1
|
Smithers SP, Brett MF, How MJ, Scott-Samuel NE, Roberts NW. Fiddler crabs (Afruca tangeri) detect second-order motion in both intensity and polarization. Commun Biol 2024; 7:1255. [PMID: 39362984 PMCID: PMC11450093 DOI: 10.1038/s42003-024-06953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Motion vision is vital for a wide range of animal behaviors. Fiddler crabs, for example, rely heavily on motion to detect the movement of avian predators. They are known to detect first-order motion using both intensity (defined by spatiotemporal correlations in luminance) and polarization information (defined separately as spatiotemporal correlations in the degree and/or angle of polarization). However, little is known about their ability to detect second-order motion, another important form of motion information; defined separately by spatiotemporal correlations in higher-order image properties. In this work we used behavioral experiments to test how fiddler crabs (Afruca tangeri) responded to both second-order intensity and polarization stimuli. Fiddler crabs responded to a number of different intensity based second-order stimuli. Furthermore, the crabs also responded to second-order polarization stimuli, a behaviorally relevant stimulus applicable to an unpolarized flying bird when viewed against a polarized sky. The detection of second-order motion in polarization is, to the best of our knowledge, the first demonstration of this ability in any animal. This discovery therefore opens a new dimension in our understanding of how animals use polarization vision for target detection and the broader importance of second-order motion detection for animal behavior.
Collapse
Affiliation(s)
- Samuel P Smithers
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, UK.
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - Maisie F Brett
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, UK
| | | | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, UK.
| |
Collapse
|
2
|
Hölker F, Jechow A, Schroer S, Tockner K, Gessner MO. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220360. [PMID: 37899012 PMCID: PMC10613548 DOI: 10.1098/rstb.2022.0360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/01/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution caused by artificial light at night (ALAN) is increasingly recognized as a major driver of global environmental change. Since emissions are rapidly growing in an urbanizing world and half of the human population lives close to a freshwater shoreline, rivers and lakes are ever more exposed to light pollution worldwide. However, although light conditions are critical to aquatic species, and freshwaters are biodiversity hotspots and vital to human well-being, only a small fraction of studies conducted on ALAN focus on these ecosystems. The effects of light pollution on freshwaters are broad and concern all levels of biodiversity. Experiments have demonstrated diverse behavioural and physiological responses of species, even at low light levels. Prominent examples are skyglow effects on diel vertical migration of zooplankton and the suppression of melatonin production in fish. However, responses vary widely among taxa, suggesting consequences for species distribution patterns, potential to create novel communities across ecosystem boundaries, and cascading effects on ecosystem functioning. Understanding, predicting and alleviating the ecological impacts of light pollution on freshwaters requires a solid consideration of the physical properties of light propagating in water and a multitude of biological responses. This knowledge is urgently needed to develop innovative lighting concepts, mitigation strategies and specifically targeted measures. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Klement Tockner
- Senckenberg Society for Nature Research, 60325 Frankfurt Germany
- Department of BioSciences, Goethe-University, 60438 Frankfurt, Germany
| | - Mark O. Gessner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology, 10587 Berlin, Germany
| |
Collapse
|
3
|
Brodrick E, Jékely G. Photobehaviours guided by simple photoreceptor systems. Anim Cogn 2023; 26:1817-1835. [PMID: 37650997 PMCID: PMC10770211 DOI: 10.1007/s10071-023-01818-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
How MJ, Robertson A, Smithers SP, Wilby D. Polarization vision in terrestrial hermit crabs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:899-905. [PMID: 37043013 PMCID: PMC10643299 DOI: 10.1007/s00359-023-01631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
Polarization vision is used by a wide range of animals for navigating, orienting, and detecting objects or areas of interest. Shallow marine and semi-terrestrial crustaceans are particularly well known for their abilities to detect predator-like or conspecific-like objects based on their polarization properties. On land, some terrestrial invertebrates use polarization vision for detecting suitable habitats, oviposition sites or conspecifics, but examples of threat detection in the polarization domain are less well known. To test whether this also applies to crustaceans that have evolved to occupy terrestrial habitats, we determined the sensitivity of two species of land and one species of marine hermit crab to predator-like visual stimuli varying in the degree of polarization. All three species showed an ability to detect these cues based on polarization contrasts alone. One terrestrial species, Coenobita rugosus, showed an increased sensitivity to objects with a higher degree of polarization than the background. This is the inverse of most animals studied to date, suggesting that the ecological drivers for polarization vision may be different in the terrestrial environment.
Collapse
Affiliation(s)
- Martin J How
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | - Samuel P Smithers
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - David Wilby
- School of Biological Sciences, University of Bristol, Bristol, UK
- Research Software Engineering Team, Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Blake AJ, Hung E, To S, Ng G, Qian J, Gries G. Stable flies sense and behaviorally respond to the polarization of light. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:885-897. [PMID: 37083716 DOI: 10.1007/s00359-023-01624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 04/22/2023]
Abstract
Insects use their polarization-sensitive photoreceptors in a variety of ecological contexts including host-foraging. Here, we investigated the effect of polarized light on host foraging by the blood-feeding stable fly, Stomoxys calcitrans, a pest of livestock. Electroretinogram recordings with chromatic adaptation demonstrated that the spectral sensitivity of stable flies resembles that of other calyptrate flies. Histological studies of the flies' compound eye revealed differences in microvillar arrangement of ommatidial types, assumed to be pale and yellow, with the yellow R7 and pale R8 photoreceptors having the greatest polarization sensitivity. In behavioural experiments, stable flies preferred to alight on horizontally polarized stimuli with a high degree of linear polarization. This preferential response disappeared when either ultraviolet (UV) or human-visible wavelengths were omitted from light stimuli. Removing specific wavelength bands further revealed that the combination of UV (330-400 nm) and blue (400-525 nm) wavelength bands was sufficient to enable polarized light discrimination by flies. These findings enhance our understanding of polarization vision and foraging behavior among hematophagous insects and should inform future trap designs.
Collapse
Affiliation(s)
- Adam J Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
- Department of Biology, University of Washington, Seattle, WA, USA.
| | - Emmanuel Hung
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Stephanie To
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Geoffrey Ng
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - James Qian
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
6
|
Tua D, Liu R, Yang W, Zhou L, Song H, Ying L, Gan Q. Imaging-based intelligent spectrometer on a plasmonic rainbow chip. Nat Commun 2023; 14:1902. [PMID: 37019920 PMCID: PMC10076426 DOI: 10.1038/s41467-023-37628-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Compact, lightweight, and on-chip spectrometers are required to develop portable and handheld sensing and analysis applications. However, the performance of these miniaturized systems is usually much lower than their benchtop laboratory counterparts due to oversimplified optical architectures. Here, we develop a compact plasmonic "rainbow" chip for rapid, accurate dual-functional spectroscopic sensing that can surpass conventional portable spectrometers under selected conditions. The nanostructure consists of one-dimensional or two-dimensional graded metallic gratings. By using a single image obtained by an ordinary camera, this compact system can accurately and precisely determine the spectroscopic and polarimetric information of the illumination spectrum. Assisted by suitably trained deep learning algorithms, we demonstrate the characterization of optical rotatory dispersion of glucose solutions at two-peak and three-peak narrowband illumination across the visible spectrum using just a single image. This system holds the potential for integration with smartphones and lab-on-a-chip systems to develop applications for in situ analysis.
Collapse
Affiliation(s)
- Dylan Tua
- Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ruiying Liu
- Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Wenhong Yang
- Material Science Engineering, Physical Science Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Lyu Zhou
- Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Haomin Song
- Material Science Engineering, Physical Science Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Leslie Ying
- Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Qiaoqiang Gan
- Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- Material Science Engineering, Physical Science Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
Nawara TJ, Mattheyses AL. Imaging nanoscale axial dynamics at the basal plasma membrane. Int J Biochem Cell Biol 2023; 156:106349. [PMID: 36566777 PMCID: PMC10634635 DOI: 10.1016/j.biocel.2022.106349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Understanding of how energetically unfavorable plasma membrane shapes form, especially in the context of dynamic processes in living cells or tissues like clathrin-mediated endocytosis is in its infancy. Even though cutting-edge microscopy techniques that bridge this gap exist, they remain underused in biomedical sciences. Here, we demystify the perceived complexity of these advanced microscopy approaches and demonstrate their power in resolving nanometer axial dynamics in living cells. Total internal reflection fluorescence microscopy based approaches are the main focus of this review. We present clathrin-mediated endocytosis as a model system when describing the principles, data acquisition requirements, data interpretation strategies, and limitations of the described techniques. We hope this standardized description will bring the approaches for measuring nanoscale axial dynamics closer to the potential users and help in choosing the right approach to the right question.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Wang Q, Bryanston-Cross PJ, Li Y, Liu Z. Mathematical modeling and experimental verification of aging human eyes polarization sensitivity. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:2398-2409. [PMID: 36520763 DOI: 10.1364/josaa.469734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
The polarization perception sensitivity of the human eyes affects the perceived polarized image quality. In this paper, we used polarized spatiotemporal structured images to develop a spatiotemporal age mapping of the polarization perception of human eyes. We built an optical modulation transfer function mathematical model of the aging human eyes with spatiotemporal frequency domains and introduced the Stokes vector to analyze the polarized images. The proposed model provides a testing method based on a set of polarization images with spatiotemporal frequencies varying according to the perception of differently aged viewers. Then, we experimentally validated the proposed model by performing polarization perception tests on a group of volunteers. The test method has the diagnostic potential to confirm the health of human eyes and identify potential age-related macular diseases.
Collapse
|
9
|
Venables SV, Drerup C, Powell SB, Marshall NJ, Herbert-Read JE, How MJ. Polarization vision mitigates visual noise from flickering light underwater. SCIENCE ADVANCES 2022; 8:eabq2770. [PMID: 36083913 PMCID: PMC9462692 DOI: 10.1126/sciadv.abq2770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In shallow water, downwelling light is refracted from surface waves onto the substrate creating bands of light that fluctuate in both time and space, known as caustics. This dynamic illumination can be a visual hindrance for animals in shallow underwater environments. Animals in such habitats may have evolved to use polarization vision for discriminating objects while ignoring the variations in illumination caused by caustics. To explore this possibility, crabs (Carcinus maenas) and cuttlefish (Sepia officinalis), both of which have polarization vision, were presented with moving stimuli overlaid with caustics. Dynamic caustics inhibited the detection of an intensity-based stimulus but not when these stimuli were polarized. This study is the first to demonstrate that polarization vision reduces the negative impacts that dynamic illumination can have on visual perception.
Collapse
Affiliation(s)
| | | | | | | | - James E. Herbert-Read
- Department of Zoology, University of Cambridge, UK
- Aquatic Ecology Unit, Department of Biology, Lund University, Sweden
| | - Martin J. How
- School of Biological Sciences, University of Bristol, UK
| |
Collapse
|
10
|
Liu X, Yang L, Wang L. Modified Newton-residual interpolation for division of focal plane polarization image demosaicking. OPTICS EXPRESS 2022; 30:33048-33067. [PMID: 36242354 DOI: 10.1364/oe.460495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
With the improvement of semiconductor processing technology, polarization sensors using division of focal plane have gradually become the mainstream method of polarization imaging. Similar to the color restoration method of the Bayer array sensor, the spatial information of polarized image is also recovered through the polarization demosaicking algorithm. In this paper, we propose a new modified Newton-residual interpolation polarization image demosaicking algorithm based on residual interpolation, which is suitable for a monochrome or color polarization filter array. First, we use the modified Newton interpolation method to generate edge-sensitive guiding images. Then, we carry out the improvement of the guide process during the residual interpolation by performing variance statistics on the local window image in the guiding process, so that the edges and flat image blocks have different guiding weights. Finally, we obtain edge-preserving results by applying these two improvements, which reduces the zipper effect and edge confusion. We compare the results of various algorithms on experimental data, demonstrating that our algorithm has impactful improvements in the evaluation metrics based on the ground-truth images.
Collapse
|
11
|
Khaldy L, Foster JJ, Yilmaz A, Belušič G, Gagnon Y, Tocco C, Byrne MJ, Dacke M. The interplay of directional information provided by unpolarised and polarised light in the heading direction network of the diurnal dung beetle Kheper lamarcki. J Exp Biol 2022; 225:274310. [PMID: 35037692 PMCID: PMC8918814 DOI: 10.1242/jeb.243734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
The sun is the most prominent source of directional information in the heading direction network of the diurnal, ball-rolling dung beetle Kheper lamarcki. If this celestial body is occluded from the beetle's field of view, the distribution of the relative weight between the directional cues that remain shifts in favour of the celestial pattern of polarised light. In this study, we continue to explore the interplay of the sun and polarisation pattern as directional cues in the heading direction network of K. lamarcki. By systematically altering the intensity and degree of the two cues presented, we effectively change the relative reliability of these directional cues as they appear to the dung beetle. The response of the ball-rolling beetle to these modifications allows us to closely examine how the weighting relationship of these two sources of directional information is influenced and altered in the heading direction network of the beetle. We conclude that the process in which K. lamarcki relies on directional information is very likely done based on Bayesian reasoning, where directional information conveying the highest certainty at a particular moment is afforded the greatest weight.
Collapse
Affiliation(s)
- Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - James J Foster
- Zoology II, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ayse Yilmaz
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Yakir Gagnon
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.,School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| |
Collapse
|
12
|
Massy R, Hawkes WLS, Doyle T, Troscianko J, Menz MHM, Roberts NW, Chapman JW, Wotton KR. Hoverflies use a time-compensated sun compass to orientate during autumn migration. Proc Biol Sci 2021; 288:20211805. [PMID: 34547904 PMCID: PMC8456149 DOI: 10.1098/rspb.2021.1805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The sun is the most reliable celestial cue for orientation available to daytime migrants. It is widely assumed that diurnal migratory insects use a 'time-compensated sun compass' to adjust for the changing position of the sun throughout the day, as demonstrated in some butterfly species. The mechanisms used by other groups of diurnal insect migrants remain to be elucidated. Migratory species of hoverflies (Diptera: Syrphidae) are one of the most abundant and beneficial groups of diurnal migrants, providing multiple ecosystem services and undergoing directed seasonal movements throughout much of the temperate zone. To identify the hoverfly navigational strategy, a flight simulator was used to measure orientation responses of the hoverflies Scaeva pyrastri and Scaeva selenitica to celestial cues during their autumn migration. Hoverflies oriented southwards when they could see the sun and shifted this orientation westward following a 6 h advance of their circadian clocks. Our results demonstrate the use of a time-compensated sun compass as the primary navigational mechanism, consistent with field observations that hoverfly migration occurs predominately under clear and sunny conditions.
Collapse
Affiliation(s)
- Richard Massy
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Will L. S. Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Jolyon Troscianko
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Myles H. M. Menz
- Department of Migration, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | | | - Jason W. Chapman
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, UK
- Department of Entomology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| |
Collapse
|
13
|
Misson GP, Anderson SJ, Armstrong RA, Gilett M, Reynolds D. The Effect of Age-Related Macular Degeneration on Polarization Pattern Perception. Transl Vis Sci Technol 2021; 10:8. [PMID: 34351366 PMCID: PMC8354032 DOI: 10.1167/tvst.10.9.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to determine if a battery of polarization-modulated stimuli, quantified as a single metric, is effective in identifying macular disease in the presence/absence of cataract or pseudophakia. Methods Using a modified liquid crystal display, polarization pattern perception (PPP) for a formulated battery of geometric and logMAR stimuli was evaluated in participants that had either no eye pathology (healthy participants) or were grouped according to the presence of cataract, pseudophakia, and/or age-related macular degeneration (AMD). PPP was quantified as response frequencies to individual stimuli, and as a novel monocular polarization sensitivity score (Ps) based on perception of the stimulus battery set. Results Stimulus response frequencies were pattern-dependent and, compared with healthy participants, reduced for cataract and AMD groups but not for subjects with pseudophakia. Compared with healthy eyes (n = 47, median Ps = 17), Ps was significantly reduced by AMD (n = 59, median Ps = 1, P < 0.001) and, to a lesser extent, by cataracts (n = 80, median Ps = 6, P < 0.001). There was no significant difference between Ps for healthy and pseudophakic eyes (n = 47, median Ps = 13, P = 0.323). There was no significant correlation between Ps and logMAR visual acuity. Conclusions In the absence of significant cataract, or in pseudophakia, a set of polarization-modulated visual stimuli, quantified as the Ps score, distinguishes AMD from healthy maculae. Translational Relevance Perception of polarization-modulated stimuli, previously shown to be macula-dependent in a laboratory setting, is effective as a test of macular function in health and disease in a clinic setting.
Collapse
Affiliation(s)
- Gary P Misson
- School of Optometry, College of Life and Health Sciences, Aston University, Birmingham, UK.,Department of Ophthalmology, South Warwickshire NHS Foundation Trust, Lakin Road, Warwick, UK
| | - Stephen J Anderson
- School of Optometry, College of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard A Armstrong
- School of Optometry, College of Life and Health Sciences, Aston University, Birmingham, UK
| | - Mark Gilett
- Department of Ophthalmology, South Warwickshire NHS Foundation Trust, Lakin Road, Warwick, UK
| | - David Reynolds
- Department of Ophthalmology, South Warwickshire NHS Foundation Trust, Lakin Road, Warwick, UK
| |
Collapse
|
14
|
Blake AJ, Couture S, Go MC, Gries G. Approach trajectory and solar position affect host plant attractiveness to the small white butterfly. Vision Res 2021; 186:140-149. [PMID: 34126548 DOI: 10.1016/j.visres.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
While it is well documented that insects exploit polarized sky light for navigation, their use of reflected polarized light for object detection has been less well studied. Recently, we have shown that the small white butterfly, Pieris rapae, distinguishes between host and non-host plants based on the degree of linear polarization (DoLP) of light reflected from their leaves. To determine how polarized light cues affect host plant foraging by female P. rapae across their entire visual range including the ultraviolet (300-650 nm), we applied photo polarimetry demonstrating large differences in the DoLP of leaf-reflected light among plant species generally and between host and non-host plants specifically. As polarized light cues are directionally dependent, we also tested, and modelled, the effect of approach trajectory on the polarization of plant-reflected light and the resulting attractiveness to P. rapae. Using photo polarimetry measurements of plants under a range of light source and observer positions, we reveal several distinct effects when polarized reflections are examined on a whole-plant basis rather than at the scale of pixels or plant canopies. Most notably from our modeling, certain approach trajectories are optimal for foraging butterflies, or insects generally, to discriminate between plant species on the basis of the DoLP of leaf-reflected light.
Collapse
Affiliation(s)
- Adam J Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Samuel Couture
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Matthew C Go
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; SNA International, Supporting the Department of Defense POW/MIA Accounting Agency, Central Identification Laboratory, Joint Base Pearl Harbor-Hickam, Hawaii, USA
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
15
|
Temple SE, How MJ, Powell SB, Gruev V, Marshall NJ, Roberts NW. Thresholds of polarization vision in octopuses. J Exp Biol 2021; 224:238090. [PMID: 33602676 PMCID: PMC8077535 DOI: 10.1242/jeb.240812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
Polarization vision is widespread in nature, mainly among invertebrates, and is used for a range of tasks including navigation, habitat localization and communication. In marine environments, some species such as those from the Crustacea and Cephalopoda that are principally monochromatic, have evolved to use this adaptation to discriminate objects across the whole visual field, an ability similar to our own use of colour vision. The performance of these polarization vision systems varies, and the few cephalopod species tested so far have notably acute thresholds of discrimination. However, most studies to date have used artificial sources of polarized light that produce levels of polarization much higher than found in nature. In this study, the ability of octopuses to detect polarization contrasts varying in angle of polarization (AoP) was investigated over a range of different degrees of linear polarization (DoLP) to better judge their visual ability in more ecologically relevant conditions. The ‘just-noticeable-differences’ (JND) of AoP contrasts varied consistently with DoLP. These JND thresholds could be largely explained by their ‘polarization distance’, a neurophysical model that effectively calculates the level of activity in opposing horizontally and vertically oriented polarization channels in the cephalopod visual system. Imaging polarimetry from the animals’ natural environment was then used to illustrate the functional advantage that these polarization thresholds may confer in behaviourally relevant contexts. Summary: Octopuses are highly sensitive to small changes in the angle of polarization (<1 deg contrast), even when the degree of polarization is low, which may confer a functional advantage in behaviourally relevant contexts.
Collapse
Affiliation(s)
- Shelby E Temple
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.,Azul Optics Ltd, Henleaze, Bristol BS9 4QG, UK
| | - Martin J How
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Samuel B Powell
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Viktor Gruev
- Biosensors Lab, Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas W Roberts
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
16
|
Drerup C, How MJ. Polarization contrasts and their effect on the gaze stabilization of crustaceans. J Exp Biol 2021; 224:237796. [PMID: 33692078 PMCID: PMC8077661 DOI: 10.1242/jeb.229898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Many animals go to great lengths to stabilize their eyes relative to the visual scene and do so to enhance the localization of moving objects and to functionally partition the visual system relative to the outside world. An important cue that is used to control these stabilization movements is contrast within the visual surround. Previous studies on insects, spiders and fish have shown that gaze stabilization is achromatic (‘colour blind’), meaning that chromatic contrast alone (in the absence of apparent intensity contrasts) does not contribute to gaze stabilization. Following the assumption that polarization vision is analogous in many ways to colour vision, the present study shows that five different crustacean species do not use the polarization of light alone for gaze stabilization, despite being able to use this modality for detecting predator-like objects. This work therefore suggests that the gaze stabilization in many crustaceans cannot be elicited by the polarization of light alone. Summary: Five different crustacean species do not use the polarization of light alone for gaze stabilization, despite being able to use this modality for detecting predator-like objects.
Collapse
Affiliation(s)
- Christian Drerup
- CCMAR (Centro de Ciências do Mar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Marine Behavioural Ecology Group, Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
17
|
Hardcastle BJ, Omoto JJ, Kandimalla P, Nguyen BCM, Keleş MF, Boyd NK, Hartenstein V, Frye MA. A visual pathway for skylight polarization processing in Drosophila. eLife 2021; 10:e63225. [PMID: 33755020 PMCID: PMC8051946 DOI: 10.7554/elife.63225] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Many insects use patterns of polarized light in the sky to orient and navigate. Here, we functionally characterize neural circuitry in the fruit fly, Drosophila melanogaster, that conveys polarized light signals from the eye to the central complex, a brain region essential for the fly's sense of direction. Neurons tuned to the angle of polarization of ultraviolet light are found throughout the anterior visual pathway, connecting the optic lobes with the central complex via the anterior optic tubercle and bulb, in a homologous organization to the 'sky compass' pathways described in other insects. We detail how a consistent, map-like organization of neural tunings in the peripheral visual system is transformed into a reduced representation suited to flexible processing in the central brain. This study identifies computational motifs of the transformation, enabling mechanistic comparisons of multisensory integration and central processing for navigation in the brains of insects.
Collapse
Affiliation(s)
- Ben J Hardcastle
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Jaison J Omoto
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Pratyush Kandimalla
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Bao-Chau M Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mehmet F Keleş
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Natalie K Boyd
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
18
|
Cho Y, Jeong S, Lee D, Kim S, Park RJ, Gibson L, Zheng C, Park C. Foraging trip duration of honeybee increases during a poor air quality episode and the increase persists thereafter. Ecol Evol 2021; 11:1492-1500. [PMID: 33613984 PMCID: PMC7882926 DOI: 10.1002/ece3.7145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Increased concentration of airborne particulate matter (PM) in the atmosphere alters the degree of polarization of skylight which is used by honeybees for navigation during their foraging trips. However, little has empirically shown whether poor air quality indeed affects foraging performance (foraging trip duration) of honeybee. Here, we show apparent increases in the average duration of honeybee foraging during and after a heavy air pollution event compared with that of the pre-event period. The average foraging duration of honeybees during the event increased by 32 min compared with the pre-event conditions, indicating that 71% more time was spent on foraging. Moreover, the average foraging duration measured after the event did not recover to its pre-event level. We further investigated whether an optical property (Depolarization Ratio, DR) of dominant PM in the atmosphere and level of air pollution (fine PM mass concentration) affect foraging trip duration. The result demonstrates the DR and fine PM mass concentration have significant effects on honeybee foraging trip duration. Foraging trip duration increases with decreasing DR while it increases with increasing fine PM mass concentration. In addition, the effects of fine PM mass concentration are synergistic with overcast skies. Our study implies that poor air quality could pose a new threat to bee foraging.
Collapse
Affiliation(s)
- Yoori Cho
- Department of Environmental PlanningGraduate School of Environmental StudiesSeoul National UniversitySeoulKorea
| | - Sujong Jeong
- Department of Environmental PlanningGraduate School of Environmental StudiesSeoul National UniversitySeoulKorea
| | - Dowon Lee
- Department of Environmental PlanningGraduate School of Environmental StudiesSeoul National UniversitySeoulKorea
| | - Sang‐Woo Kim
- School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
| | - Rokjin J. Park
- School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
| | - Luke Gibson
- School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Chunmiao Zheng
- School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Chan‐Ryul Park
- Urban Forests Research CenterNational Institute of Forest ServicesSeoulKorea
| |
Collapse
|
19
|
Misson GP, Anderson SJ, Armstrong RA, Gillett M, Reynolds D. The Clinical Application of Polarization Pattern Perception. Transl Vis Sci Technol 2020; 9:31. [PMID: 33173610 PMCID: PMC7594592 DOI: 10.1167/tvst.9.11.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Determine the repeatability of and optimum stimulus parameters for testing polarization pattern perception in a real-world clinical population, and assess the ability of polarization perception to distinguish normal from abnormal eyes. Methods Polarization perception was evaluated in staff and patients attending ophthalmology clinics at Warwick Hospital, UK. A series of visual stimuli were presented in pseudorandom order using a liquid-crystal-display-based polarization pattern generator. Stimuli included geometric patterns, gratings, checkerboards, and optotypes. Participants had one or both eyes diagnosed as normal or abnormal following ophthalmic examination, optical coherence tomography, and measures of visual acuity. Measurement scores were assigned to the eye(s) of each participant depending on the total number of stimuli perceived or identified. Results Stimuli covered the range of spatial scales resolvable within polarization perception by normal and abnormal eyes. Different stimuli had different saliencies. For each stimulus type, polarization perception in the abnormal group was significantly reduced compared with normal eyes (P < 0.001). Relative stimulus salience was broadly similar for normal-eye and abnormal-eye viewing groups, being greatest for radially symmetric patterns and least for optotypes. Checkerboard pattern salience had an inverse logarithmic relationship with check fundamental spatial frequency. A devised metric covering the dynamic range of polarization perception was repeatable, and the score derived from the metric was reduced in the abnormal group compared with the normal group (P < 0.001). Conclusions Clinically useful metrics of polarization perception distinguish between normal and abnormal eyes. Translational Relevance Perception of spatial patterns formed of non-uniform polarization fields has potential as a quantitative clinical diagnostic measurement.
Collapse
Affiliation(s)
- Gary P Misson
- School of Optometry, School of Life & Health Sciences, Aston University, Birmingham, UK.,Department of Ophthalmology, South Warwickshire NHS Foundation Trust, Warwick, UK
| | - Stephen J Anderson
- School of Optometry, School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Richard A Armstrong
- School of Optometry, School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Mark Gillett
- Department of Ophthalmology, South Warwickshire NHS Foundation Trust, Warwick, UK
| | - David Reynolds
- Department of Ophthalmology, South Warwickshire NHS Foundation Trust, Warwick, UK
| |
Collapse
|
20
|
Zhong B, Wang X, Gan X, Yang T, Gao J. A Biomimetic Model of Adaptive Contrast Vision Enhancement from Mantis Shrimp. SENSORS 2020; 20:s20164588. [PMID: 32824224 PMCID: PMC7472206 DOI: 10.3390/s20164588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Mantis shrimp have complex visual sensors, and thus, they have both color vision and polarization vision, and are adept at using polarization information for visual tasks, such as finding prey. In addition, mantis shrimp, almost unique among animals, can perform three-axis eye movements, such as pitch, yaw, and roll. With this behavior, polarization contrast in their field of view can be adjusted in real time. Inspired by this, we propose a bionic model that can adaptively enhance contrast vision. In this model, a pixel array is used to simulate a compound eye array, and the angle of polarization (AoP) is used as an adjustment mechanism. The polarization information is pre-processed by adjusting the direction of the photosensitive axis point-to-point. Experiments were performed around scenes where the color of the target and the background were similar, or the visibility of the target was low. The influence of the pre-processing model on traditional feature components of polarized light was analyzed. The results show that the model can effectively improve the contrast between the object and the background in the AoP image, enhance the significance of the object, and have important research significance for applications, such as contrast-based object detection.
Collapse
Affiliation(s)
- Binbin Zhong
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| | - Xin Wang
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
- Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei 230009, China
- Correspondence:
| | - Xin Gan
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| | - Tian Yang
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| | - Jun Gao
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| |
Collapse
|
21
|
Blake AJ, Hahn GS, Grey H, Kwok SA, McIntosh D, Gries G. Polarized light sensitivity in Pieris rapae is dependent on both color and intensity. J Exp Biol 2020; 223:jeb220350. [PMID: 32461306 DOI: 10.1242/jeb.220350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/18/2020] [Indexed: 08/26/2023]
Abstract
There is an ever increasing number of arthropod taxa shown to have polarization sensitivity throughout their compound eyes. However, the downstream processing of polarized reflections from objects is not well understood. The small white butterfly, Pieris rapae, has been demonstrated to exploit foliar polarized reflections, specifically the degree of linear polarization (DoLP), to recognize host plants. The well-described visual system of P. rapae includes several photoreceptor types (red, green, blue) that are sensitive to polarized light. Yet, the roles and interaction among photoreceptors underlying the behavioral responses of P. rapae to stimuli with different DoLP remain unknown. To investigate potential neurological mechanisms, we designed several two-choice behavioral bioassays, displaying plant images on paired LCD monitors, which allowed for independent control of polarization, color and intensity. When we presented choices between stimuli that differed in either color or DoLP, both decreasing and increasing the intensity of the more attractive stimulus reduced the strength of preference. This result suggests that differences in color and DoLP are perceived in a similar manner. When we offered a DoLP choice between plant images manipulated to minimize the response of blue, red, or blue and red photoreceptors, P. rapae shifted its preference for DoLP, suggesting a role for all of these photoreceptors. Modeling of P. rapae photoreceptor responses to test stimuli suggests that differential DoLP is not perceived solely as a color difference. Our combined results suggest that Prapae females process and interpret polarization reflections in a way different from that described for other polarization-sensitive taxa.
Collapse
Affiliation(s)
- Adam J Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Gina S Hahn
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Hayley Grey
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Shelby A Kwok
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Deby McIntosh
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
22
|
Anderson SJ, Edson-Scott A, Misson GP. The electrophysiological response to polarization-modulated patterned visual stimuli. Vision Res 2020; 174:1-9. [PMID: 32492477 DOI: 10.1016/j.visres.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022]
Abstract
Recent reports indicate that the subjective ability of humans to discriminate between polarization E-vector orientations approaches that of many invertebrates. Here, we show that polarization-modulated patterned stimuli generate an objectively recordable electrophysiological response in humans with normal vision. We investigated visual evoked potential (VEP) and electroretinographic (ERG) responses to checkerboard patterns defined solely by their polarization E-vector orientation alternating between ± 45°. Correcting for multiple comparisons, paired-samples t-tests were conducted to assess the significance of post-stimulus deflections from baseline measures of noise. Using standard check pattern sizes for clinical electrophysiology, and a pattern-reversal protocol, participants showed a VEP response to polarization-modulated patterns (PolVEP) with a prominent and consistent positive component near 150 ms (p < 0.01), followed by more variable negative components near 200 ms and 300 ms. The effect was unrecordable with visible wavelengths >550 nm. Further, pseudo-depolarization negated the responses, while control studies provided confirmatory evidence that the PolVEP response was not the product of luminance artefacts. Polarization-modulated patterns did not elicit a recordable ERG response. The possible origins of the PolVEP signals, and the absence of recordable ERG signals, are discussed. We conclude that evoked cortical responses to polarization-modulated patterns provide an objective measure of foveal function, suitable for both humans and non-human primates with equivalent macular anatomy.
Collapse
Affiliation(s)
- Stephen J Anderson
- School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK; Aston Neuroscience Institute, Aston University, Birmingham B4 7ET, UK
| | | | - Gary P Misson
- School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK; Dept of Ophthalmology, South Warwickshire NHS Foundation Trust, Lakin Road, Warwick CV34 5BW, UK.
| |
Collapse
|
23
|
Nahmad-Rohen L, Vorobyev M. Spatial Contrast Sensitivity to Polarization and Luminance in Octopus. Front Physiol 2020; 11:379. [PMID: 32425808 PMCID: PMC7212343 DOI: 10.3389/fphys.2020.00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
While color vision is achieved by comparison of signals of photoreceptors tuned to different parts of light spectra, polarization vision is achieved by comparison of signals of photoreceptors tuned to different orientations of the electric field component of visible light. Therefore, it has been suggested that polarization vision is similar to color vision. In most animals that have color vision, the shape of luminance contrast sensitivity curve differs from the shape of chromatic contrast sensitivity curve. While luminance contrast sensitivity typically decreases at low spatial frequency due to lateral inhibition, chromatic contrast sensitivity generally remains high at low spatial frequency. To find out if the processing of polarization signals is similar to the processing of chromatic signals, we measured the polarization and luminance contrast sensitivity dependence in a color-blind animal with well-developed polarization vision, Octopus tetricus. We demonstrate that, in Octopus tetricus, both luminance and polarization contrast sensitivity decrease at low spatial frequency and peak at the same spatial frequency (0.3 cpd). These results suggest that, in octopus, polarization and luminance signals are processed via similar pathways.
Collapse
Affiliation(s)
- Luis Nahmad-Rohen
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Misha Vorobyev
- Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Didion JE, Smith K, Layne JE. Modifying twisted nematic LCD screens to create dichromatic visual stimuli with LEDs. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremiah E. Didion
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| | - Karleigh Smith
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| | - John E. Layne
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| |
Collapse
|
25
|
Mathejczyk TF, Wernet MF. Modular assays for the quantitative study of visually guided navigation in both flying and walking flies. J Neurosci Methods 2020; 340:108747. [PMID: 32339523 DOI: 10.1016/j.jneumeth.2020.108747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND The quantitative study of behavioral responses to visual stimuli provides crucial information about the computations executed by neural circuits. Insects have long served as powerful model systems, either when walking on air suspended balls (spherical treadmill), or flying while glued to a needle (virtual flight arena). NEW METHOD Here we present detailed instructions for 3D-printing and assembly of arenas optimized for visually guided navigation, including codes for presenting both celestial and panorama cues. These modular arenas can be used either as virtual flight arenas, or as spherical treadmills and consist entirely of commercial and 3D-printed components placed in a temperature and humidity controlled environment. COMPARISON TO EXISTING METHOD(S) Previous assays often include a combination of rather cost-intensive and technically complex, custom-built mechanical, electronic, and software components. Implementation amounts to a major challenge when working in an academic environment without the support of a professional machine shop. RESULTS Robust optomotor responses are induced in flyingDrosophila by displaying moving stripes in a cylinder surrounding the magnetically tethered fly. Similarly, changes in flight heading are induced by presenting changes in the orientation of linearly polarized UV light presented from above. Finally, responses to moving patterns are induced when individual flies are walking on an air-suspended ball. CONCLUSION These modular assays allow for the investigation of a diverse combination navigational cues (sky and panorama) in both flying and walking flies. They can be used for the molecular dissection of neural circuitry in Drosophila and can easily be rescaled for accommodating other insects.
Collapse
Affiliation(s)
- Thomas F Mathejczyk
- Freie Universität Berlin, Fachbereich Biologie, Chemie und Pharmazie, Institut für Biologie - Neurobiologie, Königin-Luise Strasse 1-3, 14195 Berlin, Germany
| | - Mathias F Wernet
- Freie Universität Berlin, Fachbereich Biologie, Chemie und Pharmazie, Institut für Biologie - Neurobiologie, Königin-Luise Strasse 1-3, 14195 Berlin, Germany.
| |
Collapse
|
26
|
Polarization perception in humans: on the origin of and relationship between Maxwell's spot and Haidinger's brushes. Sci Rep 2020; 10:108. [PMID: 31924831 PMCID: PMC6954220 DOI: 10.1038/s41598-019-56916-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/18/2019] [Indexed: 01/23/2023] Open
Abstract
Under specific conditions of illumination and polarization, differential absorption of light by macular pigments is perceived as the entoptic phenomena of Maxwell’s spot (MS) or Haidinger’s brushes (HB). To simulate MS and HB, an existing computational model of polarization-dependent properties of the human macula was extended by incorporating neuronal adaptation to stabilized retinal images. The model predicted that polarized light modifies the appearance of MS leading to the perception of a novel phenomenon. The model also predicted a correlation between the observed diameters of MS and HB. Predictions were tested psychophysically in human observers, whose measured differences in the diameters of each entoptic phenomenon generated with depolarized and linearly polarized light were consistent with the model simulations. These findings support a common origin of each phenomenon, and are relevant to the clinical use of polarization stimuli in detecting and monitoring human eye disorders, including macular degeneration. We conclude: (i) MS and HB both result from differential light absorption through a radial diattenuator, compatible with the arrangement of macular pigments in Henle fibres; (ii) the morphology of MS is dependent on the degree of linear polarization; (iii) perceptual differences between MS and HB result from different states of neural adaptation.
Collapse
|
27
|
Blake AJ, Go MC, Hahn GS, Grey H, Couture S, Gries G. Polarization of foliar reflectance: novel host plant cue for insect herbivores. Proc Biol Sci 2019; 286:20192198. [PMID: 31744439 DOI: 10.1098/rspb.2019.2198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect herbivores exploit plant cues to discern host and non-host plants. Studies of visual plant cues have focused on colour despite the inherent polarization sensitivity of insect photoreceptors and the information carried by polarization of foliar reflectance, most notably the degree of linear polarization (DoLP; 0-100%). The DoLP of foliar reflection was hypothesized to be a host plant cue for insects but was never experimentally tested. Here, we show that cabbage white butterflies, Pieris rapae (Pieridae), exploit the DoLP of foliar reflections to discriminate among plants. In experiments with paired digital plant images, P. rapae females preferred images of the host plant cabbage with a low DoLP (31%) characteristic of cabbage foliage over images of a non-host potato plant with a higher DoLP (50%). By reversing the DoLP of these images, we were able to shift the butterflies' preference for the cabbage host plant image to the potato non-host plant image, indicating that the DoLP had a greater effect on foraging decisions than the differential colour, intensity, or shape of the two plant images. Although previously not recognized, the DoLP of foliar reflection is an essential plant cue that may commonly be exploited by foraging insect herbivores.
Collapse
Affiliation(s)
- Adam J Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Matthew C Go
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Anthropology, University of Illinois, Urbana, IL, USA
| | - Gina S Hahn
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hayley Grey
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Samuel Couture
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
28
|
Heading choices of flying Drosophila under changing angles of polarized light. Sci Rep 2019; 9:16773. [PMID: 31727972 PMCID: PMC6856357 DOI: 10.1038/s41598-019-53330-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/30/2019] [Indexed: 11/14/2022] Open
Abstract
Many navigating insects include the celestial polarization pattern as an additional visual cue to orient their travels. Spontaneous orientation responses of both walking and flying fruit flies (Drosophila melanogaster) to linearly polarized light have previously been demonstrated. Using newly designed modular flight arenas consisting entirely of off-the-shelf parts and 3D-printed components we present individual flying flies with a slow and continuous rotational change in the incident angle of linear polarization. Under such open-loop conditions, single flies choose arbitrary headings with respect to the angle of polarized light and show a clear tendency to maintain those chosen headings for several minutes, thereby adjusting their course to the slow rotation of the incident stimulus. Importantly, flies show the tendency to maintain a chosen heading even when two individual test periods under a linearly polarized stimulus are interrupted by an epoch of unpolarized light lasting several minutes. Finally, we show that these behavioral responses are wavelength-specific, existing under polarized UV stimulus while being absent under polarized green light. Taken together, these findings provide further evidence supporting Drosophila’s abilities to use celestial cues for visually guided navigation and course correction.
Collapse
|
29
|
Jiang T, Wen D, Song Z, Zhang W, Li Z, Wei X, Liu G. Minimized Laplacian residual interpolation for DoFP polarization image demosaicking. APPLIED OPTICS 2019; 58:7367-7374. [PMID: 31674382 DOI: 10.1364/ao.58.007367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Division of focal plane (DoFP) polarization imaging sensors have the distinct advantage of acquiring temporally synchronized Stokes vector in one scene. The sensors' spatially modulated arrangement of a micropolarization array results in loss of spatial resolution and instantaneous field-of-overview errors. Polarization demosaicking (PDM) methods are often utilized to address these drawbacks and achieve the goal of recovering missing polarization information. In this paper, we propose minimized Laplacian polarization residual interpolation for PDM. The Laplacian energy is introduced to improve the interpolation accuracy. We employ interchannel correlation and a guided filter to generate precise tentative estimates and the interpolation performed in the residual domain, where the residuals are the differences between observed values and tentative estimates. Experiments demonstrate that the proposed algorithm provides superior performance in terms of mean average error and peak signal-to-noise ratio.
Collapse
|
30
|
Freas CA, Plowes NJR, Spetch ML. Not just going with the flow: foraging ants attend to polarised light even while on the pheromone trail. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:755-767. [PMID: 31422422 DOI: 10.1007/s00359-019-01363-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
The polarisation pattern of skylight serves as an orientation cue for many invertebrates. Solitary foraging ants, in particular, rely on polarised light to orient along with a number of other visual cues. Yet it is unknown, if this cue is actively used in socially foraging species that use pheromone trails to navigate. Here, we explore the use of polarised light in the presence of the pheromone cues of the foraging trail. The desert harvester ant, Veromessor pergandei, relies on pheromone cues and path integration in separate stages of their foraging ecology (column and fan, respectively). Here, we show that foragers actively orient to an altered overhead polarisation pattern, both while navigating individually in the fan and while on the pheromone-based column. These heading changes occurred during twilight, as well as in the early morning and late afternoon before sunset. Differences in shift size indicate that foragers attend to both the polarisation pattern and the sun's position when available, yet during twilight, headings are dominated by the polarisation pattern. Finally, when the sun's position was experimentally blocked before sunset, shift sizes increased similar to twilight testing. These findings show that celestial cues provide directional information on the pheromone trail.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada.
| | - Nicola J R Plowes
- Department of Life Sciences, Mesa Community College, 1833 Southern Avenue, Mesa, AZ, 85202, USA
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
31
|
Smithers SP, Roberts NW, How MJ. Parallel processing of polarization and intensity information in fiddler crab vision. SCIENCE ADVANCES 2019; 5:eaax3572. [PMID: 31457103 PMCID: PMC6703871 DOI: 10.1126/sciadv.aax3572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Many crustaceans are sensitive to the polarization of light and use this information for object-based visually guided behaviors. For these tasks, it is unknown whether polarization and intensity information are integrated into a single-contrast channel, whereby polarization directly contributes to perceived intensity, or whether they are processed separately and in parallel. Using a novel type of visual display that allowed polarization and intensity properties of visual stimuli to be adjusted independently and simultaneously, we conducted behavioral experiments with fiddler crabs to test which of these two models of visual processing occurs. We found that, for a loom detection task, fiddler crabs process polarization and intensity information independently and in parallel. The crab's response depended on whichever contrast was the most salient. By contributing independent measures of visual contrast, polarization and intensity provide a greater range of detectable contrast information for the receiver, increasing the chance of detecting a potential threat.
Collapse
|
32
|
Misson GP, Temple SE, Anderson SJ. Computational simulation of human perception of spatially dependent patterns modulated by degree and angle of linear polarization. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:B65-B70. [PMID: 31044957 DOI: 10.1364/josaa.36.000b65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Recent studies on polarization perception have shown that humans are sensitive to patterned stimuli modulated by either angle of linear polarization (AoP) or degree of polarization (DoP). Here, we present a model of human polarization sensitivity that incorporates both AoP and DoP as spatially dependent input variables. Applying the model to both sinusoidal- and square-wave-modulated DoP and AoP inputs, we demonstrate the theoretical similarities and differences generated by such inputs. Our model indicates the following: (i) edge boundaries between two adjacent areas of different linear polarization are preserved for both AoP- and DoP-modulated stimuli; and (ii) compared with DoP stimuli, AoP stimuli generate greater luminance changes at the photoreceptor level, suggesting that AoP-modulated patterns are potentially more salient than DoP patterns. The computational model is supported experimentally with an optical test of the model comprising a radial diattenuating polarizing filter and modified liquid crystal displays generating DoP- and AoP-modulated outputs. Psychophysical measures of human sensitivity confirm the increased salience of AoP- relative to DoP-modulated stimuli. These findings have practical application to the selection of DoP- and AoP-modulated stimuli for the investigation of macular function and macular pigment density in healthy and diseased eyes.
Collapse
|
33
|
Arias M, Mappes J, Desbois C, Gordon S, McClure M, Elias M, Nokelainen O, Gomez D. Transparency reduces predator detection in mimetic clearwing butterflies. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mónica Arias
- Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD; CEFE; Montpellier France
| | - Johanna Mappes
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions; University of Jyväskylä; Jyväskylä Finland
| | - Charlotte Desbois
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE; Université des Antilles; Paris France
| | - Swanne Gordon
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions; University of Jyväskylä; Jyväskylä Finland
| | - Melanie McClure
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE; Université des Antilles; Paris France
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE; Université des Antilles; Paris France
| | - Ossi Nokelainen
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions; University of Jyväskylä; Jyväskylä Finland
| | - Doris Gomez
- Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD; CEFE; Montpellier France
- INSP, Sorbonne Université; CNRS; Paris France
| |
Collapse
|
34
|
Marshall NJ, Powell SB, Cronin TW, Caldwell RL, Johnsen S, Gruev V, Chiou THS, Roberts NW, How MJ. Polarisation signals: a new currency for communication. ACTA ACUST UNITED AC 2019; 222:222/3/jeb134213. [PMID: 30733259 DOI: 10.1242/jeb.134213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most polarisation vision studies reveal elegant examples of how animals, mainly the invertebrates, use polarised light cues for navigation, course-control or habitat selection. Within the past two decades it has been recognised that polarised light, reflected, blocked or transmitted by some animal and plant tissues, may also provide signals that are received or sent between or within species. Much as animals use colour and colour signalling in behaviour and survival, other species additionally make use of polarisation signalling, or indeed may rely on polarisation-based signals instead. It is possible that the degree (or percentage) of polarisation provides a more reliable currency of information than the angle or orientation of the polarised light electric vector (e-vector). Alternatively, signals with specific e-vector angles may be important for some behaviours. Mixed messages, making use of polarisation and colour signals, also exist. While our knowledge of the physics of polarised reflections and sensory systems has increased, the observational and behavioural biology side of the story needs more (and more careful) attention. This Review aims to critically examine recent ideas and findings, and suggests ways forward to reveal the use of light that we cannot see.
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Samuel B Powell
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, MD 21250, USA
| | - Roy L Caldwell
- University of California Berkeley, Department of Integrative Biology, Berkeley, CA 94720-3140, USA
| | - Sonke Johnsen
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Viktor Gruev
- Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - T-H Short Chiou
- Department of Life Sciences, National Cheng-Kung University, Tainan City 701, Taiwan
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
35
|
Foster JJ, Kirwan JD, El Jundi B, Smolka J, Khaldy L, Baird E, Byrne MJ, Nilsson DE, Johnsen S, Dacke M. Orienting to polarized light at night - matching lunar skylight to performance in a nocturnal beetle. ACTA ACUST UNITED AC 2019; 222:jeb.188532. [PMID: 30530838 DOI: 10.1242/jeb.188532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
For polarized light to inform behaviour, the typical range of degrees of polarization observable in the animal's natural environment must be above the threshold for detection and interpretation. Here, we present the first investigation of the degree of linear polarization threshold for orientation behaviour in a nocturnal species, with specific reference to the range of degrees of polarization measured in the night sky. An effect of lunar phase on the degree of polarization of skylight was found, with smaller illuminated fractions of the moon's surface corresponding to lower degrees of polarization in the night sky. We found that the South African dung beetle Escarabaeus satyrus can orient to polarized light for a range of degrees of polarization similar to that observed in diurnal insects, reaching a lower threshold between 0.04 and 0.32, possibly as low as 0.11. For degrees of polarization lower than 0.23, as measured on a crescent moon night, orientation performance was considerably weaker than that observed for completely linearly polarized stimuli, but was nonetheless stronger than in the absence of polarized light.
Collapse
Affiliation(s)
- James J Foster
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - John D Kirwan
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Basil El Jundi
- Biocenter (Zoology II), University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Emily Baird
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Sönke Johnsen
- Biology Department, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| |
Collapse
|
36
|
Stewart FJ, Kinoshita M, Arikawa K. Monopolatic motion vision in the butterfly Papilio xuthus. J Exp Biol 2019; 222:222/1/jeb191957. [DOI: 10.1242/jeb.191957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The swallowtail butterfly Papilio xuthus can perceive the linear polarization of light. Using a novel polarization projection system, we recently demonstrated that P. xuthus can detect visual motion based on polarization contrast. In the present study, we attempt to infer via behavioural experiments the mechanism underlying this polarization-based motion vision. Papilio xuthus do not perceive contrast between unpolarized and diagonally polarized light, implying that they cannot unambiguously estimate angle and degree of polarization, at least as far as motion detection is concerned. Furthermore, they conflate brightness and polarization cues, such that bright vertically polarized light resembles dim unpolarized light. These observations are consistent with a one-channel ‘monopolatic’ detector mechanism. We extend our existing model of motion vision in P. xuthus to incorporate these polarization findings, and conclude that the photoreceptors likely to form the basis for the putative monopolatic polarization detector are R3 and R4, which respond maximally to horizontally polarized green light. R5–R8, we propose, form a polarization-insensitive secondary channel tuned to longer wavelengths of light. Consistent with this account, we see greater sensitivity to polarization for green-light stimuli than for subjectively equiluminant red ones. Somewhat counter-intuitively, our model predicts greatest sensitivity to vertically polarized light; owing to the non-linearity of photoreceptor responses, light polarized to an angle orthogonal to a monopolatic detector's orientation offers the greatest contrast with unpolarized light.
Collapse
Affiliation(s)
- Finlay J. Stewart
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| | - Michiyo Kinoshita
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan International Village, Hayama, Kanagawa, 240-0193 Japan
| |
Collapse
|
37
|
Cronin TW. A different view: sensory drive in the polarized-light realm. Curr Zool 2018; 64:513-523. [PMID: 30108632 PMCID: PMC6084560 DOI: 10.1093/cz/zoy040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Sensory drive, the concept that sensory systems primarily evolve under the influence of environmental features and that animal signals are evolutionarily shaped and tuned by these previously existing sensory systems, has been thoroughly studied regarding visual signals across many animals. Much of this work has focused on spectral aspects of vision and signals. Here, I review work on polarized-light signals of animals and relate these to what is known of polarization visual systems, polarized-light aspects of visual scenes, and polarization-related behavior (e.g., orientation, habitat-finding, contrast enhancement). Other than the broad patterns of scattered polarized light in the sky, most polarization in both terrestrial and aquatic environments results from either reflection or scattering in the horizontal plane. With overhead illumination, horizontal features such as the surfaces of many leaves or of air: water interfaces reflect horizontal polarization, and water scatters horizontally polarized light under most conditions. Several animal species have been demonstrated to use horizontally polarized light fields or features in critical aspects of their biology. Significantly, most biological signals are also horizontally polarized. Here, I present relevant polarization-related behavior and discuss the hypothesis that sensory drive has evolutionarily influenced the structure of polarization signals. The paper also considers the evolutionary origin of circular polarization vision and circularly polarized signals. It appears that this class of signals did not evolve under the influence of sensory drive. The study of signals based on polarized light is becoming a mature field of research.
Collapse
Affiliation(s)
- Thomas W Cronin
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | | |
Collapse
|
38
|
Foster JJ, Temple SE, How MJ, Daly IM, Sharkey CR, Wilby D, Roberts NW. Correction to: Polarisation vision: overcoming challenges of working with a property of light we barely see. Naturwissenschaften 2018; 105:32. [PMID: 29744587 DOI: 10.1007/s00114-018-1559-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In "Polarisation vision: overcoming challenges of working with a property of light we barely see" (Foster et al. 2018) we provide a basic description of how Stokes parameters can be estimated and used to calculate the angle of polarisation (AoP).
Collapse
Affiliation(s)
- James J Foster
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Shelby E Temple
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.,Azul Optics Ltd., 7 Bishop Manor Road, Westbury-On-Trym, Bristol, BS10 5BD, UK
| | - Martin J How
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Ilse M Daly
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Camilla R Sharkey
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EG, UK
| | - David Wilby
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Nicholas W Roberts
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|