1
|
Ebrahimi M, Ahmadieh H, Rezaei Kanavi M, Safi S, Alipour-Parsa S, Advani S, Sorenson CM, Sheibani N. Shared signaling pathways and comprehensive therapeutic approaches among diabetes complications. Front Med (Lausanne) 2025; 11:1497750. [PMID: 39845838 PMCID: PMC11750824 DOI: 10.3389/fmed.2024.1497750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
The growing global prevalence of diabetes mellitus (DM), along with its associated complications, continues to rise. When clinically detected most DM complications are irreversible. It is therefore crucial to detect and address these complications early and systematically in order to improve patient care and outcomes. The current clinical practice often prioritizes DM complications by addressing one complication while overlooking others that could occur. It is proposed that the commonly targeted cell types including vascular cells, immune cells, glial cells, and fibroblasts that mediate DM complications, might share early responses to diabetes. In addition, the impact of one complication could be influenced by other complications. Recognizing and focusing on the shared early responses among DM complications, and the impacted cellular constituents, will allow to simultaneously address all DM-related complications and limit adverse treatment impacts. This review explores the current understanding of shared pathological signaling mechanisms among DM complications and recognizes new concepts that will benefit from further investigation in both basic and clinical settings. The ultimate goal is to develop more comprehensive treatment strategies, which effectively impact DM complications in multiple organs and improve patient care and outcomes.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sare Safi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Alipour-Parsa
- Cardiovascular Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroor Advani
- Neurology Department, Shohada Tajrish Hospital, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
2
|
Ge W, Zhang X, Lin J, Wang Y, Zhang X, Duan Y, Dai X, Zhang J, Zhang Y, Jiang M, Qiang H, Zhao Z, Zhang X, Sun D. Rnd3 protects against doxorubicin-induced cardiotoxicity through inhibition of PANoptosis in a Rock1/Drp1/mitochondrial fission-dependent manner. Cell Death Dis 2025; 16:2. [PMID: 39755713 DOI: 10.1038/s41419-024-07322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics. This study aimed to investigate the impact of Rnd3 (a Rho family GTPase 3) on DIC, with a focus on mitochondrial dynamics. Cardiomyocyte-specific Rnd3 transgenic mice (Rnd3-Tg) and Rnd3LSP/LSP mice (N-Tg) were established for in vivo experiments, and adenoviruses harboring Rnd3 (Ad-Rnd3) or negative control (Ad-Control) were injected in the myocardium for in vitro experiments. The DIC model was established using wild-type, N-Tg, and Rnd3-Tg mice, with subsequent intraperitoneal injection of Dox for 4 weeks. The molecular mechanism was explored through RNA sequencing, immunofluorescence staining, co-immunoprecipitation assay, and protein-protein docking. Dox administration induced significant mitochondrial injury and cardiac dysfunction, which was ameliorated by Rnd3 overexpression. Further, the augmentation of Rnd3 expression mitigated mitochondrial fragmentation which is mediated by dynamin-related protein 1 (Drp1), thereby ameliorating the PANoptosis (pyroptosis, apoptosis, and necroptosis) response induced by Dox. Mechanically, the interaction between Rnd3 and Rho-associated kinase 1 (Rock1) may impede Rock1-induced Drp1 phosphorylation at Ser616, thus inhibiting mitochondrial fission and dysfunction. Interestingly, Rock1 knockdown nullified the effects of Rnd3 on cardiomyocytes PANoptosis, as well as Dox-induced cardiac remodeling and dysfunction elicited by Rnd3. Rnd3 enhances cardiac resilience against DIC by stabilizing mitochondrial dynamics and reducing PANoptosis. Our findings suggest that the Rnd3/Rock1/Drp1 signaling pathway represents a novel target for mitigating DIC, and modulating Rnd3 expression could be a strategic approach to safeguarding cardiac function in patients undergoing Dox treatment. The graphical abstract illustrated the cardioprotective role of Rnd3 in DIC. Rnd3 directly binds to Rock1 in cytoplasm and ameliorates mitochondrial fission by inhibiting Drp1 phosphorylation at ser616, thereby alleviating PANoptosis (apoptosis, pyroptosis, and necroptosis) in DIC.
Collapse
Affiliation(s)
- Wen Ge
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohua Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangyang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Qiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Iwanski JB, Pappas CT, Mayfield RM, Farman GP, Ahrens-Nicklas R, Churko JM, Gregorio CC. Leiomodin 2 neonatal dilated cardiomyopathy mutation results in altered actin gene signatures and cardiomyocyte dysfunction. NPJ Regen Med 2024; 9:21. [PMID: 39285234 PMCID: PMC11405699 DOI: 10.1038/s41536-024-00366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Neonatal dilated cardiomyopathy (DCM) is a poorly understood muscular disease of the heart. Several homozygous biallelic variants in LMOD2, the gene encoding the actin-binding protein Leiomodin 2, have been identified to result in severe DCM. Collectively, LMOD2-related cardiomyopathies present with cardiac dilation and decreased heart contractility, often resulting in neonatal death. Thus, it is evident that Lmod2 is essential to normal human cardiac muscle function. This study aimed to understand the underlying pathophysiology and signaling pathways related to the first reported LMOD2 variant (c.1193 G > A, p.Trp398*). Using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model harboring the homologous mutation to the patient, we discovered dysregulated actin-thin filament lengths, altered contractility and calcium handling properties, as well as alterations in the serum response factor (SRF)-dependent signaling pathway. These findings reveal that LMOD2 may be regulating SRF activity in an actin-dependent manner and provide a potential new strategy for the development of biologically active molecules to target LMOD2-related cardiomyopathies.
Collapse
Grants
- R01HL123078 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL128906 NHLBI NIH HHS
- R01 HL164644 NHLBI NIH HHS
- R01 GM120137 NIGMS NIH HHS
- F30HL151139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32HL007249 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 HL007249 NHLBI NIH HHS
- R01 HL123078 NHLBI NIH HHS
- R01HL164644 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30 HL151139 NHLBI NIH HHS
- R01GM120137 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Jessika B Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rachel M Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rebecca Ahrens-Nicklas
- Department of Pediatrics and Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jared M Churko
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Miyamoto S. Untangling the role of RhoA in the heart: protective effect and mechanism. Cell Death Dis 2024; 15:579. [PMID: 39122698 PMCID: PMC11315981 DOI: 10.1038/s41419-024-06928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
RhoA (ras homolog family member A) is a small G-protein that transduces intracellular signaling to regulate a broad range of cellular functions such as cell growth, proliferation, migration, and survival. RhoA serves as a proximal downstream effector of numerous G protein-coupled receptors (GPCRs) and is also responsive to various stresses in the heart. Upon its activation, RhoA engages multiple downstream signaling pathways. Rho-associated coiled-coil-containing protein kinase (ROCK) is the first discovered and best characterized effector or RhoA, playing a major role in cytoskeletal arrangement. Many other RhoA effectors have been identified, including myocardin-related transcription factor A (MRTF-A), Yes-associated Protein (YAP) and phospholipase Cε (PLCε) to regulate transcriptional and post-transcriptional processes. The role of RhoA signaling in the heart has been increasingly studied in last decades. It was initially suggested that RhoA signaling pathway is maladaptive in the heart, but more recent studies using cardiac-specific expression or deletion of RhoA have revealed that RhoA activation provides cardioprotection against stress through various mechanisms including the novel role of RhoA in mitochondrial quality control. This review summarizes recent advances in understanding the role of RhoA in the heart and its signaling pathways to prevent progression of heart disease.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
5
|
López-Hidalgo R, Ballestín R, Lorenzo L, Sánchez-Martí S, Blasco-Ibáñez JM, Crespo C, Nacher J, Varea E. Early chronic fasudil treatment rescues hippocampal alterations in the Ts65Dn model for down syndrome. Neurochem Int 2024; 174:105679. [PMID: 38309665 DOI: 10.1016/j.neuint.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.
Collapse
Affiliation(s)
- Rosa López-Hidalgo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Raúl Ballestín
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Lorena Lorenzo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Sandra Sánchez-Martí
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - José Miguel Blasco-Ibáñez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain; CIBERSAM, Spanish National Network for Research in Mental Health, Madrid, Spain; Institute of research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain
| | - Emilio Varea
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain.
| |
Collapse
|
6
|
Ren AJ, Wei C, Liu YJ, Liu M, Wang P, Fan J, Wang K, Zhang S, Qin Z, Ren QX, Zheng Y, Chen YX, Xie Z, Gao L, Zhu Y, Zhang Y, Yang HT, Zhang WJ. ZBTB20 Regulates SERCA2a Activity and Myocardial Contractility Through Phospholamban. Circ Res 2024; 134:252-265. [PMID: 38166470 DOI: 10.1161/circresaha.123.323798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Intracellular Ca2+ cycling determines myocardial contraction and relaxation in response to physiological demands. SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a) is responsible for the sequestration of cytosolic Ca2+ into intracellular stores during cardiac relaxation, and its activity is reversibly inhibited by PLN (phospholamban). However, the regulatory hierarchy of SERCA2a activity remains unclear. METHODS Cardiomyocyte-specific ZBTB20 knockout mice were generated by crossing ZBTB20flox mice with Myh6-Cre mice. Echocardiography, blood pressure measurements, Langendorff perfusion, histological analysis and immunohistochemistry, quantitative reverse transcription-PCR, Western blot analysis, electrophysiological measurements, and chromatin immunoprecipitation assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS Specific ablation of ZBTB20 in cardiomyocyte led to a significant increase in basal myocardial contractile parameters both in vivo and in vitro, accompanied by an impairment in cardiac reserve and exercise capacity. Moreover, the cardiomyocytes lacking ZBTB20 showed an increase in sarcoplasmic reticular Ca2+ content and exhibited a remarkable enhancement in both SERCA2a activity and electrically stimulated contraction. Mechanistically, PLN expression was dramatically reduced in cardiomyocytes at the mRNA and protein levels by ZBTB20 deletion or silencing, and PLN overexpression could largely restore the basal contractility in ZBTB20-deficient cardiomyocytes. CONCLUSIONS These data point to ZBTB20 as a fine-tuning modulator of PLN expression and SERCA2a activity, thereby offering new perspective on the regulation of basal contractility in the mammalian heart.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
- Experimental Teaching Center, College of Basic Medical Sciences, Naval Medical University, Shanghai, China (A.-J.R., J.F.)
| | - Chunchun Wei
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Ya-Jin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology and Chu Hsien-I Memorial Hospital, Tianjin Medical University Tianjin, China (Y.-J.L., Y. Zhu, W.J.Z.)
| | - Mengna Liu
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Ping Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Juan Fan
- Experimental Teaching Center, College of Basic Medical Sciences, Naval Medical University, Shanghai, China (A.-J.R., J.F.)
| | - Kai Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Sha Zhang
- Department of Cardiovascular Diseases, Changhai Hospital, Naval Medical University, Shanghai, China (S.Z.)
| | - Zhenbang Qin
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Qiu-Xiao Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Yanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China (Y. Zheng, H.-T.Y.)
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.X.)
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (L.G.)
| | - Yi Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology and Chu Hsien-I Memorial Hospital, Tianjin Medical University Tianjin, China (Y.-J.L., Y. Zhu, W.J.Z.)
| | - Youyi Zhang
- Institute of Vascular Medicine, National Key Laboratory of Cardiovascular Homeostasis and Remodeling, Peking University Third Hospital, Beijing, China (Y. Zhang)
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China (Y. Zheng, H.-T.Y.)
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology and Chu Hsien-I Memorial Hospital, Tianjin Medical University Tianjin, China (Y.-J.L., Y. Zhu, W.J.Z.)
| |
Collapse
|
7
|
Ansari MA, Al-Jarallah A, Babiker FA. Impaired Insulin Signaling Alters Mediators of Hippocampal Synaptic Dynamics/Plasticity: A Possible Mechanism of Hyperglycemia-Induced Cognitive Impairment. Cells 2023; 12:1728. [PMID: 37443762 PMCID: PMC10340300 DOI: 10.3390/cells12131728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that affects the elderly and is characterized by progressive and irreversible neurodegeneration in the cerebral cortex [...].
Collapse
Affiliation(s)
- Mubeen A. Ansari
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Fawzi A. Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| |
Collapse
|
8
|
Qi Y, Chen Z, Guo B, Liu Z, Wang L, Liu S, Xue L, Ma M, Yin Y, Li Y, Liu G. Speckle-tracking echocardiography provides sensitive measurements of subtle early alterations associated with cardiac dysfunction in T2DM rats. BMC Cardiovasc Disord 2023; 23:266. [PMID: 37217862 DOI: 10.1186/s12872-023-03239-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy results in cardiac structural and functional abnormalities. Previous studies have demonstrated that inhibiting the RhoA/ROCK signalling pathway increases the injury resistance of cardiomyocytes. The early detection of cardiac structural and functional alterations may facilitate an improved understanding of the pathophysiologic progress and guide therapy. This study aimed to identify the optimal diagnostic measures for the subtle early alterations of cardiac dysfunction in type 2 diabetes mellitus (T2DM) rats. METHODS Twenty-four rat models were divided into four groups and received treatments for 4 weeks: the CON group (control rats), the DM group (T2DM rats), the DMF group (T2DM rats receiving fasudil) and the CONF group (control rats receiving fasudil) group. Left ventricular (LV) structure was quantified by histological staining and transmission electron microscopy. LV function and myocardial deformation were assessed by high-frequency echocardiography. RESULTS Treatment with fasudil, a ROCK inhibitor, significantly protected against diabetes-induced myocardial hypertrophy, fibrosis and mitochondrial dysfunction. Impaired LV performance was found in T2DM rats, as evidenced by significant reductions in the ejection fraction (EF), fractional shortening (FS) and the mitral valve (MV) E/A ratio (which decreased 26%, 34% and 20%, respectively). Fasudil failed to improve the conventional ultrasonic parameters in T2DM rats, but the myocardial deformation measured by speckle-tracking echocardiography (STE) were significantly improved (global circumferential strain, GCS: P = 0.003; GCS rate, GCSR: P = 0.021). When receiver operating characteristic (ROC) curves were used in combination with linear regression analysis, STE parameters were found to be characterized by both optimal prediction of cardiac damage [AUC (95% CI): fractional area change, FAC: 0.927 (0.744, 0.993); GCS: 0.819 (0.610, 0.945); GCSR: 0.899 (0.707, 0.984)] and stronger correlations with cardiac fibrosis (FAC: r = -0.825; GCS: r = 0.772; GCSR: r = 0.829) than conventional parameters. CONCLUSION The results suggest that STE parameters are more sensitive and specific than conventional parameters in predicting the subtle cardiac functional changes that occur in the early stage, providing new insight into the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yanchao Qi
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
| | - Zhiyan Chen
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Zhe Liu
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
| | - Lijie Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suyun Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Lixiang Xue
- Center of Basic Medical Research, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Meifang Ma
- Department of Cardiology, Handan Central Hospital, Handan, 056008, Hebei, People's Republic of China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, 050031, Hebei, People's Republic of China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050031, Hebei, People's Republic of China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, People's Republic of China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China.
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, People's Republic of China.
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, 050031, Hebei, People's Republic of China.
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050031, Hebei, People's Republic of China.
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, People's Republic of China.
| |
Collapse
|
9
|
Actin-Binding Proteins in Cardiac Hypertrophy. Cells 2022; 11:cells11223566. [PMID: 36428995 PMCID: PMC9688942 DOI: 10.3390/cells11223566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The heart reacts to a large number of pathological stimuli through cardiac hypertrophy, which finally can lead to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain elusive. Actin participates in the formation of highly differentiated myofibrils under the regulation of actin-binding proteins (ABPs), which provides a structural basis for the contractile function and morphological change in cardiomyocytes. Previous studies have shown that the functional abnormality of ABPs can contribute to cardiac hypertrophy. Here, we review the function of various actin-binding proteins associated with the development of cardiac hypertrophy, which provides more references for the prevention and treatment of cardiomyopathy.
Collapse
|
10
|
Bamboo Shoot and Artemisia capillaris Extract Mixture Ameliorates Dextran Sodium Sulfate-Induced Colitis. Curr Issues Mol Biol 2022; 44:5086-5103. [PMID: 36286060 PMCID: PMC9600592 DOI: 10.3390/cimb44100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract and is characterized by recurrent chronic inflammation and mucosal damage of the gastrointestinal tract. Recent studies have demonstrated that bamboo shoot (BS) and Artemisia capillaris (AC) extracts enhance anti-inflammatory effects in various disease models. However, it is uncertain whether there is a synergistic protective effect of BS and AC in dextran sodium sulfate (DSS)-induced colitis. In the current study, we tested the combined effects of BS and AC extracts (BA) on colitis using in vivo and in vitro models. Compared with control mice, oral administration of DSS exacerbated colon length and increased the disease activity index (DAI) and histological damage. In DSS-induced colitis, treatment with BA significantly alleviated DSS-induced symptoms such as colon shortening, DAI, histological damage, and colonic pro-inflammatory marker expression compared to single extracts (BS or AC) treatment. Furthermore, we found BA treatment attenuated the ROS generation, F-actin formation, and RhoA activity compared with the single extract (BS or AC) treatment in DSS-treated cell lines. Collectively, these findings suggest that BA treatment has a positive synergistic protective effect on colonic inflammation compared with single extracts, it may be a highly effective complementary natural extract mixture for the prevention or treatment of IBD.
Collapse
|
11
|
Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:907757. [PMID: 35784531 PMCID: PMC9240190 DOI: 10.3389/fendo.2022.907757] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Collapse
Affiliation(s)
- Meng-ling Peng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chu-wen Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hang Ren
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Shan-shan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shan-shan Zhou,
| |
Collapse
|
12
|
Li JM, Chen FF, Li GH, Zhu JL, Zhou Y, Wei XY, Zheng F, Wang LL, Zhang W, Zhong M, Zhang MM, Ding WY. Soluble Klotho-integrin β1/ERK1/2 pathway ameliorates myocardial fibrosis in diabetic cardiomyopathy. FASEB J 2021; 35:e21960. [PMID: 34694637 DOI: 10.1096/fj.202100952r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/11/2022]
Abstract
Soluble Klotho (sKL) is closely related to insulin resistance, which is a major factor in the progression of diabetic cardiomyopathy (DCM). The purpose of this study was to investigate the role of sKL in the regulation of DCM and the mechanism involved. A mouse model of type 2 diabetes was induced by high-fat diet and streptozotocin injection. An insulin-resistant cardiac fibroblast model was established by high glucose and high insulin. KL gene overexpression was achieved in vivo and vitro through transfection with an adenovirus-harboring KL-cDNA. Gene overexpression was used to evaluate the role of sKL in the pathophysiologic characteristics of DCM. Insulin-resistant cardiac fibroblasts reduced sKL expression and collagen deposition. Diabetic mice constructed by streptozotocin exhibited severe insulin resistance, inflammation, fibrosis, left ventricular dysfunction, and sKL downregulation. The overexpression of sKL mitigated insulin resistance and metabolic disturbance; inflammation, fibrosis, and upregulated collagen I/III content ratio in diabetic state were significantly reduced. Our findings were accompanied by notable moderation of cardiac function. Further, blunted phosphorylation of Akt was restored with sKL gene overexpression, and activated phosphorylation of extracellular signal-regulated kinase 1/2 in DCM was reduced. Our results suggest that sKL protein overexpression exerts a defensive measure by ameliorating selective insulin resistance in mouse DCM, thus revealing its underlying mechanism for potential human DCM treatment.
Collapse
Affiliation(s)
- Jia-Min Li
- Department Ⅱ of Cardiology, Shandong Provincial Qianfoshan Hospital (The First Affiliated Hospital of Shandong First Medical University), Ji'nan, P.R. China
| | - Fang-Fang Chen
- Department Ⅱ of Cardiology, Shandong Provincial Qianfoshan Hospital (The First Affiliated Hospital of Shandong First Medical University), Ji'nan, P.R. China
| | - Guo-Hua Li
- Department Ⅱ of Cardiology, Shandong Provincial Qianfoshan Hospital (The First Affiliated Hospital of Shandong First Medical University), Ji'nan, P.R. China
| | | | - Yu Zhou
- Shandong University of Finance and Economics, Ji'nan, P.R. China
| | - Xin-Yi Wei
- The Third Hospital of Jinan, Ji'nan, P.R. China
| | - Fei Zheng
- Department Ⅱ of Cardiology, Shandong Provincial Qianfoshan Hospital (The First Affiliated Hospital of Shandong First Medical University), Ji'nan, P.R. China
| | - Li-Li Wang
- Department II of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, P.R. China
| | - Wei Zhang
- Department of Cardiology, Shandong Qilu Hospital, Ji'nan, P.R. China
| | - Ming Zhong
- Department of Cardiology, Shandong Qilu Hospital, Ji'nan, P.R. China
| | - Ming-Ming Zhang
- Department Ⅱ of Cardiology, Shandong Provincial Qianfoshan Hospital (The First Affiliated Hospital of Shandong First Medical University), Ji'nan, P.R. China
| | - Wen-Yuan Ding
- Department Ⅱ of Cardiology, Shandong Provincial Qianfoshan Hospital (The First Affiliated Hospital of Shandong First Medical University), Ji'nan, P.R. China
| |
Collapse
|
13
|
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension. Cells 2021; 10:cells10071648. [PMID: 34209333 PMCID: PMC8303917 DOI: 10.3390/cells10071648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.
Collapse
|
14
|
Liu X, Guo B, Zhang W, Ma B, Li Y. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis, and JNK/NF-κB signaling pathway. J Biochem 2021; 170:349-362. [PMID: 33837411 DOI: 10.1093/jb/mvab047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular disease. A declined miR-20a-5p was observed in hearts of diabetic mice, while its effect on DCM remains unknown. Herein, we established streptozotocin-induced DCM rat model and high glucose-stimulated H9C2 model of DCM. They then were treated with adenovirus expressing miR-20a-5p to explore the function of miR-20a-5p. ITT and ipGTT assay revealed that miR-20a-5p reduced blood glucose level. Besides, miR-20a-5p improved cardiac dysfunction reflected by reduced HW/BW and LVDP, and increased LVSP and ±LV dp/dt max. MiR-20a-5p prevented cardiomyocyte apoptosis, along with the up-regulated c-caspase-3, bax and down-regulated bcl-2. Moreover, miR-20a-5p alleviated cardiac hypertrophy as the parameters of ANP, BNP and MyHC-β decreased. Also, miR-20a-5p attenuated the cardiac fibrosis demonstrated by decreased TGF-β1, collagen I levels and the inflammatory response manifested by reduced IL-6, TNF-α and IL-1β production. Furthermore, miR-20a-5p prevented JNK phosphorylation and NF-κB p65nuclear translocation. Similarly, the effects of miR-20a-5p on DCM were confirmed in our in vitro experiments. Additionally, ROCK2 is a possible target gene of miR-20a-5p. ROCK2 overexpression reversed the protective effect of miR-20a-5p on DCM. Overall, miR-20a-5p may effectively ameliorate DCM through improving cardiac metabolism, and subsequently inhibiting inflammation, apoptosis, hypertrophy, fibrosis, and JNK/NF-κB pathway via modulating ROCK2.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.,The Third Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wei Zhang
- The Third Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Bocong Ma
- The Third Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
15
|
Bai Y, Du Q, Zhang L, Li L, Tang L, Zhang W, Du R, Li P, Li L. Fasudil alleviated insulin resistance through promotion of proliferation, attenuation of cell apoptosis and inflammation and regulation of RhoA/Rho kinase/insulin/nuclear factor-κB signalling pathway in HTR-8/SVneo cells. J Pharm Pharmacol 2021; 73:1118-1127. [PMID: 33779714 DOI: 10.1093/jpp/rgab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/10/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the effects of fasudil on insulin resistance (IR) in HTR-8/SVneo cells. METHODS HTR-8/SVneo cells were treated with insulin or/and fasudil. Cell proliferation, apoptosis, inflammation and related signalling pathways were assessed. KEY FINDINGS Insulin treatment significantly enhanced the protein expressions of RhoA and Rho kinase (ROCK1 and ROCK2), but decreased glucose consumption. Administration of fasudil effectively promoted glucose uptake. Moreover, fasudil enhanced cell viability and the level of proliferating cell nuclear antigen (PCNA). Insulin-mediated cell apoptosis was inhibited by fasudil via the down-regulation of bax and cleaved-caspase-3, and the up-regulation of bcl-2. At the same time, fasudil led to the reduction of IL-1β, TNF-α, IL-6 and IL-8 mRNA levels in insulin-treated cells. In addition, RhoA, ROCK2 and phosphorylated myosin phosphatase target subunit-1 (p-MYPT-1) expressions were down-regulated by fasudil. Importantly, fasudil activated insulin receptor substrate-1 (IRS-1) through increasing p-IRS-1 (Tyr612) and p-Akt expressions. The nuclear NF-κB p65 and p-IκB-α levels were reduced via the administration of fasudil in insulin-treated cells. CONCLUSIONS Fasudil mitigated IR by the promotion of cell proliferation, inhibition of apoptosis and inflammation and regulation of RhoA/ROCK/insulin/NF-κB signalling pathway through in vitro studies.
Collapse
Affiliation(s)
- Yu Bai
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qiang Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Le Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Lei Tang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Wei Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
16
|
Shi J, Xiao P, Liu X, Chen Y, Xu Y, Fan J, Yin Y. Notch3 Modulates Cardiac Fibroblast Proliferation, Apoptosis, and Fibroblast to Myofibroblast Transition via Negative Regulation of the RhoA/ROCK/Hif1α Axis. Front Physiol 2020; 11:669. [PMID: 32695015 PMCID: PMC7339920 DOI: 10.3389/fphys.2020.00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibrosis is a common pathological process in multiple cardiovascular diseases, including myocardial infarction (MI). Abnormal cardiac fibroblast (CF) activity is a key event in cardiac fibrosis. Although the Notch signaling pathway has been reported to play a vital role in protection from cardiac fibrosis, the exact mechanisms underlying cardiac fibrosis and protection from it have not yet been elucidated. Similarly, Hif1α and the RhoA/ROCK signaling pathway have been shown to participate in cardiac fibrosis. The RhoA/ROCK signaling pathway has been reported to be an upstream pathway of Hif1α in several pathophysiological processes. In the present study, we aimed to determine the effects of notch3 on CF activity and its relationship with the RhoA/ROCK/Hif1α signaling pathway. Using in vitro experiments, we demonstrated that notch3 inhibited CF proliferation and fibroblast to myofibroblast transition (FMT) and promoted CF apoptosis. A knockdown of notch3 using siRNAs had the exact opposite effect. Next, we found that notch3 regulated CF activity by negative regulation of the RhoA/ROCK/Hif1α signaling pathway. Extending CF-based studies to an in vivo rat MI model, we showed that overexpression of notch3 by the Ad-N3ICD injection attenuated the increase of RhoA, ROCK1, ROCK2, and Hif1α levels following MI and further prevented MI-induced cardiac fibrosis. On the basis of these results, we conclude that notch3 is involved in the regulation of several aspects of CF activity, including proliferation, FMT, and apoptosis, by inhibiting the RhoA/ROCK/Hif1α signaling pathway. These findings are significant to further our understanding of the pathogenesis of cardiac fibrosis and to ultimately identify new therapeutic targets for cardiac fibrosis, potentially based on the RhoA/ROCK/Hif1α signaling pathway.
Collapse
Affiliation(s)
- Jianli Shi
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peilin Xiao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Xu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biomedical Engineering and Pediatrics, Emory University, Atlanta, GA, United States
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Ocaranza MP, Valderas P, Moya J, Gabrielli L, Godoy I, Córdova S, Nab PM, García L, Farías L, Jalil JE. Rho kinase cascade activation in circulating leukocytes in patients with diabetes mellitus type 2. Cardiovasc Diabetol 2020; 19:56. [PMID: 32375786 PMCID: PMC7203835 DOI: 10.1186/s12933-020-01027-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background The intracellular ROCK signaling pathway is an important modulator of blood pressure and of cardiovascular and renal remodeling when Rho-kinase activity is increased. Besides, in preclinical models of diabetes, ROCK activation has also a role in abnormal glucose metabolism as well as in subsequent vascular and myocardial dysfunction. In humans, there are a few data assessing ROCK activation in patients with type 2 diabetes mellitus (T2D) and no studies assessing upstream/downstream components of the ROCK pathway. We assessed here levels of ROCK activation and some of the RhoA/ROCK cascade molecules in peripheral blood mononuclear cells (PBMCs) in T2D patients under current treatment. Methods Cross-sectional observational study comparing 28 T2D patients under current antidiabetic treatment with 31 consecutive healthy subjects, matched by age and gender. Circulating levels of malondialdehyde, angiotensin II and inflammatory cytokines IL-6 and IL-8 were determined in all subjects. ROCK activation in PMBCs, upstream and downstream cascade proteins, and levels of the proinflammatory molecules VCAM, ICAM-1 and IL-8 were determined in their PMBCs by Western blot. Results Compared to healthy controls, ROCK activation in T2D patients measured by 2 direct ROCK targets in PBMCs was increased by 420 and 570% (p < 0001) and it correlated significantly with serum glucose levels. p38 MAPK phosphorylation (downstream from ROCK) and JAK-2 (upstream from ROCK) were significantly higher in the T2D patients by 580% and 220%, respectively. In T2D patients, significantly increased PBMC levels of the proinflammatory molecules VCAM-1, ICAM-1 and IL-8 were observed compared to control subjects (by 180%, 360% and 260%, respectively). Circulating levels of Ang II and MDA were significantly higher in T2D patients by 29 and 63%, respectively. Conclusions T2D patients under treatment with glucose-lowering drugs, antihypertensive treatment as well as with statins have significantly increased ROCK activation in their circulating leukocytes along with higher phosphorylation of downstream cascade proteins despite pharmacologic treatment, along with increased plasma angiotensin II and MDA levels. ROCK inhibition might have an additional role in the prevention and treatment of T2D.
Collapse
Affiliation(s)
- Maria Paz Ocaranza
- School of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 7, 8320000, Santiago, Chile.,Center for New Drugs for Hypertension (CENDHY), Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio Valderas
- Facultad de Medicina, Odontología, Universidad de Antofagasta, Avenida Argentina 2000, 1240000, Antofagasta, Chile
| | - Jackeline Moya
- School of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 7, 8320000, Santiago, Chile
| | - Luigi Gabrielli
- School of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 7, 8320000, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iván Godoy
- School of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 7, 8320000, Santiago, Chile
| | - Samuel Córdova
- School of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 7, 8320000, Santiago, Chile
| | - Paul Mac Nab
- School of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 7, 8320000, Santiago, Chile
| | - Lorena García
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Luis Farías
- School of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 7, 8320000, Santiago, Chile
| | - Jorge E Jalil
- School of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 7, 8320000, Santiago, Chile. .,Center for New Drugs for Hypertension (CENDHY), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Human induced pluripotent stem cell-derived cardiomyocytes reveal abnormal TGFβ signaling in type 2 diabetes mellitus. J Mol Cell Cardiol 2020; 142:53-64. [PMID: 32251671 DOI: 10.1016/j.yjmcc.2020.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is a serious metabolic condition associated with a multitude of cardiovascular complications. Moreover, the prevalence of diabetes in heart failure populations is higher than that in control populations. However, the role of cardiomyocyte alterations in type 2 diabetes mellitus (T2DM) has not been well characterized and the underlying mechanisms remain elusive. In this study, two patients who were diagnosed as T2DM were recruited and patient-specific induced pluripotent stem cells (iPSCs) were generated from urine epithelial cells using nonintegrated Sendai virus. The iPSC lines derived from five healthy subjects were used as controls. All iPSCs were differentiated into cardiomyocytes (iPSC-CMs) using the monolayer-based differentiation protocol. T2DM iPSC-CMs exhibited various disease phenotypes, including cellular hypertrophy and lipid accumulation. Moreover, T2DM iPSC-CMs exhibited higher susceptibility to high-glucose/high-lipid challenge than control iPSC-CMs, manifesting an increase in apoptosis. RNA-Sequencing analysis revealed a differential transcriptome profile and abnormal activation of TGFβ signaling pathway in T2DM iPSC-CMs. We went on to show that inhibition of TGFβ significantly rescued the hypertrophic phenotype in T2DM iPSC-CMs. In conclusion, we demonstrate that the iPSC-CM model is able to recapitulate cellular phenotype of T2DM. Our results indicate that iPSC-CMs can therefore serve as a suitable model for investigating molecular mechanisms underlying diabetic cardiomyopathies and for screening therapeutic drugs.
Collapse
|
19
|
Zhu L, Wang W, Xie TH, Zou J, Nie X, Wang X, Zhang MY, Wang ZY, Gu S, Zhuang M, Tan J, Shen C, Dai Y, Yang X, Yao Y, Wei TT. TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ROCK signaling. FASEB J 2020; 34:4189-4203. [PMID: 31957105 DOI: 10.1096/fj.201902496rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Abnormal energy metabolism in microvascular endothelium is involved in the progression of diabetic retinopathy. Bile Acid G-Protein-Coupled Membrane Receptor (TGR5) has emerged as a novel regulator of metabolic disorders. However, the role of TGR5 in diabetes mellitus-induced microvascular dysfunction in retinas is largely unknown. Herein, enzyme-linked immunosorbent assay was used for analyzing bile acid (BA) profiles in diabetic rat retinas and retinal microvascular endothelial cells (RMECs) cultured in high glucose medium. The effects of TGR5 agonist on streptozotocin (STZ)-induced diabetic retinopathy were evaluated by HE staining, TUNEL staining, retinal trypsin digestion, and vascular permeability assay. A pharmacological inhibitor of RhoA was used to study the role of TGR5 on the regulation of Rho/Rho-associated coiled-coil containing protein kinase (ROCK) and western blot, immunofluorescence and siRNA silencing were performed to study the related signaling pathways. Here we show that bile acids were downregulated during DR progression in the diabetic rat retinas and RMECs cultured in high glucose medium. The TGR5 agonist obviously ameliorated diabetes-induced retinal microvascular dysfunction in vivo, and inhibited the effect of TNF-α on endothelial cell proliferation, migration, and permeability in vitro. In contrast, knockdown of TGR5 by siRNA aggravated TNF-α-induced actin polymerization and endothelial permeability. Mechanistically, the effects of TGR5 on the improvement of endothelial function was due to its regulatory role on the ROCK signaling pathway. An inhibitor of RhoA significantly reversed the loss of tight junction protein under TNF-α stimulation. Taken together, our findings suggest that insufficient BA signaling plays an important pathogenic role in the development of DR. Upregulation or activation of TGR5 may inhibit RhoA/ROCK-dependent actin remodeling and represent an important therapeutic intervention for DR.
Collapse
Affiliation(s)
- Lingpeng Zhu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Wenjuan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Tian-Hua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Xiaowei Nie
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Xiaolu Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Meng-Yuan Zhang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Zhong-Yuan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Shun Gu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Jianxin Tan
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Chenyou Shen
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Youai Dai
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Xusheng Yang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Ting-Ting Wei
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, P.R. China.,Wuxi Institute of Translational Medicine, Wuxi, P.R. China
| |
Collapse
|
20
|
Xie F, Lei J, Ran M, Li Y, Deng L, Feng J, Zhong Y, Li J. Attenuation of Diabetic Nephropathy in Diabetic Mice by Fasudil through Regulation of Macrophage Polarization. J Diabetes Res 2020; 2020:4126913. [PMID: 32685556 PMCID: PMC7345603 DOI: 10.1155/2020/4126913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/11/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Inflammation and fibrosis induced by hyperglycemia are considered to play a critical role in the pathogenesis of diabetic nephropathy. As macrophage polarization may determine the severity and progression of inflammation, regulation of macrophage polarization may be an effective method to treat diabetic complications. Fasudil, a potent Rho-kinase inhibitor, reportedly exhibits anti-inflammatory activity. However, whether fasudil reduces hyperglycemia-induced diabetic nephropathy via regulation of macrophage polarization remains unclear. In this study, we investigate the effect of fasudil on diabetic nephropathy in streptozotocin-induced type 1 diabetic mice. Our data showed that fasudil significantly decreased urinary protein and serum creatinine in diabetic mice, whereas it had no effect on the body weight and blood glucose. We also found increased M1-type macrophages and related proinflammatory cytokines, adverse fibrosis in renal tissue of diabetic mice. Interestingly, treatment of diabetic mice with fasudil increased the number of M2-type macrophages and related anti-inflammatory cytokines, which attenuated renal injury in diabetic mice. Taken together, the results of this study suggest that fasudil could slow the progression of diabetic nephropathy. The possible mechanism might be associated with its induction of M2 macrophage polarization and the reduction of M1 macrophage polarization and inflammation.
Collapse
Affiliation(s)
- Fajiang Xie
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Jiesen Lei
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Maoxia Ran
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Yan Li
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Feng
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Zhong
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiafu Li
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Santos GL, Hartmann S, Zimmermann WH, Ridley A, Lutz S. Inhibition of Rho-associated kinases suppresses cardiac myofibroblast function in engineered connective and heart muscle tissues. J Mol Cell Cardiol 2019; 134:13-28. [DOI: 10.1016/j.yjmcc.2019.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/01/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
|
22
|
Identification of Novel Therapeutic Targets for Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19124081. [PMID: 30562953 PMCID: PMC6321293 DOI: 10.3390/ijms19124081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are fatal diseases; however, their pathogenesis still remains to be elucidated. We have recently screened novel pathogenic molecules and have performed drug discovery targeting those molecules. Pulmonary artery smooth muscle cells (PASMCs) in patients with PAH (PAH-PASMCs) have high proliferative properties like cancer cells, which leads to thickening and narrowing of distal pulmonary arteries. Thus, we conducted a comprehensive analysis of PAH-PASMCs and lung tissues to search for novel pathogenic proteins. We validated the pathogenic role of the selected proteins by using tissue-specific knockout mice. To confirm its clinical significance, we used patient-derived blood samples to evaluate the potential as a biomarker for diagnosis and prognosis. Finally, we conducted a high throughput screening and found inhibitors for the pathogenic proteins.
Collapse
|
23
|
Zhou H, Chen Y, Huang SW, Hu PF, Tang LJ. Regulation of autophagy by tea polyphenols in diabetic cardiomyopathy. J Zhejiang Univ Sci B 2018; 19:333-341. [PMID: 29732743 DOI: 10.1631/jzus.b1700415] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effect of tea polyphenols on cardiac function in rats with diabetic cardiomyopathy, and the mechanism by which tea polyphenols regulate autophagy in diabetic cardiomyopathy. METHODS Sixty Sprague-Dawley (SD) rats were randomly divided into six groups: a normal control group (NC), an obesity group (OB), a diabetic cardiomyopathy group (DCM), a tea polyphenol group (TP), an obesity tea polyphenol treatment group (OB-TP), and a diabetic cardiomyopathy tea polyphenol treatment group (DCM-TP). After successful modeling, serum glucose, cholesterol, and triglyceride levels were determined; cardiac structure and function were inspected by ultrasonic cardiography; myocardial pathology was examined by staining with hematoxylin-eosin; transmission electron microscopy was used to observe the morphology and quantity of autophagosomes; and expression levels of autophagy-related proteins LC3-II, SQSTM1/p62, and Beclin-1 were determined by Western blotting. RESULTS Compared to the NC group, the OB group had normal blood glucose and a high level of blood lipids; both blood glucose and lipids were increased in the DCM group; ultrasonic cardiograms showed that the fraction shortening was reduced in the DCM group. However, these were improved significantly in the DCM-TP group. Hematoxylin-eosin staining showed disordered cardiomyocytes and hypertrophy in the DCM group; however, no differences were found among the remaining groups. Transmission electron microscopy revealed that the numbers of autophagosomes in the DCM and OB-TP groups were obviously increased compared to the NC and OB groups; the number of autophagosomes in the DCM-TP group was reduced. Western blotting showed that the expression of LC3-II/I and Beclin-1 increased obviously, whereas the expression of SQSTM1/p62 was decreased in the DCM and OB-TP groups (P<0.05). CONCLUSIONS Tea polyphenols had an effect on diabetic cardiomyopathy in rat cardiac function and may alter the levels of autophagy to improve glucose and lipid metabolism in diabetes.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, China
| | - Yan Chen
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, China
| | - Shu-Wei Huang
- Department of Cardiology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Peng-Fei Hu
- Department of Cardiology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Li-Jiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, China
| |
Collapse
|
24
|
Zhou H, Sun Y, Zhang L, Kang W, Li N, Li Y. The RhoA/ROCK pathway mediates high glucose-induced cardiomyocyte apoptosis via oxidative stress, JNK, and p38MAPK pathways. Diabetes Metab Res Rev 2018; 34:e3022. [PMID: 29745021 DOI: 10.1002/dmrr.3022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
Abstract
AIMS To understand the roles of the RhoA/ROCK and mitogen-activated protein kinase (MAPK) pathways in high glucose (HG)-induced apoptosis and oxidative stress in cardiomyocytes. MATERIALS AND METHODS Neonatal rat cardiomyocytes were cultured in Dulbecco's modified Eagle's medium, supplemented with 5.5 or 30 mmol/L D-glucose, in the presence or absence of fasudil (50 or 100 μM), SB203580, SP600125, or PD98059 (10 μM, respectively). The percentage of early apoptotic cardiomyocytes was evaluated using flow cytometry. The superoxide dismutase activity and malondialdehyde contents in the cellular supernatants were measured. The Bax and Bcl-2 mRNA levels were determined by quantitative real-time PCR. Phosphorylation of myosin phosphatase target subunit 1 (MYPT1), p38MAPK, JNK, and ERK as well as the protein levels of Bax, Bcl-2, and cleaved caspase-3 was analysed by Western blot. RESULTS Fasudil, SB203580, and SP600125 effectively inhibited the HG-induced early apoptosis increase and decreased Bax mRNA expression, the Bax/Bcl-2 protein expression ratio, and cleaved caspase-3 protein levels in the cardiomyocytes; this was accompanied by upregulation of the Bcl-2 mRNA. Moreover, fasudil markedly increased the superoxide dismutase activity level and suppressed the elevation in HG-induced malondialdehyde content and the phosphorylation of MYPT1, p38MAPK and JNK. CONCLUSIONS The RhoA/ROCK pathway mediates HG-induced cardiomyocyte apoptosis via oxidative stress and activation of p38MAPK and JNK in neonatal rats in vitro. Fasudil effectively ameliorates HG-induced cardiomyocyte apoptosis by suppressing oxidative stress and the p38MAPK and JNK pathways.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yonghong Sun
- Nutriology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihui Zhang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenyuan Kang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongjun Li
- Cardiology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Institute of Cardiovascular and Cerebrovascular Diseases, Shijiazhuang, China
| |
Collapse
|
25
|
Katare R, Pearson JT, Lew JKS, Wei M, Tsuchimouchi H, Du CK, Zhan DY, Umetani K, Shirai M, Schwenke DO. Progressive Decrease in Coronary Vascular Function Associated With Type 2 Diabetic Heart Disease. Front Physiol 2018; 9:696. [PMID: 29928236 PMCID: PMC5997806 DOI: 10.3389/fphys.2018.00696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Background: The causal factors underpinning the onset and progression of diabetic heart disease (DHD) remain to be fully elucidated. Myocardial function is critically dependent on optimal coronary blood flow. Considering vascular disease occurs early in diabetes due to endothelial dysfunction, this study aimed to determine whether impaired coronary perfusion contributes to the origins of myocardial dysfunction in DHD, or whether coronary and cardiac dysfunction are independent pathologies associated with diabetes. Methods: Synchrotron radiation microangiography was used to image the coronary circulation of type-2 diabetic db/db and non-diabetic db/+ mice in vivo at 8, 16, and 24 weeks of age. We further assessed vascular function based on the vasodilatory responses to acetylcholine (ACh, 3 μg/kg/min), sodium nitroprusside (SNP, 5 μg/kg/min) and the Rho-kinase inhibitor, fasudil (20 mg/kg, i.v.). Cardiac function was assessed using echocardiography, and cardiac eNOS and ROCK expression were measured using immunohistochemistry. Results: Coronary and cardiac function were normal in 8-week-old diabetic mice. However, by 16 weeks of age, diabetic mice had advanced cardiac dysfunction. In comparison, normal coronary perfusion was preserved in diabetes until 24 weeks of age. Moreover, only the 24-week-old diabetic mice showed clear evidence of advanced coronary vascular dysfunction, based on (i) the absence of a vasodilatory response to ACh, and (ii) an exaggerated vasodilatory response to fasudil. Interestingly, fasudil also restored normal coronary perfusion in the 24-week-old diabetic heart by restoring blood flow to previously constricted vessels (diameter < 100 μm). Importantly, there was a ubiquitous decrease, and increase, in the cardiac expression of eNOS and ROCK, respectively. Conclusion: These results suggest that both cardiac and coronary dysfunction appear to have independent origins associated with diabetes and Rho-kinase pathway may be playing a role in the onset and progression of DHD.
Collapse
Affiliation(s)
- Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,Bioscience Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Jason Kar-Sheng Lew
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Melanie Wei
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hirotsugu Tsuchimouchi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Cheng-Kun Du
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Dong-Yun Zhan
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Hyōgo, Japan
| | - Mikiyasu Shirai
- Department of Advanced Medical Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Daryl O Schwenke
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
26
|
Ehler E. Actin-associated proteins and cardiomyopathy-the 'unknown' beyond troponin and tropomyosin. Biophys Rev 2018; 10:1121-1128. [PMID: 29869751 PMCID: PMC6082317 DOI: 10.1007/s12551-018-0428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss recent findings relevant to their involvement in heart disease.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), London, UK. .,School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, Room 3.26A, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
27
|
Yang N, Shi XL, Zhang BL, Rong J, Zhang TN, Xu W, Liu CF. The Trend of β3-Adrenergic Receptor in the Development of Septic Myocardial Depression: A Lipopolysaccharide-Induced Rat Septic Shock Model. Cardiology 2018; 139:234-244. [PMID: 29566368 DOI: 10.1159/000487126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
Septic shock with low cardiac output is very common in children. However, the mechanism underlying myocardial depression is unclear. The role of β3-AR in the development of myocardial depression in sepsis is unknown. In the present study, we generated an adolescent rat model of hypodynamic septic shock induced by lipopolysaccharide (LPS). Neonatal cardiomyocytes were also treated with LPS to mimic myocardial depression in sepsis, which was confirmed via an in vivo left ventricular hemodynamic study, and measurements of contractility and the Ca2+ transient in isolated adolescent and neonatal cardiomyocytes. After 16 h of LPS treatment, cultured neonatal cardiomyocytes showed a diminished Ca2+ transient amplitude associated with an increase in the β3-AR level. With the addition of a β3-AR agonist, the Ca2+ transient in LPS-treated neonatal rat cardiomyocytes gradually decreased over time; such a change was absent in cells treated with nitric oxide synthase (NOS) inhibitors prior to treatment with a β3-AR agonist. In adolescent rats with septic myocardial depression, cardiac function declined as indicated by decreased MAP, dP/dtmax, and dP/dtmix for 6 h after LPS injection; however, the β3-AR level first increased 2 h after LPS treatment and then decreased 6 h after LPS treatment in the absence of exogenous catecholamines. The results indicate that, in vitro, at the cellular level β3-AR may be involved in the development of myocardial depression (Ca2+ transient depression) in sepsis through NOS signaling pathways; however, in vivo, a complicated mechanism for modulating β3-AR may exist.
Collapse
Affiliation(s)
- Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Lu Shi
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing-Lun Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chun-Feng Liu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Downregulation of Profilin-1 Expression Attenuates Cardiomyocytes Hypertrophy and Apoptosis Induced by Advanced Glycation End Products in H9c2 Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9716087. [PMID: 29238726 PMCID: PMC5697376 DOI: 10.1155/2017/9716087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Cardiomyocytes hypertrophy and apoptosis induced by advanced glycation end products (AGEs) is the crucial pathological foundation contributing to the onset and development of diabetic cardiomyopathy (DCM). However, the mechanism remains poorly understood. Here, we report that profilin-1 (PFN-1), a well-known actin-binding protein, serves as a potent regulator in AGEs-induced cardiomyocytes hypertrophy and apoptosis. PFN-1 was upregulated in AGEs-treated H9c2 cells, which was associated with increased cardiomyocytes hypertrophy and apoptosis. Silencing PFN-1 expression remarkably attenuated AGEs-induced H9c2 cell hypertrophy and apoptosis. Mechanistically, AGEs increased PFN-1 expression through elevating ROS production and RhoA and ROCK2 expression. Consequently, elevated PFN-1 promoted actin cytoskeleton disorganization. When either ROS production/ROCK activation was blocked or cells were treated with Cytochalasin D (actin depolymerizer), H9c2 cells were protected against AGEs-induced cardiac myocyte abnormalities, concomitantly with downregulated expression of PFN-1 and improved actin cytoskeleton alteration. Collectively, these data suggest that PFN-1 may play an important role in AGEs-induced hypertrophy and apoptosis in H9c2 cells.
Collapse
|
29
|
Tang J, Li N, Chen X, Gao Q, Zhou X, Zhang Y, Liu B, Sun M, Xu Z. Prenatal Hypoxia Induced Dysfunction in Cerebral Arteries of Offspring Rats. J Am Heart Assoc 2017; 6:e006630. [PMID: 28974495 PMCID: PMC5721865 DOI: 10.1161/jaha.117.006630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hypoxia during pregnancy could cause abnormal development and lead to increased risks of vascular diseases in adults. This study determined angiotensin II (AII)-mediated vascular dysfunction in offspring middle cerebral arteries (MCA). METHODS AND RESULTS Pregnant rats were subjected to hypoxia. Vascular tension in offspring MCA by AII with or without inhibitors, calcium channel activities, and endoplasmic reticulum calcium stores were tested. Whole-cell patch clamping was used to investigate voltage-dependent calcium channel currents. mRNA expression was tested using quantitative real-time polymerase chain reaction. AII-mediated MCA constriction was greater in male offspring exposed to prenatal hypoxia. AT1 and AT2 receptors were involved in the altered AII-mediated vasoconstriction. Prenatal hypoxia increased baseline activities of L-type calcium channel currents in MCA smooth muscle cells. However, calcium currents stimulated by AII were not significantly changed, whereas nifedipine inhibited AII-mediated vasoconstrictions in the MCA. Activities of IP3/ryanodine receptor-operated calcium channels, endoplasmic reticulum calcium stores, and sarcoendoplasmic reticulum membrane Ca2+-ATPase were increased. Prenatal hypoxia also caused dysfunction of vasodilatation via the endothelium NO synthase. The mRNA expressions of AT1A, AT1B, AT2R, Cav1.2α1C, Cav3.2α1H, and ryanodine receptor RyR2 were increased in the prenatal-hypoxia group. CONCLUSIONS Hypoxia in pregnancy could induce dysfunction in both contraction and dilation in the offspring MCA. AII-increased constriction in the prenatal-hypoxia group was not mainly dependent on the L-type and T-type calcium channels; it might predominantly rely on the AII receptors, IP3/ryanodine receptors, and the endoplasmic reticulum calcium store as well as calcium ATPase.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/metabolism
- Calcium Signaling
- Cerebrovascular Disorders/etiology
- Cerebrovascular Disorders/metabolism
- Cerebrovascular Disorders/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Fetal Hypoxia/complications
- Fetal Hypoxia/metabolism
- Fetal Hypoxia/physiopathology
- Gestational Age
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Membrane Potentials
- Membrane Transport Modulators/pharmacology
- Middle Cerebral Artery/drug effects
- Middle Cerebral Artery/metabolism
- Middle Cerebral Artery/physiopathology
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats, Sprague-Dawley
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Jiaqi Tang
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueyi Chen
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yingying Zhang
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Gao J, Shi X, He H, Zhang J, Lin D, Fu G, Lai D. Assessment of Sarcoplasmic Reticulum Calcium Reserve and Intracellular Diastolic Calcium Removal in Isolated Ventricular Cardiomyocytes. J Vis Exp 2017. [PMID: 28994760 DOI: 10.3791/55797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intracellular calcium recycling plays a critical role in regulation of systolic and diastolic function in cardiomyocytes. Cardiac sarcoplasmic reticulum (SR) serves as a Ca2+ reservoir for contraction, which reuptakes intracellular Ca2+ during relaxation. The SR Ca2+ reserve available for beats is determinate for cardiac contractibility, and the removal of intracellular Ca2+ is critical for cardiac diastolic function. Under some pathophysiological conditions, such as diabetes and heart failure, impaired calcium clearance and SR Ca2+ store in cardiomyocytes may be involved in the progress of cardiac dysfunction. Here, we describe a protocol to evaluate SRCa2+ reserve and diastolic Ca2+ removal. Briefly, a single cardiomyocyte was enzymatically isolated, and the intracellular Ca2+ fluorescence indicated by Fura-2 was recorded by a calcium imaging system. To employ caffeine for inducing total SR Ca2+ release, we preset an automatic perfusion switch program by interlinking the stimulation system and the perfusion system. Then, the mono-exponential curve fitting was used for analyzing decay time constants of calcium transients and caffeine-induced calcium pulses. Accordingly, the contribution of the SR Ca2+-ATPase (SERCA) and Na+-Ca2+ exchanger (NCX) to diastolic calcium removal was evaluated.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Xiaolu Shi
- Experimental Research Center, China Academy of Chinese Medical Sciences
| | - Hong He
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Juhong Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Ding Lin
- Department of Cardiology, The Third Hospital of Hangzhou City
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine
| | - Dongwu Lai
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine;
| |
Collapse
|
31
|
Merkus D, Tune JD. ROCK as a molecular bond connecting coronary microvascular and cardiac remodelling. Cardiovasc Res 2017; 113:1273-1275. [DOI: 10.1093/cvr/cvx139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|