1
|
Endalamaw C, Nida H, Tsegaye D, van Biljon A, Herselman L, Labuschagne M. Genetics of sorghum: grain quality, molecular aspects, and drought responses. PLANTA 2025; 261:47. [PMID: 39873841 DOI: 10.1007/s00425-025-04628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
MAIN CONCLUSION Sorghum kernel composition is a crucial characteristic that determines its functional qualities. The total protein content of sorghum grain increases under drought stress, but starch, protein digestibility, and micronutrient contents decrease. Sorghum (Sorghum bicolor L.) is a staple source of starch, protein, and micronutrients in Ethiopia, where it is a key ingredient in local foods like injera and traditional beverages such as tela and areke. It has adapted remarkably to the diverse climatic conditions and soils of both highland and lowland regions. However, grain quality is influenced by climate change, drought stress, and genotype-environment interactions. Under drought conditions, sorghum shows reduced starch content, protein digestibility, and micronutrient levels, as well as increased kernel hardness and total protein content. The genetic and geographic diversity of sorghum makes it an adaptable crop, essential for breeding and diversity studies. Genome-wide association studies (GWAS) have emerged as essential tools for identifying candidate genes linked to key traits, thereby advancing genetic improvement initiatives, particularly for Ethiopian sorghum landraces. Advances in genotyping techniques, particularly genotyping-by-sequencing (GBS) and association mapping, have facilitated the identification of quantitative trait loci (QTL) associated with grain quality, enhancing breeding efficiency and the development of resilient, high-quality sorghum varieties. This review explored the genetic and phenotypic diversity of sorghum, focusing on grain quality traits, molecular mechanisms, and responses to drought stress.
Collapse
Affiliation(s)
- Chalachew Endalamaw
- Ethiopian Institute of Agricultural Research, Melkassa Agricultural Research Centre, Adama, Ethiopia.
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Habte Nida
- Ethiopian Institute of Agricultural Research, Melkassa Agricultural Research Centre, Adama, Ethiopia
| | - Dagmawit Tsegaye
- Ethiopian Institute of Agricultural Research, Melkassa Agricultural Research Centre, Adama, Ethiopia
| | - Angeline van Biljon
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Liezel Herselman
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Maryke Labuschagne
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
2
|
Pandian BA, Sexton-Bowser S, Prasad PV, Jugulam M. Current status and prospects of herbicide-resistant grain sorghum (Sorghum bicolor). PEST MANAGEMENT SCIENCE 2022; 78:409-415. [PMID: 34532972 DOI: 10.1002/ps.6644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Grain sorghum is a versatile crop, which can thrive under limited water and other inputs. However, crop loss from weed infestation continues to be a major constraint in grain sorghum production. Particularly, post-emergence grass weed control is a great challenge in grain sorghum due to the lack of herbicide options. Unlike in other major crops, such as maize or soybean, herbicide-resistant sorghum technology that can facilitate weed control throughout crop growing season is not available to growers yet. The development of herbicide-resistant sorghum can have potential to improve weed management, including post-emergence grass weed control. One of the major concerns in the development of such technology in sorghum is escape of resistance traits into weedy relatives of sorghum (e.g. shattercane and johnsongrass). This review focuses on sources of herbicide resistance in sorghum, the status of the development of herbicide-resistant sorghum technologies, overview of breeding methods, and limitations in the development of such sorghum technology as well as economic benefits for sorghum growers. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Balaji A Pandian
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | | | - Pv Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
3
|
Diversity of Water Yam (Dioscorea alata L.) Accessions from Côte d’Ivoire Based on SNP Markers and Agronomic Traits. PLANTS 2021; 10:plants10122562. [PMID: 34961033 PMCID: PMC8705775 DOI: 10.3390/plants10122562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Dioscorea alata (L.), also referred to as water, winged, or greater yam, is one of the most economically important staple food crops in tropical and subtropical areas. In Côte d’Ivoire, it represents, along with other yam species, the largest food crop and significantly contributes to food security. However, studies focusing on better understanding the structure and extent of genetic diversity among D. alata accessions, using molecular and phenotypic traits, are limited. This study was, therefore, conducted to assess the pattern of genetic variability in a set of 188 D. alata accessions from the National Agronomic Research Centre (CNRA) genebank using 11,722 SNP markers (generated by the Diversity Arrays Technology) and nine agronomic traits. Phylogenetic analyses using hierarchical clustering, admixture, kinship, and Discriminant analysis of principal component (DAPC) all assigned the accessions into four main clusters. Genetic diversity assessment using molecular-based SNP markers showed a high proportion of polymorphic SNPs (87.81%). The analysis of molecular variance (AMOVA) showed low molecular variability within genetic groups. In addition, the agronomic traits evaluated for two years in field conditions showed a high heritability and high variability among D. alata accessions. This study provides insights into the genetic diversity among accessions in the CNRA genebank and opens an avenue for sustainable resource management and the identification of promising parental clones for water yam breeding programs in Côte d’Ivoire.
Collapse
|
4
|
Groppi A, Liu S, Cornille A, Decroocq S, Bui QT, Tricon D, Cruaud C, Arribat S, Belser C, Marande W, Salse J, Huneau C, Rodde N, Rhalloussi W, Cauet S, Istace B, Denis E, Carrère S, Audergon JM, Roch G, Lambert P, Zhebentyayeva T, Liu WS, Bouchez O, Lopez-Roques C, Serre RF, Debuchy R, Tran J, Wincker P, Chen X, Pétriacq P, Barre A, Nikolski M, Aury JM, Abbott AG, Giraud T, Decroocq V. Population genomics of apricots unravels domestication history and adaptive events. Nat Commun 2021; 12:3956. [PMID: 34172741 PMCID: PMC8233370 DOI: 10.1038/s41467-021-24283-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot genomes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots. Our study provides clues to the biology of selected traits and targets for fruit tree research and breeding.
Collapse
Affiliation(s)
- Alexis Groppi
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Shuo Liu
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Stéphane Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Quynh Trang Bui
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - David Tricon
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sandrine Arribat
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - William Marande
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Jérôme Salse
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Cécile Huneau
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Nathalie Rodde
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Wassim Rhalloussi
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Stéphane Cauet
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Benjamin Istace
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Erwan Denis
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Jean-Marc Audergon
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Guillaume Roch
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
- CEP INNOVATION, 23 Rue Jean Baldassini, Lyon, 69364, Cedex 07, France
| | - Patrick Lambert
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Tetyana Zhebentyayeva
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Wei-Sheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | | | - Rémy-Félix Serre
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Joseph Tran
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, Villenave d'Ornon, 33882, France
| | - Patrick Wincker
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Xilong Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Aurélien Barre
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
| | - Macha Nikolski
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Albert Glenn Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, USA
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay AgroParisTech, Orsay, 91400, France.
| | - Véronique Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France.
| |
Collapse
|
5
|
Wondimu Z, Dong H, Paterson AH, Worku W, Bantte K. Genetic diversity, population structure and selection signature in Ethiopian Sorghum (Sorghum bicolor L. [Moench]) germplasm. G3-GENES GENOMES GENETICS 2021; 11:6237486. [PMID: 33871028 PMCID: PMC8495740 DOI: 10.1093/g3journal/jkab087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022]
Abstract
Ethiopia, the probable center of origin and diversity for sorghum [Sorghum bicolor L. (Moench)] and with unique ecogeographic features, possesses a large number of sorghum landraces that have not been well studied. Increased knowledge of this diverse germplasm through large-scale genomic characterization may contribute for understanding of evolutionary biology, and adequate use of these valuable resources from the center of origin. In this study, we characterized genetic diversity, population structure and selection signature in 304 sorghum accessions collected from diverse sorghum growing regions of Ethiopia using genotyping-by-sequencing. We identified a total of 108,107 high-quality single-nucleotide polymorphism (SNPs) markers that were evenly distributed across the sorghum genome. The average gene diversity among accessions was high (He = 0.29). We detected a relatively low frequency of rare alleles (26%), highlighting the potential of this germplasm for subsequent allele mining studies through genome-wide association studies. Although we found no evidence of genetic differentiation among administrative regions (FST = 0.02, P = 0.12), population structure and cluster analyses showed clear differentiation among six Ethiopian sorghum populations (FST = 0.28, P = 0.01) adapting to different environments. Analysis of SNP differentiation between the identified genetic groups revealed a total of 40 genomic regions carrying signatures of selection. These regions harbored candidate genes potentially involved in a variety of biological processes, including abiotic stress tolerance, pathogen defense and reproduction. Overall, a high level of untapped diversity for sorghum improvement remains available in Ethiopia, with patterns of diversity consistent with divergent selection on a range of adaptive characteristics.
Collapse
Affiliation(s)
- Zeleke Wondimu
- College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| | - Hongxu Dong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
| | - Walelign Worku
- College of Agriculture, Hawassa University, PO Box 05, Hawassa, Ethiopia
| | - Kassahun Bantte
- College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| |
Collapse
|
6
|
Yang Y, Tian H, Wang R, Wang L, Yi H, Liu Y, Xu L, Fan Y, Zhao J, Wang F. Variety Discrimination Power: An Appraisal Index for Loci Combination Screening Applied to Plant Variety Discrimination. FRONTIERS IN PLANT SCIENCE 2021; 12:566796. [PMID: 33815430 PMCID: PMC8014032 DOI: 10.3389/fpls.2021.566796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Molecular marker technology is used widely in plant variety discrimination, molecular breeding, and other fields. To lower the cost of testing and improve the efficiency of data analysis, molecular marker screening is very important. Screening usually involves two phases: the first to control loci quality and the second to reduce loci quantity. To reduce loci quantity, an appraisal index that is very sensitive to a specific scenario is necessary to select loci combinations. In this study, we focused on loci combination screening for plant variety discrimination. A loci combination appraisal index, variety discrimination power (VDP), is proposed, and three statistical methods, probability-based VDP (P-VDP), comparison-based VDP (C-VDP), and ratio-based VDP (R-VDP), are described and compared. The results using the simulated data showed that VDP was sensitive to statistical populations with convergence toward the same variety, and the total probability of discrimination power (TDP) method was effective only for partial populations. R-VDP was more sensitive to statistical populations with convergence toward various varieties than P-VDP and C-VDP, which both had the same sensitivity; TDP was not sensitive at all. With the real data, R-VDP values for sorghum, wheat, maize and rice data begin to show downward tendency when the number of loci is 20, 7, 100, 100 respectively, while in the case of P-VDP and C-VDP (which have the same results), the number is 6, 4, 9, 19 respectively and in the case of TDP, the number is 6, 4, 4, 11 respectively. For the variety threshold setting, R-VDP values of loci combinations with different numbers of loci responded evenly to different thresholds. C-VDP values responded unevenly to different thresholds, and the extent of the response increased as the number of loci decreased. All the methods gave underestimations when data were missing, with systematic errors for TDP, C-VDP, and R-VDP going from smallest to biggest. We concluded that VDP was a better loci combination appraisal index than TDP for plant variety discrimination and the three VDP methods have different applications. We developed the software called VDPtools, which can calculate the values of TDP, P-VDP, C-VDP, and R-VDP. VDPtools is publicly available at https://github.com/caurwx1/VDPtools.git.
Collapse
|
7
|
Burgarella C, Berger A, Glémin S, David J, Terrier N, Deu M, Pot D. The Road to Sorghum Domestication: Evidence From Nucleotide Diversity and Gene Expression Patterns. FRONTIERS IN PLANT SCIENCE 2021; 12:666075. [PMID: 34527004 PMCID: PMC8435843 DOI: 10.3389/fpls.2021.666075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/20/2021] [Indexed: 05/17/2023]
Abstract
Native African cereals (sorghum, millets) ensure food security to millions of low-income people from low fertility and drought-prone regions of Africa and Asia. In spite of their agronomic importance, the genetic bases of their phenotype and adaptations are still not well-understood. Here we focus on Sorghum bicolor, which is the fifth cereal worldwide for grain production and constitutes the staple food for around 500 million people. We leverage transcriptomic resources to address the adaptive consequences of the domestication process. Gene expression and nucleotide variability were analyzed in 11 domesticated and nine wild accessions. We documented a downregulation of expression and a reduction of diversity both in nucleotide polymorphism (30%) and gene expression levels (18%) in domesticated sorghum. These findings at the genome-wide level support the occurrence of a global reduction of diversity during the domestication process, although several genes also showed patterns consistent with the action of selection. Nine hundred and forty-nine genes were significantly differentially expressed between wild and domesticated gene pools. Their functional annotation points to metabolic pathways most likely contributing to the sorghum domestication syndrome, such as photosynthesis and auxin metabolism. Coexpression network analyzes revealed 21 clusters of genes sharing similar expression patterns. Four clusters (totaling 2,449 genes) were significantly enriched in differentially expressed genes between the wild and domesticated pools and two were also enriched in domestication and improvement genes previously identified in sorghum. These findings reinforce the evidence that the combined and intricated effects of the domestication and improvement processes do not only affect the behaviors of a few genes but led to a large rewiring of the transcriptome. Overall, these analyzes pave the way toward the identification of key domestication genes valuable for genetic resources characterization and breeding purposes.
Collapse
Affiliation(s)
- Concetta Burgarella
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Concetta Burgarella
| | - Angélique Berger
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Glémin
- CNRS, Univ. Rennes, ECOBIO – UMR 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jacques David
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Nancy Terrier
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Monique Deu
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- David Pot
| |
Collapse
|
8
|
Scossa F, Fernie AR. The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 2020; 18:482-500. [PMID: 32180906 PMCID: PMC7063335 DOI: 10.1016/j.csbj.2020.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023] Open
Abstract
The origin of primordial metabolism and its expansion to form the metabolic networks extant today represent excellent systems to study the impact of natural selection and the potential adaptive role of novel compounds. Here we present the current hypotheses made on the origin of life and ancestral metabolism and present the theories and mechanisms by which the large chemical diversity of plants might have emerged along evolution. In particular, we provide a survey of statistical methods that can be used to detect signatures of selection at the gene and population level, and discuss potential and limits of these methods for investigating patterns of molecular adaptation in plant metabolism.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178 Rome, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
9
|
Page A, Gibson J, Meyer RS, Chapman MA. Eggplant Domestication: Pervasive Gene Flow, Feralization, and Transcriptomic Divergence. Mol Biol Evol 2020; 36:1359-1372. [PMID: 31039581 DOI: 10.1093/molbev/msz062] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the context of food security, examining the genomics of domestication will help identify genes underlying adaptive and economically important phenotypes, for example, larger fruit, improved taste, and loss of agronomically inferior phenotypes. Examination of genome-scale single nucleotide polymorphisms demonstrates the relationships between wild ancestors of eggplant (Solanum melongena L.), confirming that Solanum insanum L. is the wild progenitor. This species is split roughly into an Eastern (Malaysian, Thai, and Vietnamese) and Western (Indian, Madagascan, and Sri Lankan) group, with domesticates derived from the former. Additional "wild" accessions from India appear to be feral escapes, derived multiple times from domesticated varieties through admixture. Accessions with small egg-shaped fruit are generally found intermixed with East Asian Solanum insanum confirming they are primitive relative to the large-fruited domesticates. Comparative transcriptomics was used to track the loci under selection. Sequence analysis revealed a genetic bottleneck reducing variation by almost 50% in the primitive accessions relative to the wild species and a further 10% in the landraces. We also show evidence for selection on genes with a role in response to wounding and apoptosis. Genes showing a significant difference in expression between wild and primitive or between primitive and landrace genepools were mostly (>75%) downregulated in the derived populations and enriched for gene ontologies related to defense, flowering, signaling, and response to biotic and abiotic stimuli. This work reveals genomic changes involved in crop domestication and improvement, and the population genetics work explains why defining the eggplant domestication trajectory has been so challenging.
Collapse
Affiliation(s)
- Anna Page
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jane Gibson
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
10
|
Verma H, Borah JL, Sarma RN. Variability Assessment for Root and Drought Tolerance Traits and Genetic Diversity Analysis of Rice Germplasm using SSR Markers. Sci Rep 2019; 9:16513. [PMID: 31712622 PMCID: PMC6848176 DOI: 10.1038/s41598-019-52884-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
The studies on genetic variation, diversity and population structure of rice germplasm of North East India could be an important step for improvements of abiotic and biotic stress tolerance in rice. Genetic diversity and genetic relatedness among 114 rice genotypes of North East India were assessed using genotypic data of 65 SSR markers and phenotypic data. The phenotypic diversity analysis showed the considerable variation across genotypes for root, shoot and drought tolerance traits. The principal component analysis (PCA) revealed the fresh shoot weight, root volume, dry shoot weight, fresh root weight and drought score as a major contributor to diversity. Genotyping of 114 rice genotypes using 65 SSR markers detected 147 alleles with the average polymorphic information content (PIC) value of 0.51. Population structure analysis using the Bayesian clustering model approach, distance-based neighbor-joining cluster and principal coordinate analysis using genotypic data grouped the accession into three sub-populations. Population structure analysis revealed that rice accession was moderately structured based on FST value estimates. Analysis of molecular variance (AMOVA) and pairwise FST values showed significant differentiation among all the pairs of sub-population ranging from 0.152 to 0.222 suggesting that all the three subpopulations were significantly different from each other. AMOVA revealed that most of the variation in rice accession mainly occurred among individuals. The present study suggests that diverse germplasm of NE India could be used for the improvement of root and drought tolerance in rice breeding programmes.
Collapse
Affiliation(s)
- H Verma
- Department of Plant Breeding & Genetics, Assam Agricultural University, Jorhat, 785013, Assam, India.
| | - J L Borah
- Department of Plant Breeding & Genetics, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - R N Sarma
- Department of Plant Breeding & Genetics, Assam Agricultural University, Jorhat, 785013, Assam, India.
| |
Collapse
|
11
|
Wills DM, Fang Z, York AM, Holland JB, Doebley JF. Defining the Role of the MADS-Box Gene, Zea Agamous-like1, a Target of Selection During Maize Domestication. J Hered 2019; 109:333-338. [PMID: 28992108 DOI: 10.1093/jhered/esx073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/02/2017] [Indexed: 11/12/2022] Open
Abstract
Genomic scans for genes that show the signature of past selection have been widely applied to a number of species and have identified a large number of selection candidate genes. In cultivated maize (Zea mays ssp. mays) selection scans have identified several hundred candidate domestication genes by comparing nucleotide diversity and differentiation between maize and its progenitor, teosinte (Z. mays ssp. parviglumis). One of these is a gene called zea agamous-like1 (zagl1), a MADS-box transcription factor, that is known for its function in the control of flowering time. To determine the trait(s) controlled by zagl1 that was (were) the target(s) of selection during maize domestication, we created a set of recombinant chromosome isogenic lines that differ for the maize versus teosinte alleles of zagl1 and which carry cross-overs between zagl1 and its neighbor genes. These lines were grown in a randomized trial and scored for flowering time and domestication related traits. The results indicated that the maize versus teosinte alleles of zagl1 affect flowering time as expected, as well as multiple traits related to ear size with the maize allele conferring larger ears with more kernels. Our results suggest that zagl1 may have been under selection during domestication to increase the size of the maize ear.
Collapse
Affiliation(s)
- David M Wills
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI.,USDA-ARS Plant Genetics Research Unit, Columbia, MO
| | - Zhou Fang
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC.,Bayer Corporation, Morrisville, NC
| | - Alessandra M York
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI
| | - James B Holland
- USDA-ARS Plant Science Research Unit, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC
| | - John F Doebley
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
12
|
Sanjari S, Shirzadian-Khorramabad R, Shobbar ZS, Shahbazi M. Systematic analysis of NAC transcription factors' gene family and identification of post-flowering drought stress responsive members in sorghum. PLANT CELL REPORTS 2019; 38:361-376. [PMID: 30627770 DOI: 10.1007/s00299-019-02371-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/02/2019] [Indexed: 05/25/2023]
Abstract
SbNAC genes (131) encoding 183 proteins were identified from the sorghum genome and characterized. The expression patterns of SbSNACs were evaluated at three sampling time points under post-flowering drought stress. NAC proteins are specific transcription factors in plants, playing vital roles in development and response to various environmental stresses. Despite the fact that Sorghum bicolor is well-known for its drought-tolerance, it suffers from grain yield loss due to pre and post-flowering drought stress. In the present study, 131 SbNAC genes encoding 183 proteins were identified from the sorghum genome. The phylogenetic trees were constructed based on the NAC domains of sorghum, and also based on sorghum with Arabidopsis and 8 known NAC domains of other plants, which classified the family into 15 and 19 subfamilies, respectively. Based on the obtained results, 13 SbNAC proteins joined the SNAC subfamily, and these proteins are expected to be involved in response to abiotic stresses. Promoter analysis revealed that all SbNAC genes comprise different stress-associated cis-elements in their promoters. UTRs analysis indicated that 101 SbNAC transcripts had upstream open reading frames, while 39 of the transcripts had internal ribosome entry sites in their 5'UTR. Moreover, 298 miRNA target sites were predicted to exist in the UTRs of SbNAC transcripts. The expression patterns of SbSNACs were evaluated in three genotypes at three sampling time points under post-flowering drought stress. Based on the results, it could be suggested that some gene members are involved in response to drought stress at the post-flowering stage since they act as positive or negative transcriptional regulators. Following further functional analyses, some of these genes might be perceived to be promising candidates for breeding programs to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Sepideh Sanjari
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Maryam Shahbazi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
13
|
Thilliez GJA, Armstrong MR, Lim T, Baker K, Jouet A, Ward B, van Oosterhout C, Jones JDG, Huitema E, Birch PRJ, Hein I. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. THE NEW PHYTOLOGIST 2019; 221:1634-1648. [PMID: 30288743 PMCID: PMC6492278 DOI: 10.1111/nph.15441] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 05/11/2023]
Abstract
The oomycete pathogens Phytophthora infestans and P. capsici cause significant crop losses world-wide, threatening food security. In each case, pathogenicity factors, called RXLR effectors, contribute to virulence. Some RXLRs are perceived by resistance proteins to trigger host immunity, but our understanding of the demographic processes and adaptive evolution of pathogen virulence remains poor. Here, we describe PenSeq, a highly efficient enrichment sequencing approach for genes encoding pathogenicity determinants which, as shown for the infamous potato blight pathogen Phytophthora infestans, make up < 1% of the entire genome. PenSeq facilitates the characterization of allelic diversity in pathogen effectors, enabling evolutionary and population genomic analyses of Phytophthora species. Furthermore, PenSeq enables the massively parallel identification of presence/absence variations and sequence polymorphisms in key pathogen genes, which is a prerequisite for the efficient deployment of host resistance genes. PenSeq represents a cost-effective alternative to whole-genome sequencing and addresses crucial limitations of current plant pathogen population studies, which are often based on selectively neutral markers and consequently have limited utility in the analysis of adaptive evolution. The approach can be adapted to diverse microbes and pathogens.
Collapse
Affiliation(s)
- Gaetan J. A. Thilliez
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Miles R. Armstrong
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | - Tze‐Yin Lim
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Katie Baker
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Agathe Jouet
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7GJUK
| | - Ben Ward
- The Earlham InstituteNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - Edgar Huitema
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Paul R. J. Birch
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Ingo Hein
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| |
Collapse
|
14
|
Chombe D, Bekele E, Bryngelsson T, Teshome A, Geleta M. Genetic structure and relationships within and between cultivated and wild korarima [Aframomum corrorima (Braun) P.C.M. Jansen] in Ethiopia as revealed by simple sequence repeat (SSR) markers. BMC Genet 2017; 18:72. [PMID: 28764649 PMCID: PMC5540420 DOI: 10.1186/s12863-017-0540-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/25/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Korarima [Aframomum corrorima (Braun) P.C.M. Jansen] is a spice crop native to Ethiopia. Understanding the extent and partitioning of diversity within and among crop landraces and their wild relatives is among the first steps in conserving and measuring their genetic potential. The present study is aimed at characterizing the population genetic structure and relationships between cultivated and wild korarima in the southwestern part of Ethiopia. RESULTS We analyzed a total of 195 individuals representing seven wild and fourteen cultivated populations. Eleven polymorphic simple sequence repeat (SSR) markers were used. We observed a total of 53 alleles across the eleven loci and individuals. In total, 32 alleles were detected in the cultivated populations, whereas 49 alleles were detected in the wild populations. We found higher genetic diversity in wild populations than in the cultivated counterpart. This result implies the potential of wild korarima as a possible source for novel alleles contributing to the improvement of cultivated korarima. Analysis of molecular variance (AMOVA) showed significant but low differentiation between cultivated and wild korarima populations. Similarly, neighbour-joining and STRUCTURE analyses did not group cultivated and wild populations into two distinct clusters. The lack of clear differentiation between cultivated and wild populations could be explained by historical and contemporary gene flow between the two gene pools. CONCLUSION The 11 SSR loci developed in this study could be employed to examine genetic diversity and population structure of korarima in other countries as well as other Aframomum species. From the five administrative zones considered in this study, the Bench-Magi and Sheka zone showed populations with high genetic diversity, and these populations could be used as a potential starting point for in-situ and ex-situ germplasm conservation and korarima improvement through breeding programs after proper agronomic evaluation.
Collapse
Affiliation(s)
- Dagmawit Chombe
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box, 1176, Addis Ababa, Ethiopia.
| | - Endashaw Bekele
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box, 1176, Addis Ababa, Ethiopia
| | - Tomas Bryngelsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, -23053, Alnarp, SE, Sweden
| | - Abel Teshome
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, -23053, Alnarp, SE, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, -23053, Alnarp, SE, Sweden
| |
Collapse
|
15
|
Qi X, An H, Ragsdale AP, Hall TE, Gutenkunst RN, Chris Pires J, Barker MS. Genomic inferences of domestication events are corroborated by written records in Brassica rapa. Mol Ecol 2017; 26:3373-3388. [PMID: 28371014 DOI: 10.1111/mec.14131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/26/2022]
Abstract
Demographic modelling is often used with population genomic data to infer the relationships and ages among populations. However, relatively few analyses are able to validate these inferences with independent data. Here, we leverage written records that describe distinct Brassica rapa crops to corroborate demographic models of domestication. Brassica rapa crops are renowned for their outstanding morphological diversity, but the relationships and order of domestication remain unclear. We generated genomewide SNPs from 126 accessions collected globally using high-throughput transcriptome data. Analyses of more than 31,000 SNPs across the B. rapa genome revealed evidence for five distinct genetic groups and supported a European-Central Asian origin of B. rapa crops. Our results supported the traditionally recognized South Asian and East Asian B. rapa groups with evidence that pak choi, Chinese cabbage and yellow sarson are likely monophyletic groups. In contrast, the oil-type B. rapa subsp. oleifera and brown sarson were polyphyletic. We also found no evidence to support the contention that rapini is the wild type or the earliest domesticated subspecies of B. rapa. Demographic analyses suggested that B. rapa was introduced to Asia 2,400-4,100 years ago, and that Chinese cabbage originated 1,200-2,100 years ago via admixture of pak choi and European-Central Asian B. rapa. We also inferred significantly different levels of founder effect among the B. rapa subspecies. Written records from antiquity that document these crops are consistent with these inferences. The concordance between our age estimates of domestication events with historical records provides unique support for our demographic inferences.
Collapse
Affiliation(s)
- Xinshuai Qi
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MI, USA.,National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Aaron P Ragsdale
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA
| | - Tara E Hall
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MI, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Abebaw M, Solomon A. Genetic diversity assessment of Guzoita abyssinica using EST derived simple sequence repeats (SSRs) markers. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajps2016.1512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics 2017; 18:15. [PMID: 28056770 PMCID: PMC5217548 DOI: 10.1186/s12864-016-3403-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop for dryland areas in the United States and for small-holder farmers in Africa. Natural variation of sorghum grain composition (protein, fat, and starch) between accessions can be used for crop improvement, but the genetic controls are still unresolved. The goals of this study were to quantify natural variation of sorghum grain composition and to identify single-nucleotide polymorphisms (SNPs) associated with variation in grain composition concentrations. Results In this study, we quantified protein, fat, and starch in a global sorghum diversity panel using near-infrared spectroscopy (NIRS). Protein content ranged from 8.1 to 18.8%, fat content ranged from 1.0 to 4.3%, and starch content ranged from 61.7 to 71.1%. Durra and bicolor-durra sorghum from Ethiopia and India had the highest protein and fat and the lowest starch content, while kafir sorghum from USA, India, and South Africa had the lowest protein and the highest starch content. Genome-wide association studies (GWAS) identified quantitative trait loci (QTL) for sorghum protein, fat, and starch. Previously published RNAseq data was used to identify candidate genes within a GWAS QTL region. A putative alpha-amylase 3 gene, which has previously been shown to be associated with grain composition traits, was identified as a strong candidate for protein and fat variation. Conclusions We identified promising sources of genetic material for manipulation of grain composition traits, and several loci and candidate genes that may control sorghum grain composition. This survey of grain composition in sorghum germplasm and identification of protein, fat, and starch QTL contributes to our understanding of the genetic basis of natural variation in sorghum grain nutritional traits. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3403-x) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Campbell BC, Gilding EK, Mace ES, Tai S, Tao Y, Prentis PJ, Thomelin P, Jordan DR, Godwin ID. Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2240-2253. [PMID: 27155090 PMCID: PMC5103234 DOI: 10.1111/pbi.12578] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/02/2016] [Indexed: 05/04/2023]
Abstract
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either 'Landraces' or 'Wild and Weedy' genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.
Collapse
Affiliation(s)
- Bradley C. Campbell
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQldAustralia
| | - Edward K. Gilding
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQldAustralia
| | - Emma S. Mace
- Department of Agriculture and Fisheries (DAF)WarwickQldAustralia
| | | | - Yongfu Tao
- Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandWarwickQldAustralia
| | - Peter J. Prentis
- Science and Engineering FacultyQueensland University of Technology (QUT)BrisbaneQldAustralia
| | - Pauline Thomelin
- Australian Centre for Plant Functional GenomicsGlen OsmondSAAustralia
| | - David R. Jordan
- Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandWarwickQldAustralia
| | - Ian D. Godwin
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQldAustralia
| |
Collapse
|
19
|
Multi-Phase US Spread and Habitat Switching of a Post-Columbian Invasive, Sorghum halepense. PLoS One 2016; 11:e0164584. [PMID: 27755565 PMCID: PMC5068735 DOI: 10.1371/journal.pone.0164584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Johnsongrass (Sorghum halepense) is a striking example of a post-Columbian founder event. This natural experiment within ecological time-scales provides a unique opportunity for understanding patterns of continent-wide genetic diversity following range expansion. Microsatellite markers were used for population genetic analyses including leaf-optimized Neighbor-Joining tree, pairwise FST, mismatch analysis, principle coordinate analysis, Tajima's D, Fu's F and Bayesian clusterings of population structure. Evidence indicates two geographically distant introductions of divergent genotypes, which spread across much of the US in <200 years. Based on geophylogeny, gene flow patterns can be inferred to have involved five phases. Centers of genetic diversity have shifted from two introduction sites separated by ~2000 miles toward the middle of the range, consistent with admixture between genotypes from the respective introductions. Genotyping provides evidence for a 'habitat switch' from agricultural to non-agricultural systems and may contribute to both Johnsongrass ubiquity and aggressiveness. Despite lower and more structured diversity at the invasion front, Johnsongrass continues to advance northward into cooler and drier habitats. Association genetic approaches may permit identification of alleles contributing to the habitat switch or other traits important to weed/invasive management and/or crop improvement.
Collapse
|
20
|
Haasl RJ, Payseur BA. Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Mol Ecol 2015. [PMID: 26224644 DOI: 10.1111/mec.13339] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomewide scans for natural selection (GWSS) have become increasingly common over the last 15 years due to increased availability of genome-scale genetic data. Here, we report a representative survey of GWSS from 1999 to present and find that (i) between 1999 and 2009, 35 of 49 (71%) GWSS focused on human, while from 2010 to present, only 38 of 83 (46%) of GWSS focused on human, indicating increased focus on nonmodel organisms; (ii) the large majority of GWSS incorporate interpopulation or interspecific comparisons using, for example F(ST), cross-population extended haplotype homozygosity or the ratio of nonsynonymous to synonymous substitutions; (iii) most GWSS focus on detection of directional selection rather than other modes such as balancing selection; and (iv) in human GWSS, there is a clear shift after 2004 from microsatellite markers to dense SNP data. A survey of GWSS meant to identify loci positively selected in response to severe hypoxic conditions support an approach to GWSS in which a list of a priori candidate genes based on potential selective pressures are used to filter the list of significant hits a posteriori. We also discuss four frequently ignored determinants of genomic heterogeneity that complicate GWSS: mutation, recombination, selection and the genetic architecture of adaptive traits. We recommend that GWSS methodology should better incorporate aspects of genomewide heterogeneity using empirical estimates of relevant parameters and/or realistic, whole-chromosome simulations to improve interpretation of GWSS results. Finally, we argue that knowledge of potential selective agents improves interpretation of GWSS results and that new methods focused on correlations between environmental variables and genetic variation can help automate this approach.
Collapse
Affiliation(s)
- Ryan J Haasl
- Department of Biology, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI, 53818, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI, 53706, USA
| |
Collapse
|
21
|
Assessment of genetic diversity among sorghum landraces and their wild/weedy relatives in western Kenya using simple sequence repeat (SSR) markers. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Adugna A. Analysis of in situ diversity and population structure in Ethiopian cultivated Sorghum bicolor (L.) landraces using phenotypic traits and SSR markers. SPRINGERPLUS 2014; 3:212. [PMID: 24877027 PMCID: PMC4033718 DOI: 10.1186/2193-1801-3-212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/23/2014] [Indexed: 01/16/2023]
Abstract
Genetic diversity is a fundamental input for every plant breeding program, genetic resources conservation, and evolutionary studies. In situ diversity and population genetic structure of eight cultivated sorghum landrace populations were investigated in the center of origin, Ethiopia using seven phenotypic traits and 12 highly polymorphic sorghum SSR markers. In farmers' fields, DNA samples were collected using Whatman® plant saver card and quantitative phenotypic traits were measured from 160 individual plant samples belonging to the eight populations representing three diverse geographical regions. High diversity was observed among the various populations for the measured phenotypic traits. The 12 SSR loci produced a total of 123 alleles of which 78 (63.41%) were rare (frequency ≤0.05) with an average of 10.25 alleles per polymorphic locus. The polymorphism information content (PIC) was in the range 0.39-0.85 showing the good discriminatory power of the SSR loci used. Average observed heterozygosity and gene diversity across all populations and loci ranged 0.04-0.33 and 0.41-0.87, respectively. Neighbor-joining and STRUCTURE analyses grouped the 160 samples from the eight populations differently. AMOVA showed 54.44% of the variation to be within populations, 32.76% among populations within regions, and 12.8% among the regions of origin. There was high divergence in the total populations (FST = 0.40) indicating low level of gene flow (Nm = 0.38), but high gene flow was also observed in some adjacent populations. The populations from Wello displayed close relationship with remote Gibe and Metekel populations indicating that the variation followed human migration patterns. Implications of the results for sorghum improvement and germplasm conservation are discussed.
Collapse
Affiliation(s)
- Asfaw Adugna
- Melkassa Agricultural Research Center, P.O. Box 1085, Adama, Ethiopia
| |
Collapse
|
23
|
Chapman MA, Mandel JR, Burke JM. Sequence validation of candidates for selectively important genes in sunflower. PLoS One 2013; 8:e71941. [PMID: 23991009 PMCID: PMC3753318 DOI: 10.1371/journal.pone.0071941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
Analyses aimed at identifying genes that have been targeted by past selection provide a powerful means for investigating the molecular basis of adaptive differentiation. In the case of crop plants, such studies have the potential to not only shed light on important evolutionary processes, but also to identify genes of agronomic interest. In this study, we test for evidence of positive selection at the DNA sequence level in a set of candidate genes previously identified in a genome-wide scan for genotypic evidence of selection during the evolution of cultivated sunflower. In the majority of cases, we were able to confirm the effects of selection in shaping diversity at these loci. Notably, the genes that were found to be under selection via our sequence-based analyses were devoid of variation in the cultivated sunflower gene pool. This result confirms a possible strategy for streamlining the search for adaptively-important loci process by pre-screening the derived population to identify the strongest candidates before sequencing them in the ancestral population.
Collapse
Affiliation(s)
- Mark A. Chapman
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Jennifer R. Mandel
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
24
|
Ramu P, Billot C, Rami JF, Senthilvel S, Upadhyaya HD, Ananda Reddy L, Hash CT. Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2051-64. [PMID: 23708149 DOI: 10.1007/s00122-013-2117-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/08/2013] [Indexed: 05/09/2023]
Abstract
Selection and use of genetically diverse genotypes are key factors in any crop breeding program to develop cultivars with a broad genetic base. Molecular markers play a major role in selecting diverse genotypes. In the present study, a reference set representing a wide range of sorghum genetic diversity was screened with 40 EST-SSR markers to validate both the use of these markers for genetic structure analyses and the population structure of this set. Grouping of accessions is identical in distance-based and model-based clustering methods. Genotypes were grouped primarily based on race within the geographic origins. Accessions derived from the African continent contributed 88.6 % of alleles confirming the African origin of sorghum. In total, 360 alleles were detected in the reference set with an average of 9 alleles per marker. The average PIC value was 0.5230 with a range of 0.1379-0.9483. Sub-race, guinea margaritiferum (Gma) from West Africa formed a separate cluster in close proximity to wild accessions suggesting that the Gma group represents an independent domestication event. Guineas from India and Western Africa formed two distinct clusters. Accessions belongs to the kafir race formed the most homogeneous group as observed in earlier studies. This analysis suggests that the EST-SSR markers used in the present study have greater discriminating power than the genomic SSRs. Genetic variance within the subpopulations was very high (71.7 %) suggesting that the germplasm lines included in the set are more diverse. Thus, this reference set representing the global germplasm is an ideal material for the breeding community, serving as a community resource for trait-specific allele mining as well as genome-wide association mapping.
Collapse
Affiliation(s)
- P Ramu
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Andhra Pradesh, India.
| | | | | | | | | | | | | |
Collapse
|
25
|
Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3-GENES GENOMES GENETICS 2013; 3:783-93. [PMID: 23704283 PMCID: PMC3656726 DOI: 10.1534/g3.112.004861] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To facilitate the mapping of genes in sorghum [Sorghum bicolor (L.) Moench] underlying economically important traits, we analyzed the genetic structure and linkage disequilibrium in a sorghum mini core collection of 242 landraces with 13,390 single-nucleotide polymorphims. The single-nucleotide polymorphisms were produced using a highly multiplexed genotyping-by-sequencing methodology. Genetic structure was established using principal component, Neighbor-Joining phylogenetic, and Bayesian cluster analyses. These analyses indicated that the mini-core collection was structured along both geographic origin and sorghum race classification. Examples of the former were accessions from Southern Africa, East Asia, and Yemen. Examples of the latter were caudatums with widespread geographical distribution, durras from India, and guineas from West Africa. Race bicolor, the most primitive and the least clearly defined sorghum race, clustered among other races and formed only one clear bicolor-centric cluster. Genome-wide linkage disequilibrium analyses showed linkage disequilibrium decayed, on average, within 10-30 kb, whereas the short arm of SBI-06 contained a linkage disequilibrium block of 20.33 Mb, confirming a previous report of low recombination on this chromosome arm. Four smaller but equally significant linkage disequilibrium blocks of 3.5-35.5 kb were detected on chromosomes 1, 2, 9, and 10. We examined the genes encoded within each block to provide a first look at candidates such as homologs of GS3 and FT that may indicate a selective sweep during sorghum domestication.
Collapse
|
26
|
Soto-Cerda BJ, Diederichsen A, Ragupathy R, Cloutier S. Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC PLANT BIOLOGY 2013; 13:78. [PMID: 23647851 PMCID: PMC3656786 DOI: 10.1186/1471-2229-13-78] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 04/26/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Flax is valued for its fiber, seed oil and nutraceuticals. Recently, the fiber industry has invested in the development of products made from linseed stems, making it a dual purpose crop. Simultaneous targeting of genomic regions controlling stem fiber and seed quality traits could enable the development of dual purpose cultivars. However, the genetic diversity, population structure and linkage disequilibrium (LD) patterns necessary for association mapping (AM) have not yet been assessed in flax because genomic resources have only recently been developed. We characterized 407 globally distributed flax accessions using 448 microsatellite markers. The data was analyzed to assess the suitability of this core collection for AM. Genomic scans to identify candidate genes selected during the divergent breeding process of fiber flax and linseed were conducted using the whole genome shotgun sequence of flax. RESULTS Combined genetic structure analysis assigned all accessions to two major groups with six sub-groups. Population differentiation was weak between the major groups (F(ST) = 0.094) and for most of the pairwise comparisons among sub-groups. The molecular coancestry analysis indicated weak relatedness (mean = 0.287) for most individual pairs. Abundant genetic diversity was observed in the total panel (5.32 alleles per locus), and some sub-groups showed a high proportion of private alleles. The average genome-wide LD (r²) was 0.036, with a relatively fast decay of 1.5 cM. Genomic scans between fiber flax and linseed identified candidate genes involved in cell-wall biogenesis/modification, xylem identity and fatty acid biosynthesis congruent with genes previously identified in flax and other plant species. CONCLUSIONS Based on the abundant genetic diversity, weak population structure and relatedness and relatively fast LD decay, we concluded that this core collection is suitable for AM studies targeting multiple agronomic and quality traits aiming at the improvement of flax as a true dual purpose crop. Our genomic scans provide the first insights into candidate regions affected by divergent selection in flax. In combination with AM, genomic scans have the ability to increase the power to detect loci influencing complex traits.
Collapse
Affiliation(s)
- Braulio J Soto-Cerda
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB R3T 2M9, Canada
- Present address: Agriaquaculture Nutritional Genomic Center, CGNA, Genomics and Bioinformatics Unito, Km 10 Camino Cajón-Vilcún, INIA Temuco, Chile
| | - Axel Diederichsen
- Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, 107 Science Place, Saskatchewan, SK S7N 0X2, Canada
| | - Raja Ragupathy
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB R3T 2M9, Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB R3T 2M9, Canada
| |
Collapse
|
27
|
Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Gardes L, Noyer JL, Rami JF, Rivallan R, Li Y, Lu P, Wang T, Folkertsma RT, Arnaud E, Upadhyaya HD, Glaszmann JC, Hash CT. Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS One 2013; 8:e59714. [PMID: 23565161 PMCID: PMC3614975 DOI: 10.1371/journal.pone.0059714] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/17/2013] [Indexed: 11/19/2022] Open
Abstract
Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity.
Collapse
|
28
|
Mandel JR, Nambeesan S, Bowers JE, Marek LF, Ebert D, Rieseberg LH, Knapp SJ, Burke JM. Association mapping and the genomic consequences of selection in sunflower. PLoS Genet 2013; 9:e1003378. [PMID: 23555290 PMCID: PMC3605098 DOI: 10.1371/journal.pgen.1003378] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
The combination of large-scale population genomic analyses and trait-based mapping approaches has the potential to provide novel insights into the evolutionary history and genome organization of crop plants. Here, we describe the detailed genotypic and phenotypic analysis of a sunflower (Helianthus annuus L.) association mapping population that captures nearly 90% of the allelic diversity present within the cultivated sunflower germplasm collection. We used these data to characterize overall patterns of genomic diversity and to perform association analyses on plant architecture (i.e., branching) and flowering time, successfully identifying numerous associations underlying these agronomically and evolutionarily important traits. Overall, we found variable levels of linkage disequilibrium (LD) across the genome. In general, islands of elevated LD correspond to genomic regions underlying traits that are known to have been targeted by selection during the evolution of cultivated sunflower. In many cases, these regions also showed significantly elevated levels of differentiation between the two major sunflower breeding groups, consistent with the occurrence of divergence due to strong selection. One of these regions, which harbors a major branching locus, spans a surprisingly long genetic interval (ca. 25 cM), indicating the occurrence of an extended selective sweep in an otherwise recombinogenic interval.
Collapse
Affiliation(s)
- Jennifer R. Mandel
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Savithri Nambeesan
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, Georgia, United States of America
| | - John E. Bowers
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Laura F. Marek
- North Central Regional Plant Introduction Station, USDA–ARS, Ames, Iowa, United States of America
| | - Daniel Ebert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Loren H. Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Steven J. Knapp
- Monsanto Company, Woodland, California, United States of America
| | - John M. Burke
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Soto-Cerda BJ, Cloutier S. Outlier Loci and Selection Signatures of Simple Sequence Repeats (SSRs) in Flax ( Linum usitatissimum L.). PLANT MOLECULAR BIOLOGY REPORTER 2013; 31:978-990. [PMID: 24415843 PMCID: PMC3881565 DOI: 10.1007/s11105-013-0568-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genomic microsatellites (gSSRs) and expressed sequence tag-derived SSRs (EST-SSRs) have gained wide application for elucidating genetic diversity and population structure in plants. Both marker systems are assumed to be selectively neutral when making demographic inferences, but this assumption is rarely tested. In this study, three neutrality tests were assessed for identifying outlier loci among 150 SSRs (85 gSSRs and 65 EST-SSRs) that likely influence estimates of population structure in three differentiated flax sub-populations (FST = 0.19). Moreover, the utility of gSSRs, EST-SSRs, and the combined sets of SSRs was also evaluated in assessing genetic diversity and population structure in flax. Six outlier loci were identified by at least two neutrality tests showing footprints of balancing selection. After removing the outlier loci, the STRUCTURE analysis and the dendrogram topology of EST-SSRs improved. Conversely, gSSRs and combined SSRs results did not change significantly, possibly as a consequence of the higher number of neutral loci assessed. Taken together, the genetic structure analyses established the superiority of gSSRs to determine the genetic relationships among flax accessions, although the combined SSRs produced the best results. Genetic diversity parameters did not differ statistically (P > 0.05) between gSSRs and EST-SSRs, an observation partially explained by the similar number of repeat motifs. Our study provides new insights into the ability of gSSRs and EST-SSRs to measure genetic diversity and structure in flax and confirms the importance of testing for the occurrence of outlier loci to properly assess natural and breeding populations, particularly in studies considering only few loci.
Collapse
Affiliation(s)
- Braulio J. Soto-Cerda
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB Canada R3T 2M9
- Agriaquaculture Nutritional Genomic Center, Genomics and Bioinformatics Unit, CGNA, Km 10 Camino Cajón-Vilcún, INIA, Temuco, Chile
| | - Sylvie Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB Canada R3T 2M9
| |
Collapse
|
30
|
Chapman MA, Burke JM. Evidence of selection on fatty acid biosynthetic genes during the evolution of cultivated sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:897-907. [PMID: 22580969 DOI: 10.1007/s00122-012-1881-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 04/19/2012] [Indexed: 05/21/2023]
Abstract
The identification of genes underlying the phenotypic transitions that took place during crop evolution, as well as the genomic extent of resultant selective sweeps, is of great interest to both evolutionary biologists and applied plant scientists. In this study, we report the results of a molecular evolutionary analysis of 11 genes that underlie fatty acid biosynthesis and metabolism in wild and cultivated sunflower (Helianthus annuus). Seven of these 11 genes showed evidence of selection at the nucleotide level, with 1 (FAD7) having experienced selection prior to domestication, 2 (FAD2-3 and FAD3) having experienced selection during domestication, and 4 (FAB1, FAD2-1, FAD6, and FATB) having experienced selection during the subsequent period of improvement. Sequencing of a subset of these genes from an extended panel of sunflower cultivars revealed little additional variation, and an analysis of the genomic region surrounding one of these genes (FAD2-1) revealed the occurrence of an extensive selective sweep affecting a region spanning at least ca. 100 kb. Given that previous population genetic analyses have revealed a relatively rapid decay of linkage disequilibrium in sunflower, this finding indicates the occurrence of strong selection and a rapid sweep.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Biology, University of Georgia, Miller Plant Sciences Bldg., Athens, GA 30602, USA.
| | | |
Collapse
|
31
|
Reeves PA, Panella LW, Richards CM. Retention of agronomically important variation in germplasm core collections: implications for allele mining. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1155-71. [PMID: 22228243 DOI: 10.1007/s00122-011-1776-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/15/2011] [Indexed: 05/22/2023]
Abstract
The primary targets of allele mining efforts are loci of agronomic importance. Agronomic loci typically exhibit patterns of allelic diversity that are consistent with a history of natural or artificial selection. Natural or artificial selection causes the distribution of genetic diversity at such loci to deviate substantially from the pattern found at neutral loci. The germplasm utilized for allele mining should contain maximum allelic variation at loci of interest, in the smallest possible number of samples. We show that the popular core collection assembly procedure "M" (marker allele richness), which leverages variation at neutral loci, performs worse than random assembly for retaining variation at a locus of agronomic importance in sugar beet (Beta vulgaris L. subsp. vulgaris) that is under selection. We present a corrected procedure ("M+") that outperforms M. An extensive coalescent simulation was performed to demonstrate more generally the retention of neutral versus selected allelic variation in core subsets assembled with M+. A negative correlation in level of allelic diversity between neutral and selected loci was observed in 42% of simulated data sets. When core collection assembly is guided by neutral marker loci, as is the current common practice, enhanced allelic variation at agronomically important loci should not necessarily be expected.
Collapse
Affiliation(s)
- Patrick A Reeves
- National Center for Genetic Resources Preservation, United States Department of Agriculture, Agricultural Research Service, 1111 South Mason Street, Fort Collins, CO 80521, USA.
| | | | | |
Collapse
|
32
|
Bouchet S, Pot D, Deu M, Rami JF, Billot C, Perrier X, Rivallan R, Gardes L, Xia L, Wenzl P, Kilian A, Glaszmann JC. Genetic structure, linkage disequilibrium and signature of selection in Sorghum: lessons from physically anchored DArT markers. PLoS One 2012; 7:e33470. [PMID: 22428056 PMCID: PMC3302775 DOI: 10.1371/journal.pone.0033470] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/09/2012] [Indexed: 11/19/2022] Open
Abstract
Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r(2) decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod.
Collapse
Affiliation(s)
| | - David Pot
- UMR AGAP, CIRAD, Montpellier, France
| | | | | | | | | | | | | | - Ling Xia
- Diversity Arrays Technology Pty Ltd., Yarralumla, Australia
| | - Peter Wenzl
- Diversity Arrays Technology Pty Ltd., Yarralumla, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd., Yarralumla, Australia
| | | |
Collapse
|
33
|
Social Organization of Crop Genetic Diversity. The G × E × S Interaction Model. DIVERSITY-BASEL 2011. [DOI: 10.3390/d4010001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Clotault J, Thuillet AC, Buiron M, De Mita S, Couderc M, Haussmann BIG, Mariac C, Vigouroux Y. Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection on flowering genes since its domestication. Mol Biol Evol 2011; 29:1199-212. [PMID: 22114357 DOI: 10.1093/molbev/msr287] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The plant domestication process is associated with considerable modifications of plant phenotype. The identification of the genetic basis of this adaptation is of great interest for evolutionary biology. One of the methods used to identify such genes is the detection of signatures of selection. However, domestication is generally associated with major demographic effects. It is therefore crucial to disentangle the effects of demography and selection on diversity. In this study, we investigated selection in a flowering time pathway during domestication of pearl millet. We first used a random set of 20 genes to model pearl millet domestication using approximate Bayesian computation. This analysis showed that a model with exponential growth and wild-cultivated gene flow was well supported by our data set. Under this model, the domestication date of pearl millet is estimated at around 4,800 years ago. We assessed selection in 15 pearl millet DNA sequences homologous to flowering time genes and showed that these genes underwent selection more frequently than expected. We highlighted significant signatures of selection in six pearl millet flowering time genes associated with domestication or improvement of pearl millet. Moreover, higher deviations from neutrality were found for circadian clock-associated genes. Our study provides new insights into the domestication process of pearl millet and shows that a category of genes of the flowering pathway were preferentially selected during pearl millet domestication.
Collapse
Affiliation(s)
- Jérémy Clotault
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Miller AJ, Gross BL. From forest to field: perennial fruit crop domestication. AMERICAN JOURNAL OF BOTANY 2011; 98:1389-414. [PMID: 21865506 DOI: 10.3732/ajb.1000522] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY Archaeological and genetic analyses of seed-propagated annual crops have greatly advanced our understanding of plant domestication and evolution. Comparatively little is known about perennial plant domestication, a relevant topic for understanding how genes and genomes evolve in long-lived species, and how perennials respond to selection pressures operating on a relatively short time scale. Here, we focus on long-lived perennial crops (mainly trees and other woody plants) grown for their fruits. KEY RESULTS We reviewed (1) the basic biology of long-lived perennials, setting the stage for perennial domestication by considering how these species evolve in nature; (2) the suite of morphological features associated with perennial fruit crops undergoing domestication; (3) the origins and evolution of domesticated perennials grown for their fruits; and (4) the genetic basis of domestication in perennial fruit crops. CONCLUSIONS Long-lived perennials have lengthy juvenile phases, extensive outcrossing, widespread hybridization, and limited population structure. Under domestication, these features, combined with clonal propagation, multiple origins, and ongoing crop-wild gene flow, contribute to mild domestication bottlenecks in perennial fruit crops. Morphological changes under domestication have many parallels to annual crops, but with key differences for mating system evolution and mode of reproduction. Quantitative trait loci associated with domestication traits in perennials are mainly of minor effect and may not be stable across years. Future studies that take advantage of genomic approaches and consider demographic history will elucidate the genetics of agriculturally and ecologically important traits in perennial fruit crops and their wild relatives.
Collapse
Affiliation(s)
- Allison J Miller
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, Missouri 63103 USA.
| | | |
Collapse
|
36
|
Muraya MM, de Villiers S, Parzies HK, Mutegi E, Sagnard F, Kanyenji BM, Kiambi D, Geiger HH. Genetic structure and diversity of wild sorghum populations (Sorghum spp.) from different eco-geographical regions of Kenya. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:571-83. [PMID: 21643817 DOI: 10.1007/s00122-011-1608-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/26/2011] [Indexed: 05/23/2023]
Abstract
Wild sorghums are extremely diverse phenotypically, genetically and geographically. However, there is an apparent lack of knowledge on the genetic structure and diversity of wild sorghum populations within and between various eco-geographical regions. This is a major obstacle to both their effective conservation and potential use in breeding programs. The objective of this study was to assess the genetic diversity and structure of wild sorghum populations across a range of eco-geographical conditions in Kenya. Sixty-two wild sorghum populations collected from the 4 main sorghum growing regions in Kenya were genotyped using 18 simple sequence repeat markers. The study showed that wild sorghum is highly variable with the Coast region displaying the highest diversity. Analysis of molecular variance showed a significant variance component within and among wild sorghum populations within regions. The genetic structure of wild sorghum populations indicated that gene flow is not restricted to populations within the same geographic region. A weak regional differentiation was found among populations, reflecting human intervention in shaping wild sorghum genetic structure through seed-mediated gene flow. The sympatric occurrence of wild and cultivated sorghums coupled with extensive seed-mediated gene flow, suggests a potential crop-to-wild gene flow and vice versa across the regions. Wild sorghum displayed a mixed mating system. The wide range of estimated outcrossing rates indicate that some environmental conditions may exist where self-fertilisation is favoured while others cross-pollination is more advantageous.
Collapse
Affiliation(s)
- Moses M Muraya
- Institute of Plant Breeding, Seed science and Population Genetics, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Shi MM, Michalski SG, Chen XY, Durka W. Isolation by elevation: genetic structure at neutral and putatively non-neutral loci in a dominant tree of subtropical forests, Castanopsis eyrei. PLoS One 2011; 6:e21302. [PMID: 21701584 PMCID: PMC3118804 DOI: 10.1371/journal.pone.0021302] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/24/2011] [Indexed: 11/18/2022] Open
Abstract
Background The distribution of genetic diversity among plant populations growing along elevational gradients can be affected by neutral as well as selective processes. Molecular markers used to study these patterns usually target neutral processes only, but may also be affected by selection. In this study, the effects of elevation and successional stage on genetic diversity of a dominant tree species were investigated controlling for neutrality of the microsatellite loci used. Methodology/Principal Findings Diversity and differentiation among 24 populations of Castanopsis eyrei from different elevations (251–920 m) and successional stages were analysed by eight microsatellite loci. We found that one of the loci (Ccu97H18) strongly deviated from a neutral model of differentiation among populations due to either divergent selection or hitchhiking with an unknown selected locus. The analysis showed that C. eyrei populations had a high level of genetic diversity within populations (AR = 7.6, HE = 0.82). Genetic variation increased with elevation for both the putatively selected locus Ccu97H18 and the neutral loci. At locus Ccu97H18 one allele was dominant at low elevations, which was replaced at higher elevations by an increasing number of other alleles. The level of genetic differentiation at neutral loci was similar to that of other Fagaceae species (FST = 0.032, = 0.15). Population differentiation followed a model of isolation by distance but additionally, strongly significant isolation by elevation was found, both for neutral loci and the putatively selected locus. Conclusions/Significance The results indicate higher gene flow among similar elevational levels than across different elevational levels and suggest a selective influence of elevation on the distribution of genetic diversity in C. eyrei. The study underlines the importance to check the selective neutrality of marker loci in analyses of population structure.
Collapse
Affiliation(s)
- Miao-Miao Shi
- Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology (BZF), Halle, Germany.
| | | | | | | |
Collapse
|
38
|
Population structure in sorghum accessions from West Africa differing in race and maturity class. Genetica 2011; 139:453-63. [PMID: 21455788 DOI: 10.1007/s10709-011-9564-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Accounting for population structure to minimize spurious associations in association analyses is of crucial importance. With sorghum genomic sequence information being available, there is a growing interest in performing such association studies for a number of important agronomic traits using a candidate gene approach. The aims of our study were to conduct a systematic survey of molecular genetic diversity and analyze the population structure in cultivated sorghum [Sorghum bicolor (L.) Moench] accessions from West Africa. Our analysis included 219 West African cultivated sorghum accessions with differing maturity intended for a marker-trait association study. A total of 27 SSRs were used, which resulted in detection of 513 alleles. Genetic diversity estimates for the accessions were found to be high. The accessions were divided into two subgroups using a model-based approach. Our findings partly agree with previous studies in that the guinea race accessions could be distinguished clearly from other accessions included in the analysis. Race and geographical origin of the accessions may be responsible for the structure we observed in our material. The extent of linkage disequilibrium for all combinations of SSRs was in agreement with expectations based on the mating system.
Collapse
|
39
|
Ng'uni D, Geleta M, Bryngelsson T. Genetic diversity in sorghum (Sorghum bicolor (L.) Moench) accessions of Zambia as revealed by simple sequence repeats (SSR). Hereditas 2011; 148:52-62. [PMID: 21561449 DOI: 10.1111/j.1601-5223.2011.02208.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Twenty seven accessions of sorghum conserved in the national gene bank of Zambia, representing two of the three agroecological regions of the country, were investigated using simple sequence repeats (SSR) markers in order to determine the extent and distribution of its genetic diversity. We used 10 microsatellite primer-pairs, which generated 2-9 alleles per locus and a total of 44 alleles across the 27 accessions. The observed heterozygosity (Ho(P) ) among the accessions ranged from 0 to 0.19 with an average of 0.04 whereas the average expected heterozygosity (He(P) ) among accessions was 0.07 in line with the fact that sorghum is predominately inbreeder. The analysis of molecular variance (AMOVA) revealed that 82% of the total genetic variation was attributable to the genetic variation among accessions (F(ST) = 0.824; p < 0.001) whereas the genetic variation within accessions accounted for 18% of the total genetic variation. AMOVA on sorghum accessions grouped based on four ethnic groups (Soli, Chikunda, Lozi and Tonga) associated with collection sites revealed a highly significant variation among groups (23%; p < 0.001). Although cluster analysis grouped most accessions according to their sites of collection, some accessions that originated from the same site were placed under different clusters. In addition to the extent and pattern of genetic diversity, consideration should also be given to other factors such as ecogeographic and ethnic differences when sampling sorghum genetic resources for rational and efficient conservation and utilization in the breeding program.
Collapse
Affiliation(s)
- Dickson Ng'uni
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | | |
Collapse
|
40
|
Coyer JA, Hoarau G, Pearson G, Mota C, Jüterbock A, Alpermann T, John U, Olsen JL. Genomic scans detect signatures of selection along a salinity gradient in populations of the intertidal seaweed Fucus serratus on a 12 km scale. Mar Genomics 2011; 4:41-9. [PMID: 21429464 DOI: 10.1016/j.margen.2010.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 12/07/2010] [Accepted: 12/13/2010] [Indexed: 01/13/2023]
Abstract
Detecting natural selection in wild populations is a central challenge in evolutionary biology and genomic scans are an important means of detecting allele frequencies that deviate from neutral expectations among marker loci. We used nine anonymous and 15 EST-linked microsatellites, 362 AFLP loci, and several neutrality tests, to identify outlier loci when comparing four populations of the seaweed Fucus serratus spaced along a 12km intertidal shore with a steep salinity gradient. Under criteria of at least two significant tests in at least two population pairs, three EST-derived and three anonymous loci revealed putative signatures of selection. Anonymous locus FsB113 was a consistent outlier when comparing least saline to fully marine sites. Locus F37 was an outlier when comparing the least saline to more saline areas, and was annotated as a polyol transporter/putative mannitol transporter - an important sugar-alcohol associated with osmoregulation by brown algae. The remaining loci could not be annotated using six different data bases. Exclusion of microsatellite outlier loci did not change either the degree or direction of differentiation among populations. In one outlier test, the number of AFLP outlier loci increased as the salinity differences between population pairs increased (up to 14); only four outliers were detected with the second test and only one was consistent with both tests. Consistency may be improved with a much more rigorous approach to replication and/or may be dependent upon the class of marker used.
Collapse
Affiliation(s)
- J A Coyer
- Department of Marine Benthic Ecology and Evolution, Center for Ecological and Evolutionary Studies, University of Groningen, Center for Life Sciences, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mutegi E, Sagnard F, Semagn K, Deu M, Muraya M, Kanyenji B, de Villiers S, Kiambi D, Herselman L, Labuschagne M. Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:989-1004. [PMID: 21153801 DOI: 10.1007/s00122-010-1504-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
Understanding the extent and partitioning of diversity within and among crop landraces and their wild/weedy relatives constitutes the first step in conserving and unlocking their genetic potential. This study aimed to characterize the genetic structure and relationships within and between cultivated and wild sorghum at country scale in Kenya, and to elucidate some of the underlying evolutionary mechanisms. We analyzed at total of 439 individuals comprising 329 cultivated and 110 wild sorghums using 24 microsatellite markers. We observed a total of 295 alleles across all loci and individuals, with 257 different alleles being detected in the cultivated sorghum gene pool and 238 alleles in the wild sorghum gene pool. We found that the wild sorghum gene pool harbored significantly more genetic diversity than its domesticated counterpart, a reflection that domestication of sorghum was accompanied by a genetic bottleneck. Overall, our study found close genetic proximity between cultivated sorghum and its wild progenitor, with the extent of crop-wild divergence varying among cultivation regions. The observed genetic proximity may have arisen primarily due to historical and/or contemporary gene flow between the two congeners, with differences in farmers' practices explaining inter-regional gene flow differences. This suggests that deployment of transgenic sorghum in Kenya may lead to escape of transgenes into wild-weedy sorghum relatives. In both cultivated and wild sorghum, genetic diversity was found to be structured more along geographical level than agro-climatic level. This indicated that gene flow and genetic drift contributed to shaping the contemporary genetic structure in the two congeners. Spatial autocorrelation analysis revealed a strong spatial genetic structure in both cultivated and wild sorghums at the country scale, which could be explained by medium- to long-distance seed movement.
Collapse
Affiliation(s)
- E Mutegi
- Kenya Agricultural Research Institute (KARI), National Genebank, Nairobi, Kenya.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Determining the identity and distribution of molecular changes leading to the evolution of modern crop species provides major insights into the timing and nature of historical forces involved in rapid phenotypic evolution. In this study, we employed an integrated candidate gene strategy to identify loci involved in the evolution of flowering time during early domestication and modern improvement of the sunflower (Helianthus annuus). Sunflower homologs of many genes with known functions in flowering time were isolated and cataloged. Then, colocalization with previously mapped quantitative trait loci (QTLs), expression, or protein sequence differences between wild and domesticated sunflower, and molecular evolutionary signatures of selective sweeps were applied as step-wise criteria for narrowing down an original pool of 30 candidates. This process led to the discovery that five paralogs in the flowering locus T/terminal flower 1 gene family experienced selective sweeps during the evolution of cultivated sunflower and may be the causal loci underlying flowering time QTLs. Our findings suggest that gene duplication fosters evolutionary innovation and that natural variation in both coding and regulatory sequences of these paralogs responded to a complex history of artificial selection on flowering time during the evolution of cultivated sunflower.
Collapse
|
43
|
Deu M, Sagnard F, Chantereau J, Calatayud C, Vigouroux Y, Pham JL, Mariac C, Kapran I, Mamadou A, Gérard B, Ndjeunga J, Bezançon G. Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1301-13. [PMID: 20062963 DOI: 10.1007/s00122-009-1257-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/19/2009] [Indexed: 05/12/2023]
Abstract
The dynamics of crop genetic diversity need to be assessed to draw up monitoring and conservation priorities. However, few surveys have been conducted in centres of diversity. Sub-Saharan Africa is the centre of origin of sorghum. Most Sahel countries have been faced with major human, environmental and social changes in recent decades, which are suspected to cause genetic erosion. Sorghum is the second staple cereal in Niger, a centre of diversity for this crop. Niger was submitted to recurrent drought period and to major social changes during these last decades. We report here on a spatio-temporal analysis of sorghum genetic diversity, conducted in 71 villages covering the rainfall gradient and range of agro-ecological conditions in Niger's agricultural areas. We used 28 microsatellite markers and applied spatial and genetic clustering methods to investigate change in genetic diversity over a 26-year period (1976-2003). Global genetic differentiation between the two collections was very low (F (st) = 0.0025). Most of the spatial clusters presented no major differentiation, as measured by F (st), and showed stability or an increase in allelic richness, except for two of them located in eastern Niger. The genetic clusters identified by Bayesian analysis did not show a major change between the two collections in the distribution of accessions between them or in their spatial location. These results suggest that farmers' management has globally preserved sorghum genetic diversity in Niger.
Collapse
Affiliation(s)
- Monique Deu
- CIRAD, UMR DAP, Avenue Agropolis, TA-A 96/03, 34398, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Barro-Kondombo C, Sagnard F, Chantereau J, Deu M, Vom Brocke K, Durand P, Gozé E, Zongo JD. Genetic structure among sorghum landraces as revealed by morphological variation and microsatellite markers in three agroclimatic regions of Burkina Faso. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1511-23. [PMID: 20180097 DOI: 10.1007/s00122-010-1272-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/19/2010] [Indexed: 05/07/2023]
Abstract
Diversity among 124 sorghum landraces from 10 villages surveyed in 3 regions of Burkina Faso covering different agroecological zones was assessed by 28 agromorphological traits and 29 microsatellite markers. 94.4% of the landraces collected belonged to the botanical race guinea (consisting of 96.6% guinea gambicum and 3.4% guinea margaritiferum), 74.2% had white kernels, 13.7% had orange and 12.1% had red kernels. Compared to the "village nested within zone" factor, the "variety nested within village within zone" factor predominately contributed to the diversity pattern for all nine statistically analysed quantitative traits. The multivariate analyses performed on ten morphological traits identified five landrace groups, and of these, the red kernel sorghum types appeared the most homogenous. 2 to 17 alleles were detected per locus with a mean 4.9 alleles per locus and a gene diversity (He) of 0.37. Landraces from the sub-Sahelian zone had the highest gene diversity (He = 0.38). Cluster analysis revealed that the diversity was weakly stratified and could not be explained by any biophysical criteria. One homogenous guinea margaritiferum group was distinguished from other guinea landraces. The red kernel type appeared to be genetically distinct from all other guinea landraces. The kernel colour was the principal structuring factor. This is an example of a homogeneous group of varieties selected for a specific use (for local beer preparation), mainly grown around the households in compound fields, and presenting particular agromorphological and genetic traits. This is the most original feature of sorghum diversity in Burkina Faso and should be the focus of special conservation efforts.
Collapse
|
45
|
SIGMON BRANDI, VOLLBRECHT ERIK. Evidence of selection at theramosa1locus during maize domestication. Mol Ecol 2010; 19:1296-311. [DOI: 10.1111/j.1365-294x.2010.04562.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J Genet Genomics 2009; 36:491-500. [DOI: 10.1016/s1673-8527(08)60139-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/03/2009] [Accepted: 03/25/2009] [Indexed: 11/19/2022]
|
47
|
Labate JA, Robertson LD, Baldo AM. Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato (Solanum lycopersicum L.). Heredity (Edinb) 2009; 103:257-67. [DOI: 10.1038/hdy.2009.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
48
|
Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, Knapp SJ, Burke JM. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). THE PLANT CELL 2008; 20:2931-45. [PMID: 19017747 PMCID: PMC2613673 DOI: 10.1105/tpc.108.059808] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 10/22/2008] [Accepted: 11/04/2008] [Indexed: 05/18/2023]
Abstract
Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sunflower (Helianthus annuus) lines. This sampling strategy allowed us to identify candidates for selectively important genes and investigate the likely timing of selection. Thirty-six genes showed evidence of selection during either domestication or improvement based on multiple criteria, and a sequence-based test of selection on a subset of these loci confirmed this result. In view of what is known about the structure of linkage disequilibrium across the sunflower genome, these genes are themselves likely to have been targeted by selection, rather than being merely linked to the actual targets. While the selection candidates showed a broad range of putative functions, they were enriched for genes involved in amino acid synthesis and protein catabolism. Given that a similar pattern has been detected in maize (Zea mays), this finding suggests that selection on amino acid composition may be a general feature of the evolution of crop plants. In terms of genomic locations, the selection candidates were significantly clustered near quantitative trait loci (QTL) that contribute to phenotypic differences between wild and cultivated sunflower, and specific instances of QTL colocalization provide some clues as to the roles that these genes may have played during sunflower evolution.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Camus-Kulandaivelu L, Chevin LM, Tollon-Cordet C, Charcosset A, Manicacci D, Tenaillon MI. Patterns of molecular evolution associated with two selective sweeps in the Tb1-Dwarf8 region in maize. Genetics 2008; 180:1107-21. [PMID: 18780751 PMCID: PMC2567360 DOI: 10.1534/genetics.108.088849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 08/08/2008] [Indexed: 12/19/2022] Open
Abstract
We focused on a region encompassing a major maize domestication locus, Tb1, and a locus involved in the flowering time variation, Dwarf8 (D8), to investigate the consequences of two closely linked selective sweeps on nucleotide variation and gain some insights into maize geographical diffusion, through climate adaptation. First, we physically mapped D8 at approximately 300 kb 3' of Tb1. Second, we analyzed patterns of nucleotide variation at Tb1, D8, and seven short regions (400-700 bp) located in the Tb1-D8 region sequenced on a 40 maize inbred lines panel encompassing early-flowering temperate and late-flowering tropical lines. The pattern of polymorphism along the region is characterized by two valleys of depleted polymorphism while the region in between exhibits an appreciable amount of diversity. Our results reveal that a region approximately 100 kb upstream of the D8 gene exhibits hallmarks of divergent selection between temperate and tropical lines and is likely closer than the D8 gene to the target of selection for climate adaptation. Selection in the tropical lines appears more recent than in the temperate lines, suggesting an initial domestication of early-flowering maize. Simulation results indicate that the polymorphism pattern is consistent with two interfering selective sweeps at Tb1 and D8.
Collapse
|
50
|
Abstract
Sorghum has shown the adaptability necessary to sustain its improvement during time and geographical extension despite a genetic foundation constricted by domestication bottlenecks. Initially domesticated in the northeastern part of sub-Saharan Africa several millenia ago, sorghum quickly spread throughout Africa, and to Asia. We performed phylogeographic analysis of sequence diversity for six candidate genes for grain quality (Shrunken2, Brittle2, Soluble starch synthaseI, Waxy, Amylose extender1, and Opaque2) in a representative sample of sorghum cultivars. Haplotypes along 1-kb segments appeared little affected by recombination. Sequence similarity enabled clustering of closely related alleles and discrimination of two or three distantly related groups depending on the gene. This scheme indicated that sorghum domestication involved structured founder populations, while confirming a specific status for the guinea margaritiferum subrace. Allele rooted genealogy revealed derivation relationships by mutation or, less frequently, by recombination. Comparison of germplasm compartments revealed contrasts between genes. Sh2, Bt2, and SssI displayed a loss of diversity outside the area of origin of sorghum, whereas O2 and, to some extent, Wx and Ae1 displayed novel variation, derived from postdomestication mutations. These are likely to have been conserved under the effect of human selection, thus releasing valuable neodiversity whose extent will influence germplasm management strategies.
Collapse
|