul, Minnesota
| | - Karl A Nath
- 3 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic/Foundation , Rochester, Minnesota
| | - Gregory M Vercellotti
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
37
|
Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 2017; 52:355-380. [PMID: 28402189 DOI: 10.1080/10409238.2017.1304354] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB's genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- a Medizinische Klinik und Poliklinik II , Universitätsklinikum Würzburg , Würzburg , Germany
| | - Zsuzsanna Izsvák
- b Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Sandra Johnen
- c Department of Ophthalmology , University Hospital RWTH Aachen , Aachen , Germany
| | - Matthias Renner
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| | - Gabriele Thumann
- e Département des Neurosciences Cliniques Service d'Ophthalmologie , Hôpitaux Universitaires de Genève , Genève , Switzerland
| | - Zoltán Ivics
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
38
|
Immenschuh S, Vijayan V, Janciauskiene S, Gueler F. Heme as a Target for Therapeutic Interventions. Front Pharmacol 2017; 8:146. [PMID: 28420988 PMCID: PMC5378770 DOI: 10.3389/fphar.2017.00146] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 12/30/2022] Open
Abstract
Heme is a complex of iron and the tetrapyrrole protoporphyrin IX with essential functions in aerobic organisms. Heme is the prosthetic group of hemoproteins such as hemoglobin and myoglobin, which are crucial for reversible oxygen binding and transport. By contrast, high levels of free heme, which may occur in various pathophysiological conditions, are toxic via pro-oxidant, pro-inflammatory and cytotoxic effects. The toxicity of heme plays a major role for the pathogenesis of prototypical hemolytic disorders including sickle cell disease and malaria. Moreover, there is increasing appreciation that detrimental effects of heme may also be critically involved in diseases, which usually are not associated with hemolysis such as severe sepsis and atherosclerosis. In mammalians homeostasis of heme and its potential toxicity are primarily controlled by two physiological systems. First, the scavenger protein hemopexin (Hx) non-covalently binds extracellular free heme with high affinity and attenuates toxicity of heme in plasma. Second, heme oxygenases (HOs), in particular the inducible HO isozyme, HO-1, can provide antioxidant cytoprotection via enzymatic degradation of intracellular heme. This review summarizes current knowledge on the pathophysiological role of heme for various diseases as demonstrated in experimental animal models and in humans. The functional significance of Hx and HOs for the regulation of heme homeostasis is highlighted. Finally, the therapeutic potential of pharmacological strategies that apply Hx and HO-1 in various clinical settings is discussed.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | | | - Faikah Gueler
- Department of Nephrology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
39
|
Yue SJ, Xin LT, Fan YC, Li SJ, Tang YP, Duan JA, Guan HS, Wang CY. Herb pair Danggui-Honghua: mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep 2017; 7:40318. [PMID: 28074863 PMCID: PMC5225497 DOI: 10.1038/srep40318] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Herb pair Danggui-Honghua has been frequently used for treatment of blood stasis syndrome (BSS) in China, one of the most common clinical pathological syndromes in traditional Chinese medicine (TCM). However, its therapeutic mechanism has not been clearly elucidated. In the present study, a feasible system pharmacology model based on chemical, pharmacokinetic and pharmacological data was developed via network construction approach to clarify the mechanisms of this herb pair. Thirty-one active ingredients of Danggui-Honghua possessing favorable pharmacokinetic profiles and biological activities were selected, interacting with 42 BSS-related targets to provide potential synergistic therapeutic actions. Systematic analysis of the constructed networks revealed that these targets such as HMOX1, NOS2, NOS3, HIF1A and PTGS2 were mainly involved in TNF signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway and neurotrophin signaling pathway. The contribution index of every active ingredient also indicated six compounds, including hydroxysafflor yellow A, safflor yellow A, safflor yellow B, Z-ligustilide, ferulic acid, and Z-butylidenephthalide, as the principal components of this herb pair. These results successfully explained the polypharmcological mechanisms underlying the efficiency of Danggui-Honghua for BSS treatment, and also probed into the potential novel therapeutic strategies for BSS in TCM.
Collapse
Affiliation(s)
- Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Lan-Ting Xin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Ya-Chu Fan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Shu-Jiao Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu-Ping Tang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| |
Collapse
|
40
|
|
41
|
Drasar E, Fitzpatrick E, Gardner K, Awogbade M, Dhawan A, Bomford A, Suddle A, Thein SL. Interim assessment of liver damage in patients with sickle cell disease using new non-invasive techniques. Br J Haematol 2016; 176:643-650. [PMID: 27984631 DOI: 10.1111/bjh.14462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/09/2016] [Indexed: 12/15/2022]
Abstract
We explored transient elastography (TE) and enhanced liver fibrosis (ELF™ ) score with standard markers of liver function to assess liver damage in 193 well patients with sickle cell disease (SCD). Patients with HbSS or HbSβ0 thalassaemia (sickle cell anaemia, SCA; N = 134), had significantly higher TE results and ELF scores than those with HbSC (N = 49) disease (TE, 6·8 vs. 5·3, P < 0·0001 and ELF, 9·2 vs. 8·6 P < 0·0001). In SCA patients, TE and ELF correlated significantly with age and all serum liver function tests (LFTs). Additionally, (weak) positive correlation was found with lactate dehydrogenase (TE: r = 0·24, P = 0·004; ELF: r = 0·26 P = 0·002), and (weak) negative correlation with haemoglobin (TE: r = -0·25, P = 0·002; ELF: r = -0·25 P = 0·004). In HbSC patients, correlations were weaker or not significant between TE or ELF, and serum LFTs. All markers of iron loading correlated with TE values when corrected for sickle genotype (serum ferritin, β = 0·25, P < 0·0001, total blood transfusion units, β = 0·25, P < 0·0001 and LIC β = 0·32, P = 0·046). The exploratory study suggests that, while TE could have a role, the utility of ELF score in monitoring liver damage in SCD, needs further longitudinal studies.
Collapse
Affiliation(s)
- Emma Drasar
- Faculty of Life Sciences & Medicine, Molecular Haematology, King's College London, London, UK.,Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Emer Fitzpatrick
- Department of Paediatric Hepatology, King's College Hospital, London, UK
| | - Kate Gardner
- Faculty of Life Sciences & Medicine, Molecular Haematology, King's College London, London, UK.,Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Moji Awogbade
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Anil Dhawan
- Department of Paediatric Hepatology, King's College Hospital, London, UK
| | - Adrian Bomford
- Institute of Hepatology, King's College Hospital, London, UK
| | - Abid Suddle
- Institute of Hepatology, King's College Hospital, London, UK
| | - Swee L Thein
- Faculty of Life Sciences & Medicine, Molecular Haematology, King's College London, London, UK.,Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
42
|
Liu J, Shui SL. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J Control Release 2016; 244:83-97. [PMID: 27865852 DOI: 10.1016/j.jconrel.2016.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
43
|
Wagener FADTG, Immenschuh S. Editorial: Molecular Mechanisms Protecting against Tissue Injury. Front Pharmacol 2016; 7:272. [PMID: 27621704 PMCID: PMC5002404 DOI: 10.3389/fphar.2016.00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center Nijmegen, Netherlands
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School Hannover, Germany
| |
Collapse
|
44
|
Shi PA, Choi E, Chintagari NR, Nguyen J, Guo X, Yazdanbakhsh K, Mohandas N, Alayash AI, Manci EA, Belcher JD, Vercellotti GM. Sustained treatment of sickle cell mice with haptoglobin increases HO-1 and H-ferritin expression and decreases iron deposition in the kidney without improvement in kidney function. Br J Haematol 2016; 175:714-723. [PMID: 27507623 DOI: 10.1111/bjh.14280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
Abstract
There is growing evidence that extracellular haemoglobin and haem mediate inflammatory and oxidative damage in sickle cell disease. Haptoglobin (Hp), the scavenger for free haemoglobin, is depleted in most patients with sickle cell disease due to chronic haemolysis. Although single infusions of Hp can ameliorate vaso-occlusion in mouse models of sickle cell disease, prior studies have not examined the therapeutic benefits of more chronic Hp dosing on sickle cell disease manifestations. In the present study, we explored the effect of Hp treatment over a 3-month period in sickle mice at two dosing regimens: the first at a moderate dose of 200 mg/kg thrice weekly and the second at a higher dose of 400 mg/kg thrice weekly. We found that only the higher dosing regimen resulted in increased haem-oxygenase-1 and heavy chain ferritin (H-ferritin) expression and decreased iron deposition in the kidney. Despite the decreased kidney iron deposition following Hp treatment, there was no significant improvement in kidney function. However, there was a nearly significant trend towards decreased liver infarction.
Collapse
Affiliation(s)
- Patricia A Shi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Erika Choi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | | | - Julia Nguyen
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xinhua Guo
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Karina Yazdanbakhsh
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Narla Mohandas
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Abdu I Alayash
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Elizabeth A Manci
- Department of Pathology, University of South Alabama School of Medicine, Birmingham, AL, USA
| | - John D Belcher
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Gregory M Vercellotti
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
45
|
Vercellotti GM, Zhang P, Nguyen J, Abdulla F, Chen C, Nguyen P, Nowotny C, Steer CJ, Smith A, Belcher JD. Hepatic Overexpression of Hemopexin Inhibits Inflammation and Vascular Stasis in Murine Models of Sickle Cell Disease. Mol Med 2016; 22:437-451. [PMID: 27451971 DOI: 10.2119/molmed.2016.00063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/11/2016] [Indexed: 02/02/2023] Open
Abstract
Sickle cell disease (SCD) patients have low serum hemopexin (Hpx) levels due to chronic hemolysis. We hypothesize that in SCD mice, hepatic overexpression of hemopexin will scavenge the proximal mediator of vascular activation, heme, and will inhibit inflammation and microvascular stasis. To examine the protective role of Hpx in SCD, we transplanted bone marrow from NY1DD SCD mice into Hpx™/™ or Hpx+/+ C57BL/6 mice. Dorsal skin fold chambers were implanted in week 13 post-transplant and microvascular stasis (% non-flowing venules) evaluated in response to heme infusion. Hpx™/™ sickle mice had significantly greater microvascular stasis in response to heme infusion than Hpx+/+ sickle mice (p<0.05), demonstrating the protective effect of Hpx in SCD. We utilized Sleeping Beauty (SB) transposon-mediated gene transfer to overexpress wild-type rat Hpx (wt-Hpx) in NY1DD and Townes-SS SCD mice. Control SCD mice were treated with lactated Ringer's solution (LRS) or a luciferase (Luc) plasmid. Plasma and hepatic Hpx were significantly increased compared to LRS and Luc controls. Microvascular stasis in response to heme infusion in NY1DD and Townes-SS mice overexpressing wt-Hpx had significantly less stasis than controls (p<0.05). Wt-Hpx overexpression markedly increased hepatic nuclear Nrf2 expression, HO-1 activity and protein, the heme-Hpx binding protein and scavenger receptor, CD91/LRP1 and decreased NF-κB activation. Two missense (ms)-Hpx SB-constructs that bound neither heme nor the Hpx receptor, CD91/LRP1, did not prevent heme-induced stasis. In conclusion, increasing Hpx levels in transgenic sickle mice via gene transfer activates the Nrf2/HO-1 anti-oxidant axis and ameliorates inflammation and vaso-occlusion.
Collapse
Affiliation(s)
- Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ping Zhang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Fuad Abdulla
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Phong Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Carlos Nowotny
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clifford J Steer
- Division of Gastroenterology, Department of Medicine, and Department of Genetics, Cell Biology and Development, 420 Delaware St SE, MMC 36, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ann Smith
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John D Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
46
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
47
|
Aravalli RN, Belcher JD, Steer CJ. Liver-targeted gene therapy: Approaches and challenges. Liver Transpl 2015; 21:718-37. [PMID: 25824605 PMCID: PMC9353592 DOI: 10.1002/lt.24122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/06/2015] [Accepted: 03/14/2015] [Indexed: 12/15/2022]
Abstract
The liver plays a major role in many inherited and acquired genetic disorders. It is also the site for the treatment of certain inborn errors of metabolism that do not directly cause injury to the liver. The advancement of nucleic acid-based therapies for liver maladies has been severely limited because of the myriad untoward side effects and methodological limitations. To address these issues, research efforts in recent years have been intensified toward the development of targeted gene approaches using novel genetic tools, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats as well as various nonviral vectors such as Sleeping Beauty transposons, PiggyBac transposons, and PhiC31 integrase. Although each of these methods uses a distinct mechanism of gene modification, all of them are dependent on the efficient delivery of DNA and RNA molecules into the cell. This review provides an overview of current and emerging therapeutic strategies for liver-targeted gene therapy and gene repair.
Collapse
Affiliation(s)
- Rajagopal N. Aravalli
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 54455
| | - John D. Belcher
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 54455
| | - Clifford J. Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 54455,Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 54455
| |
Collapse
|
48
|
Chen-Roetling J, Song W, Schipper HM, Regan CS, Regan RF. Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage. Stroke 2015; 46:1093-8. [PMID: 25690543 DOI: 10.1161/strokeaha.115.008686] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Heme oxygenase-1 (HO-1) catalyzes the rate-limiting reaction of heme breakdown and may have both antioxidant and pro-oxidant effects. In previous studies, HO-1 overexpression protected astrocytes from heme-mediated injury in vitro. In the present study, we tested the hypothesis that selective astrocyte overexpression of HO-1 improves outcome after intracerebral hemorrhage. METHODS Male and female transgenic mice overexpressing human HO-1 driven by the GFAP promoter (GFAP.HMOX1) and wild-type controls received striatal injections of autologous blood (25 μL). Blood-brain barrier disruption was assessed by Evans blue assay and striatal cell viability by methylthiazolyldiphenyl-tetrazolium bromide assay. Neurological deficits were quantified by digital analysis of spontaneous cage activity, adhesive removal, and elevated body swing tests. RESULTS Mortality rate for wild-type mice was 34.8% and was similar for males and females; all GFAP.HMOX1 mice survived. Striatal Evans blue leakage at 24 hours was 23.4±3.2 ng in surviving wild-type mice, compared with 10.9±1.8 ng in transgenics. Perihematomal cell viability was reduced to 61±4% of contralateral at 3 days in wild-type mice, versus 80±4% in transgenics. Focal neurological deficits were significantly reduced and spontaneous cage activity was increased in GFAP.HMOX1 mice. CONCLUSIONS Selective HO-1 overexpression in astrocytes reduces mortality, blood-brain barrier disruption, perihematomal cell injury, and neurological deficits in an autologous blood injection intracerebral hemorrhage model. Genetic or pharmacological therapies that acutely increase astrocyte HO-1 may be beneficial after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.)
| | - Wei Song
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.)
| | - Hyman M Schipper
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.)
| | - Christopher S Regan
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.)
| | - Raymond F Regan
- From the Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (J.C.-R., C.S.R., R.F.R.); and Lady Davis Institute, Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (W.S., H.M.S.).
| |
Collapse
|
49
|
Hebbel RP. Ischemia-reperfusion injury in sickle cell anemia: relationship to acute chest syndrome, endothelial dysfunction, arterial vasculopathy, and inflammatory pain. Hematol Oncol Clin North Am 2014; 28:181-98. [PMID: 24589261 DOI: 10.1016/j.hoc.2013.11.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ischemia-reperfusion (I/R) physiology, also called reperfusion injury, instigates vascular and tissue injury in human disease states. This review describes why sickle cell anemia should be conceptualized in this fashion and how I/R physiology explains the genesis of characteristic aspects of vascular pathobiology and clinical disease in sickle cell anemia. The nature of I/R and its relevance to sickle cell anemia are discussed, with an emphasis on the acute chest syndrome, endothelial dysfunction with aberrant vasoregulation, circle of Willis vasculopathy, and inflammatory pain. Viewing sickle disease from this perspective elucidates defining pathophysiology and identifies a host of novel potential therapeutic targets.
Collapse
Affiliation(s)
- Robert P Hebbel
- Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota Medical School, 420 Delaware Street South East, Mayo Mail Code 480, Minneapolis, MN 55455, USA.
| |
Collapse
|
50
|
|