1
|
Martín‐Ávila JÁ, Díaz‐Aranda LM, Fernández‐Pereira JM, Rebollo S. The European honey buzzard (Pernis apivorus) as an ally for the control of the invasive yellow-legged hornet (Vespa velutina nigrithorax). PEST MANAGEMENT SCIENCE 2025; 81:2237-2247. [PMID: 39797527 PMCID: PMC11906911 DOI: 10.1002/ps.8622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Biological control in integrated pest management (IPM) often overlooked avian predators until the emergence of the ecosystem services approach. Birds are now recognized as key regulators of pest populations in agroforestry landscapes due to their high mobility. The invasive yellow-legged hornet, introduced into Europe in 2004, threatens agriculture, beekeeping and native pollinators. We aimed to determine whether European honey buzzard attacks on yellow-legged hornet nests reduce the densities of individuals (workers) in summer and full-grown colonies in November around the raptor's nests in southwestern Europe. RESULTS We analyzed honey-buzzard foraging patterns of 11 individuals during breeding using trail cameras and GPS emitters to locate attacked hornet nests. The average mode distance from raptor nests to the attacked hornet nests was 1234.7 m, with 89.3% of attacked nests destroyed. We assessed the change in the abundance of hornet workers and in the density of full-grown nests over distance in the vicinity of 17 honey-buzzard nests and 10 control points, finding a significant decline of -0.000116 workers h-1 m-1 within 1000 m of a raptor nest. This impact intensified as the breeding season progressed. However, no significant effect on the density of full-grown hornet nests was observed. CONCLUSION These results are of interest for the management of the exotic hornet, at least on the abundance of workers and at a small scale in the proximity of honey-buzzard nests. These raptors should be considered allies in the fight against hornet populations and included in IPM programmes as a native controller of the pest. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jorge Ángel Martín‐Ávila
- Forest Ecology and Restoration Group (FORECO), Departamento de Ciencias de la VidaUniversidad de AlcaláMadridSpain
| | - Luisa María Díaz‐Aranda
- Forensic Entomology Group, Departamento de Ciencias de la Vida and Instituto Universitario de Investigación en Ciencias PolicialesUniversidad de AlcaláMadridSpain
| | | | - Salvador Rebollo
- Forest Ecology and Restoration Group (FORECO), Departamento de Ciencias de la VidaUniversidad de AlcaláMadridSpain
| |
Collapse
|
2
|
Saunders ME, Lees AC, Grames EM. Understanding and counteracting the denial of insect biodiversity loss. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101338. [PMID: 39894163 DOI: 10.1016/j.cois.2025.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/12/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Biodiversity loss is occurring globally with negative impacts on ecosystem function and human well-being. There is a scientific consensus that diverse environmental and anthropogenic factors are altering different components of insect biodiversity, with changes occurring at all levels of biological organisation. Here, we describe how uncertainty around specific trends and the semantics of 'decline' in relation to insect biodiversity have been leveraged by denialist campaigns to manufacture doubt around the insect biodiversity crisis. Disinformation is one of the biggest threats to social cohesion and environmental integrity globally. We argue that scientists, academic institutions, policymakers, and journalists must combat denialism by relying on robust research, supporting efforts to communicate scientific uncertainty more effectively, and build consensus on the global impacts of insect biodiversity loss.
Collapse
Affiliation(s)
- Manu E Saunders
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia.
| | - Alexander C Lees
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Eliza M Grames
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| |
Collapse
|
3
|
Arazmi FN, Ismail NA, Daud UNS, Mansor MS. DNA Metabarcoding Unveils Habitat-Linked Dietary Variation in Aerial Insectivorous Birds. Animals (Basel) 2025; 15:974. [PMID: 40218367 PMCID: PMC11987892 DOI: 10.3390/ani15070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The conversion of tropical forests into urban and agriculture landscapes may alter insect populations through habitat disturbance and impact the diets of aerial insectivores. Most dietary studies on aerial insectivores have limitation on identifying prey at higher taxonomic levels in broad landscapes, restricting species-level identification and thus making a detailed dietary comparison impossible. This study examines the dietary changes through adaptation of house-farm swiftlets (Aerodramus sp.) and Pacific swallows (Hirundo tahitica) across three distinct habitats in Peninsular Malaysia: mixed-use landscapes, oil palm plantations, and paddy fields. High-throughput DNA metabarcoding with ANML primers targeting mitochondrial CO1 gene, identified 245 arthropod prey species, with six dominant orders: Coleoptera, Diptera, Blattodea, Hemiptera, Hymenoptera, and Lepidoptera. Mixed-use landscapes supported the highest dietary diversity and niche breadth, reflecting their ecological complexity. Paddy fields exhibited moderate diversity, while oil palm plantations demonstrated the lowest diversity, influenced by simplified vegetation structures and limited prey availability. The consumption of agricultural pests and vector species highlights the critical ecological role of aerial insectivorous birds in natural pest management and mitigating vector-borne disease risks. This research emphasizes the importance of conserving habitat heterogeneity to sustain the ecological services provided by these birds, benefiting both agricultural productivity and public health.
Collapse
Affiliation(s)
- Fatihah Najihah Arazmi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia;
| | - Nor Adibah Ismail
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.A.I.); (U.N.S.D.)
| | - Ummi Nur Syafiqah Daud
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.A.I.); (U.N.S.D.)
| | - Mohammad Saiful Mansor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia;
| |
Collapse
|
4
|
Schillé L, Plat N, Barbaro L, Jactel H, Raspail F, Rivoal JB, Castagneyrol B, Mrazova A. Camera traps unable to determine whether plasticine models of caterpillars reliably measure bird predation. PLoS One 2025; 20:e0308431. [PMID: 40048472 PMCID: PMC11884695 DOI: 10.1371/journal.pone.0308431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
Sampling methods that are both scientifically rigorous and ethical are cornerstones of any experimental biological research. Since its introduction 30 years ago, the method of using plasticine prey to quantify predation pressure has become increasingly popular in biology. However, recent studies have questioned the accuracy of the method, suggesting that misinterpretation of predator bite marks and the artificiality of the models may bias the results. Yet, bias per se might not be a methodological issue as soon as its statistical distribution in the samples is even, quantifiable, and thus correctable in quantitative analyses. In this study, we focus on avian predation of lepidopteran larvae models, which is one of the most extensively studied predator-prey interactions across diverse ecosystems worldwide. We compared bird predation on plasticine caterpillar models to that on dead caterpillars of similar size and color, using camera traps to assess actual predation events and to evaluate observer accuracy in identifying predation marks a posteriori. The question of whether plasticine models reliably measure insectivorous bird predation remained unanswered, for two reasons: (1) even the evaluation of experienced observers in the posterior assessment of predation marks on plasticine models was subjective to some extent, and (2) camera traps failed to reflect predation rates as assessed by observers, partly because they could only record evidence of bird presence rather than actual predation events. Camera traps detected more evidence of bird presence than predation clues on plasticine models, suggesting that fake prey may underestimate the foraging activity of avian insectivores. The evaluation of avian predation on real caterpillar corpses was probably also compromised by losses to other predators, likely ants. Given the uncertainties and limitations revealed by this study, and in the current absence of more effective monitoring methods, it remains simpler, more cost-effective, ethical, and reliable to keep using plasticine models to assess avian predation. However, it is important to continue developing improved monitoring technologies to better evaluate and refine these methods in order to advance research in this field.
Collapse
Affiliation(s)
| | - Nattan Plat
- BIOGECO, INRAE, University Bordeaux, Cestas, France
| | - Luc Barbaro
- DYNAFOR, University of Toulouse, INRAE, Toulouse, France
| | - Hervé Jactel
- BIOGECO, INRAE, University Bordeaux, Cestas, France
| | | | | | | | - Anna Mrazova
- BIOGECO, INRAE, University Bordeaux, Cestas, France
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Andresen JL, Birkemoe T, Jensen KA, Morozova V, Oughton DH. Radiocaesium and radiostrontium transfer to an insect herbivore and an insect detritivore through holometabolous development: A comparison between the cabbage butterfly (Pieris brassicae) and the black soldier fly (Hermetia illucens). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178422. [PMID: 39824117 DOI: 10.1016/j.scitotenv.2025.178422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
The presence of the long-lived radionuclides 137Cs and 90Sr in ecosystems is a major environmental concern because bioavailable forms of the radionuclides are readily transferred to living organisms. The present study investigated how holometabolous insect development influences the fate of radiocaesium and radiostrontium by examining the behaviour of tracers (134Cs and 84Sr) and stable elements during the larval feeding stage (21-23 days old), the pupal stage, and the adult stage. We aimed to evaluate the degree to which an herbivore or a detritivore food chain could serve as transfer pathways to higher trophic levels in terms of accumulation potential, and during which stage of development the accumulation potential is highest. We used the Cabbage butterfly (Pieris brassicae) and the Black soldier fly (Hermetia illucens) as model insects in the herbivore food chain and the detritivore food chain, respectively. Both food chains showed similar patterns of radiocaesium transfer to the larvae, with concentration ratios of 0.26 to 1.15. Radiocaesium levels then gradually decreased during the transition from larva to adult. We also found strontium in the larvae of both model insects. However, while the transfer to P. brassicae was low and the majority of retained strontium was removed prior to the pupal stage, we found that strontium biomagnified in H. illucens larvae and pupae, showing high accumulation potentials. Overall, our results suggest that radiocaesium transfer to terrestrial holometabolous insects is predominantly determined by radiocaesium levels in their diet, whereas radiostrontium transfer is influenced by the insects' dietary need for calcium and the concentration of calcium in the diet.
Collapse
Affiliation(s)
- Jonas L Andresen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Tone Birkemoe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Karl A Jensen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Valeriia Morozova
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Deborah H Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Abbas A, Saddam B, Ullah F, Hassan MA, Shoukat K, Hafeez F, Alam A, Abbas S, Ghramh HA, Khan KA, Iqbal R, Dara MZN, Ali J, Ri Zhao C. Global distribution and sustainable management of Asian corn borer (ACB), Ostrinia furnacalis (Lepidoptera: Crambidae): recent advancement and future prospects. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025; 115:105-120. [PMID: 39834216 DOI: 10.1017/s0007485324000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Asian corn borer (ACB), Ostrinia furnacalis (Guenée, 1854), is a serious pest of several crops, particularly a destructive pest of maize and other cereals throughout most of Asia, including China, the Philippines, Indonesia, Malaysia, Thailand, Sri Lanka, India, Bangladesh, Japan, Korea, Vietnam, Laos, Myanmar, Afghanistan, Pakistan and Cambodia. It has long been known as a pest in South-east Asia and has invaded other parts of Asia, Solomon Islands, parts of Africa and certain regions of Australia and Russia. Consequently, worldwide efforts have been increased to ensure new control strategies for O. furnacalis management. In this article, we provide a comprehensive review of the ACB covering its (i) distribution (geographic range and seasonal variations), (ii) morphology and ecology (taxonomy, life-history, host plants and economic importance) and (iii) management strategies (which include agroecological approaches, mating disruption, integrated genetic approaches, chemical as well as biological control). Furthermore, we conclude this review with recommendations to provide some suggestions for improving eco-friendly pest management strategies to enhance the sustainable management of ACB in infested areas.
Collapse
Affiliation(s)
- Arzlan Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| | - Babu Saddam
- College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Asghar Hassan
- Institute of Entomology, Guizhou University, Guiyang, P.R. China
- The Provincial Special Key Laboratory for Development and Utilization of Insect Resources, Guizhou University; Guiyang, P.R. China
| | - Komal Shoukat
- Department of Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Faisal Hafeez
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| | - Aleena Alam
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| | - Sohail Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | | | - Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| | - Chen Ri Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
| |
Collapse
|
7
|
Seress G, Sándor K, Bókony V, Bukor B, Hubai K, Liker A. Radio-tracking urban breeding birds: The importance of native vegetation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3095. [PMID: 39844423 PMCID: PMC11754724 DOI: 10.1002/eap.3095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/03/2024] [Accepted: 11/14/2024] [Indexed: 01/24/2025]
Abstract
As urban areas continue to expand globally, a deeper understanding of the functioning of urban green spaces is crucial for maintaining habitats that effectively support wildlife within our cities. Cities typically harbor a wide variety of nonnative vegetation, providing limited support for insect populations. The resulting scarcity of arthropods has been increasingly linked to adverse effects at higher trophic levels, such as the reduced reproductive success of insectivorous birds in urban environments. However, the responses by which urban breeding birds cope with the challenges of food limitation remain largely unexplored. To address this knowledge gap, in a Central European city, we employed radiotelemetry tracking and real-time observations on urban-breeding female great tits' habitat use, combined with detailed plant surveys and video recordings of nestlings' diet. This integrated approach enabled us to establish direct links between great tits' foraging behavior, vegetation preferences, and nestling diet. We found that besides tree canopies, great tits also frequently foraged on the ground and that the availability of bird feeders notably affected birds' habitat use. Foraging great tits generally avoided nonnative plants, particularly broadleaved species. When searching for nestling food, great tits were most time-efficient on conifers, albeit these trees provided low amounts of caterpillars (a preferred prey type). Great tits were more likely to forage on and deliver nestling food from large native trees and foraged less on and collected fewer prey items from the most abundant tree species. Our results underscore the importance of several factors that may help improve habitat quality for urban insectivorous birds, with preserving large trees and increasing diverse native vegetation being key elements in this endeavor.
Collapse
Affiliation(s)
- Gábor Seress
- Behavioral Ecology Research Group, Center for Natural SciencesUniversity of PannoniaVeszprémHungary
- HUN‐REN‐PE Evolutionary Ecology Research GroupUniversity of PannoniaVeszprémHungary
| | - Krisztina Sándor
- HUN‐REN‐ELTE Comparative Ethology Research GroupBudapestHungary
- Balaton Uplands National Park DirectorateCsopakHungary
| | - Veronika Bókony
- Department of Evolutionary EcologyPlant Protection Institute, HUN‐REN Centre for Agricultural ResearchBudapestHungary
| | - Boglárka Bukor
- Behavioral Ecology Research Group, Center for Natural SciencesUniversity of PannoniaVeszprémHungary
| | - Katalin Hubai
- Research Group of Ecotoxicology, Center for Natural SciencesUniversity of PannoniaVeszprémHungary
| | - András Liker
- Behavioral Ecology Research Group, Center for Natural SciencesUniversity of PannoniaVeszprémHungary
- HUN‐REN‐PE Evolutionary Ecology Research GroupUniversity of PannoniaVeszprémHungary
| |
Collapse
|
8
|
Sivault E, Koane B, Chmurova L, Sam K. Birds and bats reduce herbivory damage in Papua New Guinean highland forests. Ecology 2024; 105:e4421. [PMID: 39297807 DOI: 10.1002/ecy.4421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 11/05/2024]
Abstract
Insectivorous predators, including birds and bats, play crucial roles in trophic cascades. However, previous research on these cascades has often relied on permanent predator exclosures, which prevent the isolation of specific effects of birds and bats, given their different activity patterns throughout the day. Moreover, limited knowledge exists regarding the variations in individual effects of these predators under different biotic and abiotic conditions, such as changes in elevation. To address these uncertainties, our study aimed to investigate the distinct effects of bats and birds on arthropod densities in foliage and herbivory damage in lowland and highland rainforests of Papua New Guinea (PNG). Predator exclosures were established for one month to exclude diurnal or nocturnal predators across 120 saplings (ca. 2.5-4 m tall) selected from two lowland and two highland forests (i.e., 30 saplings per study site) along the Mt. Wilhelm transect in PNG. Arthropods were collected and measured, and herbivory damage was analyzed at the end of the experiment. Birds significantly reduced arthropod densities by 30%, particularly in arthropods longer than 10 mm, regardless of elevation. Additionally, both birds and bats appeared to mitigate herbivory damage in highland forests, with protected saplings displaying up to 189% more herbivory. Our results support previous studies that have demonstrated the ability of insectivorous predators to reduce leaf damage through the control of arthropods. Furthermore, our approach highlights the importance and necessity of further research on the role of seasons and elevations in trophic cascades.
Collapse
Affiliation(s)
- Elise Sivault
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Bonny Koane
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Lucia Chmurova
- Buglife - The Invertebrate Conservation Trust, G.06, Allia future Business Centre, Peterborough, UK
| | - Katerina Sam
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| |
Collapse
|
9
|
Weschler M, Tronstad L. Wind energy and insects: reviewing the state of knowledge and identifying potential interactions. PeerJ 2024; 12:e18153. [PMID: 39421426 PMCID: PMC11485068 DOI: 10.7717/peerj.18153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/01/2024] [Indexed: 10/19/2024] Open
Abstract
In 2023 the wind industry hit a milestone of one terawatt of installed capacity globally. That amount is expected to double within the next decade as billions of dollars are invested in new wind projects annually. Wildlife mortality is a primary concern regarding the proliferation of wind power, and many studies have investigated bird and bat interactions. Little is known about the interactions between wind turbines and insects, despite these animals composing far more biomass than vertebrates. Turbine placement, coloration, shape, heat output, and lighting may attract insects to turbines. Insects attract insectivorous animals, which may be killed by the turbines. Compiling current knowledge about these interactions and identifying gaps in knowledge is critical as wind power grows rapidly. We reviewed the state of the literature investigating insects and wind energy facilities, and evaluated hypotheses regarding insect attraction to turbines. We found evidence of insect attraction due to turbine location, paint color, shape, and temperature output. We provide empirical data on insect abundance and richness near turbines and introduce a risk assessment tool for comparing wind development with suitable climate for insects of concern. This understudied topic merits further investigation as insects decline globally. Compiling information will provide a resource for mitigation and management strategies, and will inform conservation agencies on what insects may be most vulnerable to the expansion of wind technologies.
Collapse
Affiliation(s)
- Michelle Weschler
- Wyoming Natural Diversity Database and Deparment of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, United States
| | - Lusha Tronstad
- Wyoming Natural Diversity Database and Deparment of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, United States
| |
Collapse
|
10
|
O'Connor J, Clark A, Herrera F, Yang X, Wang X, Zheng X, Hu H, Zhou Z. Direct evidence of frugivory in the Mesozoic bird Longipteryx contradicts morphological proxies for diet. Curr Biol 2024; 34:4559-4566.e1. [PMID: 39260360 DOI: 10.1016/j.cub.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Diet is one of the most important aspects of an animal's ecology, as it reflects direct interactions with other organisms and shapes morphology, behavior, and other life history traits. Modern birds (Neornithes) have a highly efficient and phenotypically plastic digestive system, allowing them to utilize diverse trophic resources, and digestive function has been put forth as a factor in the selectivity of the end-Cretaceous mass extinction, in which only neornithine dinosaurs survived.1 Although diet is directly documented in several early-diverging avian lineages,2 only a single specimen preserves evidence of diet in Enantiornithes, the dominant group of terrestrial Cretaceous birds.3 Morphology-based predictions suggest enantiornithines were faunivores,4,5,6 although the absence of evidence contrasts with the high preservation potential and relatively longer gut-retention times of these diets. Longipteryx is an unusual Early Cretaceous enantiornithine with an elongate rostrum; distally restricted dentition7; large, recurved, and crenulated teeth8; and tooth enamel much thicker than other paravians.9 Statistical analysis of rostral length, body size, and tooth morphology predicts Longipteryx was primarily insectivorous.4,5 Contrasting with these results, two new specimens of Longipteryx preserve gymnosperm seeds within the abdominal cavity interpreted as ingesta. Like Jeholornis, their unmacerated preservation and the absence of gastroliths indicate frugivory.10 As in Neornithes,11 complex diets driven by the elevated energetic demands imposed by flight, secondary rostral functions, and phylogenetic influence impede the use of morphological proxies to predict diet in early-diverging avian lineages.
Collapse
Affiliation(s)
- Jingmai O'Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA.
| | - Alexander Clark
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA; Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Fabiany Herrera
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Xin Yang
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA; Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoli Wang
- Shandong Tianyu Museum of Nature, Pingyi 273300, P.R. China; Institute of Geology and Paleontology, Linyi University, Linyi 276005, P.R. China; College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P.R. China
| | - Xiaoting Zheng
- Shandong Tianyu Museum of Nature, Pingyi 273300, P.R. China
| | - Han Hu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Dajie, Beijing 100044, P.R. China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Dajie, Beijing 100044, P.R. China
| |
Collapse
|
11
|
Ma D, Abrahms B, Allgeier J, Newbold T, Weeks BC, Carter NH. Global expansion of human-wildlife overlap in the 21st century. SCIENCE ADVANCES 2024; 10:eadp7706. [PMID: 39167651 PMCID: PMC11338222 DOI: 10.1126/sciadv.adp7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Understanding the extent to which people and wildlife overlap in space and time is critical for the conservation of biodiversity and ecological services. Yet, how global change will reshape the future of human-wildlife overlap has not been assessed. We show that the potential spatial overlap of global human populations and 22,374 terrestrial vertebrate species will increase across ~56.6% and decrease across only ~11.8% of the Earth's terrestrial surface by 2070. Increases are driven primarily by intensification of human population densities, not change in wildlife distributions caused by climate change. The strong spatial heterogeneity of future human-wildlife overlap found in our study makes it clear that local context is imperative to consider, and more targeted area-based land-use planning should be integrated into systematic conservation planning.
Collapse
Affiliation(s)
- Deqiang Ma
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Briana Abrahms
- Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, WA, USA
| | - Jacob Allgeier
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Brian C. Weeks
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Neil H. Carter
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Eisenring M, Gessler A, Frei ER, Glauser G, Kammerer B, Moor M, Perret-Gentil A, Wohlgemuth T, Gossner MM. Legacy effects of premature defoliation in response to an extreme drought event modulate phytochemical profiles with subtle consequences for leaf herbivory in European beech. THE NEW PHYTOLOGIST 2024; 242:2495-2509. [PMID: 38641748 DOI: 10.1111/nph.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.
Collapse
Affiliation(s)
- Michael Eisenring
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos, 7260, Switzerland
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, 7260, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg, 79014, Germany
| | - Maurice Moor
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anouchka Perret-Gentil
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin M Gossner
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
13
|
Strömbom D, Crocker A, Gery A, Tulevech G, Sands A, Ward K, Pandey S. Modelling the emergence of social-bird biological controls to mitigate invasions of the spotted lanternfly and similar invasive pests. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231671. [PMID: 38384778 PMCID: PMC10878819 DOI: 10.1098/rsos.231671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
The spotted lanternfly is an emerging global invasive insect pest. Due to a lack of natural enemies where it is invasive, human intervention is required. Extensive management has been applied but the spread continues. Recently, the idea of bird-based biological controls has re-emerged and shown effective in studies. However, it is questionable, if birds are able to effectively control unfamiliar and occasionally toxic invasive pests in short timeframes. Unless, perhaps, the birds are effective social learners and toxicity of the invaders is rare. Here, we introduce a mathematical model for social learning in a great tit-like bird to investigate conditions for the emergence of a collective biological control of a pest that is occasionally toxic, like the lanternfly. We find that the social observation rate relative to the proportion of toxic lanternfly dictate when collective biological controls will emerge. We also implement the social learning model into a model of collective motion in bird-like animals, and find that it produces results consistent with the mathematical model. Our work suggests that social birds may be useful in managing the spotted lanternfly, and that removing the toxicity-inducing preferred host of the lanternfly should be a priority to facilitate this.
Collapse
Affiliation(s)
- Daniel Strömbom
- Lafayette College, Department of Biology, Easton, PA 18042, USA
| | - Amanda Crocker
- Lafayette College, Department of Biology, Easton, PA 18042, USA
| | - Alison Gery
- Lafayette College, Department of Biology, Easton, PA 18042, USA
| | - Grace Tulevech
- Lafayette College, Department of Biology, Easton, PA 18042, USA
| | - Autumn Sands
- Lafayette College, Department of Biology, Easton, PA 18042, USA
| | - Kelly Ward
- Lafayette College, Department of Biology, Easton, PA 18042, USA
| | - Swati Pandey
- Lafayette College, Department of Biology, Easton, PA 18042, USA
| |
Collapse
|
14
|
Wildermuth B, Dönges C, Matevski D, Penanhoat A, Seifert CL, Seidel D, Scheu S, Schuldt A. Tree species identity, canopy structure and prey availability differentially affect canopy spider diversity and trophic composition. Oecologia 2023; 203:37-51. [PMID: 37709958 PMCID: PMC10615988 DOI: 10.1007/s00442-023-05447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Forest canopies maintain a high proportion of arthropod diversity. The drivers that structure these communities, however, are poorly understood. Therefore, integrative research connecting tree species identity and environmental stand properties with taxonomic and functional community composition of canopy arthropods is required. In this study, we investigated how the taxonomic, functional and trophic composition of arboreal spider communities is affected by tree species composition and associated differences in canopy structure and prey availability in temperate forests. We sampled canopy spiders as well as their potential prey using insecticidal fogging in monospecific and mixed stands of native European beech, native Norway spruce and non-native Douglas fir. Trophic metrics were obtained from stable isotope analysis and structural canopy properties were assessed with mobile laser scanning. Monospecific native spruce stands promoted local canopy spider abundance and diversity, but native beech and beech-conifer mixtures had the highest diversity at landscape scale. Spider community composition differed between monospecific stands, with broadleaf-conifer mixtures mitigating these differences. Irrespective of tree species identity, spider abundance, taxonomic diversity, functional richness and isotopic richness increased in structurally heterogeneous canopies with high prey abundances, but functional evenness and trophic divergence decreased. Our study shows that canopy spiders are differentially affected by tree species identity, canopy structure and prey availability. Broadleaf-conifer mixtures mitigated negative effects of (non-native) conifers, but positive mixture effects were only evident at the landscape scale. Structurally heterogeneous canopies promoted the dominance of only specific trait clusters. This indicates that intermediate heterogeneity might result in high stability of ecological communities.
Collapse
Affiliation(s)
- Benjamin Wildermuth
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany.
| | - Clemens Dönges
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Dragan Matevski
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
- Animal Ecology, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Alice Penanhoat
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Carlo L Seifert
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Dominik Seidel
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Stefan Scheu
- Animal Ecology Group, JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Andreas Schuldt
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| |
Collapse
|
15
|
Barrone J, Vidal MC, Stevenson R. Sphingid caterpillars conspicuous patches do not function as distractive marks or warning against predators. Ecol Evol 2023; 13:e10334. [PMID: 37492454 PMCID: PMC10363802 DOI: 10.1002/ece3.10334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
To avoid predation by visual predators, caterpillars can be cryptic to decrease detectability or aposematic to warn predators of potential unpalatability. However, for some species, it is not clear if conspicuous patches are selected to avoid predation. For example, Pandora sphinx (Eumorpha pandorus, Lepidoptera: Sphingidae) caterpillars are assumed to be palatable and have both cryptic (green, brown) and conspicuous (orange, red) color morphs. Five lateral, off-white to yellow patches on either side may serve as a warning for predators or to draw attention away from the caterpillar's form to function as distractive marks. We conducted a field study in three temperate fragmented forests in Massachusetts to investigate the potential utility of E. pandorus coloration and conspicuous patches. Using four plasticine caterpillar prey model treatments, green and red with and without lateral conspicuous patches, we tested the effects of color, patch patterning, and seasonality on attack rates by a variety of taxa. We found that 43% of the prey models (n = 964) had bite marks by an array of predators including arthropods (67.5%), birds (18.2%), rodents (11.5%), and large mammals (2.8%). Arthropods as dominant predators align with conclusions from previous studies of prey models placed near ground level. Attack rates peaked for arthropods in late August and early September but were more constant across trials for vertebrates. Arthropods, a heterogeneous group, as indicated by the variety of bite marks, showed significantly higher attack rates on green colored prey models and a tendency of higher attack on solid (non-patch patterned) prey models. Vertebrates, more visually oriented predators, had significantly higher attack rates on red colored prey models and patch patterned prey models. Thus, our results did not suggest that conspicuous patch patterning reduced predation and therefore, we did not find support for the distractive mark hypothesis or warning hypothesis. Further, our study shows clear contrasting interpretations by different predators regarding visual defensive strategies.
Collapse
Affiliation(s)
- Julia Barrone
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Mayra C. Vidal
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Robert Stevenson
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
| |
Collapse
|
16
|
Anderson MJ, Valdiviezo A, Conway MH, Farrell C, Andringa RK, Janik A, Chiu WA, Rusyn I, Hamer SA. Imidacloprid exposure is detectable in over one third of wild bird samples from diverse Texas ecoregions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162723. [PMID: 36907393 PMCID: PMC10744339 DOI: 10.1016/j.scitotenv.2023.162723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Avian decline is occurring globally with neonicotinoid insecticides posed as a potentially contributing factor. Birds can be exposed to neonicotinoids through coated seeds, soil, water, and insects, and experimentally exposed birds show varied adverse effects including mortality and disruption of immune, reproductive, and migration physiology. However, few studies have characterized exposure in wild bird communities over time. We hypothesized that neonicotinoid exposure would vary temporally and based on avian ecological traits. Birds were banded and blood sampled at eight non-agricultural sites across four Texas counties. Plasma from 55 species across 17 avian families was analyzed for the presence of 7 neonicotinoids using high performance liquid chromatography-tandem mass spectrometry. Imidacloprid was detected in 36 % of samples (n = 294); this included quantifiable concentrations (12 %; 10.8-36,131 pg/mL) and concentrations that were below the limit of quantification (25 %). Additionally, two birds were exposed to imidacloprid, acetamiprid (18,971.3 and 6844 pg/mL) and thiacloprid (7022.2 and 17,367 pg/mL), whereas no bird tested positive for clothianidin, dinotefuran, nitenpyram, or thiamethoxam, likely reflecting higher limits of detection for all compounds compared to imidacloprid. Birds sampled in spring and fall had higher incidences of exposure than those sampled in summer or winter. Subadult birds had higher incidences of exposure than adult birds. Among the species for which we tested more than five samples, American robin (Turdus migratorius) and red-winged blackbird (Agelaius phoeniceus) had significantly higher incidences of exposure. We found no relationships between exposure and foraging guild or avian family, suggesting birds with diverse life histories and taxonomies are at risk. Of seven birds resampled over time, six showed neonicotinoid exposure at least once with three showing exposures at multiple time points, indicating continued exposure. This study provides exposure data to inform ecological risk assessment of neonicotinoids and avian conservation efforts.
Collapse
Affiliation(s)
- Meredith J Anderson
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, United States of America; Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Alan Valdiviezo
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Mark H Conway
- Master Bird Bander, Lower Rio Grande Valley, TX, United States of America
| | | | - R Keith Andringa
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, United States of America
| | - Amy Janik
- Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America
| | - Sarah A Hamer
- Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States of America.
| |
Collapse
|
17
|
Grames EM, Montgomery GA, Youngflesh C, Tingley MW, Elphick CS. The effect of insect food availability on songbird reproductive success and chick body condition: Evidence from a systematic review and meta-analysis. Ecol Lett 2023; 26:658-673. [PMID: 36798988 DOI: 10.1111/ele.14178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 02/18/2023]
Abstract
Reports of declines in abundance and biomass of insects and other invertebrates from around the world have raised concerns about food limitation that could have profound impacts for insectivorous species. Food availability can clearly affect species; however, there is considerable variation among studies in whether this effect is evident, and thus a lack of clarity over the generality of the relationship. To understand how decreased food availability due to invertebrate declines will affect bird populations, we conducted a systematic review and used meta-analytic structural equation modelling, which allowed us to treat our core variables of interest as latent variables estimated by the diverse ways in which researchers measure fecundity and chick body condition. We found a moderate positive effect of food availability on chick body condition and a strong positive effect on reproductive success. We also found a negative relationship between chick body condition and reproductive success. Our results demonstrate that food is generally a limiting factor for breeding songbirds. Our analysis also provides evidence for a consistent trade-off between chick body condition and reproductive success, demonstrating the complexity of trophic dynamics important for these vital rates.
Collapse
Affiliation(s)
- Eliza M Grames
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Graham A Montgomery
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Casey Youngflesh
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
- Michigan State University, Ecology, Evolution, and Behavior Program, East Lansing, Michigan, USA
| | - Morgan W Tingley
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Chris S Elphick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
18
|
Arjona JM, Ibáñez-Álamo JD, Sanllorente O. Mediterranean university campuses enhance butterfly (Lepidoptera) and beetle (Coleoptera) diversity. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1130557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Human population growth is causing an expansion of urban areas, a phenomenon known to deeply impact on the Earth’s biodiversity. Therefore, it is key to understand how to conceal urban development with biodiversity conservation. In this context, university campuses can play an important role as they usually present a large array of different environments and green areas, crucial aspects for promoting urban biodiversity as well as human-nature interactions. Several studies have analyzed the biodiversity of university campuses, however, there are still important taxonomic (e.g., insects) and geographical biases (e.g., Mediterranean hotspot) in our current understanding of these urban areas. Insects are fundamental in many ecosystems as pollinators, prey, pest controllers or decomposers among others. This further increases the need to study this group in the urban context. In this study, we have investigated diurnal Lepidoptera and ground-dwelling Coleoptera in three university campuses and three non-campus areas of the city of Granada (Spain). We used spatial and temporal replicates for each area in order to explore whether university campuses hold higher levels of insect biodiversity (e.g., species richness or common species) than other nearby urban areas. In addition, we investigated the potential influence of several additional predictors on insect diversity such as type of land cover, vegetation origin, management intensity, and distance to the outskirts. Our results suggest that Lepidoptera species and Coleoptera families are more diverse in university campuses than in other urban areas, showing also a positive association with the proportion of bare soil and herbaceous cover. Furthermore, they also seem to be benefited from low vegetation management intensity whereas Coleoptera are favored by native vegetation providing clear management recommendations in order to promote such animal groups in cities. Our study indicates that university campuses are important urban areas to preserve insect biodiversity but also highlights the heterogeneity of response among insect groups.
Collapse
|
19
|
Nell CS, Pratt R, Burger J, Preston KL, Treseder KK, Kamada D, Moore K, Mooney KA. Consequences of arthropod community structure for an at-risk insectivorous bird. PLoS One 2023; 18:e0281081. [PMID: 36763634 PMCID: PMC9917275 DOI: 10.1371/journal.pone.0281081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Global declines in bird and arthropod abundance highlights the importance of understanding the role of food limitation and arthropod community composition for the performance of insectivorous birds. In this study, we link data on nestling diet, arthropod availability and nesting performance for the Coastal Cactus Wren (Campylorhynchus brunneicapillus sandiegensis), an at-risk insectivorous bird native to coastal southern California and Baja Mexico. We used DNA metabarcoding to characterize nestling diets and monitored 8 bird territories over two years to assess the relationship between arthropod and vegetation community composition and bird reproductive success. We document a discordance between consumed prey and arthropod biomass within nesting territories, in which Diptera and Lepidoptera were the most frequently consumed prey taxa but were relatively rare in the environment. In contrast other Orders (e.g., Hemiptera, Hymenoptera)were abundant in the environment but were absent from nestling diets. Accordingly, variation in bird reproductive success among territories was positively related to the relative abundance of Lepidoptera (but not Diptera), which were most abundant on 2 shrub species (Eriogonum fasciculatum, Sambucus nigra) of the 9 habitat elements characterized (8 dominant plant species and bare ground). Bird reproductive success was in turn negatively related to two invasive arthropods whose abundance was not associated with preferred bird prey, but instead possibly acted through harassment (Linepithema humile; Argentine ants) and parasite transmission or low nutritional quality (Armadillidium vulgare; "pill-bug"). These results demonstrate how multiple aspects of arthropod community structure can influence bird performance through complementary mechanisms, and the importance of managing for arthropods in bird conservation efforts.
Collapse
Affiliation(s)
- Cee S. Nell
- Department of Ecology & Evolutionary Biology and Center for Environmental Biology, University of California, Irvine, CA, United States of America
- * E-mail:
| | - Riley Pratt
- Department of Ecology & Evolutionary Biology and Center for Environmental Biology, University of California, Irvine, CA, United States of America
- California State Parks, San Clemente, CA, United States of America
| | - Jutta Burger
- Irvine Ranch Conservancy, Irvine, CA, United States of America
| | | | - Kathleen K. Treseder
- Department of Ecology & Evolutionary Biology and Center for Environmental Biology, University of California, Irvine, CA, United States of America
| | - Dana Kamada
- Natural Communities Coalition, Irvine, CA, United States of America
| | - Karly Moore
- Natural Communities Coalition, Irvine, CA, United States of America
| | - Kailen A. Mooney
- Department of Ecology & Evolutionary Biology and Center for Environmental Biology, University of California, Irvine, CA, United States of America
| |
Collapse
|
20
|
Rosenberg Y, Bar-On YM, Fromm A, Ostikar M, Shoshany A, Giz O, Milo R. The global biomass and number of terrestrial arthropods. SCIENCE ADVANCES 2023; 9:eabq4049. [PMID: 36735788 PMCID: PMC9897674 DOI: 10.1126/sciadv.abq4049] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/03/2023] [Indexed: 06/01/2023]
Abstract
Insects and other arthropods are central to terrestrial ecosystems. However, data are lacking regarding their global population abundance. We synthesized thousands of evaluations from around 500 sites worldwide, estimating the absolute biomass and abundance of terrestrial arthropods across different taxa and habitats. We found that there are ≈1 × 1019 (twofold uncertainty range) soil arthropods on Earth, ≈95% of which are soil mites and springtails. The soil contains ≈200 (twofold uncertainty range) million metric tons (Mt) of dry biomass. Termites contribute ≈40% of the soil biomass, much more than ants at ≈10%. Our estimate for the global biomass of above-ground arthropods is more uncertain, highlighting a knowledge gap that future research should aim to close. We estimate the combined dry biomass of all terrestrial arthropods at ≈300 Mt (uncertainty range, 100 to 500), similar to the mass of humanity and its livestock. These estimates enhance the quantitative understanding of arthropods in terrestrial ecosystems and provide an initial holistic benchmark on their decline.
Collapse
Affiliation(s)
| | | | - Amir Fromm
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Ostikar
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aviv Shoshany
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Giz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Davy CM, von Zuben V, Kukka PM, Gerber BD, Slough BG, Jung TS. Rapidly declining body size in an insectivorous bat is associated with increased precipitation and decreased survival. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2639. [PMID: 35443093 PMCID: PMC10078423 DOI: 10.1002/eap.2639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 05/30/2023]
Abstract
Reduced food availability is implicated in declines in avian aerial insectivores, but the effect of nutritional stress on mammalian aerial insectivores is unclear. Unlike birds, insectivorous bats provision their young through lactation, which might protect nursing juveniles when prey availability is low but could increase the energetic burden on lactating females. We analyzed a 15-year capture-mark-recapture data set from 5312 individual little brown myotis (Myotis lucifugus) captured at 11 maternity colonies in northwestern Canada, to test the hypothesis that nutritional stress is impacting these mammalian aerial insectivores. We used long-bone (forearm [FA]) length as a proxy for relative access to nutrition during development, and body mass as a proxy for access to nutrition prior to capture. Average FA length and body mass both decreased significantly over the study period in adult females and juveniles, suggesting decreased access to nutrition. Effect sizes were very small, similar to those reported for declining body size in avian aerial insectivores. Declines in juvenile body mass were only observed in individuals captured in late summer when they were foraging independently, supporting our hypothesis that lactation provides some protection to nursing young during periods of nutritional stress. Potential drivers of the decline in bat size include one or both of (1) declining insect (prey) abundance, and (2) declining prey availability. Echolocating insectivorous bats cannot forage effectively during rainfall, which is increasing in our study area. The body mass of captured adult females and juveniles in our study was lower, on average, after periods of high rainfall, and higher after warmer-than-average periods. Finally, survival models revealed a positive association between FA length and survival, suggesting a fitness consequence to declines in body size. Our study area has not yet been impacted by bat white-nose syndrome (WNS), but research elsewhere has suggested that fatter bats are more likely to survive infection. We found evidence for WNS-independent shifts in the body size of little brown myotis, which can inform studies investigating population responses to WNS. More broadly, the cumulative effects of multiple stressors (e.g., disease, nutritional stress, climate change, and other pressures) on mammalian aerial insectivores require urgent attention.
Collapse
Affiliation(s)
- Christina M. Davy
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
- Wildlife Research and Monitoring SectionOntario Ministry of Northern Development, Mines, Natural Resources and ForestryPeterboroughOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | - Valerie von Zuben
- Wildlife Research and Monitoring SectionOntario Ministry of Northern Development, Mines, Natural Resources and ForestryPeterboroughOntarioCanada
| | - Piia M. Kukka
- Department of EnvironmentGovernment of YukonWhitehorseYukon TerritoryCanada
| | - Brian D. Gerber
- Department of Natural Resources ScienceUniversity of Rhode IslandKingstonRhode IslandUSA
| | | | - Thomas S. Jung
- Department of EnvironmentGovernment of YukonWhitehorseYukon TerritoryCanada
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
22
|
Gaston KJ. Birds and ecosystem services. Curr Biol 2022; 32:R1163-R1166. [DOI: 10.1016/j.cub.2022.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Jayasilan Mohd-Azlan, Attiqqah Fadziliah Sapian, Andrew Alek Tuen, Puan CL. Foraging strata and dietary preferences of fifteen species of babblers in Sarawak, Malaysia. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.7650.14.9.21818-21825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Babblers are the primary insectivorous birds of the tropical forests in southeastern Asia which have shown to be affected by forest disturbance. Their high diversity, microhabitat specificity and specialised feeding guilds provide a good opportunity for ecological research pertaining to niche segregation. We examined the diet and foraging strata of 15 sympatric babbler species mist-netted in nine forests in Sarawak, eastern Malaysia. Based on 222 birds captured from December 2014 to March 2016, a segregation in foraging strata was found, with half of the species captured frequenting low strata, while only three were found at mid strata and four at high strata. Both species richness and abundance were found to decrease when the foraging height increased. From a total of 136 prey items retrieved from regurgitated and faecal samples of 13 babbler species, we found that Coleoptera (41.5%), Hymenoptera (36.2%), and Araneae (12.3%) formed the major diet of the birds. Diet overlaps among the babblers were relatively low. Our study demonstrated the possible presence of spatial and trophic niche segregation among babblers, and justified their ecological role as indicators of tropical forest ecosystem health, especially in the case of specialists, that deserve further conservation attention.
Collapse
|
24
|
Abstract
Food production depends on biodiversity and ecosystem services (ES) such as pest control and pollination. Our knowledge about biodiversity benefits to crop production has increased in recent decades, but most studies treat ES separately and then add up their values. Ignoring that these services, being part of the same system, likely interact is blinding us to potential synergies and trade-offs. Our field experiment shows, at realistic field scales, that pest control and pollination can interact positively. This synergy translates directly to improved yields and income for coffee farmers, who produce a global commodity worth $24 billion per year. Our findings highlight the need to study interactions to understand the linkages between biodiversity, ES, and farmers’ livelihoods. Biodiversity-mediated ecosystem services (ES) support human well-being, but their values are typically estimated individually. Although ES are part of complex socioecological systems, we know surprisingly little about how multiple ES interact ecologically and economically. Interactions could be positive (synergy), negative (trade-offs), or absent (additive effects), with strong implications for management and valuation. Here, we evaluate the interactions of two ES, pollination and pest control, via a factorial field experiment in 30 Costa Rican coffee farms. We found synergistic interactions between these two critical ES to crop production. The combined positive effects of birds and bees on fruit set, fruit weight, and fruit weight uniformity were greater than their individual effects. This represents experimental evidence at realistic farm scales of positive interactions among ES in agricultural systems. These synergies suggest that assessments of individual ES may underestimate the benefits biodiversity provides to agriculture and human well-being. Using our experimental results, we demonstrate that bird pest control and bee pollination services translate directly into monetary benefits to coffee farmers. Excluding both birds and bees resulted in an average yield reduction of 24.7% (equivalent to losing US$1,066.00/ha). These findings highlight that habitat enhancements to support native biodiversity can have multiple benefits for coffee, a valuable crop that supports rural livelihoods worldwide. Accounting for potential interactions among ES is essential to quantifying their combined ecological and economic value.
Collapse
|
25
|
Blanchet CC, Arzel C, Davranche A, Kahilainen KK, Secondi J, Taipale S, Lindberg H, Loehr J, Manninen-Johansen S, Sundell J, Maanan M, Nummi P. Ecology and extent of freshwater browning - What we know and what should be studied next in the context of global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152420. [PMID: 34953836 DOI: 10.1016/j.scitotenv.2021.152420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Water browning or brownification refers to increasing water color, often related to increasing dissolved organic matter (DOM) and carbon (DOC) content in freshwaters. Browning has been recognized as a significant physicochemical phenomenon altering boreal lakes, but our understanding of its ecological consequences in different freshwater habitats and regions is limited. Here, we review the consequences of browning on different freshwater habitats, food webs and aquatic-terrestrial habitat coupling. We examine global trends of browning and DOM/DOC, and the use of remote sensing as a tool to investigate browning from local to global scales. Studies have focused on lakes and rivers while seldom addressing effects at the catchment scale. Other freshwater habitats such as small and temporary waterbodies have been overlooked, making the study of the entire network of the catchment incomplete. While past research investigated the response of primary producers, aquatic invertebrates and fishes, the effects of browning on macrophytes, invasive species, and food webs have been understudied. Research has focused on freshwater habitats without considering the fluxes between aquatic and terrestrial habitats. We highlight the importance of understanding how the changes in one habitat may cascade to another. Browning is a broader phenomenon than the heretofore concentration on the boreal region. Overall, we propose that future studies improve the ecological understanding of browning through the following research actions: 1) increasing our knowledge of ecological processes of browning in other wetland types than lakes and rivers, 2) assessing the impact of browning on aquatic food webs at multiple scales, 3) examining the effects of browning on aquatic-terrestrial habitat coupling, 4) expanding our knowledge of browning from the local to global scale, and 5) using remote sensing to examine browning and its ecological consequences.
Collapse
Affiliation(s)
- Clarisse C Blanchet
- Department of Biology, FI-20014, University of Turku, Finland; Department of Forest Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Céline Arzel
- Department of Biology, FI-20014, University of Turku, Finland
| | - Aurélie Davranche
- CNRS UMR 6554 LETG, University of Angers, 2 Boulevard Lavoisier, FR-49000 Angers, France
| | - Kimmo K Kahilainen
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Jean Secondi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Faculty of Sciences, University of Angers, F-49000 Angers, France
| | - Sami Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Henrik Lindberg
- HAMK University of Applied Sciences, Forestry Programme, Saarelantie 1, FI-16970 Evo, Finland
| | - John Loehr
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | | | - Janne Sundell
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Mohamed Maanan
- UMR CNRS 6554, University of Nantes, F-44000 Nantes, France
| | - Petri Nummi
- Department of Forest Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
26
|
Potapov AM, Beaulieu F, Birkhofer K, Bluhm SL, Degtyarev MI, Devetter M, Goncharov AA, Gongalsky KB, Klarner B, Korobushkin DI, Liebke DF, Maraun M, Mc Donnell RJ, Pollierer MM, Schaefer I, Shrubovych J, Semenyuk II, Sendra A, Tuma J, Tůmová M, Vassilieva AB, Chen T, Geisen S, Schmidt O, Tiunov AV, Scheu S. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biol Rev Camb Philos Soc 2022; 97:1057-1117. [DOI: 10.1111/brv.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Frédéric Beaulieu
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri‐Food Canada Ottawa ON K1A 0C6 Canada
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Karl‐Wachsmann‐Allee 6 03046 Cottbus Germany
| | - Sarah L. Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Maxim I. Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anton A. Goncharov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Bernhard Klarner
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Daniil I. Korobushkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Dana F. Liebke
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Rory J. Mc Donnell
- Department of Crop and Soil Science Oregon State University Corvallis OR 97331 U.S.A
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Julia Shrubovych
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Institute of Systematics and Evolution of Animals PAS Slawkowska 17 Pl 31‐016 Krakow Poland
- State Museum Natural History of NAS of Ukraine Teatralna 18 79008 Lviv Ukraine
| | - Irina I. Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
- Joint Russian‐Vietnamese Tropical Center №3 Street 3 Thang 2, Q10 Ho Chi Minh City Vietnam
| | - Alberto Sendra
- Colecciones Entomológicas Torres‐Sala, Servei de Patrimoni Històric, Ajuntament de València València Spain
- Departament de Didàctica de les Cièncias Experimentals i Socials, Facultat de Magisteri Universitat de València València Spain
| | - Jiri Tuma
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Biology Centre CAS, Institute of Entomology Branisovska 1160/31 370 05 Ceske Budejovice Czech Republic
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anna B. Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Ting‐Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Stefan Geisen
- Department of Nematology Wageningen University & Research 6700ES Wageningen The Netherlands
| | - Olaf Schmidt
- UCD School of Agriculture and Food Science University College Dublin Belfield Dublin 4 Ireland
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 37077 Göttingen Germany
| |
Collapse
|
27
|
Díaz-Siefer P, Tapia-Gatica J, Martínez-Harms J, Bergmann J, Celis-Diez JL. A larval aggregation pheromone as foraging cue for insectivorous birds. Biol Lett 2021; 17:20210360. [PMID: 34582735 PMCID: PMC8478522 DOI: 10.1098/rsbl.2021.0360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Although birds have traditionally been considered anosmic, increasing evidence indicates that olfaction plays an important role in the foraging behaviours of insectivorous birds. Recent studies have shown that birds can exploit herbivore-induced plant volatiles and sexual pheromones of adult insects to locate their prey. Many insectivorous birds prey on immature insects, providing relevant ecosystem services as pest regulators in natural and agricultural ecosystems. We asked whether birds could rely on chemical cues emitted by the immature stages of insects to prey on them. To address this question, we performed field experiments to evaluate if insectivorous birds can detect the aggregation pheromone produced by the larvae of the carpenter worm, Chilecomadia valdiviana. Groups of five artificial larvae were placed in branches of 72 adult trees in a remnant fragment of a sclerophyllous forest in central Chile. Each grouping of larvae contained a rubber septum loaded with either larval pheromone as treatment or solvent alone as control. We found that the number of larvae damaged by bird pecks was significantly higher in groups with dispensers containing the larval extract than in control groups. Our results show that birds can rely on immature insect-derived chemical cues used for larvae aggregation to prey on them.
Collapse
Affiliation(s)
- Pablo Díaz-Siefer
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, Quillota, Chile
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Jaime Tapia-Gatica
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | | | - Jan Bergmann
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan L. Celis-Diez
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| |
Collapse
|
28
|
Norbu L, Thinley P, Wangchuck T, Dechen U, Dorji L, Choephel T, Dorji P. On the high bird diversity in the non-protected regions of Trashiyangtse District in Bhutan. JOURNAL OF THREATENED TAXA 2021. [DOI: 10.11609/jott.6843.13.9.19274-19292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Birds are ecological indicators of ecosystem health. Baseline information on bird diversity are, therefore, important for ecological monitoring. Such information is, however, sorely lacking for many areas outside the protected areas. Here, we explore the avian diversity and present a comprehensive checklist for the non-protected regions of Trashiyangtse District in northeastern Bhutan. We also categorise the bird species by their residency pattern, feeding guilds, abundance, and IUCN Red List status. We conducted an avifauna exploration for a period of four years from 2017 to 2020, mostly through opportunistic encounters coinciding with regular field visits. We recorded a total of 273 bird species belonging to 173 genera, 69 families and 19 orders. Passeriformes was the most dominant order with 41 families and 174 species and Muscicapidae was the most dominant family with 12 genera and 32 species. Most birds were altitudinal migrants (39%), insectivorous (45%), and occasional (44%) in terms of residency pattern, feeding guild, and abundance, respectively. Only one species (Ardea insignis) was listed as Critically Endangered and one (Haliaeetus leucoryphus) as Endangered. Our study identified the non-protected regions of Trashiyangtse District as an important bird diversity area in Bhutan.
Collapse
|
29
|
Sreekar R, Si X, Sam K, Liu J, Dayananda S, Goodale U, Kotagama S, Goodale E. Land use and elevation interact to shape bird functional and phylogenetic diversity and structure: Implications for designing optimal agriculture landscapes. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rachakonda Sreekar
- Institute of Entomology Biology Centre of the Czech Academy of Sciences Ceske Budejovice Czech Republic
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Xingfeng Si
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station School of Ecological and Environmental Sciences East China Normal University Shanghai China
| | - Katerina Sam
- Institute of Entomology Biology Centre of the Czech Academy of Sciences Ceske Budejovice Czech Republic
- Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Jiajia Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering School of Life Sciences Fudan University Shanghai China
| | - Salindra Dayananda
- Guangxi Key Laboratory of Forest Ecology and Conservation College of Forestry Guangxi University Nanning China
- Field Ornithology Group of Sri Lanka Department of Zoology University of Colombo Colombo Sri Lanka
| | - Uromi Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation College of Forestry Guangxi University Nanning China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources College of Forestry Guangxi University Nanning China
- Seed Conservation Specialist Group Species Survival CommissionInternational Union for Conservation of Nature Gland Switzerland
| | - Sarath Kotagama
- Field Ornithology Group of Sri Lanka Department of Zoology University of Colombo Colombo Sri Lanka
| | - Eben Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation College of Forestry Guangxi University Nanning China
| |
Collapse
|
30
|
Sherry TW. Sensitivity of Tropical Insectivorous Birds to the Anthropocene: A Review of Multiple Mechanisms and Conservation Implications. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.662873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epigraph: “The house is burning. We do not need a thermometer. We need a fire hose.” (P. 102, Janzen and Hallwachs, 2019). Insectivorous birds are declining widely, and for diverse reasons. Tropical insectivorous birds, more than 60% of all tropical birds, are particularly sensitive to human disturbances including habitat loss and fragmentation, intensive agriculture and pesticide use, and climate change; and the mechanisms are incompletely understood. This review addresses multiple, complementary and sometimes synergistic explanations for tropical insectivore declines, by categorizing explanations into ultimate vs. proximate, and direct versus indirect. Ultimate explanations are diverse human Anthropocene activities and the evolutionary history of these birds. This evolutionary history, synthesized by the Biotic Challenge Hypothesis (BCH), explains tropical insectivorous birds' vulnerabilities to many proximate threats as a function of both these birds' evolutionary feeding specialization and poor dispersal capacity. These traits were favored evolutionarily by both the diversity of insectivorous clades competing intensely for prey and co-evolution with arthropods over long evolutionary time periods. More proximate, ecological threats include bottom-up forces like declining insect populations, top-down forces like meso-predator increases, plus the Anthropocene activities underlying these factors, especially habitat loss and fragmentation, agricultural intensification, and climate change. All these conditions peak in the lowland, mainland Neotropics, where insectivorous bird declines have been repeatedly documented, but also occur in other tropical locales and continents. This multiplicity of interacting evolutionary and ecological factors informs conservation implications and recommendations for tropical insectivorous birds: (1) Why they are so sensitive to global change phenomena is no longer enigmatic, (2) distinguishing ultimate versus proximate stressors matters, (3) evolutionary life-histories predispose these birds to be particularly sensitive to the Anthropocene, (4) tropical regions and continents vary with respect to these birds' ecological sensitivity, (5) biodiversity concepts need stronger incorporation of species' evolutionary histories, (6) protecting these birds will require more, larger reserves for multiple reasons, and (7) these birds have greater value than generally recognized.
Collapse
|
31
|
Opinion: Eight simple actions that individuals can take to save insects from global declines. Proc Natl Acad Sci U S A 2021; 118:2002547117. [PMID: 33431563 DOI: 10.1073/pnas.2002547117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Schmitt L, Greenberg R, Ibarra-Núñez G, Bichier P, Gordon CE, Perfecto I. Cascading Effects of Birds and Bats in a Shaded Coffee Agroforestry System. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.512998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Volant vertebrate insectivores, including birds and bats, can be important regulators of herbivores in forests and agro-ecosystems. Their effects can be realized directly through predation and indirectly via intraguild predation. This paper examines data from bird and bat exclosures in coffee farms in Chiapas, Mexico in order to determine their effect on herbivores. Arthropods were sampled in 32 exclosures (with 10 coffee plants in each) and their paired controls three times during 6 months. After 3 months, herbivore and spider abundance increased, underscoring the importance of both intertrophic predation between volant vertebrate insectivores and herbivores and intraguild predation between volant vertebrate insectivores and spiders. After 6 months, herbivore abundance increased in the exclosures, which is indicative of a direct negative effect of birds and bats on herbivores. We suggest that intraguild predation is important in this food web and that seasonality may change the relative importance of intraguild vs. intertrophic predation. Results suggest a dissipating trophic cascade and echo the growing body of evidence that finds birds and bats are regulators of herbivores in agro-ecosystems.
Collapse
|
33
|
Kim H, Mo Y, Choi CY, McComb BC, Betts MG. Declines in Common and Migratory Breeding Landbird Species in South Korea Over the Past Two Decades. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.627765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Population declines in terrestrial bird species have been reported across temperate regions in the world and are attributed to habitat loss, climate change, or other direct mortality sources. North American and European studies indicate that long-distance migrants, common species, and species associated with grasslands and agricultural lands are declining at the greatest rates. However, data from East Asia on avian population trends and associated drivers are extremely sparse. We modeled changes in occupancy of 52 common breeding landbird species in South Korea between 1997–2005 and 2013–2019. Thirty-eight percent of the species showed evidence of declines, and seven of these were declining severely (46–95%). Occupancy of Black-capped Kingfisher (Halcyon pileata) populations have dropped the most precipitously over the study period. Among declining species, long-distance migrants (9/20) and common species (14/20) showed more rapid declines than other groups. Declines of five species were associated with climate change, and two species appeared to be affected by land-cover change. However, causes of change in occupancy of other species (46/52) remains cryptic. Based on our results, we suggest an immediate re-evaluation of species’ conservation status and legal protection levels for seven severely declining species in South Korea, and a dedicated survey design and analysis effort for the continued monitoring landbird populations. Because many species exhibiting declines migrate from beyond national boundaries, international collaborations will be required to better quantify population trends across the full annual cycle, and to understand mechanisms for these declines.
Collapse
|
34
|
Kolkert HL, Smith R, Rader R, Reid N. Prey removal in cotton crops next to woodland reveals periodic diurnal and nocturnal invertebrate predation gradients from the crop edge by birds and bats. Sci Rep 2021; 11:5256. [PMID: 33664383 PMCID: PMC7970855 DOI: 10.1038/s41598-021-84633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/16/2021] [Indexed: 11/29/2022] Open
Abstract
Factors influencing the efficacy of insectivorous vertebrates in providing natural pest control services inside crops at increasing distances from the crop edge are poorly understood. We investigated the identity of vertebrate predators (birds and bats) and removal of sentinel prey (mealworms and beetles) from experimental feeding trays in cotton crops using prey removal trials, camera traps and observations. More prey was removed during the day than at night, but prey removal was variable at the crop edge and dependent on the month (reflecting crop growth and cover) and time of day. Overall, the predation of mealworms and beetles was 1-times and 13-times greater during the day than night, respectively, with predation on mealworms 3-5 times greater during the day than night at the crop edge compared to 95 m inside the crop. Camera traps identified many insectivorous birds and bats over crops near the feeding trays, but there was no evidence of bats or small passerines removing experimental prey. A predation gradient from the crop edge was evident, but only in some months. This corresponded to the foraging preferences of open-space generalist predators (magpies) in low crop cover versus the shrubby habitat preferred by small passerines, likely facilitating foraging away from the crop edge later in the season. Our results are in line with Optimal Foraging Theory and suggest that predators trade-off foraging behaviour with predation risk at different distances from the crop edge and levels of crop cover. Understanding the optimal farm configuration to support insectivorous bird and bat populations can assist farmers to make informed decisions regarding in-crop natural pest control and maximise the predation services provided by farm biodiversity.
Collapse
Affiliation(s)
- Heidi L Kolkert
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| | - Rhiannon Smith
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Romina Rader
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Nick Reid
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
35
|
Morii Y, Kitazawa M, Squires TE, Watanabe M, Watanabe Y, Saito T, Yamazaki D, Uchida A, Machida Y. A complete dietary review of Japanese birds with special focus on molluscs. Sci Data 2021; 8:19. [PMID: 33473131 PMCID: PMC7817678 DOI: 10.1038/s41597-021-00800-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/04/2020] [Indexed: 11/09/2022] Open
Abstract
Birds often hold important positions in the food webs of ecosystems. As a result, interactions between birds and their prey have attracted attention not only in ecology, but also in fields like agriculture and conservation. Avian food resources are well researched in Japan, however there is no database critically reviewing molluscs as a food resource for birds. Here, we present a new database reviewing dietary information for all Japanese bird species. In addition to addressing general diet categories and specific food habits for each bird, we include detailed data on the molluscan prey observed for all species that consume them. The information within this database was collected through intense literary review to provide a complete look at bird species historically present around the country. We also include new information on snail species found in the upper digestive tract of harvested wild birds. This database is publicly available in the Zenodo repository. The information should aid research around the Japanese archipelago, especially projects involving birds or molluscs.
Collapse
Affiliation(s)
- Yuta Morii
- The Hakubi Project, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ward, Kyoto, 6068501, Japan.
- Laboratory of Animal Ecology, Department of Zoology, Graduate School of Science, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ward, Kyoto, 6068502, Japan.
| | - Munehiro Kitazawa
- Graduate School of Agriculture, Hokkaido University, Nishi 9, Kita 9, Kita-ward, Sapporo, Hokkaido, 0608589, Japan
| | - Theodore E Squires
- Kenkyu Services, 12511 84th Ave NE, Kirkland, WA, 98034, United States of America
| | | | | | - Takumi Saito
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, 2748510, Japan
| | - Daishi Yamazaki
- Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ward, Sendai, Miyagi, 9808576, Japan
| | | | | |
Collapse
|
36
|
Melo MA, Silva MAGDA, Piratelli AJ. Improvement of vegetation structure enhances bird functional traits and habitat resilience in an area of ongoing restoration in the Atlantic Forest. AN ACAD BRAS CIENC 2020; 92:e20191241. [PMID: 33174914 DOI: 10.1590/0001-3765202020191241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
Ecological restoration is a traditional option for recovering biodiversity and ecosystem functions. Birds perform pollination, seed dispersal, and pest-control services, which catalyze increases in habitat structure. Habitat complexity changes bird composition, but there is little evidence of its effects on bird functional diversity in Neotropical restorations. We tested whether bird functional diversity and composition respond to increased habitat complexity. Point-counts were performed (January-December 2015) in an area undergoing restoration (536 ha) in the Atlantic Forest of southeastern Brazil, in restorations with less and more structured vegetation and pastures and forest-fragments. The functional bird traits considered were diet, habitat, biomass, environmental sensitivity, and foraging strata. Increased habitat complexity was evaluated using plant characteristics (exotic grass, canopy, herbaceous cover, and diameter at breast height). A total of 172 bird species (5% endemic; 12% migratory) were recorded. Increased vegetation structure in both restored sites and forest-fragments drove a reorganization and addition of functional bird traits, which positively influenced functional richness, dispersion, and evenness. Shifts in plant-characteristics rearranged bird functional traits (diet-forest-dependence and diet-strata-foraging). The rapid development of vegetation structure is a key factor for restoration because it provides additional habitat for semi-dependent forest birds and enhances resilience and sustainability in new man-made forests.
Collapse
Affiliation(s)
- Marcos AntÔnio Melo
- Programa de Pós-Graduação em Conservação da Fauna, Universidade Federal de São Carlos/UFSCar, Centro de Ciências Biológicas e da Saúde, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Marco AurÉlio G DA Silva
- Save Brasil - Sociedade para a Conservação das Aves do Brasil, Rua Fernão Dias, 219, 05427-000 São Paulo, SP, Brazil
| | - Augusto JoÃo Piratelli
- Universidade Federal de São Carlos, Centro de Ciências e Tecnologia para a Sustentabilidade, Departamento de Ciências Ambientais, Rodovia João Leme dos Santos Km 110, Itinga, 18052-780 Sorocaba, SP, Brazil
| |
Collapse
|
37
|
Vesterinen EJ, Kaunisto KM, Lilley TM. A global class reunion with multiple groups feasting on the declining insect smorgasbord. Sci Rep 2020; 10:16595. [PMID: 33024156 PMCID: PMC7539006 DOI: 10.1038/s41598-020-73609-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/15/2020] [Indexed: 12/05/2022] Open
Abstract
We report a detection of a surprising similarity in the diet of predators across distant phyla. Though just a first glimpse into the subject, our discovery contradicts traditional aspects of biology, as the earliest notions in ecology have linked the most severe competition of resources with evolutionary relatedness. We argue that our finding deserves more research, and propose a plan to reveal more information on the current biodiversity loss around the world. While doing so, we expand the recently proposed conservation roadmaps into a parallel study of global interaction networks.
Collapse
Affiliation(s)
- Eero J Vesterinen
- Department of Biology, University of Turku, Turku, Finland.
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Yack JE, Raven BH, Leveillee MB, Naranjo M. What Does an Insect Hear? Reassessing the Role of Hearing in Predator Avoidance with Insights from Vertebrate Prey. Integr Comp Biol 2020; 60:1036-1057. [PMID: 32717080 DOI: 10.1093/icb/icaa097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insects have a diversity of hearing organs known to function in a variety of contexts, including reproduction, locating food, and defense. While the role of hearing in predator avoidance has been extensively researched over the past several decades, this research has focused on the detection of one type of predator-echolocating bats. Here we reassess the role of hearing in antipredator defense by considering how insects use their ears to detect and avoid the wide range of predators that consume them. To identify the types of sounds that could be relevant to insect prey, we first review the topic of hearing-mediated predator avoidance in vertebrates. Sounds used by vertebrate prey to assess predation risk include incidental sound cues (e.g., flight sounds, rustling vegetation, and splashing) produced by an approaching predator or another escaping prey, as well as communication signals produced by a predator (e.g., echolocation calls, songs) or nonpredator (e.g., alarm calls). We then review what is known, and what is not known, about such sounds made by the main predators and parasitoids of insects (i.e., birds, bats, terrestrial vertebrates, and invertebrates) and how insects respond to them. Three key insights emerged from our review. First, there is a lack of information on how both vertebrate and insect prey use passive sound cues produced by predators to avoid being captured. Second, while there are numerous examples of vertebrate prey eavesdropping on the calls and songs of predators and nonpredators to assess risk, there are currently no such examples for eared insect prey. Third, the hearing sensitivity of many insects, including those with ears considered to be dedicated to detecting bats or mates, overlaps with both sound cues and signals generated by nonbat predators. Sounds of particular relevance to insect prey include the flight sounds and calls of insectivorous birds, the flight sounds of insect predators and parasitoids, and rustling vegetation sounds of birds and terrestrial predators. We conclude that research on the role of insect hearing in predator avoidance has been disproportionally focused on bat-detection, and that acoustically-mediated responses to other predators may have been overlooked because the responses of prey may be subtle (e.g., ceasing activity, increasing vigilance). We recommend that researchers expand their testing of hearing-mediated risk assessment in insects by considering the wide range of sounds generated by predators, and the varied responses exhibited by prey to these sounds.
Collapse
Affiliation(s)
- Jayne E Yack
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Brianna H Raven
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Michelle B Leveillee
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Mairelys Naranjo
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
39
|
Zvereva EL, Paolucci LN, Kozlov MV. Top-down factors contribute to differences in insect herbivory between saplings and mature trees in boreal and tropical forests. Oecologia 2020; 193:167-176. [PMID: 32314043 PMCID: PMC7235072 DOI: 10.1007/s00442-020-04659-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/15/2020] [Indexed: 11/26/2022]
Abstract
Ontogenetic changes in herbivory are generally not consistent with ontogenetic changes in defensive traits of woody plants. This inconsistency suggests that other factors may affect ontogenetic trajectories in herbivory. We tested the hypothesis that top-down factors contribute to differences in foliar losses to insects between juvenile and mature trees in tropical and boreal forests. We used artificial caterpillars made of modelling clay to compare predation rates between saplings and mature trees of two common forest species, Siparuna guianensis in Brazil (tropical site) and Betula pubescens in Finland (boreal site). Leaf area losses to chewing insects in saplings were 2.5-fold higher than in mature trees in both species. Physical plant defences (measured as specific leaf area, SLA) did not differ between saplings and mature trees in the boreal forest, whereas in the tropical forest, SLA was greater in saplings than in mature trees. Attack rates on the model prey by birds were higher in the boreal forest, whereas attack rates by arthropod predators were higher in the tropical forest. Overall, predation rates on model prey were consistently higher on mature trees than on saplings at both sites, but in the boreal site, this pattern was primarily driven by birds, whereas in the tropical site, it was primarily driven by arthropod predators. We conclude that the effect of predation on herbivorous insects may considerably contribute to ontogenetic differences in herbivory, but the relative roles of different predatory groups and of top-down and bottom-up factors may vary between environments.
Collapse
Affiliation(s)
- Elena L Zvereva
- Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Lucas N Paolucci
- Setor de Ecologia E Conservação, Departamento de Biologia, Universidade Federal de Lavras, Lavras, CEP: 37200-000, Brazil
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG, CEP: 36570-900, Brazil
| | - Mikhail V Kozlov
- Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
40
|
Nyffeler M, Bonte D. Where Have All the Spiders Gone? Observations of a Dramatic Population Density Decline in the Once Very Abundant Garden Spider, Araneus diadematus (Araneae: Araneidae), in the Swiss Midland. INSECTS 2020; 11:insects11040248. [PMID: 32326490 PMCID: PMC7240396 DOI: 10.3390/insects11040248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/02/2022]
Abstract
Aerial web-spinning spiders (including large orb-weavers), as a group, depend almost entirely on flying insects as a food source. The recent widespread loss of flying insects across large parts of western Europe, in terms of both diversity and biomass, can therefore be anticipated to have a drastic negative impact on the survival and abundance of this type of spider. To test the putative importance of such a hitherto neglected trophic cascade, a survey of population densities of the European garden spider Araneus diadematus—a large orb-weaving species—was conducted in the late summer of 2019 at twenty sites in the Swiss midland. The data from this survey were compared with published population densities for this species from the previous century. The study verified the above-mentioned hypothesis that this spider’s present-day overall mean population density has declined alarmingly to densities much lower than can be expected from normal population fluctuations (0.7% of the historical values). Review of other available records suggested that this pattern is widespread and not restricted to this region. In conclusion, the decline of this once so abundant spider in the Swiss midland is evidently revealing a bottom-up trophic cascade in response to the widespread loss of flying insect prey in recent decades.
Collapse
Affiliation(s)
- Martin Nyffeler
- Department of Environmental Sciences, Section of Conservation Biology, University of Basel, CH–4056 Basel, Switzerland
- Correspondence:
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
41
|
Kennedy SR, Prost S, Overcast I, Rominger AJ, Gillespie RG, Krehenwinkel H. High-throughput sequencing for community analysis: the promise of DNA barcoding to uncover diversity, relatedness, abundances and interactions in spider communities. Dev Genes Evol 2020; 230:185-201. [PMID: 32040713 PMCID: PMC7127999 DOI: 10.1007/s00427-020-00652-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
Large-scale studies on community ecology are highly desirable but often difficult to accomplish due to the considerable investment of time, labor and, money required to characterize richness, abundance, relatedness, and interactions. Nonetheless, such large-scale perspectives are necessary for understanding the composition, dynamics, and resilience of biological communities. Small invertebrates play a central role in ecosystems, occupying critical positions in the food web and performing a broad variety of ecological functions. However, it has been particularly difficult to adequately characterize communities of these animals because of their exceptionally high diversity and abundance. Spiders in particular fulfill key roles as both predator and prey in terrestrial food webs and are hence an important focus of ecological studies. In recent years, large-scale community analyses have benefitted tremendously from advances in DNA barcoding technology. High-throughput sequencing (HTS), particularly DNA metabarcoding, enables community-wide analyses of diversity and interactions at unprecedented scales and at a fraction of the cost that was previously possible. Here, we review the current state of the application of these technologies to the analysis of spider communities. We discuss amplicon-based DNA barcoding and metabarcoding for the analysis of community diversity and molecular gut content analysis for assessing predator-prey relationships. We also highlight applications of the third generation sequencing technology for long read and portable DNA barcoding. We then address the development of theoretical frameworks for community-level studies, and finally highlight critical gaps and future directions for DNA analysis of spider communities.
Collapse
Affiliation(s)
- Susan R Kennedy
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberg Museum, Frankfurt, Germany
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa
| | - Isaac Overcast
- Graduate Center of the City University New York, New York, NY, USA
- Ecole Normale Supérieure, Paris, France
| | | | - Rosemary G Gillespie
- Environmental Sciences Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
42
|
Zverev V, Zvereva EL, Kozlov MV. Bird predation does not explain spatial variation in insect herbivory in a forest–tundra ecotone. Polar Biol 2020. [DOI: 10.1007/s00300-020-02633-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThe contribution of bird predation to the spatial variations in insect herbivory remains imperfectly understood, especially in Arctic ecosystems. We experimentally tested the hypothesis that the differences in insect herbivory between tundra and forest biomes, and between plant life-forms in these biomes, are associated with differences in the intensity of bird predation on defoliating insects. We observed substantial variation in herbivory (0% to 20% of foliage lost) among nine forest, mountain tundra, and lowland tundra sites in the Kola Peninsula (northwestern Russia) and among five woody plant species, but we found no consistent differences in herbivory between biomes and between plant life-forms. Bird attacks on artificial caterpillars were tenfold more frequent in forest than in tundra, while bird exclusion effects on herbivory did not differ between biomes, and the intensities of bird predation measured by these two methods were not correlated. Bird exclusion led to increases in insect herbivory, and this effect was significant in trees and tall shrubs but was not significant in dwarf shrubs in either forest or tundra sites. Bird predation, as measured in bird exclusion experiments, increased with an increase in the level of foliar damage inflicted by insects in forests but not in tundra habitats. We conclude that bird predation generally decreases plant losses to insects in both forest and tundra habitats, but birds are unlikely to shape the spatial patterns of plant losses to insects in Arctic ecosystems.
Collapse
|
43
|
Zvereva EL, Castagneyrol B, Cornelissen T, Forsman A, Hernández‐Agüero JA, Klemola T, Paolucci L, Polo V, Salinas N, Theron KJ, Xu G, Zverev V, Kozlov MV. Opposite latitudinal patterns for bird and arthropod predation revealed in experiments with differently colored artificial prey. Ecol Evol 2019; 9:14273-14285. [PMID: 31938518 PMCID: PMC6953658 DOI: 10.1002/ece3.5862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 11/20/2022] Open
Abstract
The strength of biotic interactions is generally thought to increase toward the equator, but support for this hypothesis is contradictory. We explored whether predator attacks on artificial prey of eight different colors vary among climates and whether this variation affects the detection of latitudinal patterns in predation. Bird attack rates negatively correlated with model luminance in cold and temperate environments, but not in tropical environments. Bird predation on black and on white (extremes in luminance) models demonstrated different latitudinal patterns, presumably due to differences in prey conspicuousness between habitats with different light regimes. When attacks on models of all colors were combined, arthropod predation decreased, whereas bird predation increased with increasing latitude. We conclude that selection for prey coloration may vary geographically and according to predator identity, and that the importance of different predators may show contrasting patterns, thus weakening the overall latitudinal trend in top-down control of herbivorous insects.
Collapse
Affiliation(s)
| | | | - Tatiana Cornelissen
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Anders Forsman
- Department of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
| | | | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Lucas Paolucci
- Setor de Ecologia e ConservaçãoDepartamento de BiologiaUniversidade Federal de LavrasLavrasBrazil
- Instituto de Pesquisa Ambiental da AmazôniaBrasíliaBrazil
- Departamento de Biologia GeralUniversidade Federal de Viçosa, Campus UniversitárioViçosaBrazil
| | - Vicente Polo
- Department of Biology and Geology, Physics and Inorganic ChemistryUniversity Rey Juan CarlosMóstolesSpain
| | - Norma Salinas
- Instituto de Ciencias de la Naturaleza, Territorio y Energías RenovablesPontificia Universidad Católica del PerúLimaPeru
| | - Kasselman Jurie Theron
- Department of Conservation Ecology and EntomologyStellenbosch UniversityMatielandSouth Africa
| | - Guorui Xu
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
| | - Vitali Zverev
- Department of BiologyUniversity of TurkuTurkuFinland
| | | |
Collapse
|
44
|
Jiang T, Szwedo J, Wang B. A unique camouflaged mimarachnid planthopper from mid-Cretaceous Burmese amber. Sci Rep 2019; 9:13112. [PMID: 31511621 PMCID: PMC6739471 DOI: 10.1038/s41598-019-49414-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/13/2019] [Indexed: 11/21/2022] Open
Abstract
Predation is a major driving force for the evolution of functional forms. Avoidance of visual predators has resulted in different kinds of anti-predator defences, such as: camouflage, crypsis, disruptive coloration, and masquerade or mimesis. Camouflage is one of the forms involving shape, colouration, structure and behaviour when the visual pattern and orientation of an animal can determine whether it lives or dies. Inferring the behaviour and function of an ancient organism from its fossilised remains is a difficult task, but in many cases it closely resembles that of its descendants on uniformitarian grounds. Here we report and discuss examples of morphological and behavioural traits involving camouflage named recently as a flatoidinisation syndrome, shown by the inclusion of a planthopper in mid-Cretaceous Burmese amber. We found a new genus and species of an extinct Cretaceous planthopper family Mimarachnidae showing peculiar complex morphological adaptations to camouflage it on tree bark. Due to convergence, it resembles an unrelated tropiduchid planthopper from Eocene Baltic amber and also a modern representatives of the planthopper family Flatidae. Flattening of the body, the horizontal position of the tegmina at repose, tegmina with an undulating margin and elevated, wavy longitudinal veins, together with colouration and more sedentary behavioral traits enable these different insects to avoid predators. Our discovery reveals flatoidinisation syndrome in mid-Cretaceous Burmese amber which may provide insights into the processes of natural selection and evolution in this ancient forest.
Collapse
Affiliation(s)
- Tian Jiang
- China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian district, Beijing, 100083, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
| | - Jacek Szwedo
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China.
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, 59, Wita Stwosza St., PL80-308, Gdańsk, Poland.
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
45
|
Sewlal JAN, Cutler B, Draney ML. Species composition of the orb-weaving families Araneidae and Tetragnathidae (Araneae: Araneoidea) in natural habitats in Trinidad, West Indies. J NAT HIST 2019. [DOI: 10.1080/00222933.2019.1691750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jo-Anne N. Sewlal
- The Caribbean Academy of Sciences, Faculty of Engineering, The University of the West Indies, St. Augustine, West Indies
| | - Bruce Cutler
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Michael L. Draney
- Department of Natural & Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, USA
| |
Collapse
|
46
|
Editorial team and Arnold Berliner Award 2019. Naturwissenschaften 2019. [DOI: 10.1007/s00114-019-1643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Santangeli A, Lehikoinen A, Lindholm T, Herzon I. Organic animal farms increase farmland bird abundance in the Boreal region. PLoS One 2019; 14:e0216009. [PMID: 31091249 PMCID: PMC6519808 DOI: 10.1371/journal.pone.0216009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022] Open
Abstract
Agriculture is a primary driver of biodiversity loss worldwide, and several expensive schemes have been designed to make modern farming landscapes more hospitable for wildlife. One such market-based mechanisms is the agri-environment-climate schemes (AES) in the European Union (EU). AES compensate farmers for reducing land-use intensity and maintaining or introducing biodiversity-rich habitats. Despite their high costs, impacts of AES vary by measure, region and taxonomic group considered, and have rarely been studied over large areas covering an entire country. Here we assess the country-wide impact of several AES measures on bird abundance using citizen science data on birds and detailed information on AES take up from across Finland. We report a positive impact of organic animal farming on abundance of all farmland associated birds. This effect was particularly strong for insectivorous species, species that are associated to farmyards and long-distance species. None of the other AES measures considered for study did show any relationship with bird abundance. Overall, these findings highlight the potential positive impact that some compensatory measures, such as organic animal farming, may have on wildlife. Traditional animal husbandry is based on grazing of animals and restriction on external inputs, similarly to what is stipulated under organic production contract. As such, traditional animal husbandry may represent an effective landscape management tool for restoring or maintaining threatened species and ecosystems in rural areas of the EU. Ultimately, the apparent lack of a measurable effect of the other AES considered here supports the current move towards evidence-based regional targeting of compensatory measures, so as to concentrate scarce resources to where they can yield the highest ecological benefits.
Collapse
Affiliation(s)
- Andrea Santangeli
- The Helsinki Lab of Ornithology, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, HELSUS, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Aleksi Lehikoinen
- The Helsinki Lab of Ornithology, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Tanja Lindholm
- The Helsinki Lab of Ornithology, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Irina Herzon
- Helsinki Institute of Sustainability Science, HELSUS, University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|