1
|
Semalaiyappan J, Selvanayagam S, Rathore A, Gupta SK, Chakraborty A, Gujjula KR, Haktan S, Viswanath A, Malipatil R, Shah P, Govindaraj M, Ignacio JC, Reddy S, Singh AK, Thirunavukkarasu N. Development of a new AgriSeq 4K mid-density SNP genotyping panel and its utility in pearl millet breeding. FRONTIERS IN PLANT SCIENCE 2023; 13:1068883. [PMID: 36704175 PMCID: PMC9871632 DOI: 10.3389/fpls.2022.1068883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Pearl millet is a crucial nutrient-rich staple food in Asia and Africa and adapted to the climate of semi-arid topics. Since the genomic resources in pearl millet are very limited, we have developed a brand-new mid-density 4K SNP panel and demonstrated its utility in genetic studies. A set of 4K SNPs were mined from 925 whole-genome sequences through a comprehensive in-silico pipeline. Three hundred and seventy-three genetically diverse pearl millet inbreds were genotyped using the newly-developed 4K SNPs through the AgriSeq Targeted Genotyping by Sequencing technology. The 4K SNPs were uniformly distributed across the pearl millet genome and showed considerable polymorphism information content (0.23), genetic diversity (0.29), expected heterozygosity (0.29), and observed heterozygosity (0.03). The SNP panel successfully differentiated the accessions into two major groups, namely B and R lines, through genetic diversity, PCA, and structure models as per their pedigree. The linkage disequilibrium (LD) analysis showed Chr3 had higher LD regions while Chr1 and Chr2 had more low LD regions. The genetic divergence between the B- and R-line populations was 13%, and within the sub-population variability was 87%. In this experiment, we have mined 4K SNPs and optimized the genotyping protocol through AgriSeq technology for routine use, which is cost-effective, fast, and highly reproducible. The newly developed 4K mid-density SNP panel will be useful in genomics and molecular breeding experiments such as assessing the genetic diversity, trait mapping, backcross breeding, and genomic selection in pearl millet.
Collapse
Affiliation(s)
- Janani Semalaiyappan
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, India
| | - Sivasubramani Selvanayagam
- Accelerated Crop Improvement, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Abhishek Rathore
- Excellence in Breeding (EiB) Platform, The International Maize and Wheat Improvement Center (CIMMYT), El Batán, Mexico
| | - SK. Gupta
- Accelerated Crop Improvement, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Animikha Chakraborty
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, India
| | | | - Suren Haktan
- Bioinformatics, Thermo Fisher Scientific, Austin, TX, United States
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, India
| | - Priya Shah
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, India
| | | | - John Carlos Ignacio
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, United States
| | - Sanjana Reddy
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, India
| | | | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Rajendranagar, India
| |
Collapse
|
2
|
Srivastava RK, Yadav OP, Kaliamoorthy S, Gupta SK, Serba DD, Choudhary S, Govindaraj M, Kholová J, Murugesan T, Satyavathi CT, Gumma MK, Singh RB, Bollam S, Gupta R, Varshney RK. Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:781524. [PMID: 35463391 PMCID: PMC9021881 DOI: 10.3389/fpls.2022.781524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/11/2022] [Indexed: 06/03/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a C4 crop cultivated for its grain and stover in crop-livestock-based rain-fed farming systems of tropics and subtropics in the Indian subcontinent and sub-Saharan Africa. The intensity of drought is predicted to further exacerbate because of looming climate change, necessitating greater focus on pearl millet breeding for drought tolerance. The nature of drought in different target populations of pearl millet-growing environments (TPEs) is highly variable in its timing, intensity, and duration. Pearl millet response to drought in various growth stages has been studied comprehensively. Dissection of drought tolerance physiology and phenology has helped in understanding the yield formation process under drought conditions. The overall understanding of TPEs and differential sensitivity of various growth stages to water stress helped to identify target traits for manipulation through breeding for drought tolerance. Recent advancement in high-throughput phenotyping platforms has made it more realistic to screen large populations/germplasm for drought-adaptive traits. The role of adapted germplasm has been emphasized for drought breeding, as the measured performance under drought stress is largely an outcome of adaptation to stress environments. Hybridization of adapted landraces with selected elite genetic material has been stated to amalgamate adaptation and productivity. Substantial progress has been made in the development of genomic resources that have been used to explore genetic diversity, linkage mapping (QTLs), marker-trait association (MTA), and genomic selection (GS) in pearl millet. High-throughput genotyping (HTPG) platforms are now available at a low cost, offering enormous opportunities to apply markers assisted selection (MAS) in conventional breeding programs targeting drought tolerance. Next-generation sequencing (NGS) technology, micro-environmental modeling, and pearl millet whole genome re-sequence information covering circa 1,000 wild and cultivated accessions have helped to greater understand germplasm, genomes, candidate genes, and markers. Their application in molecular breeding would lead to the development of high-yielding and drought-tolerant pearl millet cultivars. This review examines how the strategic use of genetic resources, modern genomics, molecular biology, and shuttle breeding can further enhance the development and delivery of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - O. P. Yadav
- Indian Council of Agricultural Research-Central Arid Zone Research Institute, Jodhpur, India
| | - Sivasakthi Kaliamoorthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - S. K. Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Desalegn D. Serba
- United States Department of Agriculture-Agriculture Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, United States
| | - Sunita Choudhary
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Jana Kholová
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Tharanya Murugesan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - C. Tara Satyavathi
- Indian Council of Agricultural Research – All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Murali Krishna Gumma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Ram B. Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Srikanth Bollam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Rajeev Gupta
- United States Department of Agriculture-Agriculture Research Service (ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
3
|
Jangra S, Rani A, Yadav D, Yadav RC, Yadav NR. Promising versions of a commercial pearl millet hybrid for terminal drought tolerance identified through MAS. J Genet 2021. [DOI: 10.1007/s12041-021-01337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Satyavathi CT, Ambawat S, Khandelwal V, Srivastava RK. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. FRONTIERS IN PLANT SCIENCE 2021; 12:659938. [PMID: 34589092 PMCID: PMC8475763 DOI: 10.3389/fpls.2021.659938] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/03/2021] [Indexed: 06/03/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is the sixth most important cereal crop after rice, wheat, maize, barley and sorghum. It is widely grown on 30 million ha in the arid and semi-arid tropical regions of Asia and Africa, accounting for almost half of the global millet production. Climate change affects crop production by directly influencing biophysical factors such as plant and animal growth along with the various areas associated with food processing and distribution. Assessment of the effects of global climate changes on agriculture can be helpful to anticipate and adapt farming to maximize the agricultural production more effectively. Pearl millet being a climate-resilient crop is important to minimize the adverse effects of climate change and has the potential to increase income and food security of farming communities in arid regions. Pearl millet has a deep root system and can survive in a wide range of ecological conditions under water scarcity. It has high photosynthetic efficiency with an excellent productivity and growth in low nutrient soil conditions and is less reliant on chemical fertilizers. These attributes have made it a crop of choice for cultivation in arid and semi-arid regions of the world; however, fewer efforts have been made to study the climate-resilient features of pearl millet in comparison to the other major cereals. Several hybrids and varieties of pearl millet were developed during the past 50 years in India by both the public and private sectors. Pearl millet is also nutritionally superior and rich in micronutrients such as iron and zinc and can mitigate malnutrition and hidden hunger. Inclusion of minimum standards for micronutrients-grain iron and zinc content in the cultivar release policy-is the first of its kind step taken in pearl millet anywhere in the world, which can lead toward enhanced food and nutritional security. The availability of high-quality whole-genome sequencing and re-sequencing information of several lines may aid genomic dissection of stress tolerance and provide a good opportunity to further exploit the nutritional and climate-resilient attributes of pearl millet. Hence, more efforts should be put into its genetic enhancement and improvement in inheritance to exploit it in a better way. Thus, pearl millet is the next-generation crop holding the potential of nutritional richness and the climate resilience and efforts must be targeted to develop nutritionally dense hybrids/varieties tolerant to drought using different omics approaches.
Collapse
Affiliation(s)
- C. Tara Satyavathi
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Supriya Ambawat
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Vikas Khandelwal
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Rakesh K. Srivastava
- Department of Molecular Breeding (Genomics Trait Discovery), International Crops Research Institute for Semi-arid Tropics, Patancheru, India
| |
Collapse
|
5
|
Heterotic pools in African and Asian origin populations of pearl millet [Pennisetum glaucum (L.) R. Br.]. Sci Rep 2021; 11:12197. [PMID: 34108516 PMCID: PMC8190140 DOI: 10.1038/s41598-021-91568-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
Forty-five African or Asian origin pearl millet populations bred either in Africa or Asia were investigated to generate information on heterotic pools. They were clustered into seven groups (G1 to G7) when genotyped, using 29 highly polymorphic SSRs. Fourteen parental populations representing these seven marker-based groups were crossed in diallel mating design to generate 91 population hybrids. The hybrids evaluated at three locations in India showed mean panmictic mid-parent heterosis (PMPH) and better-parent heterosis (PBPH) for grain yield ranging from − 21.7 to 62.08% and − 32.51 to 42.99%, respectively. Higher grain yield and heterosis were observed in G2 × G6 (2462 kg ha−1, 43.2%) and G2 × G5 (2455 kg ha−1, 42.8%) marker group crosses compared to the most popular Indian open-pollinated variety (OPV) ICTP 8203. Two heterotic groups, Pearl millet Population Heterotic Pool-1 (PMPHP-1) comprising G2 populations and Pearl millet Population Heterotic Pool-2 (PMPHP-2) comprising G5 and G6 populations, were identified based on hybrid performance, heterosis and combining ability among marker group crosses. Population hybrids from two heterotic groups, PMPHP-1 × PMPHP-2 demonstrated PMPH of 14.75% and PBPH of 6.8%. Populations of PMPHP-1 had linkages with either African or Asian origin populations, whereas PMPHP-2 composed of populations originating in Africa and later bred for Asian environments. Results indicated that parental populations from the two opposite heterotic groups can be used as base populations to derive superior inbred lines to develop high yielding hybrids/cultivars.
Collapse
|
6
|
Dan X, Wang C, Su Y, Zhang A, Wang R, Khan I, Huang L. Evaluation of genetic integrity of pearl millet seeds during aging by genomic-SSR markers. Mol Biol Rep 2020; 47:5747-5754. [PMID: 32676815 DOI: 10.1007/s11033-020-05642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022]
Abstract
Seed is an important way to store germplasm resources but its genetic integrity will decrease during long-term preservation. So, it's essential to update seeds according to the aging level of different species. Pearl millet [Cenchrus americanus (L.) Morrone syn., Pennisetum glaucum (L.) R. Br.] is a crucial forage grass, biofuel plant and important crops in the world bringing huge economic and ecological benefits. However, there is no report about the impact of aging on genetic integrity of its seeds. In this study, four genetic diversity indexes (the percentage of polymorphic bands, PPB; the effective number of alleles, Ne; the Nei's gene diversity index, H; the Shannon's information index, I) and 20 pairs of genomic-SSR primers were used to certify the optimal sample volume of pearl millet for molecular study and found that the best sample volume was 60. After the artificial aging test, the germination rate and four genetic diversity parameters (the number of alleles, Na; Ne; H; I) were used to evaluate the change of genetic integrity at different aging levels. The results showed that the germination rate and these four genetic diversity parameters declined with the increase of aging levels. Furthermore, when the germination rate of pearl millet seeds went down to 68.23%, a significant difference in genetic integrity was observed with unaged seeds. In conclusion, the optimal sample size of pearl millet was 60 and the critical point of germination rate to renew germplasm resources was 68.23% and these finds might contribute to the scientific study and the safe conservation of pearl millet.
Collapse
Affiliation(s)
- Xuming Dan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611330, Sichuan, China
| | - Chengran Wang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611330, Sichuan, China
| | - Yanning Su
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611330, Sichuan, China
| | - Ailing Zhang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611330, Sichuan, China
| | - Ruijia Wang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611330, Sichuan, China
| | - Imran Khan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611330, Sichuan, China
| | - Linkai Huang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611330, Sichuan, China.
| |
Collapse
|
7
|
Srivastava RK, Singh RB, Pujarula VL, Bollam S, Pusuluri M, Chellapilla TS, Yadav RS, Gupta R. Genome-Wide Association Studies and Genomic Selection in Pearl Millet: Advances and Prospects. Front Genet 2020; 10:1389. [PMID: 32180790 PMCID: PMC7059752 DOI: 10.3389/fgene.2019.01389] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Pearl millet is a climate-resilient, drought-tolerant crop capable of growing in marginal environments of arid and semi-arid regions globally. Pearl millet is a staple food for more than 90 million people living in poverty and can address the triple burden of malnutrition substantially. It remained a neglected crop until the turn of the 21st century, and much emphasis has been placed since then on the development of various genetic and genomic resources for whole-genome scan studies, such as the genome-wide association studies (GWAS) and genomic selection (GS). This was facilitated by the advent of sequencing-based genotyping, such as genotyping-by-sequencing (GBS), RAD-sequencing, and whole-genome re-sequencing (WGRS) in pearl millet. To carry out GWAS and GS, a world association mapping panel called the Pearl Millet inbred Germplasm Association Panel (PMiGAP) was developed at ICRISAT in partnership with Aberystwyth University. This panel consisted of germplasm lines, landraces, and breeding lines from 27 countries and was re-sequenced using the WGRS approach. It has a repository of circa 29 million genome-wide SNPs. PMiGAP has been used to map traits related to drought tolerance, grain Fe and Zn content, nitrogen use efficiency, components of endosperm starch, grain yield, etc. Genomic selection in pearl millet was jump-started recently by WGRS, RAD, and tGBS (tunable genotyping-by-sequencing) approaches for the PMiGAP and hybrid parental lines. Using multi-environment phenotyping of various training populations, initial attempts have been made to develop genomic selection models. This mini review discusses advances and prospects in GWAS and GS for pearl millet.
Collapse
Affiliation(s)
- Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Ram B Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vijaya Lakshmi Pujarula
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Srikanth Bollam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Madhu Pusuluri
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Tara Satyavathi Chellapilla
- All India Coordinated Research Project on Pearl Millet (AICRP-PM), Indian Council of Agricultural Research (ICAR), Jodhpur, India
| | - Rattan S Yadav
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, United Kingdom
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
8
|
Basava RK, Hash CT, Mahendrakar MD, Kishor P. B. K, Satyavathi CT, Kumar S, Singh RB, Yadav RS, Gupta R, Srivastava RK. Discerning combining ability loci for divergent environments using chromosome segment substitution lines (CSSLs) in pearl millet. PLoS One 2019; 14:e0218916. [PMID: 31461465 PMCID: PMC6713397 DOI: 10.1371/journal.pone.0218916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022] Open
Abstract
Pearl millet is an important crop for arid and semi-arid regions of the world. Genomic regions associated with combining ability for yield-related traits under irrigated and drought conditions are useful in heterosis breeding programs. Chromosome segment substitution lines (CSSLs) are excellent genetic resources for precise QTL mapping and identifying naturally occurring favorable alleles. In the present study, testcross hybrid populations of 85 CSSLs were evaluated for 15 grain and stover yield-related traits for summer and wet seasons under irrigated control (CN) and moisture stress (MS) conditions. General combining ability (GCA) and specific combining ability (SCA) effects of all these traits were estimated and significant marker loci linked to GCA and SCA of the traits were identified. Heritability of the traits ranged from 53-94% in CN and 63-94% in MS. A total of 40 significant GCA loci and 36 significant SCA loci were identified for 14 different traits. Five QTLs (flowering time, panicle number and panicle yield linked to Xpsmp716 on LG4, flowering time and grain number per panicle with Xpsmp2076 on LG4) simultaneously controlled both GCA and SCA, demonstrating their unique genetic basis and usefulness for hybrid breeding programs. This study for the first time demonstrated the potential of a set of CSSLs for trait mapping in pearl millet. The novel combining ability loci linked with GCA and SCA values of the traits identified in this study may be useful in pearl millet hybrid and population improvement programs using marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Ramana Kumari Basava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| | - Charles Thomas Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| | - Mahesh D. Mahendrakar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| | | | - C. Tara Satyavathi
- All India Coordinated Research Project on Pearl Millet (AICRP-PM), Indian Council of Agricultural Research (ICAR), Mandor, Jodhpur, Rajasthan, India
| | - Sushil Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
- Anand Agricultural University, Anand, Gujarat, India
| | - R. B. Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| | - Rattan S. Yadav
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Wales, United Kingdom
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana State, India
| |
Collapse
|
9
|
Conservation priorities for endangered coastal North African Pennisetum glaucum L. landrace populations as inferred from phylogenetic considerations and population structure analysis. Heredity (Edinb) 2018; 122:219-232. [PMID: 29904171 DOI: 10.1038/s41437-018-0091-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 11/08/2022] Open
Abstract
The increasing anthropologic pressure and the modernization of agriculture have led to a forsaking of pearl millet traditional cultivars, inducing a progressive loss of the genetic variability encompassed in this locally adapted germplasm. Imperatively, national efforts based on robust data gleaned from genetic surveys have to be undertaken in order to set up suitable conservation priorities. In this study, in addition to the assessment of the genetic diversity and population structure among and within a set of seven pearl millet landrace populations from coastal North Africa, demographic and phylogenetic data, conservation priority scores were calculated according to Vane-Wright et al. (1991). To date, genetic diversity of pearl millet in North Africa is still poorly documented. The present survey reports for the first time the use of highly informative nSSR markers (PIC = 0.74) on Pennisetum glaucum landraces representative of the Mediterranean coastline of North Africa. A high level of genetic diversity was obtained within the investigated landraces (He = 0.80) at the population level. FST, AFC-3D, and Bayesian clustering underlined significant differentiation and an apparent genetic structure, according to geographical origin. Phylogenetic considerations integrated with demographic and genetic information enabled conclusive inferences of highly prioritized populations for conservation. Populations Haouaria, Hammem Laghzez, Mahdia, and Medenine, representatives of the main pearl millet growing areas in Tunisia and cultivated in the North African littoral, should be strongly recommended for an ex situ conservation program. Dynamic on-farm conservation method is also required as it allows the local landraces to evolve in different environments, while maintaining their adaptation potentials.
Collapse
|
10
|
Kumar S, Hash CT, Nepolean T, Mahendrakar MD, Satyavathi CT, Singh G, Rathore A, Yadav RS, Gupta R, Srivastava RK. Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet. Genes (Basel) 2018; 9:E248. [PMID: 29751669 PMCID: PMC5977188 DOI: 10.3390/genes9050248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 11/27/2022] Open
Abstract
Pearl millet is a climate-resilient nutritious crop requiring low inputs and is capable of giving economic returns in marginal agro-ecologies. In this study, we report large-effect iron (Fe) and zinc (Zn) content quantitative trait loci (QTLs) using diversity array technology (DArT) and simple sequence repeats (SSRs) markers to generate a genetic linkage map using 317 recombinant inbred line (RIL) population derived from the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08) cross. The base map [seven linkage groups (LGs)] of 196 loci was 964.2 cM in length (Haldane). AIMP 92901-S1-183-2-2-B-08 is an Iniadi line with high grain Fe and Zn, tracing its origin to the Togolese Republic, West Africa. The content of grain Fe in the RIL population ranged between 20 and 131 ppm (parts per million), and that of Zn from 18 to 110 ppm. QTL analysis revealed a large number of QTLs for high grain iron (Fe) and zinc (Zn) content. A total of 19 QTLs for Fe and Zn were detected, of which 11 were for Fe and eight were for Zn. The portion of the observed phenotypic variance explained by different QTLs for grain Fe and Zn content varied from 9.0 to 31.9% (cumulative 74%) and from 9.4 to 30.4% (cumulative 65%), respectively. Three large-effect QTLs for both minerals were co-mapped in this population, one on LG1 and two on LG7. The favorable QTL alleles of both mineral micronutrients were contributed by the male parent (AIMP 92901-deriv-08). Three putative epistasis interactions were observed for Fe content, while a single digenic interaction was found for Zn content. The reported QTLs may be useful in marker-assisted selection (MAS) programs, in genomic selection (GS) breeding pipelines for seed and restorer parents, and in population improvement programs for pearl millet.
Collapse
Affiliation(s)
- Sushil Kumar
- Plant Biotechnology Centre, SK Rajasthan Agricultural University, Bikaner 334006, India.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
- Centre of Excellence in Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India.
| | - Charles Tom Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey 8001, Niger.
| | | | - Mahesh D Mahendrakar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
| | | | - Govind Singh
- Plant Biotechnology Centre, SK Rajasthan Agricultural University, Bikaner 334006, India.
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
| | - Rattan S Yadav
- Crop Genetics, Genomics and Breeding Division, Aberystwyth University, Aberystwyth SY23, UK.
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India.
| |
Collapse
|
11
|
Pucher A, Hash CT, Wallace JG, Han S, Leiser WL, Haussmann BIG. Mapping a male-fertility restoration locus for the A 4 cytoplasmic-genic male-sterility system in pearl millet using a genotyping-by-sequencing-based linkage map. BMC PLANT BIOLOGY 2018; 18:65. [PMID: 29665794 PMCID: PMC5905146 DOI: 10.1186/s12870-018-1267-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/12/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Pearl millet (Pennisetum glaucum (L.) R. Br., syn. Cenchrus americanus (L.) R. Br) is an important cereal and fodder crop in hot and arid environments. There is great potential to improve pearl millet production through hybrid breeding. Cytoplasmic male sterility (CMS) and the corresponding nuclear fertility restoration / sterility maintenance genes (Rfs) are essential tools for economic hybrid seed production in pearl millet. Mapping the Rf genes of the A4 CMS system in pearl millet would enable more efficient introgression of both dominant male-fertility restoration alleles (Rf) and their recessive male-sterility maintenance counterparts (rf). RESULTS A high density linkage map based on single nucleotide polymorphism (SNP) markers was generated using an F2 mapping population and genotyping-by-sequencing (GBS). The parents of this cross were 'ICMA 02777' and 'ICMR 08888', which segregate for the A4 Rf locus. The linkage map consists of 460 SNP markers distributed mostly evenly and has a total length of 462 cM. The segregation ratio of male-fertile and male-sterile plants (3:1) based on pollen production (presence/absence) indicated monogenic dominant inheritance of male-fertility restoration. Correspondingly, a major quantitative trait locus (QTL) for pollen production was found on linkage group 2, with cross-validation showing a very high QTL occurrence (97%). The major QTL was confirmed using selfed seed set as phenotypic trait, though with a lower precision. However, these QTL explained only 14.5% and 9.9% of the phenotypic variance of pollen production and selfed seed set, respectively, which was below expectation. Two functional KASP markers were developed for the identified locus. CONCLUSION This study identified a major QTL for male-fertility restoration using a GBS-based linkage map and developed KASP markers which support high-throughput screening of the haploblock. This is a first step toward marker-assisted selection of A4 male-fertility restoration and male-sterility maintenance in pearl millet.
Collapse
Affiliation(s)
- Anna Pucher
- Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr University of Hohenheim, 21, D-70599 Stuttgart, Germany
| | - C. Tom Hash
- ICRISAT Sahelian Center, 12404 Niamey, BP Niger
| | - Jason G. Wallace
- Department of Crop and Soil Sciences, the University of Georgia, 30602 Athens, GA USA
| | - Sen Han
- Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr University of Hohenheim, 21, D-70599 Stuttgart, Germany
| | - Willmar L. Leiser
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr, 21, D-70599 Stuttgart, Germany
| | - Bettina I. G. Haussmann
- Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr University of Hohenheim, 21, D-70599 Stuttgart, Germany
| |
Collapse
|
12
|
Kumar S, Hash CT, Nepolean T, Satyavathi CT, Singh G, Mahendrakar MD, Yadav RS, Srivastava RK. Mapping QTLs Controlling Flowering Time and Important Agronomic Traits in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2017; 8:1731. [PMID: 29326729 PMCID: PMC5742331 DOI: 10.3389/fpls.2017.01731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/21/2017] [Indexed: 05/29/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a staple crop for the people of arid and semi-arid regions of the world. It is fast gaining importance as a climate resilient nutricereal. Exploiting the bold seeded, semi-dwarf, and early flowering genotypes in pearl millet is a key breeding strategy to enhance yield, adaptability, and for adequate food in resource-poor zones. Genetic variation for agronomic traits of pearl millet inbreds can be used to dissect complex traits through quantitative trait locus (QTL) mapping. This study was undertaken to map a set of agronomically important traits like flowering time (FT), plant height (PH), panicle length (PL), and grain weight (self and open-pollinated seeds) in the recombinant inbred line (RIL) population of ICMB 841-P3 × 863B-P2 cross. Excluding grain weight (open pollinated), heritabilities for FT, PH, PL, grain weight (selfed) were in high to medium range. A total of six QTLs for FT were detected on five chromosomes, 13 QTLs for PH on six chromosomes, 11 QTLs for PL on five chromosomes, and 14 QTLs for 1,000-grain weight (TGW) spanning five chromosomes. One major QTL on LG3 was common for FT and PH. Three major QTLs for PL, one each on LG1, LG2, and LG6B were detected. The large effect QTL for TGW (self) on LG6B had a phenotypic variance (R2) of 62.1%. The R2 for FT, TGW (self), and PL ranged from 22.3 to 59.4%. A total of 21 digenic interactions were discovered for FT (R2 = 18-40%) and PL (R2 = 13-19%). The epistatic effects did not reveal any significant QTL × QTL × environment (QQE) interactions. The mapped QTLs for flowering time and other agronomic traits in present experiment can be used for marker-assisted selection (MAS) and genomic selection (GS) breeding programs.
Collapse
Affiliation(s)
- Sushil Kumar
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural University, Bikaner, India
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- Centre of Excellence in Biotechnology, Anand Agricultural University, Anand, India
| | - C. Tom Hash
- International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger
| | - T. Nepolean
- Indian Agricultural Research Institute, New Delhi, India
| | | | - Govind Singh
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural University, Bikaner, India
| | | | - Rattan S. Yadav
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| |
Collapse
|
13
|
Parvathaneni RK, DeLeo VL, Spiekerman JJ, Chakraborty D, Devos KM. Parallel loss of introns in the ABCB1 gene in angiosperms. BMC Evol Biol 2017; 17:238. [PMID: 29202710 PMCID: PMC5716013 DOI: 10.1186/s12862-017-1077-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of non-coding introns is a characteristic feature of most eukaryotic genes. While the size of the introns, number of introns per gene and the number of intron-containing genes can vary greatly between sequenced eukaryotic genomes, the structure of a gene with reference to intron presence and positions is typically conserved in closely related species. Unexpectedly, the ABCB1 (ATP-Binding Cassette Subfamily B Member 1) gene which encodes a P-glycoprotein and underlies dwarfing traits in maize (br2), sorghum (dw3) and pearl millet (d2) displayed considerable variation in intron composition. RESULTS An analysis of the ABCB1 gene structure in 80 angiosperms revealed that the number of introns ranged from one to nine. All introns in ABCB1 underwent either a one-time loss (single loss in one lineage/species) or multiple independent losses (parallel loss in two or more lineages/species) with the majority of losses occurring within the grass family. In contrast, the structure of the closest homolog to ABCB1, ABCB19, remained constant in the majority of angiosperms analyzed. Using known phylogenetic relationships within the grasses, we determined the ancestral branch-points where the losses occurred. Intron 7, the longest intron, was lost in only a single species, Mimulus guttatus, following duplication of ABCB1. Semiquantitative PCR showed that the M. guttatus ABCB1 gene copy without intron 7 had significantly lower transcript levels than the gene copy with intron 7. We further demonstrated that intron 7 carried two motifs that were highly conserved across the monocot-dicot divide. CONCLUSIONS The ABCB1 gene structure is highly dynamic, while the structure of ABCB19 remained largely conserved through evolution. Precise removal of introns, preferential removal of smaller introns and presence of at least 2 bp of microhomology flanking most introns indicated that intron loss may have predominantly occurred through non-homologous end-joining (NHEJ) repair of double strand breaks. Lack of microhomology in the exon upstream of lost phase I introns was likely due to release of the selective constraint on the penultimate base (3rd base in codon) of the terminal codon by the splicing machinery. In addition to size, the presence of regulatory motifs will make introns recalcitrant to loss.
Collapse
Affiliation(s)
- Rajiv K Parvathaneni
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 30602, Athens, Georgia, United States.,Current address: Donald Danforth Plant Science Center, St. Louis, MO, 63132, United States
| | - Victoria L DeLeo
- Department of Genetics, University of Georgia, 30602, Athens, GA, United States.,Current address: Department of Biology, Pennsylvania State University, University Park, PA, 16802, United States
| | - John J Spiekerman
- Department of Plant Biology, University of Georgia, 30602, Athens, GA, United States
| | - Debkanta Chakraborty
- Institute of Bioinformatics, University of Georgia, 30602, Athens, GA, United States
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 30602, Athens, Georgia, United States. .,Department of Plant Biology, University of Georgia, 30602, Athens, GA, United States. .,Institute of Bioinformatics, University of Georgia, 30602, Athens, GA, United States.
| |
Collapse
|
14
|
Ishii T. Wide Hybridization Between Oat and Pearl Millet. Methods Mol Biol 2017; 1536:31-42. [PMID: 28132141 DOI: 10.1007/978-1-4939-6682-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Wide hybridization is a one of the important techniques in plant breeding. Oat (Avena sativa L.) and pearl millet (Pennisetum glaucum L.) belong to different subfamilies of Poaceae. In generally, such distant relative species show uniparental chromosome elimination after successful fertilization. However, all seven pearl millet chromosomes are retained beside the genome of oat during embryogenesis. Hybrid seedlings develop, but show necrosis after light irradiation. Here, a detailed protocol for wide hybridization between oat and pearl millet is described.
Collapse
Affiliation(s)
- Takayoshi Ishii
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
| |
Collapse
|
15
|
Shivhare R, Lata C. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2017; 7:2069. [PMID: 28167949 PMCID: PMC5253385 DOI: 10.3389/fpls.2016.02069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/27/2016] [Indexed: 05/05/2023]
Abstract
Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional genes and assist in crop improvement programs through molecular breeding approaches. This review thus summarizes the exploration of pearl millet genetic and genomic resources for improving abiotic and biotic stress resistance and development of cultivars superior in stress tolerance.
Collapse
Affiliation(s)
- Radha Shivhare
- National Botanical Research Institute (CSIR)Lucknow, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Charu Lata
- National Botanical Research Institute (CSIR)Lucknow, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
16
|
Ghatak A, Chaturvedi P, Weckwerth W. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:757. [PMID: 28626463 PMCID: PMC5454074 DOI: 10.3389/fpls.2017.00757] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Vienna Metabolomics Center, University of ViennaVienna, Austria
- *Correspondence: Wolfram Weckwerth
| |
Collapse
|
17
|
Ramya AR, Ahamed M L, Satyavathi CT, Rathore A, Katiyar P, Raj AGB, Kumar S, Gupta R, Mahendrakar MD, Yadav RS, Srivastava RK. Towards Defining Heterotic Gene Pools in Pearl Millet [ Pennisetum glaucum (L.) R. Br.]. FRONTIERS IN PLANT SCIENCE 2017; 8:1934. [PMID: 29552020 PMCID: PMC5841052 DOI: 10.3389/fpls.2017.01934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/26/2017] [Indexed: 05/09/2023]
Abstract
Pearl millet is a climate resilient crop and one of the most widely grown millets worldwide. Heterotic hybrid development is one of the principal breeding objectives in pearl millet. In a maiden attempt to identify heterotic groups for grain yield, a total of 343 hybrid parental [maintainer (B-) and restorer (R-)] lines were genotyped with 88 polymorphic SSR markers. The SSRs generated a total of 532 alleles with a mean value of 6.05 alleles per locus, mean gene diversity of 0.55, and an average PIC of 0.50. Out of 532 alleles, 443 (83.27%) alleles were contributed by B-lines with a mean of 5.03 alleles per locus. R-lines contributed 476 alleles (89.47%) with a mean of 5.41, while 441 (82.89%) alleles were shared commonly between B- and R-lines. The gene diversity was higher among R-lines (0.55) compared to B-lines (0.49). The unweighted neighbor-joining tree based on simple matching dissimilarity matrix obtained from SSR data clearly differentiated B- lines into 10 sub-clusters (B1 through B10), and R- lines into 11 sub-clusters (R1 through R11). A total of 99 hybrids (generated by crossing representative 9 B- and 11 R- lines) along with checks were evaluated in the hybrid trial. The 20 parents were evaluated in the line trial. Both the trials were evaluated in three environments. Based on per se performance, high sca effects and standard heterosis, F1s generated from crosses between representatives of groups B10R5, B3R5, B3R6, B4UD, B5R11, B2R4, and B9R9 had high specific combining ability for grain yield compared to rest of the crosses. These groups may represent putative heterotic gene pools in pearl millet.
Collapse
Affiliation(s)
- A. Radhika Ramya
- Department of Genetics and Plant Breeding, Acharya N. G. Ranga Agricultural University, Guntur, India
- International Crops Research Institute for the Semi-Arid Crops, Patancheru, India
| | - Lal Ahamed M
- Department of Genetics and Plant Breeding, Acharya N. G. Ranga Agricultural University, Guntur, India
| | - C. Tara Satyavathi
- All India Coordinated Research Project on Pearl Millet, Indian Council of Agricultural Research, Jodhpur, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Crops, Patancheru, India
| | - Pooja Katiyar
- International Crops Research Institute for the Semi-Arid Crops, Patancheru, India
| | - A. G. Bhasker Raj
- International Crops Research Institute for the Semi-Arid Crops, Patancheru, India
| | - Sushil Kumar
- Centre of Excellence in Biotechnology, Anand Agricultural University, Anand, India
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Crops, Patancheru, India
| | | | - Rattan S. Yadav
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Crops, Patancheru, India
- *Correspondence: Rakesh K. Srivastava
| |
Collapse
|
18
|
Labeyrie V, Deu M, Dussert Y, Rono B, Lamy F, Marangu C, Kiambi D, Calatayud C, Coppens d'Eeckenbrugge G, Robert T, Leclerc C. Past and present dynamics of sorghum and pearl millet diversity in Mount Kenya region. Evol Appl 2016; 9:1241-1257. [PMID: 27877203 PMCID: PMC5108216 DOI: 10.1111/eva.12405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023] Open
Abstract
Crop populations in smallholder farming systems are shaped by the interaction of biological, ecological, and social processes, occurring on different spatiotemporal scales. Understanding these dynamics is fundamental for the conservation of crop genetic resources. In this study, we investigated the processes involved in sorghum and pearl millet diversity dynamics on Mount Kenya. Surveys were conducted in ten sites distributed along two elevation transects and occupied by six ethnolinguistic groups. Varieties of both species grown in each site were inventoried and characterized using SSR markers. Genetic diversity was analyzed using both individual- and population-based approaches. Surveys of seed lot sources allowed characterizing seed-mediated gene flow. Past sorghum diffusion dynamics were explored by comparing Mount Kenya sorghum diversity with that of the African continent. The absence of structure in pearl millet genetic diversity indicated common ancestry and/or important pollen- and seed-mediated gene flow. On the contrary, sorghum varietal and genetic diversity showed geographic patterns, pointing to different ancestry of varieties, limited pollen-mediated gene flow, and geographic patterns in seed-mediated gene flow. Social and ecological processes involved in shaping seed-mediated gene flow are further discussed.
Collapse
Affiliation(s)
- Vanesse Labeyrie
- UMR AGAP CIRAD Montpellier France; Present address: UPR GREEN CIRAD 34398 Montpellier France
| | | | - Yann Dussert
- Ecologie, Systématique et Evolution UMR 8079 CNRS Université Paris-Sud Orsay France; Present address: UMR 1065 Santé et Agroécologie du Vignoble INRA 33140 Villenave d'Ornon France
| | | | - Françoise Lamy
- Ecologie, Systématique et Evolution UMR 8079 CNRS Université Paris-Sud Orsay France; Department of Biologie UVSQ Versailles France
| | - Charles Marangu
- KALRO Embu Kenya; Present address: CIMMYT 00621 Nairobi Kenya
| | - Dan Kiambi
- ICRISAT Nairobi Kenya; Present address: ABCIC P.O. Box 100882-00101 Nairobi Kenya
| | | | | | - Thierry Robert
- Ecologie, Systématique et Evolution UMR 8079 CNRS Université Paris-Sud Orsay France; Sorbonne Universités, UPMC Univ Paris 06, IFD Paris Cedex 05 France
| | | |
Collapse
|
19
|
Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK. Mapping Quantitative Trait Loci Controlling High Iron and Zinc Content in Self and Open Pollinated Grains of Pearl Millet [ Pennisetum glaucum (L.) R. Br.]. FRONTIERS IN PLANT SCIENCE 2016; 7:1636. [PMID: 27933068 PMCID: PMC5120122 DOI: 10.3389/fpls.2016.01636] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/17/2016] [Indexed: 05/05/2023]
Abstract
Pearl millet is a multipurpose grain/fodder crop of the semi-arid tropics, feeding many of the world's poorest and most undernourished people. Genetic variation among adapted pearl millet inbreds and hybrids suggests it will be possible to improve grain micronutrient concentrations by selective breeding. Using 305 loci, a linkage map was constructed to map QTLs for grain iron [Fe] and zinc [Zn] using replicated samples of 106 pearl millet RILs (F6) derived from ICMB 841-P3 × 863B-P2. The grains of the RIL population were evaluated for Fe and Zn content using atomic absorption spectrophotometer. Grain mineral concentrations ranged from 28.4 to 124.0 ppm for Fe and 28.7 to 119.8 ppm for Zn. Similarly, grain Fe and Zn in open pollinated seeds ranged between 22.4-77.4 and 21.9-73.7 ppm, respectively. Mapping with 305 (96 SSRs; 208 DArT) markers detected seven linkage groups covering 1749 cM (Haldane) with an average intermarker distance of 5.73 cM. On the basis of two environment phenotypic data, two co-localized QTLs for Fe and Zn content on linkage group (LG) 3 were identified by composite interval mapping (CIM). Fe QTL explained 19% phenotypic variation, whereas the Zn QTL explained 36% phenotypic variation. Likewise for open pollinated seeds, the QTL analysis led to the identification of two QTLs for grain Fe content on LG3 and 5, and two QTLs for grain Zn content on LG3 and 7. The total phenotypic variance for Fe and Zn QTLs in open pollinated seeds was 16 and 42%, respectively. Analysis of QTL × QTL and QTL × QTL × environment interactions indicated no major epistasis.
Collapse
Affiliation(s)
- Sushil Kumar
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural UniversityBikaner, India; International Crops Research Institute for the Semi-Arid TropicsPatancheru, India; Centre of Excellence in Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | - Charles T Hash
- International Crops Research Institute for the Semi-Arid Tropics Niamey, Niger
| | | | - Govind Singh
- Plant Biotechnology Centre, Swami Keshwanand Rajasthan Agricultural University Bikaner, India
| | - Vengaldas Rajaram
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| | | | - Mahesh D Mahendrakar
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| | - Rattan S Yadav
- Crop Genetics, Genomics and Breeding Division, Aberystwyth University Aberystwyth, UK
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics Patancheru, India
| |
Collapse
|
20
|
Singh AK, Singh R, Subramani R, Kumar R, Wankhede DP. Molecular Approaches to Understand Nutritional Potential of Coarse Cereals. Curr Genomics 2016; 17:177-92. [PMID: 27252585 PMCID: PMC4869005 DOI: 10.2174/1389202917666160202215308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajkumar Subramani
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajesh Kumar
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
21
|
Muthamilarasan M, Dhaka A, Yadav R, Prasad M. Exploration of millet models for developing nutrient rich graminaceous crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:89-97. [PMID: 26566827 DOI: 10.1016/j.plantsci.2015.08.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 05/20/2023]
Abstract
Protein-energy malnutrition and micronutrient deficiencies contribute to high mortality among considerable proportion of the current 7.2 billion global populations, especially children. Although poverty and diets poor in nutrition are prime reasons for prevalence of malnutrition, nutritionally dense crops offer an inexpensive and sustainable solution to the problem of malnutrition. Remarkably, millets are nutritionally superior to major non-millet cereals. They especially are rich in dietary fibers, antioxidants, phytochemicals and polyphenols, which contribute broad-spectrum positive impacts to human health. However, millets have received lesser research attention universally, and considering this, the present review was planned to summarize the reports available on nutrition profile of millets and non-millet cereals to provide a comparative insight on importance of millets. It also emphasizes the need for research on deciphering nutritional traits present in millets and to develop strategies for introgressing these traits into other conventional staple crops using germplasm and 'omics' technologies. In some millet species, excellent 'omics' and germplasm panels have started to get available which can act as a starting point for understanding as well as of introgressing healthful traits across millets and non-millet cereals.
Collapse
Affiliation(s)
| | - Annvi Dhaka
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Rattan Yadav
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Goggerdan, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
22
|
Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PVV, Morris GP. Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): Comparative analysis of global accessions and Senegalese landraces. BMC Genomics 2015; 16:1048. [PMID: 26654432 PMCID: PMC4674952 DOI: 10.1186/s12864-015-2255-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pearl millet is a staple food for people in arid and semi-arid regions of Africa and South Asia due to its high drought tolerance and nutritional qualities. A better understanding of the genomic diversity and population structure of pearl millet germplasm is needed to support germplasm conservation and genetic improvement of this crop. Here we characterized two pearl millet diversity panels, (i) a set of global accessions from Africa, Asia, and the America, and (ii) a collection of landraces from multiple agro-ecological zones in Senegal. RESULTS We identified 83,875 single nucleotide polymorphisms (SNPs) in 500 pearl millet accessions, comprised of 252 global accessions and 248 Senegalese landraces, using genotyping by sequencing (GBS) of PstI-MspI reduced representation libraries. We used these SNPs to characterize genomic diversity and population structure among the accessions. The Senegalese landraces had the highest levels of genetic diversity (π), while accessions from southern Africa and Asia showed lower diversity levels. Principal component analyses and ancestry estimation indicated clear population structure between the Senegalese landraces and the global accessions, and among countries in the global accessions. In contrast, little population structure was observed across in the Senegalese landraces collections. We ordered SNPs on the pearl millet genetic map and observed much faster linkage disequilibrium (LD) decay in Senegalese landraces compared to global accessions. A comparison of pearl millet GBS linkage map with the foxtail millet (Setaria italica) and sorghum (Sorghum bicolor) genomes indicated extensive regions of synteny, as well as some large-scale rearrangements in the pearl millet lineage. CONCLUSIONS We identified 83,875 SNPs as a genomic resource for pearl millet improvement. The high genetic diversity in Senegal relative to other regions of Africa and Asia supports a West African origin of this crop, followed by wide diffusion. The rapid LD decay and lack of confounding population structure along agro-ecological zones in Senegalese pearl millet will facilitate future association mapping studies. Comparative population genomics will provide insights into panicoid crop evolution and support improvement of these climate-resilient crops.
Collapse
Affiliation(s)
- Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - Bassirou Mbacké
- Ecole Nationale Supérieure d'Agriculture, Université de Thiès, Thiès, BP 296, Senegal.
| | - Ramasamy Perumal
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA.
| | - Mame Codou Guèye
- Institut Sénégalais de Recherches Agricoles, Thiès, BP 3320, Senegal.
| | - Ousmane Sy
- Institut Sénégalais de Recherches Agricoles, Thiès, BP 3320, Senegal.
| | - Sophie Bouchet
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
23
|
Aparna K, Nepolean T, Srivastsava RK, Kholová J, Rajaram V, Kumar S, Rekha B, Senthilvel S, Hash CT, Vadez V. Quantitative trait loci associated with constitutive traits control water use in pearl millet [Pennisetum glaucum (L.) R. Br]. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1073-84. [PMID: 25946470 DOI: 10.1111/plb.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/29/2015] [Indexed: 05/05/2023]
Abstract
There is substantial genetic variation for drought adaption in pearl millet in terms of traits controlling plant water use. It is important to understand genomic regions responsible for these traits. Here, F7 recombinant inbred lines were used to identify quantitative trait loci (QTL) and allelic interactions for traits affecting plant water use, and their relevance is discussed for crop productivity in water-limited environments. Four QTL contributed to increased transpiration rate under high vapour pressure deficit (VPD) conditions, all with alleles from drought-sensitive parent ICMB 841. Of these four QTL, a major QTL (35.7%) was mapped on linkage group (LG) 6. The alleles for 863B at this QTL decreased transpiration rate and this QTL co-mapped to a previously detected LG 6 QTL, with alleles from 863B for grain weight and panicle harvest index across severe terminal drought stress environments. This provided additional support for a link between water saving from a lower transpiration rate under high VPD and drought tolerance. 863B alleles in this same genomic region also increased shoot weight, leaf area and total transpiration under well-watered conditions. One unexpected outcome was reduced transpiration under high VPD (15%) from the interaction of two alleles for high VPD transpiration (LG 6 (B), 40.7) and specific leaf mass and biomass (LG 7 (A), 35.3), (A, allele from ICMB 841, B, allele from 863B, marker position). The LG 6 QTL appears to combine alleles for growth potential, beneficial for non-stress conditions, and for saving water under high evaporative demand, beneficial under stressful conditions. Mapping QTL for water-use traits, and assessing their interactions offers considerable potential for improving pearl millet adaptation to specific stress conditions through physiology-informed marker-assisted selection.
Collapse
Affiliation(s)
- K Aparna
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Crop Physiology Laboratory, Patancheru, India
- Centre for Biotechnology, IST, JNTUH, Kukatpally, Hyderabad, India
| | - T Nepolean
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - R K Srivastsava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Crop Physiology Laboratory, Patancheru, India
| | - J Kholová
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Crop Physiology Laboratory, Patancheru, India
| | - V Rajaram
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Crop Physiology Laboratory, Patancheru, India
| | - S Kumar
- Centre of Excellence in Biotechnology, Anand Agricultural University, Anand, India
| | - B Rekha
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Crop Physiology Laboratory, Patancheru, India
| | - S Senthilvel
- Department of Crop Improvement, Directorate of Oilseeds Research, Hyderabad, India
| | - C T Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT Sahelian Center, Niamey, Niger
| | - V Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Crop Physiology Laboratory, Patancheru, India
| |
Collapse
|
24
|
Shen X, Liu ZQ, Mocoeur A, Xia Y, Jing HC. PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:623-37. [PMID: 25634103 PMCID: PMC4361761 DOI: 10.1007/s00122-015-2458-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 01/06/2015] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE 5,511 genic small-size PAVs in sorghum were identified and examined, including the pattern and the function enrichment of PAV genes. 325 PAV markers were developed to construct a genetic map. Presence/absence variants (PAVs) correlate closely to the phenotypic variation, by impacting plant genome sizes and the adaption to the environment. To shed more light on their genome-wide patterns, functions and the possibility of using them as molecular markers, we generated next generation genome sequencing data for four sorghum inbred lines and used associated bioinformatic pipelines to identify small-size PAVs (40-10 kb). Five thousand five hundreds and eleven genic PAVs (40-10 kb) were identified and found to affect 3,238 genes. These PAVs were mainly distributed on the sub-telomeric regions, but the highest proportions occurred in the vicinity of the centromeric regions. One of the prominent features of the PAVs is the high occurrence of long terminal repeats retrotransposons and DNA transposons. PAVs caused various alterations to gene structure, primarily including the coding sequence variants, intron variants, transcript ablation, and initiator codon changes. The genes affected by PAVs were significantly enriched in those involved in stress responses and protein modification. We used 325 PAVs polymorphic between two sorghum inbred lines Ji2731 and E-Tian, together with 49 SSR markers, and constructed a genetic map, which consisted of 10 linkage groups corresponding to the 10 chromosomes of sorghum and spanned 1,430.3 cM in length covering 97% of the physical genome. The resources reported here should be useful for genetic study and breeding of sorghum and related species.
Collapse
Affiliation(s)
- Xin Shen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhi-Quan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Anne Mocoeur
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- Department of Plant and Environment, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Yan Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
25
|
Dussert Y, Snirc A, Robert T. Inference of domestication history and differentiation between early- and late-flowering varieties in pearl millet. Mol Ecol 2015; 24:1387-402. [PMID: 25705965 DOI: 10.1111/mec.13119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
Abstract
Pearl millet (Pennisetum glaucum) is a staple crop in Sahelian Africa. Farmers usually grow varieties with different cycle lengths and complementary functions in Sahelian agrosystems. Both the level of genetic differentiation of these varieties and the domestication history of pearl millet have been poorly studied. We investigated the neutral genetic diversity and population genetic structure of early- and late-flowering domesticated and wild pearl millet populations using 18 microsatellite loci and 8 nucleotide sequences. Strikingly, early- and late-flowering domesticated varieties were not differentiated over their whole distribution area, despite a clear difference in their isolation-by-distance pattern. Conversely, our data brought evidence for two well-differentiated genetic pools in wild pearl millet, allowing us to test scenarios with different numbers and origins of domestication using approximate Bayesian computation (ABC). The ABC analysis showed the likely existence of asymmetric migration between wild and domesticated populations. The model choice procedure indicated that a single domestication from the eastern wild populations was the more likely scenario to explain the polymorphism patterns observed in cultivated pearl millet.
Collapse
Affiliation(s)
- Y Dussert
- Ecologie, Systématique et Evolution, UMR 8079 CNRS, Université Paris-Sud, 91405, Orsay, France; Sorbonne Universités, UPMC Univ Paris06, IFD, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | | | | |
Collapse
|
26
|
Association analysis of SSR markers with phenology, grain, and Stover-yield related traits in pearl millet (Pennisetum glaucum (L.) R. Br.). ScientificWorldJournal 2014; 2014:562327. [PMID: 24526909 PMCID: PMC3910278 DOI: 10.1155/2014/562327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i) to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar “CO (Cu) 9” and its four immediate progenitor populations and (ii) to assess the ability of simple sequence repeat (SSR) marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG) 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS) or marker-assisted population improvement (MAPI) strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection.
Collapse
|
27
|
Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives. Genetics 2013; 195:723-37. [PMID: 24037269 DOI: 10.1534/genetics.113.157115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.
Collapse
|
28
|
Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 2013; 14:159. [PMID: 23497368 PMCID: PMC3606598 DOI: 10.1186/1471-2164-14-159] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 02/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pearl millet [Pennisetum glaucum (L.) R. Br.] is a widely cultivated drought- and high-temperature tolerant C4 cereal grown under dryland, rainfed and irrigated conditions in drought-prone regions of the tropics and sub-tropics of Africa, South Asia and the Americas. It is considered an orphan crop with relatively few genomic and genetic resources. This study was undertaken to increase the EST-based microsatellite marker and genetic resources for this crop to facilitate marker-assisted breeding. RESULTS Newly developed EST-SSR markers (99), along with previously mapped EST-SSR (17), genomic SSR (53) and STS (2) markers, were used to construct linkage maps of four F7 recombinant inbred populations (RIP) based on crosses ICMB 841-P3 × 863B-P2 (RIP A), H 77/833-2 × PRLT 2/89-33 (RIP B), 81B-P6 × ICMP 451-P8 (RIP C) and PT 732B-P2 × P1449-2-P1 (RIP D). Mapped loci numbers were greatest for RIP A (104), followed by RIP B (78), RIP C (64) and RIP D (59). Total map lengths (Haldane) were 615 cM, 690 cM, 428 cM and 276 cM, respectively. A total of 176 loci detected by 171 primer pairs were mapped among the four crosses. A consensus map of 174 loci (899 cM) detected by 169 primer pairs was constructed using MergeMap to integrate the individual linkage maps. Locus order in the consensus map was well conserved for nearly all linkage groups. Eighty-nine EST-SSR marker loci from this consensus map had significant BLAST hits (top hits with e-value ≤ 1E-10) on the genome sequences of rice, foxtail millet, sorghum, maize and Brachypodium with 35, 88, 58, 48 and 38 loci, respectively. CONCLUSION The consensus map developed in the present study contains the largest set of mapped SSRs reported to date for pearl millet, and represents a major consolidation of existing pearl millet genetic mapping information. This study increased numbers of mapped pearl millet SSR markers by >50%, filling important gaps in previously published SSR-based linkage maps for this species and will greatly facilitate SSR-based QTL mapping and applied marker-assisted selection programs.
Collapse
|
29
|
Fine-mapping and identification of a candidate gene underlying the d2 dwarfing phenotype in pearl millet, Cenchrus americanus (L.) Morrone. G3-GENES GENOMES GENETICS 2013; 3:563-72. [PMID: 23450459 PMCID: PMC3583462 DOI: 10.1534/g3.113.005587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
Abstract
Pearl millet is one of the most important subsistence crops grown in India and sub-Saharan Africa. In many cereal crops, reduced height is a key trait for enhancing yield, and dwarf mutants have been extensively used in breeding to reduce yield loss due to lodging under intense management. In pearl millet, the recessive d2 dwarfing gene has been deployed widely in commercial germplasm grown in India, the United States, and Australia. Despite its importance, very little research has gone into determining the identity of the d2 gene. We used comparative information, genetic mapping in two F2 populations representing a total of some 1500 progeny, and haplotype analysis of three tall and three dwarf inbred lines to delineate the d2 region by two genetic markers that, in sorghum, define a region of 410 kb with 40 annotated genes. One of the sorghum genes annotated within this region is ABCB1, which encodes a P-glycoprotein involved in auxin transport. This gene had previously been shown to underlie the economically important dw3 dwarf mutation in sorghum. The cosegregation of ABCB1 with the d2 phenotype, its differential expression in the tall inbred ICMP 451 and the dwarf inbred Tift 23DB, and the similar phenotype of stacked lower internodes in the sorghum dw3 and pearl millet d2 mutants suggest that ABCB1 is a likely candidate for d2.
Collapse
|
30
|
Mendonça Neto RP, Von Pinho EVR, Carvalho BL, Pereira GS. Identification of earl millet cultivars using both microsatellites and enzymatic markers. GENETICS AND MOLECULAR RESEARCH 2013; 12:1-14. [PMID: 23315834 DOI: 10.4238/2013.january.7.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing number of protected and registered cultivars and problems involving seed commercialization make distinction and identification of cultivars imperative. Millet (Pennisetum glaucum), a crop species with protected cultivars in Brazil, has been the target of seed piracy. Thus, with the objective of identifying different lots with regard to origin, we characterized six cultivars of commercialized millet of proven origin by means of the electrophoretic patterns of the isoenzymes alcohol dehydrogenase, esterase and glutamate oxaloacetate transaminase and by microsatellite markers, using primers specific for millet. The six cultivars were separated with four microsatellite loci. Based on this characterization, certification of genetic purity was undertaken for public domain commercialized seed lots. The isoenzymatic markers were also tested for stability of the patterns. Esterase patterns were altered in seeds with different physiological quality and health conditions, but this alteration did not hinder identification of the cultivars. It was observed that most of the millet seed lots commercialized in Brazil as being in public domain belong to other cultivars.
Collapse
Affiliation(s)
- R P Mendonça Neto
- Laboratório de Análises de Sementes, Departamento de Agricultura, Universidade Federal de Lavras, MG, Brasil
| | | | | | | |
Collapse
|
31
|
Dussert Y, Remigereau MS, Fontaine MC, Snirc A, Lakis G, Stoeckel S, Langin T, Sarr A, Robert T. Polymorphism pattern at a miniature inverted-repeat transposable element locus downstream of the domestication gene Teosinte-branched1 in wild and domesticated pearl millet. Mol Ecol 2012. [PMID: 23205613 DOI: 10.1111/mec.12139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unravelling the mechanisms involved in adaptation to understand plant morphological evolution is a challenging goal. For crop species, identification of molecular causal polymorphisms involved in domestication traits is central to this issue. Pearl millet, a domesticated grass mostly found in semi-arid areas of Africa and India, is an interesting model to address this topic: the domesticated form shares common derived phenotypes with some other cereals such as a decreased ability to develop basal and axillary branches in comparison with the wild phenotype. Two recent studies have shown that the orthologue of the maize gene Teosinte-Branched1 in pearl millet (PgTb1) was probably involved in branching evolution during domestication and that a miniature inverted-repeat transposable element (MITE) of the Tuareg family was inserted in the 3' untranslated region of PgTb1. For a set of 35 wild and domesticated populations, we compared the polymorphism patterns at this MITE and at microsatellite loci. The Tuareg insertion was nearly absent in the wild populations, whereas a strong longitudinal frequency cline was observed in the domesticated populations. The geographical pattern revealed by neutral microsatellite loci clearly demonstrated that isolation by distance does not account for the existence of this cline. However, comparison of population differentiation at the microsatellite and the MITE loci and analyses of the nucleotide polymorphism pattern in the downstream region of PgTb1 did not show evidence that the cline at the MITE locus has been shaped by selection, suggesting the implication of a neutral process. Alternative hypotheses are discussed.
Collapse
Affiliation(s)
- Y Dussert
- Laboratoire Ecologie, Systématique et Evolution UMR 8079 CNRS, Université Paris-Sud, 91405, Orsay, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Varalakshmi P, Mohan Dev Tavva SS, Arjuna Rao PV, Subba Rao MV, Hash CT. Genetic architecture of purple pigmentation and tagging of some loci to SSR markers in pearl millet, Pennisetum glaucum (L.) R. Br. Genet Mol Biol 2012; 35:106-18. [PMID: 22481882 PMCID: PMC3313498 DOI: 10.1590/s1415-47572012005000022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/24/2001] [Indexed: 11/22/2022] Open
Abstract
This report describes the construction of integrated genetic maps in pearl millet involving certain purple phenotype and simple sequence repeat (SSR) markers. These maps provide a direct means of implementing DNA marker-assisted selection and of facilitating “map-based cloning” for engineering novel traits. The purple pigmentation of leaf sheath, midrib and leaf margin was inherited together ‘en bloc’ under the control of a single dominant locus (the ‘midrib complex’) and was inseparably associated with the locus governing the purple coloration of the internode. The purple panicle was caused by a single dominant locus. Each of the three characters (purple lamina, purple stigma and purple seed) was governed by two complementary loci. One of the two loci governing purple seed was associated with the SSR locus Xpsmp2090 in linkage group 1, with a linkage value of 22 cM, while the other locus was associated with the SSR locus Xpsmp2270 in linkage group 6, with a linkage value of 23 cM. The locus for purple pigmentation of the midrib complex was either responsible for pigmentation of the panicle in a pleiotropic manner or was linked to it very closely and associated with the SSR locus Xpsmp2086 in linkage group 4, with a suggestive linkage value of 21 cM. A dominant allele at this locus seems to be a prerequisite for the development of purple pigmentation in the lamina, stigma and seed. These findings suggest that the locus for pigmentation of the midrib complex might regulate the basic steps in anthocyanin pigment development by acting as a structural gene while other loci regulate the formation of color in specific plant parts.
Collapse
Affiliation(s)
- Pusapati Varalakshmi
- Plant Cytogenetics and Biotechnology Laboratory, Botany Department, Andhra University, Visakhapatnam, India
| | | | | | | | | |
Collapse
|
33
|
Lakis G, Ousmane AM, Sanoussi D, Habibou A, Badamassi M, Lamy F, Jika N, Sidikou R, Adam T, Sarr A, Luxereau A, Robert T. Evolutionary dynamics of cycle length in pearl millet: the role of farmer's practices and gene flow. Genetica 2012; 139:1367-80. [PMID: 22327603 DOI: 10.1007/s10709-012-9633-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/30/2012] [Indexed: 11/25/2022]
Abstract
In the Sahel of Africa, farmers often modify their cultivation practices to adapt to environmental changes. How these changes shape the agro-biodiversity is a question of primary interest for the conservation of plant genetic resources. We addressed this question in a case study on pearl millet in south western Niger where farmers used to cultivate landraces with different cycle length in order to cope with rain uncertainty. Early and late landraces were previously grown on distant fields. Nowadays, mostly because of human population pressure and soil impoverishment, it happens that the two types of landraces are grown on adjacent fields, opening the question whether gene flow between them may occur. This question was tackled through a comparative study among contrasting situations pertaining to the spatial distribution of early and late landraces. Observations of flowering periods showed that pollen flow between the two landraces is possible and has a preferential direction from early to late populations.
Collapse
Affiliation(s)
- Ghayas Lakis
- Laboratoire Systématique et Evolution, UMR 8079, Université Paris-Sud, Orsay cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC PLANT BIOLOGY 2012; 12:9. [PMID: 22251627 PMCID: PMC3287966 DOI: 10.1186/1471-2229-12-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/17/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Identification of genes underlying drought tolerance (DT) quantitative trait loci (QTLs) will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. RESULTS Seventy five single nucleotide polymorphism (SNP) and conserved intron spanning primer (CISP) markers were developed from available expressed sequence tags (ESTs) using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG) 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B) were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. CONCLUSIONS We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene-based markers represent an important resource for identification of candidate genes for other mapped abiotic stress QTLs in pearl millet. They also provide a resource for initiating association studies using candidate genes and also for comparing the structure and function of distantly related plant genomes such as other Poaceae members.
Collapse
Affiliation(s)
- Deepmala Sehgal
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| | - Vengaldas Rajaram
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Ian Peter Armstead
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Yash Pal Yadav
- Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Bawal 123 501, Haryana, India
| | - Charles Thomas Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Rattan Singh Yadav
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| |
Collapse
|
35
|
Supriya A, Senthilvel S, Nepolean T, Eshwar K, Rajaram V, Shaw R, Hash CT, Kilian A, Yadav RC, Narasu ML. Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:239-50. [PMID: 21476042 DOI: 10.1007/s00122-011-1580-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/21/2011] [Indexed: 05/09/2023]
Abstract
Pearl millet is an important component of food security in the semi-arid tropics and is assuming greater importance in the context of changing climate and increasing demand for highly nutritious food and feed. Molecular tools have been developed and applied for pearl millet on a limited scale. However, the existing tool kit needs to be strengthened further for its routine use in applied breeding programs. Here, we report enrichment of the pearl millet molecular linkage map by exploiting low-cost and high-throughput Diversity Arrays Technology (DArT) markers. Genomic representation from 95 diverse genotypes was used to develop a DArT array with circa 7,000 clones following PstI/BanII complexity reduction. This array was used to genotype a set of 24 diverse pearl millet inbreds and 574 polymorphic DArT markers were identified. The genetic relationships among the inbred lines as revealed by DArT genotyping were in complete agreement with the available pedigree data. Further, a mapping population of 140 F(7) Recombinant Inbred Lines (RILs) from cross H 77/833-2 × PRLT 2/89-33 was genotyped and an improved linkage map was constructed by integrating DArT and SSR marker data. This map contains 321 loci (258 DArTs and 63 SSRs) and spans 1148 cM with an average adjacent-marker interval length of 3.7 cM. The length of individual linkage groups (LGs) ranged from 78 cM (LG 3) to 370 cM (LG 2). This better-saturated map provides improved genome coverage and will be useful for genetic analyses of important quantitative traits. This DArT platform will also permit cost-effective background selection in marker-assisted backcrossing programs as well as facilitate comparative genomics and genome organization studies once DNA sequences of polymorphic DArT clones are available.
Collapse
Affiliation(s)
- A Supriya
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xu P, Wu X, Wang B, Liu Y, Ehlers JD, Close TJ, Roberts PA, Diop NN, Qin D, Hu T, Lu Z, Li G. A SNP and SSR based genetic map of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) and comparison with the broader species. PLoS One 2011; 6:e15952. [PMID: 21253606 PMCID: PMC3017092 DOI: 10.1371/journal.pone.0015952] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/01/2010] [Indexed: 11/19/2022] Open
Abstract
Asparagus bean (Vigna. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea [Vigna. unguiculata (L.) Walp.] that apparently originated in East Asia and is characterized by extremely long and thin pods and an aggressive climbing growth habit. The crop is widely cultivated throughout Asia for the production of immature pods known as 'long beans' or 'asparagus beans'. While the genome of cowpea ssp. unguiculata has been characterized recently by high-density genetic mapping and partial sequencing, little is known about the genome of asparagus bean. We report here the first genetic map of asparagus bean based on SNP and SSR markers. The current map consists of 375 loci mapped onto 11 linkage groups (LGs), with 191 loci detected by SNP markers and 184 loci by SSR markers. The overall map length is 745 cM, with an average marker distance of 1.98 cM. There are four high marker-density blocks distributed on three LGs and three regions of segregation distortion (SDRs) identified on two other LGs, two of which co-locate in chromosomal regions syntenic to SDRs in soybean. Synteny between asparagus bean and the model legume Lotus. japonica was also established. This work provides the basis for mapping and functional analysis of genes/QTLs of particular interest in asparagus bean, as well as for comparative genomics study of cowpea at the subspecies level.
Collapse
Affiliation(s)
- Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, People's Republic of China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, People's Republic of China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, People's Republic of China
| | - Yonghua Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, People's Republic of China
| | - Jeffery D. Ehlers
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Timothy J. Close
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Philip A. Roberts
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Ndeye-Ndack Diop
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Dehui Qin
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, People's Republic of China
| | - Tingting Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, People's Republic of China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, People's Republic of China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
37
|
Stich B, Haussmann BIG, Pasam R, Bhosale S, Hash CT, Melchinger AE, Parzies HK. Patterns of molecular and phenotypic diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] from West and Central Africa and their relation to geographical and environmental parameters. BMC PLANT BIOLOGY 2010; 10:216. [PMID: 20925912 PMCID: PMC3017833 DOI: 10.1186/1471-2229-10-216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/06/2010] [Indexed: 05/13/2023]
Abstract
BACKGROUND The distribution area of pearl millet in West and Central Africa (WCA) harbours a wide range of climatic and environmental conditions as well as diverse farmer preferences and pearl millet utilization habits which have the potential to lead to local adaptation and thereby to population structure. The objectives of our research were to (i) assess the geographical distribution of genetic diversity in pearl millet inbreds derived from landraces, (ii) assess the population structure of pearl millet from WCA, and (iii) identify those geographical parameters and environmental factors from the location at which landraces were sampled, as well as those phenotypic traits that may have affected or led to this population structure. Our study was based on a set of 145 inbred lines derived from 122 different pearl millet landraces from WCA. RESULTS Five sub-groups were detected within the entire germplasm set by STRUCTURE. We observed that the phenotypic traits flowering time, relative response to photoperiod, and panicle length were significantly associated with population structure but not the environmental factors which are expected to influence these traits in natural populations such as latitude, temperature, or precipitation. CONCLUSIONS Our results suggested that for pearl millet natural selection is compared to artificial selection less important in shaping populations.
Collapse
Affiliation(s)
- Benjamin Stich
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Köln, Germany
| | - Bettina IG Haussmann
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey, BP 12404, Niamey, Niger
| | - Raj Pasam
- Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Sankalp Bhosale
- Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - C Tom Hash
- ICRISAT, Patancheru, Hyderabad 502324, Andhra Pradesh, India
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Heiko K Parzies
- Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
38
|
Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC PLANT BIOLOGY 2009; 9:13. [PMID: 19171067 PMCID: PMC2671505 DOI: 10.1186/1471-2229-9-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 01/26/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND Sorghum genome mapping based on DNA markers began in the early 1990s and numerous genetic linkage maps of sorghum have been published in the last decade, based initially on RFLP markers with more recent maps including AFLPs and SSRs and very recently, Diversity Array Technology (DArT) markers. It is essential to integrate the rapidly growing body of genetic linkage data produced through DArT with the multiple genetic linkage maps for sorghum generated through other marker technologies. Here, we report on the colinearity of six independent sorghum component maps and on the integration of these component maps into a single reference resource that contains commonly utilized SSRs, AFLPs, and high-throughput DArT markers. RESULTS The six component maps were constructed using the MultiPoint software. The lengths of the resulting maps varied between 910 and 1528 cM. The order of the 498 markers that segregated in more than one population was highly consistent between the six individual mapping data sets. The framework consensus map was constructed using a "Neighbours" approach and contained 251 integrated bridge markers on the 10 sorghum chromosomes spanning 1355.4 cM with an average density of one marker every 5.4 cM, and were used for the projection of the remaining markers. In total, the sorghum consensus map consisted of a total of 1997 markers mapped to 2029 unique loci (1190 DArT loci and 839 other loci) spanning 1603.5 cM and with an average marker density of 1 marker/0.79 cM. In addition, 35 multicopy markers were identified. On average, each chromosome on the consensus map contained 203 markers of which 58.6% were DArT markers. Non-random patterns of DNA marker distribution were observed, with some clear marker-dense regions and some marker-rare regions. CONCLUSION The final consensus map has allowed us to map a larger number of markers than possible in any individual map, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across individual component maps, good agreement in overall distances between common marker pairs across the component maps used in this study was determined, using a difference ratio calculation. The obtained consensus map can be used as a reference resource for genetic studies in different genetic backgrounds, in addition to providing a framework for transferring genetic information between different marker technologies and for integrating DArT markers with other genomic resources. DArT markers represent an affordable, high throughput marker system with great utility in molecular breeding programs, especially in crops such as sorghum where SNP arrays are not publicly available.
Collapse
Affiliation(s)
- Emma S Mace
- The Department of Primary Industries & Fisheries, Queensland (DPI&F), Hermitage Research Station, Warwick, QLD 4370, Australia
| | - Jean-Francois Rami
- CIRAD UMR DAP, TA A-96/03, Av Agropolis, 34398 Montpellier CEDEX 5, France
| | - Sophie Bouchet
- CIRAD UMR DAP, TA A-96/03, Av Agropolis, 34398 Montpellier CEDEX 5, France
| | - Patricia E Klein
- Department of Horticulture and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843-2123, USA
| | - Robert R Klein
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Andrzej Kilian
- Diversity Arrays Technology P/L, PO Box 7141, Yarralumla ACT 2600, Australia
| | - Peter Wenzl
- Diversity Arrays Technology P/L, PO Box 7141, Yarralumla ACT 2600, Australia
| | - Ling Xia
- Diversity Arrays Technology P/L, PO Box 7141, Yarralumla ACT 2600, Australia
| | - Kirsten Halloran
- The Department of Primary Industries & Fisheries, Queensland (DPI&F), Hermitage Research Station, Warwick, QLD 4370, Australia
| | - David R Jordan
- The Department of Primary Industries & Fisheries, Queensland (DPI&F), Hermitage Research Station, Warwick, QLD 4370, Australia
| |
Collapse
|
39
|
Senthilvel S, Jayashree B, Mahalakshmi V, Kumar PS, Nakka S, Nepolean T, Hash CT. Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC PLANT BIOLOGY 2008; 8:119. [PMID: 19038016 PMCID: PMC2632669 DOI: 10.1186/1471-2229-8-119] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 11/27/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND Pearl millet [Pennisetum glaucum (L.) R. Br.] is a staple food and fodder crop of marginal agricultural lands of sub-Saharan Africa and the Indian subcontinent. It is also a summer forage crop in the southern USA, Australia and Latin America, and is the preferred mulch in Brazilian no-till soybean production systems. Use of molecular marker technology for pearl millet genetic improvement has been limited. Progress is hampered by insufficient numbers of PCR-compatible co-dominant markers that can be used readily in applied breeding programmes. Therefore, we sought to develop additional SSR markers for the pearl millet research community. RESULTS A set of new pearl millet SSR markers were developed using available sequence information from 3520 expressed sequence tags (ESTs). After clustering, unigene sequences (2175 singlets and 317 contigs) were searched for the presence of SSRs. We detected 164 sequences containing SSRs (at least 14 bases in length), with a density of one per 1.75 kb of EST sequence. Di-nucleotide repeats were the most abundant followed by tri-nucleotide repeats. Ninety primer pairs were designed and tested for their ability to detect polymorphism across a panel of 11 pairs of pearl millet mapping population parental lines. Clear amplification products were obtained for 58 primer pairs. Of these, 15 were monomorphic across the panel. A subset of 21 polymorphic EST-SSRs and 6 recently developed genomic SSR markers were mapped using existing mapping populations. Linkage map positions of these EST-SSR were compared by homology search with mapped rice genomic sequences on the basis of pearl millet-rice synteny. Most new EST-SSR markers mapped to distal regions of linkage groups, often to previous gaps in these linkage maps. These new EST-SSRs are now are used by ICRISAT in pearl millet diversity assessment and marker-aided breeding programs. CONCLUSION This study has demonstrated the potential of EST-derived SSR primer pairs in pearl millet. As reported for other crops, EST-derived SSRs provide a cost-saving marker development option in pearl millet. Resources developed in this study have added a sizeable number of useful SSRs to the existing repertoire of circa 100 genomic SSRs that were previously available to pearl millet researchers.
Collapse
Affiliation(s)
- S Senthilvel
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - B Jayashree
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - V Mahalakshmi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - P Sathish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - S Nakka
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - T Nepolean
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - CT Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| |
Collapse
|
40
|
Oumar I, Mariac C, Pham JL, Vigouroux Y. Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:489-97. [PMID: 18504539 DOI: 10.1007/s00122-008-0793-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 05/02/2008] [Indexed: 05/21/2023]
Abstract
During the last 12,000 years, different cultures around the world have domesticated cereal crops. Several studies investigated the evolutionary history and domestication of cereals such as wheat in the Middle East, rice in Asia or maize in America. The domestication process in Africa has led to the emergence of important cereal crops like pearl millet in Sahelian Africa. In this study, we used 27 microsatellite loci to analyze 84 wild accessions and 355 cultivated accessions originating from the whole pearl millet distribution area in Africa and Asia. We found significantly higher diversity in the wild pearl millet group. The cultivated pearl millet sample possessed 81% of the alleles and 83% of the genetic diversity of the wild pearl millet sample. Using Bayesian approaches, we identified intermediate genotypes between the cultivated and wild groups. We then analyzed the phylogenetic relationship among accessions not showing introgression and found that a monophyletic origin of cultivated pearl millet in West Africa is the most likely scenario supported by our data set.
Collapse
Affiliation(s)
- Ibrahima Oumar
- IRD, UMR DIAPC Diversité et Adaptation des Plantes Cultivées (SupAgro, INRA, IRD, UMII) Institut de Recherche pour le Développement, 911, Avenue Agropolis, BP 64501, Montpellier 34394, France
| | | | | | | |
Collapse
|
41
|
Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA. Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc Lond B Biol Sci 2008; 363:703-16. [PMID: 17761467 PMCID: PMC2610105 DOI: 10.1098/rstb.2007.2179] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.
Collapse
Affiliation(s)
- J R Witcombe
- CAZS Natural Resources, University of Wales, Bangor LL57 2UW, UK.
| | | | | | | | | |
Collapse
|
42
|
Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ. Quantitative Trait Loci for Grain Yield in Pearl Millet under Variable Postflowering Moisture Conditions. CROP SCIENCE 2007. [PMID: 0 DOI: 10.2135/cropsci2006.07.0465] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- F. R. Bidinger
- International Crops Research Inst. for the Semi-Arid Tropics (ICRISAT); Patancheru P.O. Andhra Pradesh 502 324 India
| | - T. Nepolean
- International Crops Research Inst. for the Semi-Arid Tropics (ICRISAT); Patancheru P.O. Andhra Pradesh 502 324 India
| | - C. T. Hash
- International Crops Research Inst. for the Semi-Arid Tropics (ICRISAT); Patancheru P.O. Andhra Pradesh 502 324 India
| | - R. S. Yadav
- Inst. of Grassland and Environmental Research; Aberystwyth SY23 3EB UK
| | - C. J. Howarth
- Inst. of Grassland and Environmental Research; Aberystwyth SY23 3EB UK
| |
Collapse
|
43
|
Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A. A high density barley microsatellite consensus map with 775 SSR loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:1091-103. [PMID: 17345060 DOI: 10.1007/s00122-007-0503-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 01/07/2007] [Indexed: 05/14/2023]
Abstract
A microsatellite or simple sequence repeat (SSR) consensus map of barley was constructed by joining six independent genetic maps based on the mapping populations 'Igri x Franka', 'Steptoe x Morex', 'OWB(Rec) x OWB(Dom)', 'Lina x Canada Park', 'L94 x Vada' and 'SusPtrit x Vada'. Segregation data for microsatellite markers from different research groups including SCRI (Bmac, Bmag, EBmac, EBmag, HVGeneName, scsssr), IPK (GBM, GBMS), WUR (GBM), Virginia Polytechnic Institute (HVM), and MPI for Plant Breeding (HVGeneName), generated in above mapping populations, were used in the computer program RECORD to order the markers of the individual linkage data sets. Subsequently, a framework map was constructed for each chromosome by integrating the 496 "bridge markers" common to two or more individual maps with the help of the computer programme JoinMap 3.0. The final map was calculated by following a "neighbours" map approach. The integrated map contained 775 unique microsatellite loci, from 688 primer pairs, ranging from 93 (6H) to 132 (2H) and with an average of 111 markers per linkage group. The genomic DNA-derived SSR marker loci had a higher polymorphism information content value (average 0.61) as compared to the EST/gene-derived SSR loci (average 0.48). The consensus map spans 1,068 cM providing an average density of one SSR marker every 1.38 cM. Such a high-density consensus SSR map provides barley molecular breeding programmes with a better choice regarding the quality of markers and a higher probability of polymorphic markers in an important chromosomal interval. This map also offers the possibilities of thorough alignment for the (future) physical map and implementation in haplotype diversity studies of barley.
Collapse
Affiliation(s)
- R K Varshney
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dida MM, Ramakrishnan S, Bennetzen JL, Gale MD, Devos KM. The genetic map of finger millet, Eleusine coracana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:321-32. [PMID: 17103137 DOI: 10.1007/s00122-006-0435-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Accepted: 10/12/2006] [Indexed: 05/12/2023]
Abstract
Restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), expressed-sequenced tag (EST), and simple sequence repeat (SSR) markers were used to generate a genetic map of the tetraploid finger millet (Eleusine coracana subsp. coracana) genome (2n = 4x = 36). Because levels of variation in finger millet are low, the map was generated in an inter-subspecific F(2) population from a cross between E. coracana subsp. coracana cv. Okhale-1 and its wild progenitor E. coracana subsp. africana acc. MD-20. Duplicated loci were used to identify homoeologous groups. Assignment of linkage groups to the A and B genome was done by comparing the hybridization patterns of probes in Okhale-1, MD-20, and Eleusine indica acc. MD-36. E. indica is the A genome donor to E. coracana. The maps span 721 cM on the A genome and 787 cM on the B genome and cover all 18 finger millet chromosomes, at least partially. To facilitate the use of marker-assisted selection in finger millet, a first set of 82 SSR markers was developed. The SSRs were identified in small-insert genomic libraries generated using methylation-sensitive restriction enzymes. Thirty-one of the SSRs were mapped. Application of the maps and markers in hybridization-based breeding programs will expedite the improvement of finger millet.
Collapse
Affiliation(s)
- Mathews M Dida
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | | | | | | | | |
Collapse
|
45
|
Mariac C, Luong V, Kapran I, Mamadou A, Sagnard F, Deu M, Chantereau J, Gerard B, Ndjeunga J, Bezançon G, Pham JL, Vigouroux Y. Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 114:49-58. [PMID: 17047913 DOI: 10.1007/s00122-006-0409-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 09/06/2006] [Indexed: 05/08/2023]
Abstract
Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.
Collapse
Affiliation(s)
- Cedric Mariac
- Institut de Recherche pour le Développement (IRD), 911, avenue Agropolis, BP 64501, 34394, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Feltus FA, Singh HP, Lohithaswa HC, Schulze SR, Silva TD, Paterson AH. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. PLANT PHYSIOLOGY 2006; 140:1183-91. [PMID: 16607031 PMCID: PMC1435799 DOI: 10.1104/pp.105.074203] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.
Collapse
Affiliation(s)
- F A Feltus
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
47
|
Luo M, Yu Y, Kim H, Kudrna D, Itoh Y, Agate RJ, Melamed E, Goicoechea JL, Talag J, Mueller C, Wang W, Currie J, Sisneros NB, Wing RA, Arnold AP. Utilization of a zebra finch BAC library to determine the structure of an avian androgen receptor genomic region. Genomics 2006; 87:181-90. [PMID: 16321505 DOI: 10.1016/j.ygeno.2005.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 09/06/2005] [Accepted: 09/07/2005] [Indexed: 12/16/2022]
Abstract
The zebra finch (Taeniopygia guttata) is an important model organism for studying behavior, neuroscience, avian biology, and evolution. To support the study of its genome, we constructed a BAC library (TG__Ba) using DNA from livers of females. The BAC library consists of 147,456 clones with 98% containing inserts of an average size of 134 kb and represents 15.5 haploid genome equivalents. By sequencing a whole BAC, a full-length androgen receptor open reading frame was identified, the first in an avian species. Comparison of BAC end sequences and the whole BAC sequence with the chicken genome draft sequence showed a high degree of conserved synteny between the zebra finch and the chicken genome.
Collapse
Affiliation(s)
- Meizhong Luo
- Department of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Devos KM, Ma J, Pontaroli AC, Pratt LH, Bennetzen JL. Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci U S A 2005; 102:19243-8. [PMID: 16357197 PMCID: PMC1323192 DOI: 10.1073/pnas.0509473102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current view of wheat genome composition is that genes are compartmentalized into gene-rich and gene-poor regions. This model can be tested by analyzing randomly selected bacterial artificial chromosome (BAC) clones for gene content, followed by placement of these BACs onto physical and genetic maps. Map localization could be difficult for BACs that consist entirely of repeated elements. We therefore developed a technique where repeat junctions are used to generate unique markers. Four BAC clones from hexaploid wheat variety Chinese Spring were randomly selected and sequenced at 4- to 6-fold redundancy. About 50% of the BAC sequences corresponded to previously identified repeats, mainly LTR-retrotransposons, whereas most of the remaining DNA consisted of sequences with unknown origin or function. The average gene content was <1%, although each BAC contained one or two identified genes. Repeat boundaries were amplified and used to map each clone to a chromosome arm. Extrapolation from wheat-rice comparative knowledge suggests that three of the four BAC clones originate from "gene-rich" regions of the wheat genome. Nevertheless, because these BACs carry only a single gene (two BACs) or two genes (one BAC), the predicted gene density is approximately 1 gene per 75 kb, which is considerably lower than previously estimated gene densities (one gene per 5-20 kb) for gene-rich regions in wheat. This analysis of randomly selected wheat BAC clones suggests that genes are more evenly distributed in wheat than previously believed and substantiates the need for large-scale random BAC sequencing to determine wheat genome organization.
Collapse
Affiliation(s)
- Katrien M Devos
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
49
|
Bertin I, Zhu JH, Gale MD. SSCP-SNP in pearl millet--a new marker system for comparative genetics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:1467-72. [PMID: 15809850 DOI: 10.1007/s00122-005-1981-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 02/24/2005] [Indexed: 05/20/2023]
Abstract
A considerable array of genomic resources are in place in pearl millet, and marker-aided selection is already in use in the public breeding programme at ICRISAT. This paper describes experiments to extend these publicly available resources to a single nucleotide polymorphism (SNP)-based marker system. A new marker system, single-strand conformational polymorphism (SSCP)-SNP, was developed using annotated rice genomic sequences to initially predict the intron-exon borders in millet expressed sequence tags (ESTs) and then to design primers that would amplify across the introns. An adequate supply of millet ESTs was available for us to identify 299 homologues of single-copy rice genes in which the intron positions could be precisely predicted. PCR primers were then designed to amplify approximately 500-bp genomic fragments containing introns. Analysis of these fragments on SSCP gels revealed considerable polymorphism. A detailed DNA sequence analysis of variation at four of the SSCP-SNP loci over a panel of eight inbred genotypes showed complex patterns of variation, with about one SNP or indel (insertion-deletion) every 59 bp in the introns, but considerably fewer in the exons. About two-thirds of the variation was derived from SNPs and one-third from indels. Most haplotypes were detected by SSCP. As a marker system, SSCP-SNP has lower development costs than simple sequence repeats (SSRs), because much of the work is in silico, and similar deployment costs and through-put potential. The rates of polymorphism were lower but useable, with a mean PIC of 0.49 relative to 0.72 for SSRs in our eight inbred genotype panel screen. The major advantage of the system is in comparative applications. Syntenic information can be used to target SSCP-SNP markers to specific chromosomal regions or, conversely, SSCP-SNP markers can be used to unravel detailed syntenic relationships in specific parts of the genome. Finally, a preliminary analysis showed that the millet SSCP-SNP primers amplified in other cereals with a success rate of about 50%. There is also considerable potential to promote SSCP-SNP to a COS (conserved orthologous set) marker system for application across species by more specifically designing primers to precisely match the model genome sequence.
Collapse
Affiliation(s)
- I Bertin
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | | | | |
Collapse
|