1
|
Du RR, Wang RY, Zhou JC, Gao HH, Qin WJ, Duan XM, Yang YN, Zhang XW, Zhang PC. Heteryunine A, an amidated tryptophan-catechin-spiroketal hybrid with antifibrotic activity from Heterosmilax yunnanensis. Bioorg Chem 2024; 151:107618. [PMID: 39003940 DOI: 10.1016/j.bioorg.2024.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
An unprecedented spiro-C-glycoside adduct, heteryunine A (1), along with two uncommon alkaloids featuring a 2,3-diketopiperazine skeleton, heterpyrazines A (2) and B (3), were discovered in the roots of Heterosmilax yunnanensis. The detailed spectroscopic analysis helped to clarify the planar structures of these compounds. Compound 1, containing 7 chiral centers, features a catechin fused with a spiroketal and connects with a tryptophan derivative by a CC bond. Its complex absolute configuration was elucidated by rotating frame overhauser enhancement spectroscopy (ROESY), specific rotation, and the 13C nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) calculation. The possible biosynthetic routes for 1 were deduced. Compounds 1 and 2 showed significant antifibrotic effects and further research revealed that they inhibited the activation, migration and proliferation of hepatic stellate cells (HSCs) through suppressing the activity of Ras homolog family member A (RhoA).
Collapse
Affiliation(s)
- Rong-Rong Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruo-Yu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ji-Chao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huan-Huan Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Jie Qin
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing 100085, China
| | - Xiu-Mei Duan
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing 100085, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiao-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Liu X, Wang X, Xu L, Fan J, Yuan Q, Zhang F, Liu J, Qiu X, Li Y, Xia C, Liu H. Targeting delivery of a novel TGF-β type I receptor-mimicking peptide to activated hepatic stellate cells for liver fibrosis therapy via inhibiting the TGF-β1/Smad and p38 MAPK signaling pathways. Eur J Pharmacol 2024; 977:176708. [PMID: 38843945 DOI: 10.1016/j.ejphar.2024.176708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Excessive transforming growth factor β1 (TGF-β1) secreted by activated hepatic stellate cells (aHSCs) aggravates liver fibrosis via over-activation of TGF-β1-mediated signaling pathways in a TGF-β type I receptor (TβRI) dependent manner. TβRI with the C-terminal valine truncated (RIPΔ), as a novel TβRI-mimicking peptide, is an appealing anti-fibrotic candidate by competitive binding of TGF-β1 to block TGF-β1 signal transduction. Platelet-derived growth factor receptor β (PDGFβR) is highly expressed on the surface of aHSCs in liver fibrosis. Herein, we designed a novel RIPΔ variant Z-RIPΔ (PDGFβR-specific affibody ZPDGFβR fused to the N-terminus of RIPΔ) for liver fibrosis therapy, and expect to improve the anti-liver fibrosis efficacy by specifically inhibiting the TGF-β1 activity in aHSCs. Target peptide Z-RIPΔ was prepared in Escherichia coli by SUMO fusion system. Moreover, Z-RIPΔ specifically bound to TGF-β1-activated aHSCs, inhibited cell proliferation and migration, and reduced the expression of fibrosis markers (α-SMA and FN) and TGF-β1 pathway-related effectors (p-Smad2/3 and p-p38) in vitro. Furthermore, Z-RIPΔ specifically targeted the fibrotic liver, alleviated the liver histopathology, mitigated the fibrosis responses, and blocked TGF-β1-mediated Smad and p38 MAPK cascades. More importantly, Z-RIPΔ exhibited a higher fibrotic liver-targeting capacity and stronger anti-fibrotic effects than its parent RIPΔ. Besides, Z-RIPΔ showed no obvious toxicity effects in treating both an in vitro cell model and an in vivo mouse model of liver fibrosis. In conclusion, Z-RIPΔ represents a promising targeted candidate for liver fibrosis therapy.
Collapse
Affiliation(s)
- Xiaohui Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Xiaohua Wang
- Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, 157011, PR China; Department of Cell Biology, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Liming Xu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Junjie Fan
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Qi Yuan
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Fan Zhang
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Jieting Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Xiaowen Qiu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Yanqiu Li
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Caiyun Xia
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China
| | - Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, PR China; Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, 157011, PR China.
| |
Collapse
|
3
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
4
|
Jiang J, Gareev I, Ilyasova T, Shumadalova A, Du W, Yang B. The role of lncRNA-mediated ceRNA regulatory networks in liver fibrosis. Noncoding RNA Res 2024; 9:463-470. [PMID: 38511056 PMCID: PMC10950566 DOI: 10.1016/j.ncrna.2024.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 01/07/2024] [Indexed: 03/22/2024] Open
Abstract
In the dynamic realm of molecular biology and biomedical research, the significance of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) continues to grow, encompassing a broad spectrum of both physiological and pathological conditions. Particularly noteworthy is their pivotal role in the intricate series of events leading to the development of hepatic fibrosis, where hepatic stellate cells (HSCs) play a central role. Recent strides in scientific exploration have unveiled the intricate involvement of lncRNAs as ceRNAs in orchestrating the activation of HSCs. This not only deepens our comprehension of the functioning of proteins, DNA, and the extensive array of coding and noncoding RNAs but also sheds light on the intricate molecular interactions among these molecules. Furthermore, the well-established ceRNA networks, involving classical interactions between lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs), are not mere bystanders; they actively participate in instigating and advancing liver fibrosis. This underscores the pressing need for additional thorough research to fully grasp the potential of ceRNA. The unyielding pursuit of knowledge in this field remains a potent driving force with the capacity to enhance the quality of life for numerous individuals grappling with such diseases. It holds the promise of ushering in a new era of precision medicine, signifying a relentless dedication to unraveling the intricacies of molecular interactions that could pave the way for transformative advancements in the diagnosis and treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Jianhao Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Weijie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
5
|
Gao C, Hu ZH, Cui ZY, Jiang YC, Dou JY, Li ZX, Lian LH, Nan JX, Wu YL. Angelica dahurica extract and its effective component bergapten alleviated hepatic fibrosis by activating FXR signaling pathway. J Nat Med 2024; 78:427-438. [PMID: 38334900 DOI: 10.1007/s11418-024-01780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Angelica dahurica (A. dahurica) has a wide range of pharmacological effects, including analgesic, anti-inflammatory and hepatoprotective effects. In this study, we investigated the effect of A. dahurica extract (AD) and its effective component bergapten (BG) on hepatic fibrosis and potential mechanisms. Hepatic fibrosis was induced by intraperitoneal injection with carbon tetrachloride (CCl4) for 1 week, and mice were administrated with AD or BG by gavage for 1 week before CCl4 injection. Hepatic stellate cells (HSCs) were stimulated by transforming growth factor-β (TGF-β) and cultured with AD, BG, GW4064 (FXR agonist) or Guggulsterone (FXR inhibitor). In CCl4-induced mice, AD significantly decreased serum aminotransferase, reduced excess accumulation of extracellular matrix (ECM), inhibited caspase-1 and IL-1β, and increased FXR expressions. In activated HSCs, AD suppressed the expressions of α-SMA, collagen I, and TIMP-1/MMP-13 ratio and inflammatory factors, functioning as FXR agonist. In CCl4-induced mice, BG significantly improved serum transaminase and histopathological changes, reduced ECM excessive deposition, inflammatory response, and activated FXR expression. BG increased FXR expression and inhibited α-SMA and IL-1β expressions in activated HSCs, functioning as GW4064. FXR deficiency significantly attenuated the decreasing effect of BG on α-SMA and IL-1β expressions in LX-2 cells. In conclusion, AD could regulate hepatic fibrosis by regulating ECM excessive deposition and inflammation. Activating FXR signaling by BG might be the potential mechanism of AD against hepatic fibrosis.
Collapse
Affiliation(s)
- Chong Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhong-He Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhen-Yu Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yu-Chen Jiang
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jia-Yi Dou
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhao-Xu Li
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Li-Hua Lian
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yan-Ling Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
6
|
Zhang R, Li W, Jiang X, Cui X, You H, Tang Z, Liu W. Ferulic Acid Combined With Bone Marrow Mesenchymal Stem Cells Attenuates the Activation of Hepatic Stellate Cells and Alleviates Liver Fibrosis. Front Pharmacol 2022; 13:863797. [PMID: 35721175 PMCID: PMC9205407 DOI: 10.3389/fphar.2022.863797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 01/28/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can effectively alleviate liver fibrosis, but the efficacy of cell therapy alone is insufficient. In recent years, a combination of traditional Chinese medicine (TCM) and cell therapy has been increasingly used to treat diseases in clinical trials. Ferulic acid (FA) is highly effective in treating liver fibrosis, and a combination of cells and drugs is being tested in clinical trials. Therefore, we combined BMSCs and Ferulic acid to treat CCl4-induced fibrosis and determine whether this combination was more effective than single treatment. We used BMSCs and FA to treat CCl4-induced fibrosis in rat models, observed their therapeutic effects, and investigated the specific mechanism of this combination therapy in liver fibrosis. We created a BMSC/hepatic stellate cell (HSC) coculture system and used FA to treat activated HSCs to verify the specific mechanism. Then, we used cytochalasin D and angiotensin II to investigate whether BMSCs and FA inactivate HSCs through cytoskeletal rearrangement. MiR-19b-3p was enriched in BMSCs and targeted TGF-β receptor II (TGF-βR2). We separately transfected miR-19b-3p into HSCs and BMSCs and detected hepatic stellate cell activation. We found that the expression of the profibrotic markers α-SMA and COL1-A1 was significantly decreased in the combination group of rats. α-SMA and COL1-A1 levels were also significantly decreased in the HSCs with the combination treatment. Cytoskeletal rearrangement of HSCs was inhibited in the combination group, and RhoA/ROCK pathway gene expression was decreased. Following angiotensin II treatment, COL1-A1 and α-SMA expression increased, while with cytochalasin D treatment, profibrotic gene expression decreased in HSCs. The expression of COL1-A1, α-SMA and RhoA/ROCK pathway genes was decreased in the activated HSCs treated with a miR-19b-3p mimic, indicating that miR-19b-3p inactivated HSCs by suppressing RhoA/ROCK signalling. In contrast, profibrotic gene expression was significantly decreased in the BMSCs treated with the miR-19b-3p mimic and FA or a miR-19b-3p inhibitor and FA compared with the BMSCs treated with the miR-19b-3p mimic alone. In conclusion, the combination therapy had better effects than FA or BMSCs alone. BMSC and FA treatment attenuated HSC activation and liver fibrosis by inhibiting cytoskeletal rearrangement and delivering miR-19b-3p to activated HSCs, inactivating RhoA/ROCK signalling. FA-based combination therapy showed better inhibitory effects on HSC activation.
Collapse
Affiliation(s)
- Rui Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenhang Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaodan Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xinyi Cui
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongjie You
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zuoqing Tang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenlan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
FBXO32 targets PHPT1 for ubiquitination to regulate the growth of EGFR mutant lung cancer. Cell Oncol (Dordr) 2022; 45:293-307. [PMID: 35411430 DOI: 10.1007/s13402-022-00669-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Phosphohistidine phosphatase 1 (PHPT1) is an oncogene that has been reported to participate in multiple tumorigenic processes. As yet, however, the role of PHPT1 in lung cancer development remains uncharacterized. METHODS RNA sequencing assay and 18 pairs of tumor and normal tissues from patients were analyzed to reveal the upregulation of PHPT1 in lung cancer, followed by confirming the biological function in vitro and in vivo. Next, Gene Set Enrichment Analysis, lung cancer samples, apoptosis assay, mass spectrometry experiments and western blotting were used to investigate the molecular mechanism underlying PHPT1 driven progression in epidermal growth factor receptor (EGFR)-mutant lung cancer. Finally, we performed cellular and animal experiments to explore the tumor suppressive function of F-box protein 32 (FBXO32). RESULTS We found that PHPT1 is overexpressed in lung cancer patients and correlates with a poor overall survival. In addition, we found that the expression of PHPT1 is elevated in EGFR-mutant lung cancer cells and primary patient samples. Inhibition of PHPT1 expression in EGFR mutant lung cancer cells significantly decreased their proliferation and clonogenicity, and suppressed their in vitro tumor growth. Mechanistic studies revealed that activation of the ERK/MAPK pathway is driven by PHPT1. PHPT1 is required for maintaining drug resistance to erlotinib in EGFR mutant lung cancer cells. We found that FBXO32 acts as an E3 ubiquitin ligase for PHPT1, and that knockdown of FBXO32 leads to PHPT1 accumulation, activation of the ERK/MAPK pathway and promotion of the proliferation, clonogenicity and growth of lung cancer cells. CONCLUSIONS Our findings indicate that PHPT1 may serve as a biomarker and therapeutic target for acquired erlotinib resistance in lung cancer patients carrying EGFR mutations.
Collapse
|
8
|
Dai C, Yusuf A, Sun H, Shu G, Deng X. A characterized saponin extract of Panax japonicus suppresses hepatocyte EMT and HSC activation in vitro and CCl 4-provoked liver fibrosis in mice: Roles of its modulatory effects on the Akt/GSK3β/Nrf2 cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153746. [PMID: 34634746 DOI: 10.1016/j.phymed.2021.153746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND PURPOSE Liver fibrosis constitutes a pathologic condition resulting in a series of advanced liver diseases. Oleanane-type saponins are distinctive active constituents in the medicinal plant Panax japonicus C. A. Mey (P. japonicus). Herein, we assessed protective effects of a characterized saponin extract of rhizomes of P. japonicus (SEPJ) on hepatocyte EMT and HSC activation in vitro and liver fibrosis in mice. We also investigated molecular mechanisms underlying the hepatoprotective activity of SEPJ. METHODS EMT of AML-12 hepatocytes was evaluated by observing morphology of cells and quantifying EMT marker proteins. Activation of LX-2 HSCs was assessed via scratch assay, transwell assay, and EdU-incorporation assay, and by quantifying activation marker proteins. Liver fibrosis in mice was evaluated by HE, SR, and Masson staining, and by measuring related serum indicators. Immunoblotting and RT-PCR were performed to study mechanisms underlying the action of SEPJ. RESULTS SEPJ inhibited TGF-β-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. SEPJ elevated Akt phosphorylation at Ser473 and GSK3β phosphorylation at Ser9 in these cells, giving rise to a descent of the catalytic activity of GSK3β. These events increased levels of both total and nuclear Nrf2 protein and upregulated expressions of Nrf2-responsive antioxidative genes. In addition, enhanced phosphorylation of Akt and GSK3β acted upstream of SEPJ-mediated activation of Nrf2. Knockdown of Nrf2 or inhibition of Akt diminished the protective activity of SEPJ against TGF-β in both AML-12 and LX-2 cells. Our further in vivo experiments revealed that SEPJ imposed a considerable alleviation on CCl4-provoked mouse liver fibrosis. Moreover, hepatic Akt/GSK3β/Nrf2 cascade were potentiated by SEPJ. Taken together, our results unveiled that SEPJ exerted protective effects against fibrogenic cytokine TGF-β in vitro and ameliorated liver fibrosis in mice. Mechanistically, SEPJ regulated the Akt/GSK3β/Nrf2 signaling which subsequently enhanced intracellular antioxidative capacity. CONCLUSIONS SEPJ inhibits hepatocyte EMT and HSC activation in vitro and alleviates liver fibrosis in mice. Modulation of the Akt/GSK3β/Nrf2 cascade attributes to its hepatoprotective effects. Our findings support a possible application of SEPJ in the control of liver fibrosis.
Collapse
Affiliation(s)
- Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Getachew A, Hussain M, Huang X, Li Y. Toll-like receptor 2 signaling in liver pathophysiology. Life Sci 2021; 284:119941. [PMID: 34508761 DOI: 10.1016/j.lfs.2021.119941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Chronic liver diseases (CLD) are among the major cause of mortality and morbidity worldwide. Despite current achievements in the area of hepatitis virus, chronic alcohol abuse and high-fat diet are still fueling an epidemic of severe liver disease, for which, an effective therapy has yet not been discovered. In particular, the therapeutic regimens that could prevent the progression of fibrosis and, in turn, aid cirrhotic liver to develop a robust regenerative capability are intensively needed. To this context, a better understanding of the signaling pathways regulating hepatic disease development may be of critical value. In general, the liver responds to various insults with an orchestrated healing process involving variety of signaling pathways. One such pathway is the TLR2 signaling pathway, which essentially regulates adult liver pathogenesis and thus has emerged as an attractive target to treat liver disease. TLR2 is expressed by different liver cells, including Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs). From a pathologic perspective, the crosstalk between antigens and TLR2 may preferentially trigger a distinctive set of signaling mechanisms in these liver cells and, thereby, induce the production of inflammatory and fibrogenic cytokines that can initiate and prolong liver inflammation, ultimately leading to fibrosis. In this review, we summarize the currently available evidence regarding the role of TLR2 signaling in hepatic disease progression. We first elaborate its pathological involvement in liver-disease states, such as inflammation, fibrosis, and cirrhosis. We then discuss how therapeutic targeting of this pathway may help to alleviate its disease-related functioning.
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Muzammal Hussain
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
10
|
Yang HX, Sun JH, Yao TT, Li Y, Xu GR, Zhang C, Liu XC, Zhou WW, Song QH, Zhang Y, Li AY. Bellidifolin Ameliorates Isoprenaline-Induced Myocardial Fibrosis by Regulating TGF-β1/Smads and p38 Signaling and Preventing NR4A1 Cytoplasmic Localization. Front Pharmacol 2021; 12:644886. [PMID: 33995055 PMCID: PMC8120298 DOI: 10.3389/fphar.2021.644886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 01/14/2023] Open
Abstract
Myocardial fibrosis is closely related to high morbidity and mortality. In Inner Mongolia, Gentianella amarella subsp. acuta (Michx.) J.M.Gillett (G. acuta) is a kind of tea used to prevent cardiovascular diseases. Bellidifolin (BEL) is an active xanthone molecule from G. acuta that protects against myocardial damage. However, the effects and mechanisms of BEL on myocardial fibrosis have not been reported. In vivo, BEL dampened isoprenaline (ISO)-induced cardiac structure disturbance and collagen deposition. In vitro, BEL inhibited transforming growth factor (TGF)-β1-induced cardiac fibroblast (CF) proliferation. In vivo and in vitro, BEL decreased the expression of α-smooth muscle actin (α-SMA), collagen Ⅰ and Ⅲ, and inhibited TGF-β1/Smads signaling. Additionally, BEL impeded p38 activation and NR4A1 (an endogenous inhibitor for pro-fibrogenic activities of TGF-β1) phosphorylation and inactivation in vitro. In CFs, inhibition of p38 by SB203580 inhibited the phosphorylation of NR4A1 and did not limit Smad3 phosphorylation, and blocking TGF-β signaling by LY2157299 and SB203580 could decrease the expression of α-SMA, collagen I and III. Overall, both cell and animal studies provide a potential role for BEL against myocardial fibrosis by inhibiting the proliferation and phenotypic transformation of CFs. These inhibitory effects might be related to regulating TGF-β1/Smads pathway and p38 signaling and preventing NR4A1 cytoplasmic localization.
Collapse
Affiliation(s)
- Hong-Xia Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Department of Clinical Foundation of Chinese Medicine, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jia-Huan Sun
- Department of Medical Laboratory Science, College of Integration of Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ting-Ting Yao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuan Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Geng-Rui Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chuang Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xing-Chao Liu
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Wei-Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiu-Hang Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Ai-Ying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
11
|
Xu A, Zhou J, Li Y, Qiao L, Jin C, Chen W, Sun L, Wu S, Li X, Zhou D, Jia S, Zhang B, Yao J, Zhang X, You H, Huang J. 14-kDa phosphohistidine phosphatase is a potential therapeutic target for liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2021; 320:G351-G365. [PMID: 33406007 DOI: 10.1152/ajpgi.00334.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/20/2020] [Indexed: 01/31/2023]
Abstract
Liver fibrosis, a major cause of morbidity and mortality worldwide, leads to liver damage, seriously threatening human health. In our previous study, we demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) was upregulated in fibrotic liver tissue and involved in the migration and lamellipodia formation of hepatic stellate cells (HSCs). In this study, we evaluated PHP14 as a therapeutic target for liver fibrosis and investigated the mechanism by which it mediates liver fibrosis. AAV-shPhpt1 administration significantly attenuates CCl4-induced liver fibrosis in mice. In particular, fibrosis-associated inflammatory infiltration was significantly suppressed after PHP14 knockdown. Mechanistically, PHP14 regulated macrophage recruitment, infiltration, and migration by affecting podosome formation of macrophages. Inhibition of PHP14 decreased the expression of the fibrogenic signature at the early stage of liver fibrogenesis and the activation of HSCs in vivo. Thus, PHP14 can be considered a potential therapeutic target for liver fibrosis.NEW & NOTEWORTHY PHP14 inhibition via adeno-associated virus (AAV)-mediated gene silencing could potently attenuate carbon tetrachloride (CCl4)-induced liver fibrosis. PHP14 could regulate the migration of macrophages to the site of injury in vivo. PHP14 knockdown in vivo influenced the environment of fibrogenesis and relevant signaling pathways, subsequently affecting myofibroblast activation.
Collapse
Affiliation(s)
- Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jichao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Luyao Qiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Caicai Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lan Sun
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shanna Wu
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Donghu Zhou
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Siyu Jia
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingyi Yao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Hong You
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, People's Republic of China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Ungefroren H, Wellner UF, Keck T, Lehnert H, Marquardt JU. The Small GTPase RAC1B: A Potent Negative Regulator of-and Useful Tool to Study-TGFβ Signaling. Cancers (Basel) 2020; 12:E3475. [PMID: 33266416 PMCID: PMC7700615 DOI: 10.3390/cancers12113475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
RAC1 and its alternatively spliced isoform, RAC1B, are members of the Rho family of GTPases. Both isoforms are involved in the regulation of actin cytoskeleton remodeling, cell motility, cell proliferation, and epithelial-mesenchymal transition (EMT). Compared to RAC1, RAC1B exhibits a number of distinctive features with respect to tissue distribution, downstream signaling and a role in disease conditions like inflammation and cancer. The subcellular locations and interaction partners of RAC1 and RAC1B vary depending on their activation state, which makes RAC1 and RAC1B ideal candidates to establish cross-talk with cancer-associated signaling pathways-for instance, interactions with signaling by transforming growth factor β (TGFβ), a known tumor promoter. Although RAC1 has been found to promote TGFβ-driven tumor progression, recent observations in pancreatic carcinoma cells surprisingly revealed that RAC1B confers anti-oncogenic properties, i.e., through inhibiting TGFβ-induced EMT. Since then, an unexpected array of mechanisms through which RAC1B cross-talks with TGFβ signaling has been demonstrated. However, rather than being uniformly inhibitory, RAC1B interacts with TGFβ signaling in a way that results in the selective blockade of tumor-promoting pathways, while concomitantly allowing tumor-suppressive pathways to proceed. In this review article, we are going to discuss the specific interactions between RAC1B and TGFβ signaling, which occur at multiple levels and include various components such as ligands, receptors, cytosolic mediators, transcription factors, and extracellular inhibitors of TGFβ ligands.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany;
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, Campus Kiel, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Ulrich F. Wellner
- Clinic for Surgery, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany; (U.F.W.); (T.K.)
| | - Tobias Keck
- Clinic for Surgery, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany; (U.F.W.); (T.K.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany;
| |
Collapse
|
13
|
Elucidating the Mechanisms of Hugan Buzure Granule in the Treatment of Liver Fibrosis via Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020. [DOI: 10.1155/2020/8385706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective. To holistically explore the latent active ingredients, targets, and related mechanisms of Hugan buzure granule (HBG) in the treatment of liver fibrosis (LF) via network pharmacology. Methods. First, we collected the ingredients of HBG by referring the TCMSP server and literature and filtered the active ingredients though the criteria of oral bioavailability ≥30% and drug-likeness index ≥0.18. Second, herb-associated targets were predicted and screened based on the BATMAN-TCM and SwissTargetPrediction platforms. Candidate targets related to LF were collected from the GeneCards and OMIM databases. Furthermore, the overlapping target genes were used to construct the protein-protein interaction network and “drug-compound-target-disease” network. Third, GO and KEGG pathway analyses were carried out to illustrate the latent mechanisms of HBG in the treatment of LF. Finally, the combining activities of hub targets with active ingredients were further verified based on software AutoDock Vina. Results. A total of 25 active ingredients and 115 overlapping target genes of HBG and LF were collected. Besides, GO enrichment analysis exhibited that the overlapping target genes were involved in DNA-binding transcription activator activity, RNA polymerase II-specific, and oxidoreductase activity. Simultaneously, the key molecular mechanisms of HBG against LF were mainly involved in PI3K-AKT, MAPK, HIF-1, and NF-κB signaling pathways. Also, molecular docking simulation demonstrated that the key targets of HBG for antiliver fibrosis were IL6, CASP3, EGFR, VEGF, and MAPK. Conclusion. This work validated and predicted the underlying mechanisms of multicomponent and multitarget about HBG in treating LF and provided a scientific foundation for further research.
Collapse
|
14
|
Wang S, Shuai C, Gao S, Jiang J, Luan J, Lv X. Chemokine CXCL14 acts as a potential genetic target for liver fibrosis. Int Immunopharmacol 2020; 89:107067. [PMID: 33039963 DOI: 10.1016/j.intimp.2020.107067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
There are multiple causes of liver fibrosis, common ones include ethanol, toxins, and cholestasis. However, whether these different etiologies lead to the same pathological outcomes contain common genetic targets or signaling pathways, the current research has not attracted widespread attention. GSE40041 and GSE55747 were downloaded from the Gene Expression Omnibus (GEO) database. GSE40041 and GSE55747 represent the differential expression profiles in the liver of mice with bile duct ligation (BDL) and carbon tetrachloride (CCl4) induced liver fibrosis models, respectively. By using GEO2R, 701 differential expression genes (DEGs) in GSE40041 and 6540 DEGs in GSE55747 were identified. 260 co-DEGs were shared and extracted for gene ontology (GO) analysis. Through GO analysis, it was found that the regulation of cell migration in biological processes (BPs) was closely related to the pathogenesis of liver fibrosis, and the genes involved in this process include a key gene, chemokine (C-X-C motif) ligand 14 (CXCL14). Subsequently, further bioinformatic analysis showed that CXCL14 may be regulated by miR-122 to participate in the progression of liver fibrosis. Then real-time PCR and western blotting were performed to validate the expression of CXCL14 in liver tissue after liver fibrosis caused by different etiologies (ethanol, CCl4). The expression of CXCL4 in liver fibrosis induced by BDL was verified in another GEO dataset. Basically consistent with our bioinformatics results, our experimental results showed that the expression of CXCL14 was most significantly increased in alcoholic liver fibrosis model, followed by CCl4-induced liver fibrosis, which was also significantly increased in the BDL-induced model. Thus, CXCL14 can act as a common potential genetic target for different liver fibrosis diseases.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Chen Shuai
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jia Jiang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
15
|
Wu F, Ning L, Zhou R, Shen A. Screening and evaluation of key genes in contributing to pathogenesis of hepatic fibrosis based on microarray data. Eur J Med Res 2020; 25:43. [PMID: 32943114 PMCID: PMC7499914 DOI: 10.1186/s40001-020-00443-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatic fibrosis (HF), which is characterized by the excessive accumulation of extracellular matrix (ECM) in the liver, usually progresses to liver cirrhosis and then death. To screen differentially expressed (DE) long non-coding RNAs (lncRNAs) and mRNAs, explore their potential functions to elucidate the underlying mechanisms of HF. METHODS The microarray of GSE80601 was downloaded from the Gene Expression Omnibus database, which is based on the GPL1355 platform. Screening for the differentially expressed LncRNAs and mRNAs was conducted between the control and model groups. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to analyze the biological functions and pathways of the DE mRNAs. Additionally, the protein-protein interaction (PPI) network was delineated. In addition, utilizing the Weighted Gene Co-expression Network Analysis (WGCNA) package and Cytoscape software, we constructed lncRNA-mRNA weighted co-expression networks. RESULTS A total of 254 significantly differentially expressed lncRNAs and 472 mRNAs were identified. GO and KEGG analyses revealed that DE mRNAs regulated HF by participating in the GO terms of metabolic process, inflammatory response, response to wounding and oxidation-reduction. DE mRNAs were also significantly enriched in the pathways of ECM-receptor interaction, PI3K-Akt signaling pathway, focal adhesion (FA), retinol metabolism and metabolic pathways. Moreover, 24 lncRNAs associated with 40 differentially expressed genes were observed in the modules of lncRNA-mRNA weighted co-expression network. CONCLUSIONS This study revealed crucial information on the molecular mechanisms of HF and laid a foundation for subsequent genes validation and functional studies, which could contribute to the development of novel diagnostic markers and provide new therapeutic targets for the clinical treatment of HF.
Collapse
Affiliation(s)
- Furong Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Lijuan Ning
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
| |
Collapse
|
16
|
Qiao M, Yang J, Zhu Y, Zhao Y, Hu J. Transcriptomics and proteomics analysis of system-level mechanisms in the liver of apigenin-treated fibrotic rats. Life Sci 2020; 248:117475. [PMID: 32119963 DOI: 10.1016/j.lfs.2020.117475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
AIMS Liver fibrosis is a crucial pathological feature which could result in cirrhosis and hepatocarcinoma. But until now, there is no favourable treatment for it. Apigenin (APG) is a flavonoid, which exhibits efficient anti-liver fibrosis activity, but its underlying mechanisms were rarely studied. So this work aims to estimate the potential therapeutic action of APG on liver fibrosis rats and to gain insight into its system-level mechanisms. MAIN METHODS Hepatic fibrosis was induced by CCl4 in Wistar rats, and APG was given in the light of the regimen. Biochemical indexes, histopathological change and immunohistochemistry of liver were evaluated. The optimal effect group of APG was selected for further transcriptomic and proteomic analysis. KEY FINDINGS APG ameliorated liver fibrosis via reducing the levels of AST, ALT, ALP, LDH, Hyp, TP, TB, DB, HA, LN, PCIII and IV-C, mitigating fibrosis and inflammation of liver in H&E and Masson staining. Mechanistically, APG elevated the activity of ALB, SOD and GSH-PX with reducing the level of MDA. The results of microarray and TMT revealed that 4919 genes and 4876 proteins were differentially expressed in the APG and model groups. Besides, transcriptomics and proteomics analyses unfolded 120 overlapped proteins, enriched in 111 GO terms containing apoptotic process, angiogenesis, cell migration and proliferation, etc. Meanwhile, KEGG pathway analysis showed that 26 pathways containing HIF-1/MAPK/eNOS/VEGF/PI3K/Akt signaling pathway, regulation of actin cytoskeleton and focal adhesion mostly. SIGNIFICANCE APG can ameliorate CCl4-induced liver fibrosis via VEGF-mediated FAK phosphorylation through the MAPKs, PI3K/Akt, HIF-1, ROS, and eNOS pathways, which may hopefully become the anti-liver fibrosis activity of natural product.
Collapse
Affiliation(s)
- Ming Qiao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Yi Zhu
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Yao Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
17
|
Chen W, Yan X, Yang A, Xu A, Huang T, You H. miRNA-150-5p promotes hepatic stellate cell proliferation and sensitizes hepatocyte apoptosis during liver fibrosis. Epigenomics 2019; 12:53-67. [PMID: 31833387 DOI: 10.2217/epi-2019-0104] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To explore the role of miRNA-150-5p (miR-150-5p) in liver fibrosis. Materials & methods: miRNA expression profiles, CCl4-induced liver fibrosis progression and regression rodent models, quantitative real-time PCR, miR-150-5p mimics and inhibitors, cell proliferation and apoptosis detection, RNA sequencing and bioinformatics analysis were employed. Results: Liver tissue miR-150-5p expression was positively associated with liver fibrosis progression and regression; however, miR-150-5p exhibited a cell-specific expression pattern, namely, it was enhanced in hepatocytes but reduced in hepatic stellate cells (HSCs) during liver fibrosis; miR-150-5p overexpression promoted HSC apoptosis and sensitized hepatocyte apoptosis; miR-150-5p mimic had a larger influence on the transcriptomic stability of HSCs than that of hepatocytes; miR-150-5p mediated activation of interferon signaling pathways might be responsible for HSC apoptosis. Conclusion: miR-150-5p exhibited an opposite regulation and function pattern between HSCs and hepatocytes during liver fibrosis.
Collapse
Affiliation(s)
- Wei Chen
- Experimental & Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Tolerance Induction & Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xuzhen Yan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, PR China
| | - Aiting Yang
- Experimental & Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Tolerance Induction & Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Anjian Xu
- Experimental & Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Tolerance Induction & Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Tao Huang
- Experimental & Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Tolerance Induction & Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Hong You
- Experimental & Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Tolerance Induction & Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, PR China
| |
Collapse
|
18
|
Differentiation-inducing factor-1 prevents hepatic stellate cell activation through inhibiting GSK3β inactivation. Biochem Biophys Res Commun 2019; 520:140-144. [PMID: 31582219 DOI: 10.1016/j.bbrc.2019.09.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Differentiation-inducing factor-1 (DIF-1), a morphogen produced by the cellular slime mold Dictyostelium discoideum, is a natural product that has attracted considerable attention for its antitumor properties. Here, we report a novel inhibitory effect of DIF-1 on the activation of hepatic stellate cells (HSCs) responsible for liver fibrosis. DIF-1 drastically inhibited transdifferentiation of quiescent HSCs into myofibroblastic activated HSCs in a concentration-dependent manner, thus conferring an antifibrotic effect against in the liver. Neither SQ22536, an adenylate cyclase inhibitor, nor ODQ, a guanylate cyclase inhibitor, showed any effect on the inhibition of HSC activation by DIF-1. In contrast, TWS119, a glycogen synthase kinase 3β (GSK3β) inhibitor, attenuated the inhibitory effect of DIF-1. Moreover, the level of inactive GSK3β (phosphorylated at Ser9) was significantly reduced by DIF-1. DIF-1 also inhibited nuclear translocation of β-catenin and reduced the level of non-phospho (active) β-catenin. These results suggest that DIF-1 inhibits HSC activation by disrupting the Wnt/β-catenin signaling pathway through dephosphorylation of GSK3β. We propose that DIF-1 is a possible candidate as a therapeutic agent for preventing liver fibrosis.
Collapse
|
19
|
Jiang H, Wu F, Jiang N, Gao J, Zhang J. Reconstruction and analysis of competitive endogenous RNA network reveals regulatory role of long non‑coding RNAs in hepatic fibrosis. Mol Med Rep 2019; 20:4091-4100. [PMID: 31545470 PMCID: PMC6797987 DOI: 10.3892/mmr.2019.10682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatic fibrosis (HF), one of the leading global health problems, is defined as aberrant and excess production of extracellular matrix components. The pathogenesis of HF is complex and poorly understood. Long non‑coding RNAs (LncRNAs) can interact with microRNAs (miRNAs) as competing endogenous RNAs (ceRNAs) to regulate the expression of target genes, which play a significant role in the initiation and progression of HF. In the present study, the LncRNA‑associated ceRNA network was reconstructed based on LncRNA, miRNA and mRNA expression profiles that were downloaded from National Center for Biotechnology Information Gene Expression Omnibus. Bioinformatics assessments including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed with Database for Annotation, Visualization and Integration Discovery. The ceRNA network was composed of 220 LncRNA nodes, 24 miRNA nodes, 164 mRNA nodes and 1,149 edges. Functional assays identified that a total of 338 GO terms and 25 pathways, including regulation of cytokine and collagen, and the transforming growth factor‑β and Toll‑like receptor signaling pathways, were significantly enriched. In addition, 4 LncRNAs (NONMMUT036242, XR_877072, XR_378619 and XR_378418) were highly related to HF and thereby chosen as key LncRNAs. The present study uncovered a ceRNA network that could further the understanding of the mechanisms underlying HF development and provide potential novel markers for clinical diagnosis and targets for treatment.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Furong Wu
- Department of Pharmacy, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Nannan Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jiafu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
20
|
Chen W, Wu X, Yan X, Xu A, Yang A, You H. Multitranscriptome analyses reveal prioritized genes specifically associated with liver fibrosis progression independent of etiology. Am J Physiol Gastrointest Liver Physiol 2019; 316:G744-G754. [PMID: 30920297 DOI: 10.1152/ajpgi.00339.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elimination or suppression of causative factors can raise the possibility of liver fibrosis regression. However, different injurious stimuli will give fibrosis from somewhat different etiologies, which, in turn, may hamper the discovery of liver fibrosis-specific therapeutic drugs. Therefore, the analogical cellular and molecular events shared by various etiology-evoked liver fibrosis should be clarified. Our present study systematically integrated five publicly available transcriptomic data sets regarding liver fibrosis with different etiologies from the Gene Expression Omnibus database and performed a series of bioinformatics analyses and experimental verifications. A total of 111 significantly upregulated and 16 downregulated genes were identified specific to liver fibrosis independent of any etiology. These genes were predominately enriched in some Kyoto Encyclopedia of Genes and Genomes pathways, including the "PI3K-AKT signaling pathway," "Focal adhesion," and "ECM-receptor interaction." Subsequently, five prioritized liver fibrosis-specific genes, including COL4A2, THBS2, ITGAV, LAMB1, and PDGFRA, were screened. These genes were positively associated with each other and liver fibrosis progression. In addition, they could robustly separate all stages of samples in both training and validation data sets with diverse etiologies when they were regarded as observed variables applied to principal component analysis plots. Expressions of all five genes were confirmed in activated primary mouse hepatic stellate cells (HSCs) and transforming growth factor β1-treated LX-2 cells. Moreover, THBS2 protein was enhanced in liver fibrosis rodent models, which could promote HSC activation and proliferation and facilitate NOTCH1/JAG1 expression in HSCs. Overall, our current study may provide potential targets for liver fibrosis therapy and aid to a deeper understanding of the molecular underpinnings of liver fibrosis. NEW & NOTEWORTHY Prioritized liver fibrosis-specific genes THBS2, COL4A2, ITGAV, LAMB1, and PDGFRA were identified and significantly associated with liver fibrosis progression and could be combined to discriminate liver fibrosis stages regardless of any etiology. Among the identified prioritized liver fibrosis-specific targets, THBS2 protein was confirmed to be enhanced in liver fibrosis rodent models, which could promote hepatic stellate cell (HSC) activation and proliferation and facilitate NOTCH1/JAG1 expression in HSCs.
Collapse
Affiliation(s)
- Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| | - Xuzhen Yan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Hong You
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| |
Collapse
|
21
|
Sato K, Kennedy L, Liangpunsakul S, Kusumanchi P, Yang Z, Meng F, Glaser S, Francis H, Alpini G. Intercellular Communication between Hepatic Cells in Liver Diseases. Int J Mol Sci 2019; 20:2180. [PMID: 31052525 PMCID: PMC6540342 DOI: 10.3390/ijms20092180] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are perpetuated by the orchestration of hepatocytes and other hepatic non-parenchymal cells. These cells communicate and regulate with each other by secreting mediators such as peptides, hormones, and cytokines. Extracellular vesicles (EVs), small particles secreted from cells, contain proteins, DNAs, and RNAs as cargos. EVs have attracted recent research interests since they can communicate information from donor cells to recipient cells thereby regulating physiological events via delivering of specific cargo mediators. Previous studies have demonstrated that liver cells secrete elevated numbers of EVs during diseased conditions, and those EVs are internalized into other liver cells inducing disease-related reactions such as inflammation, angiogenesis, and fibrogenesis. Reactions in recipient cells are caused by proteins and RNAs carried in disease-derived EVs. This review summarizes cell-to-cell communication especially via EVs in the pathogenesis of liver diseases and their potential as a novel therapeutic target.
Collapse
Grants
- TREATMENT OF PRIMARY SCLEROSING CHOLANGITIS USING EXTRACELLULAR VESICLES PSC Partners Seeking a Cure
- R01 DK110035 NIDDK NIH HHS
- I01 BX000574 BLRD VA
- 5I01BX000574, 1I01BX003031, 1I01BX001724, I01CX000361 VA Merit Award
- IK6 BX004601 BLRD VA
- R01 DK108959 NIDDK NIH HHS
- K01 AA026385 NIAAA NIH HHS
- I01 BX001724 BLRD VA
- DK054811, DK076898, DK107310, DK110035, DK062975, AA025997, DK108959, AA025208, DK107682, AA026917, AA026903, AA025157, and AA026385 NIH HHS
Collapse
Affiliation(s)
- Keisaku Sato
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lindsey Kennedy
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Temple, TX 76504, USA.
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
22
|
Zhang X, Sun L, Chen W, Wu S, Li Y, Li X, Zhang B, Yao J, Wang H, Xu A. ARHGEF4-mediates the actin cytoskeleton reorganization of hepatic stellate cells in 3-dimensional collagen matrices. Cell Adh Migr 2019; 13:169-181. [PMID: 30871422 PMCID: PMC6527375 DOI: 10.1080/19336918.2019.1594497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The actin cytoskeleton of hepatic stellate cells (HSCs) is reorganized when they are cultured in 3D collagen matrices. Here, we investigated the molecular mechanism of actin cytoskeleton reorganization in HSCs cultured in 3D floating collagen matrices (FCM) compared to those on 2D polystyrene surfaces (PS). First, we found that the generation of dendritic cellular processes was controlled by Rac1. Next, we examined the differential gene expression of HSCs cultured on 2D PS and in 3D FCM by RNA-Seq and focused on the changes of actin cytoskeleton reorganization-related molecular components and guanine nucleotide exchange factors (GEFs). The results showed that the expression of genes associated with actin cytoskeleton reorganization-related cellular components, filopodia and lamellipodia, were significantly decreased, but podosome-related genes was significantly increased in 3D FCM. Furthermore, we found that a Rac1-specific GEF, ARHGEF4, played roles in morphological changes, migration and podosome-related gene expression in HSCs cultured in 3D FCM. Abbreviations: 2D PS: 2-dimensional polystyrene surface; 3D FCM: 3-dimensional floating collagen matrices; ARHGEF4: Rho guanine nucleotide exchange factor 4; ARHGEF6: Rho guanine nucleotide exchange factor 6; GEF: guanine nucleotide exchange factor; HSC: hepatic stellate cell
Collapse
Affiliation(s)
- Xiaowei Zhang
- b State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| | - Lan Sun
- c Department of Pathology, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Wei Chen
- a Experimental Center, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Shanna Wu
- d Clinical Laboratory Center, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Yanmeng Li
- a Experimental Center, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Xiaojin Li
- a Experimental Center, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Bei Zhang
- a Experimental Center, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Jingyi Yao
- a Experimental Center, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Huan Wang
- a Experimental Center, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Anjian Xu
- a Experimental Center, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
23
|
Jung H, Shin SH, Kee J. Recent Updates on ProteinN‐Phosphoramidate Hydrolases. Chembiochem 2018; 20:623-633. [DOI: 10.1002/cbic.201800566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Hoyoung Jung
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Son Hye Shin
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Jung‐Min Kee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
24
|
Peng F, Tee JK, Setyawati MI, Ding X, Yeo HLA, Tan YL, Leong DT, Ho HK. Inorganic Nanomaterials as Highly Efficient Inhibitors of Cellular Hepatic Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31938-31946. [PMID: 30156820 DOI: 10.1021/acsami.8b10527] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chronic liver dysfunction usually begins with hepatic fibrosis. To date, no effective anti-fibrotic drugs have been approved for clinical use in humans. In the current work, titanium dioxide (TiO2) nanoparticles (NPs) and silicon dioxide (SiO2) NPs are used as active inhibitors with intrinsic chemico-physico properties to block fibrosis and the associated phenotypes through acting on hepatic stellate cells (HSCs, the liver machinery for depositing scar tissues seen in fibrosis). Using LX-2 cells as the HSC model, internalized nanomaterials are found to suppress classical outcomes of cellular fibrosis, for example, inhibiting the expression of collagen I (Col-I) and alpha smooth muscle actin (α-SMA), initiated by transforming growth factor β (TGF-β)-activated HSCs in both a concentration-dependent and a time-dependent manner. Biochemically, these nanomaterials could also facilitate the proteolytic breakdown of collagen by up-regulation of matrix metalloproteinases (MMPs) and down-regulation of tissue inhibitors of MMPs (TIMPs). Furthermore, through regulating epithelial-mesenchymal transition (EMT) genes [e.g., E-cadherin (E-Cad) and N-cadherin (N-Cad)], the adhesion and migration profiles of TGF-β-activated LX-2 cells treated with nanomaterials were further inhibited, reverting them to a more quiescent state. Thus, the collective results pave the new way that nanomaterials can be used as potential therapeutic inhibitors for the treatment of in vivo fibrosis.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pharmacy, Faculty of Science , National University of Singapore , 18 Science Drive 4 , Singapore 117543 , Singapore
| | - Jie Kai Tee
- Department of Pharmacy, Faculty of Science , National University of Singapore , 18 Science Drive 4 , Singapore 117543 , Singapore
- NUS Graduate School for Integrative Sciences & Engineering , Centre for Life Sciences , 28 Medical Drive , Singapore 117456 , Singapore
| | - Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Xianguang Ding
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Hui Ling Angie Yeo
- Department of Pharmacy, Faculty of Science , National University of Singapore , 18 Science Drive 4 , Singapore 117543 , Singapore
| | - Yeong Lan Tan
- Department of Pharmacy, Faculty of Science , National University of Singapore , 18 Science Drive 4 , Singapore 117543 , Singapore
- NUS Graduate School for Integrative Sciences & Engineering , Centre for Life Sciences , 28 Medical Drive , Singapore 117456 , Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science , National University of Singapore , 18 Science Drive 4 , Singapore 117543 , Singapore
| |
Collapse
|