1
|
Daduwal HS, Bhardwaj R, Srivastava RK. Pearl millet a promising fodder crop for changing climate: a review. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:169. [PMID: 38913173 DOI: 10.1007/s00122-024-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The agricultural sector faces colossal challenges amid environmental changes and a burgeoning human population. In this context, crops must adapt to evolving climatic conditions while meeting increasing production demands. The dairy industry is anticipated to hold the highest value in the agriculture sector in future. The rise in the livestock population is expected to result in an increased demand for fodder feed. Consequently, it is crucial to seek alternative options, as crops demand fewer resources and are resilient to climate change. Pearl millet offers an apposite key to these bottlenecks, as it is a promising climate resilience crop with significantly low energy, water and carbon footprints compared to other crops. Numerous studies have explored its potential as a fodder crop, revealing promising performance. Despite its capabilities, pearl millet has often been overlooked. To date, few efforts have been made to document molecular aspects of fodder-related traits. However, several QTLs and candidate genes related to forage quality have been identified in other fodder crops, which can be harnessed to enhance the forage quality of pearl millet. Lately, excellent genomic resources have been developed in pearl millet allowing deployment of cutting-edge genomics-assisted breeding for achieving a higher rate of genetic gains. This review would facilitate a deeper understanding of various aspects of fodder pearl millet in retrospect along with the future challenges and their solution. This knowledge may pave the way for designing efficient breeding strategies in pearl millet thereby supporting sustainable agriculture and livestock production in a changing world.
Collapse
Affiliation(s)
- Harmanpreet Singh Daduwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Ruchika Bhardwaj
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India.
| |
Collapse
|
2
|
Karnatam KS, Mythri B, Un Nisa W, Sharma H, Meena TK, Rana P, Vikal Y, Gowda M, Dhillon BS, Sandhu S. Silage maize as a potent candidate for sustainable animal husbandry development-perspectives and strategies for genetic enhancement. Front Genet 2023; 14:1150132. [PMID: 37303948 PMCID: PMC10250641 DOI: 10.3389/fgene.2023.1150132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Maize is recognized as the queen of cereals, with an ability to adapt to diverse agroecologies (from 58oN to 55oS latitude) and the highest genetic yield potential among cereals. Under contemporary conditions of global climate change, C4 maize crops offer resilience and sustainability to ensure food, nutritional security, and farmer livelihood. In the northwestern plains of India, maize is an important alternative to paddy for crop diversification in the wake of depleting water resources, reduced farm diversity, nutrient mining, and environmental pollution due to paddy straw burning. Owing to its quick growth, high biomass, good palatability, and absence of anti-nutritional components, maize is also one of the most nutritious non-legume green fodders. It is a high-energy, low-protein forage commonly used for dairy animals like cows and buffalos, often in combination with a complementary high-protein forage such as alfalfa. Maize is also preferred for silage over other fodders due to its softness, high starch content, and sufficient soluble sugars required for proper ensiling. With a rapid population increase in developing countries like China and India, there is an upsurge in meat consumption and, hence, the requirement for animal feed, which entails high usage of maize. The global maize silage market is projected to grow at a compound annual growth rate of 7.84% from 2021 to 2030. Factors such as increasing demand for sustainable and environment-friendly food sources coupled with rising health awareness are fueling this growth. With the dairy sector growing at about 4%-5% and the increasing shortage faced for fodder, demand for silage maize is expected to increase worldwide. The progress in improved mechanization for the provision of silage maize, reduced labor demand, lack of moisture-related marketing issues as associated with grain maize, early vacancy of farms for next crops, and easy and economical form of feed to sustain household dairy sector make maize silage a profitable venture. However, sustaining the profitability of this enterprise requires the development of hybrids specific for silage production. Little attention has yet been paid to breeding for a plant ideotype for silage with specific consideration of traits such as dry matter yield, nutrient yield, energy in organic matter, genetic architecture of cell wall components determining their digestibility, stalk standability, maturity span, and losses during ensiling. This review explores the available information on the underlying genetic mechanisms and gene/gene families impacting silage yield and quality. The trade-offs between yield and nutritive value in relation to crop duration are also discussed. Based on available genetic information on inheritance and molecular aspects, breeding strategies are proposed to develop maize ideotypes for silage for the development of sustainable animal husbandry.
Collapse
Affiliation(s)
- Krishna Sai Karnatam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Bikkasani Mythri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Wajhat Un Nisa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Heena Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Tarun Kumar Meena
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Prabhat Rana
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - M. Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Baldev Singh Dhillon
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surinder Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
3
|
Esposito S, Taranto F, Vitale P, Ficco DBM, Colecchia SA, Stevanato P, De Vita P. Unlocking the molecular basis of wheat straw composition and morphological traits through multi-locus GWAS. BMC PLANT BIOLOGY 2022; 22:519. [PMID: 36344939 PMCID: PMC9641881 DOI: 10.1186/s12870-022-03900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rapid reductions in emissions from fossil fuel burning are needed to curb global climate change. Biofuel production from crop residues can contribute to reducing the energy crisis and environmental deterioration. Wheat is a renewable source for biofuels owing to the low cost and high availability of its residues. Thus, identifying candidate genes controlling these traits is pivotal for efficient biofuel production. Here, six multi-locus genome-wide association (ML-GWAS) models were applied using 185 tetraploid wheat accessions to detect quantitative trait nucleotides (QTNs) for fifteen traits associated with biomass composition. RESULTS Among the 470 QTNs, only 72 identified by at least two models were considered as reliable. Among these latter, 16 also showed a significant effect on the corresponding trait (p.value < 0.05). Candidate genes survey carried out within 4 Mb flanking the QTNs, revealed putative biological functions associated with lipid transfer and metabolism, cell wall modifications, cell cycle, and photosynthesis. Four genes encoded as Cellulose Synthase (CeSa), Anaphase promoting complex (APC/C), Glucoronoxylan 4-O Methyltransferase (GXM) and HYPONASTIC LEAVES1 (HYL1) might be responsible for an increase in cellulose, and natural and acid detergent fiber (NDF and ADF) content in tetraploid wheat. In addition, the SNP marker RFL_Contig3228_2154 associated with the variation in stem solidness (Q.Scsb-3B) was validated through two molecular methods (High resolution melting; HRM and RNase H2-dependent PCR; rhAMP). CONCLUSIONS The study provides new insights into the genetic basis of biomass composition traits on tetraploid wheat. The application of six ML-GWAS models on a panel of diverse wheat genotypes represents an efficient approach to dissect complex traits with low heritability such as wheat straw composition. The discovery of genes/genomic regions associated with biomass production and straw quality parameters is expected to accelerate the development of high-yielding wheat varieties useful for biofuel production.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, (CNR-IBBR), 70126 Bari, Italy
| | - Paolo Vitale
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71122 Foggia, Italy
| | - Donatella Bianca Maria Ficco
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Salvatore Antonio Colecchia
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Padova, Legnaro Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| |
Collapse
|
4
|
Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.). Sci Rep 2021; 11:686. [PMID: 33436870 PMCID: PMC7804097 DOI: 10.1038/s41598-020-80118-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/15/2020] [Indexed: 11/09/2022] Open
Abstract
Maize is rapidly replacing traditionally cultivated dual purpose crops of South Asia, primarily due to the better economic remuneration. This has created an impetus for improving maize for both grain productivity and stover traits. Molecular techniques can largely assist breeders in determining approaches for effectively integrating stover trait improvement in their existing breeding pipeline. In the current study we identified a suite of potential genomic regions associated to the two major stover quality traits-in-vitro organic matter digestibility (IVOMD) and metabolizable energy (ME) through genome wide association study. However, considering the fact that the loci identified for these complex traits all had smaller effects and accounted only a small portion of phenotypic variation, the effectiveness of following a genomic selection approach for these traits was evaluated. The testing set consists of breeding lines recently developed within the program and the training set consists of a panel of lines from the working germplasm comprising the founder lines of the newly developed breeding lines and also an unrelated diversity set. The prediction accuracy as determined by the Pearson's correlation coefficient between observed and predicted values of these breeding lines were high even at lower marker density (200 random SNPs), when the training and testing set were related. However, the accuracies were dismal, when there was no relationship between the training and the testing set.
Collapse
|
5
|
Seye AI, Bauland C, Giraud H, Mechin V, Reymond M, Charcosset A, Moreau L. Quantitative trait loci mapping in hybrids between Dent and Flint maize multiparental populations reveals group-specific QTL for silage quality traits with variable pleiotropic effects on yield. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1523-1542. [PMID: 30734114 DOI: 10.1007/s00122-019-03296-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Silage quality traits of maize hybrids between the Dent and Flint heterotic groups mostly involved QTL specific of each parental group, some of them showing unfavorable pleiotropic effects on yield. Maize (Zea mays L.) is commonly used as silage for cattle feeding in Northern Europe. In addition to biomass production, improving whole-plant digestibility is a major breeding objective. To identify loci involved in the general (GCA, parental values) and specific combining ability (SCA, cross-specific value) components of hybrid value, we analyzed an incomplete factorial design of 951 hybrids obtained by crossing inbred lines issued from two multiparental connected populations, each specific to one of the heterotic groups used for silage in Europe ("Dent" and "Flint"). Inbred lines were genotyped for approximately 20K single nucleotide polymorphisms, and hybrids were phenotyped in eight environments for seven silage quality traits measured by near-infrared spectroscopy, biomass yield and precocity (partly analyzed in a previous study). We estimated variance components for GCA and SCA and their interaction with environment. We performed QTL detection using different models adapted to this hybrid population. Strong family effects and a predominance of GCA components compared to SCA were found for all traits. In total, 230 QTL were detected, with only two showing SCA effects significant at the whole-genome level. More than 80% of GCA QTL were specific of one heterotic group. QTL explained individually less than 5% of the phenotypic variance. QTL co-localizations and correlation between QTL effects of quality and productivity traits suggest at least partial pleiotropic effects. This work opens new prospects for improving maize hybrid performances for both biomass productivity and quality accounting for complementarities between heterotic groups.
Collapse
Affiliation(s)
- Adama I Seye
- UMR 0320, Quantitative Genetics and Evolution (GQE) - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Cyril Bauland
- UMR 0320, Quantitative Genetics and Evolution (GQE) - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Heloïse Giraud
- UMR 0320, Quantitative Genetics and Evolution (GQE) - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
- Bayer Crop Science NV, Technologiepark 38, 9052, Ghent, Belgium
| | - Valérie Mechin
- UMR 1318, Institut Jean-Pierre Bourgin, INRA-AgroParisTech, CNRS, Universite Paris-Saclay, 78026, Versailles Cedex, France
| | - Matthieu Reymond
- UMR 1318, Institut Jean-Pierre Bourgin, INRA-AgroParisTech, CNRS, Universite Paris-Saclay, 78026, Versailles Cedex, France
| | - Alain Charcosset
- UMR 0320, Quantitative Genetics and Evolution (GQE) - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Laurence Moreau
- UMR 0320, Quantitative Genetics and Evolution (GQE) - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France.
| |
Collapse
|
6
|
Virlouvet L, El Hage F, Griveau Y, Jacquemot MP, Gineau E, Baldy A, Legay S, Horlow C, Combes V, Bauland C, Palafre C, Falque M, Moreau L, Coursol S, Méchin V, Reymond M. Water Deficit-Responsive QTLs for Cell Wall Degradability and Composition in Maize at Silage Stage. FRONTIERS IN PLANT SCIENCE 2019; 10:488. [PMID: 31105719 PMCID: PMC6494970 DOI: 10.3389/fpls.2019.00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The use of lignocellulosic biomass for animal feed or biorefinery requires the optimization of its degradability. Moreover, biomass crops need to be better adapted to the changing climate and in particular to periods of drought. Although the negative impact of water deficit on biomass yield has often been mentioned, its impact on biomass quality has only been recently reported in a few species. In the present study, we combined the mapping power of a maize recombinant inbred line population with robust near infrared spectroscopy predictive equations to track the response to water deficit of traits associated with biomass quality. The population was cultivated under two contrasted water regimes over 3 consecutive years in the south of France and harvested at silage stage. We showed that cell wall degradability and β-O-4-linked H lignin subunits were increased in response to water deficit, while lignin and p-coumaric acid contents were reduced. A mixed linear model was fitted to map quantitative trait loci (QTLs) for agronomical and cell wall-related traits. These QTLs were categorized as "constitutive" (QTL with an effect whatever the irrigation condition) or "responsive" (QTL involved in the response to water deficit) QTLs. Fifteen clusters of QTLs encompassed more than two third of the 213 constitutive QTLs and 13 clusters encompassed more than 60% of the 149 responsive QTLs. Interestingly, we showed that only half of the responsive QTLs co-localized with constitutive and yield QTLs, suggesting that specific genetic factors support biomass quality response to water deficit. Overall, our results demonstrate that water deficit favors cell wall degradability and that breeding of varieties that reconcile improved drought-tolerance and biomass degradability is possible.
Collapse
Affiliation(s)
- Laëtitia Virlouvet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Fadi El Hage
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Yves Griveau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marie-Pierre Jacquemot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Emilie Gineau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Aurélie Baldy
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sylvain Legay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Christine Horlow
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Combes
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Bauland
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine Palafre
- Unité Expérimentale du Maïs, INRA, Saint-Martin-de-Hinx, France
| | - Matthieu Falque
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laurence Moreau
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Coursol
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Méchin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Matthieu Reymond
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
7
|
Whitehead C, Ostos Garrido FJ, Reymond M, Simister R, Distelfeld A, Atienza SG, Piston F, Gomez LD, McQueen‐Mason SJ. A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon. THE NEW PHYTOLOGIST 2018; 218:974-985. [PMID: 29574807 PMCID: PMC5947151 DOI: 10.1111/nph.15089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/05/2018] [Indexed: 05/27/2023]
Abstract
The recalcitrance of secondary plant cell walls to digestion constrains biomass use for the production of sustainable bioproducts and for animal feed. We screened a population of Brachypodium recombinant inbred lines (RILs) for cell wall digestibility using commercial cellulases and detected a quantitative trait locus (QTL) associated with this trait. Examination of the chromosomal region associated with this QTL revealed a candidate gene that encodes a putative glycosyl transferase family (GT) 43 protein, orthologue of IRX14 in Arabidopsis, and hence predicted to be involved in the biosynthesis of xylan. Arabinoxylans form the major matrix polysaccharides in cell walls of grasses, such as Brachypodium. The parental lines of the RIL population carry alternative nonsynonymous polymorphisms in the BdGT43A gene, which were inherited in the RIL progeny in a manner compatible with a causative role in the variation in straw digestibility. In order to validate the implied role of our candidate gene in affecting straw digestibility, we used RNA interference to lower the expression levels of the BdGT43A gene in Brachypodium. The biomass of the silenced lines showed higher digestibility supporting a causative role of the BdGT43A gene, suggesting that it might form a good target for improving straw digestibility in crops.
Collapse
Affiliation(s)
- Caragh Whitehead
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkPO Box 373Wentworth WayYorkYO10 5DDUK
| | - Francisco J. Ostos Garrido
- Departamento de Mejora Genética VegetalInstituto de Agricultura Sostenible – Consejo Superior de Investigaciones CientíficasCórdobaSpain
| | - Matthieu Reymond
- Institut Jean‐Pierre BourginUMR 1318 INRA‐AgroParisTechINRA Centre de Versailles‐GrignonRoute de Saint‐Cyr78026VersaillesFrance
| | - Rachael Simister
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkPO Box 373Wentworth WayYorkYO10 5DDUK
| | - Assaf Distelfeld
- Deparment of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel AvivIsrael
| | - Sergio G. Atienza
- Departamento de Mejora Genética VegetalInstituto de Agricultura Sostenible – Consejo Superior de Investigaciones CientíficasCórdobaSpain
| | - Fernando Piston
- Departamento de Mejora Genética VegetalInstituto de Agricultura Sostenible – Consejo Superior de Investigaciones CientíficasCórdobaSpain
| | - Leonardo D. Gomez
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkPO Box 373Wentworth WayYorkYO10 5DDUK
| | - Simon J. McQueen‐Mason
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkPO Box 373Wentworth WayYorkYO10 5DDUK
| |
Collapse
|
8
|
Badji A, Otim M, Machida L, Odong T, Kwemoi DB, Okii D, Agbahoungba S, Mwila N, Kumi F, Ibanda A, Mugo S, Kyamanywa S, Rubaihayo P. Maize Combined Insect Resistance Genomic Regions and Their Co-localization With Cell Wall Constituents Revealed by Tissue-Specific QTL Meta-Analyses. FRONTIERS IN PLANT SCIENCE 2018; 9:895. [PMID: 30026746 PMCID: PMC6041972 DOI: 10.3389/fpls.2018.00895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/07/2018] [Indexed: 05/09/2023]
Abstract
Combinatorial insect attacks on maize leaves, stems, and kernels cause significant yield losses and mycotoxin contaminations. Several small effect quantitative trait loci (QTL) control maize resistance to stem borers and storage pests and are correlated with secondary metabolites. However, efficient use of QTL in molecular breeding requires a synthesis of the available resistance information. In this study, separate meta-analyses of QTL of maize response to stem borers and storage pests feeding on leaves, stems, and kernels along with maize cell wall constituents discovered in these tissues generated 24 leaf (LIR), 42 stem (SIR), and 20 kernel (KIR) insect resistance meta-QTL (MQTL) of a diverse genetic and geographical background. Most of these MQTL involved resistance to several insect species, therefore, generating a significant interest for multiple-insect resistance breeding. Some of the LIR MQTL such as LIR4, 17, and 22 involve resistance to European corn borer, sugarcane borer, and southwestern corn borer. Eleven out of the 42 SIR MQTL related to resistance to European corn borer and Mediterranean corn borer. There KIR MQTL, KIR3, 15, and 16 combined resistance to kernel damage by the maize weevil and the Mediterranean corn borer and could be used in breeding to reduce insect-related post-harvest grain yield loss and field to storage mycotoxin contamination. This meta-analysis corroborates the significant role played by cell wall constituents in maize resistance to insect since the majority of the MQTL contain QTL for members of the hydroxycinnamates group such as p-coumaric acid, ferulic acid, and other diferulates and derivates, and fiber components such as acid detergent fiber, neutral detergent fiber, and lignin. Stem insect resistance MQTL display several co-localization between fiber and hydroxycinnamate components corroborating the hypothesis of cross-linking between these components that provide mechanical resistance to insect attacks. Our results highlight the existence of combined-insect resistance genomic regions in maize and set the basis of multiple-pests resistance breeding.
Collapse
Affiliation(s)
- Arfang Badji
- Department of Agricultural Production, Makerere University, Kampala, Uganda
- *Correspondence: Arfang Badji
| | - Michael Otim
- Cereals Program, National Crop Resource Research Institute, Kampala, Uganda
| | - Lewis Machida
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Thomas Odong
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | | | - Dennis Okii
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | | | - Natasha Mwila
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Frank Kumi
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Angele Ibanda
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Stephen Mugo
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Samuel Kyamanywa
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Patrick Rubaihayo
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| |
Collapse
|
9
|
Li K, Wang H, Hu X, Ma F, Wu Y, Wang Q, Liu Z, Huang C. Genetic and Quantitative Trait Locus Analysis of Cell Wall Components and Forage Digestibility in the Zheng58 × HD568 Maize RIL Population at Anthesis Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:1472. [PMID: 28883827 PMCID: PMC5573715 DOI: 10.3389/fpls.2017.01472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/08/2017] [Indexed: 05/11/2023]
Abstract
The plant cell wall plays vital roles in various aspects of the plant life cycle. It provides a basic structure for cells and gives mechanical rigidity to the whole plant. Some complex cell wall components are involved in signal transduction during pathogenic infection and pest infestations. Moreover, the lignification level of cell walls strongly influences the digestibility of forage plants. To determine the genetic bases of cell wall components and digestibility, quantitative trait locus (QTL) analyses for six related traits were performed using a recombinant inbred line (RIL) population from a cross between Zheng58 and HD568. Eight QTL for in vitro neutral detergent fiber (NDF) digestibility were observed, out of which only two increasing alleles came from HD568. Three QTL out of ten with alleles increasing in vitro dry matter digestibility also originated from HD568. Five-ten QTL were detected for lignin, cellulose content, acid detergent fiber, and NDF content. Among these results, 29.8% (14/47) of QTL explained >10% of the phenotypic variation in the RIL population, whereas 70.2% (33/47) explained ≤10%. These results revealed that in maize stalks, a few large-effect QTL and a number of minor-effect QTL contributed to most of the genetic components involved in cell wall biosynthesis and digestibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhifang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Changling Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
10
|
Wang H, Li K, Hu X, Liu Z, Wu Y, Huang C. Genome-wide association analysis of forage quality in maize mature stalk. BMC PLANT BIOLOGY 2016; 16:227. [PMID: 27769176 PMCID: PMC5073832 DOI: 10.1186/s12870-016-0919-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/12/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant digestibility of silage maize (Zea mays L.) has a large influence on nutrition intake for animal feeding. Improving forage quality will enhance the utilization efficiency and feeding value of forage maize. Dissecting the genetic basis of forage quality will improve our understanding of the complex nature of cell wall biosynthesis and degradation, which is also helpful for breeding good quality silage maize. RESULTS Acid detergent fiber (ADF), neutral detergent fiber (NDF) and in vitro dry matter digestibility (IVDMD) of stalk were evaluated in a diverse maize population, which is comprised of 368 inbred lines and planted across seven environments. Using a mixed model accounting for population structure and polygenic background effects, a genome-wide association study was conducted to identify single nucleotide polymorphisms (SNPs) significantly associated with forage quality. Scanning 559,285 SNPs across the whole genome, 73, 41 and 82 SNPs were found to be associated with ADF, NDF, and IVDMD, respectively. Each significant SNP explained 4.2 %-6.2 % of the phenotypic variation. Underlying these associated loci, 56 genes were proposed as candidate genes for forage quality. CONCLUSIONS Of all the candidate genes proposed by GWAS, we only found a C3H gene (ZmC3H2) that is directly involved in cell wall component biosynthesis. The candidate genes found in this study are mainly involved in signal transduction, stress resistance, and transcriptional regulation of cell wall biosynthetic gene expression. Adding high digestibility maize into the association panel would be helpful for increasing genetic variability and identifying more genes associated with forage quality traits. Cloning and functional validation of these genes would be helpful for understanding the molecular mechanism of the fiber content and digestibility. These findings provide us new insights into cell wall formation and deposition.
Collapse
Affiliation(s)
- Hongwu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Kun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaojiao Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhifang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yujin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Changling Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
11
|
Li K, Wang H, Hu X, Liu Z, Wu Y, Huang C. Genome-Wide Association Study Reveals the Genetic Basis of Stalk Cell Wall Components in Maize. PLoS One 2016; 11:e0158906. [PMID: 27479588 PMCID: PMC4968789 DOI: 10.1371/journal.pone.0158906] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/23/2016] [Indexed: 12/03/2022] Open
Abstract
Lignin, cellulose and hemicellulose are the three main components of the plant cell wall and can impact stalk quality by affecting cell wall structure and strength. In this study, we evaluated the lignin (LIG), cellulose (CEL) and hemicellulose (HC) contents in maize using an association mapping panel that included 368 inbred lines in seven environments. A genome-wide association study using approximately 0.56 million SNPs with a minor allele frequency of 0.05 identified 22, 18 and 24 loci significantly associated with LIG, CEL and HC at P < 1.0×10−4, respectively. The allelic variation of each significant association contributed 4 to 7% of the phenotypic variation. Candidate genes identified by GWAS mainly encode enzymes involved in cell wall metabolism, transcription factors, protein kinase and protein related to other biological processes. Among the association signals, six candidate genes had pleiotropic effects on lignin and cellulose content. These results provide valuable information for better understanding the genetic basis of stalk cell wall components in maize.
Collapse
Affiliation(s)
- Kun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojiao Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhifang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changling Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- * E-mail:
| |
Collapse
|
12
|
Reinprecht Y, Arif M, Simon LC, Pauls KP. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites. PLoS One 2015; 10:e0130371. [PMID: 26167917 PMCID: PMC4500502 DOI: 10.1371/journal.pone.0130371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.
Collapse
Affiliation(s)
| | - Muhammad Arif
- University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada
- University of Waterloo, Department of Chemical Engineering, Waterloo, ON, Canada
| | - Leonardo C. Simon
- University of Waterloo, Department of Chemical Engineering, Waterloo, ON, Canada
| | - K. Peter Pauls
- University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada
| |
Collapse
|
13
|
Li K, Yan J, Li J, Yang X. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC PLANT BIOLOGY 2014; 14:152. [PMID: 24893717 PMCID: PMC4053554 DOI: 10.1186/1471-2229-14-152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/29/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Maize (Zea Mays L.) is one of the most important cereal crops worldwide and provides food for billions of people. Stalk lodging can greatly undermine the standability of maize plants and therefore decrease crop yields. Rind penetrometer resistance is an effective and reliable method for evaluating maize stalk strength, which is highly correlated with stalk lodging resistance. In this study, two recombinant inbred line populations were constructed from crosses between the H127R and Chang7-2 lines, and between the B73 and By804 lines. We genotyped these two populations and their parents using 3,072 single nucleotide polymorphism markers and performed phenotypic assessment of rind penetrometer resistance in multiple environments to dissect the genetic architecture of rind penetrometer resistance in maize. RESULTS Based on two linkage maps of 1,397.1 and 1,600.4 cM with average interval of 1.7 and 2.1 cM between adjacent makers, respectively, seven quantitative trait loci (QTL) for rind penetrometer resistance were detected in the two recombinant inbred line populations. These QTL were distributed in seven genomic regions, and each accounted for 4.4-18.9% of the rind penetrometer resistance variation. The QTL with the largest effect on rind penetrometer resistance, qRPR3-1, was located on chromosome 3 with the flanking markers PZE-103123325 and SYN23245. This locus was further narrowed down to a 3.1-Mb interval by haplotype analysis using high-density markers in the target region. Within this interval, four genes associated with the biosynthesis of cell wall components were considered as potential candidate genes for the rind penetrometer resistance effect. CONCLUSIONS The inheritance of rind penetrometer resistance is rather complex. A few large-effect quantitative trait loci, together with a several minor-effect QTL, contributed to the phenotypic variation in rind penetrometer resistance in the two recombinant inbred line populations that were examined. A potential approach for improving stalk strength and crop yields in commercial maize lines may be to introgress favorable alleles of the locus that was found to have the largest effect on rind penetrometer resistance (qRPR3-1).
Collapse
Affiliation(s)
- Kun Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiansheng Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Frei M. Lignin: characterization of a multifaceted crop component. ScientificWorldJournal 2013; 2013:436517. [PMID: 24348159 PMCID: PMC3848262 DOI: 10.1155/2013/436517] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022] Open
Abstract
Lignin is a plant component with important implications for various agricultural disciplines. It confers rigidity to cell walls, and is therefore associated with tolerance to abiotic and biotic stresses and the mechanical stability of plants. In animal nutrition, lignin is considered an antinutritive component of forages as it cannot be readily fermented by rumen microbes. In terms of energy yield from biomass, the role of lignin depends on the conversion process. It contains more gross energy than other cell wall components and therefore confers enhanced heat value in thermochemical processes such as direct combustion. Conversely, it negatively affects biological energy conversion processes such as bioethanol or biogas production, as it inhibits microbial fermentation of the cell wall. Lignin from crop residues plays an important role in the soil organic carbon cycling, as it constitutes a recalcitrant carbon pool affecting nutrient mineralization and carbon sequestration. Due to the significance of lignin in several agricultural disciplines, the modification of lignin content and composition by breeding is becoming increasingly important. Both mapping of quantitative trait loci and transgenic approaches have been adopted to modify lignin in crops. However, breeding goals must be defined considering the conflicting role of lignin in different agricultural disciplines.
Collapse
Affiliation(s)
- Michael Frei
- Division of Abiotic Stress Tolerance in Crops, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Straße 13, 53115 Bonn, Germany
| |
Collapse
|
15
|
Vandenbrink JP, Goff V, Jin H, Kong W, Paterson AH, Feltus FA. Identification of bioconversion quantitative trait loci in the interspecific cross Sorghum bicolor × Sorghum propinquum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2367-2380. [PMID: 23836384 DOI: 10.1007/s00122-013-2141-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/01/2013] [Indexed: 06/02/2023]
Abstract
For lignocellulosic bioenergy to be economically viable, genetic improvements must be made in feedstock quality including both biomass total yield and conversion efficiency. Toward this goal, multiple studies have considered candidate genes and discovered quantitative trait loci (QTL) associated with total biomass accumulation and/or grain production in bioenergy grass species including maize and sorghum. However, very little research has been focused on genes associated with increased biomass conversion efficiency. In this study, Trichoderma viride fungal cellulase hydrolysis activity was measured for lignocellulosic biomass (leaf and stem tissue) obtained from individuals in a F5 recombinant inbred Sorghum bicolor × Sorghum propinquum mapping population. A total of 49 QTLs (20 leaf, 29 stem) were associated with enzymatic conversion efficiency. Interestingly, six high-density QTL regions were identified in which four or more QTLs overlapped. In addition to enzymatic conversion efficiency QTLs, two QTLs were identified for biomass crystallinity index, a trait which has been shown to be inversely correlated with conversion efficiency in bioenergy grasses. The identification of these QTLs provides an important step toward identifying specific genes relevant to increasing conversion efficiency of bioenergy feedstocks. DNA markers linked to these QTLs could be useful in marker-assisted breeding programs aimed at increasing overall bioenergy yields concomitant with selection of high total biomass genotypes.
Collapse
Affiliation(s)
- Joshua P Vandenbrink
- Department of Genetics and Biochemistry, Clemson University, 105 Collings Street, Clemson, SC 29634, USA
| | | | | | | | | | | |
Collapse
|
16
|
Courtial A, Thomas J, Reymond M, Méchin V, Grima-Pettenati J, Barrière Y. Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1151-65. [PMID: 23358861 DOI: 10.1007/s00122-013-2043-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/09/2013] [Indexed: 05/09/2023]
Abstract
Several QTLs for cell wall degradability and lignin content were previously detected in the F288 × F271 maize RIL progeny, including a set of major QTLs located in bin 6.06. Unexpectedly, allelic sequencing of genes located around the bin 6.06 QTL positions revealed a monomorphous region, suggesting that these QTLs were likely "ghost" QTLs. Refining the positions of all QTLs detected in this population was thus considered, based on a linkage map densification in most important QTL regions, and in several large still unmarked regions. Re-analysis of data with an improved genetic map (173 markers instead of 108) showed that ghost QTLs located in bin 6.06 were then fractionated over two QTL positions located upstream and downstream of the monomorphic region. The area located upstream of bin 6.06 position carried the major QTLs, which explained from 37 to 59 % of the phenotypic variation for per se values and extended on only 6 cM, corresponding to a physical distance of 2.2 Mbp. Among the 92 genes present in the corresponding area of the B73 maize reference genome, nine could putatively be considered as involved in the formation of the secondary cell wall [bHLH, FKBP, laccase, fasciclin, zinc finger C2H2-type and C3HC4-type (two genes), NF-YB, and WRKY]. In addition, based on the currently improved genetic map, eight QTLs were detected in bin 4.09, while only one QTL was highlighted in the initial investigation. Moreover, significant epistatic interaction effects were shown for all traits between these QTLs located in bin 4.09 and the major QTLs located in bin 6.05. Three genes related to secondary cell wall assembly (ZmMYB42, COV1-like, PAL-like) underlay QTL support intervals in this newly identified bin 4.09 region. The current investigations, even if they were based only on one RIL progeny, illustrated the interest of a targeted marker mapping on a genetic map to improve QTL position.
Collapse
Affiliation(s)
- Audrey Courtial
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, 86600 Lusignan, France
| | | | | | | | | | | |
Collapse
|
17
|
Capron A, Chang XF, Hall H, Ellis B, Beatson RP, Berleth T. Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:185-97. [PMID: 23136168 PMCID: PMC3528028 DOI: 10.1093/jxb/ers319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fibre properties and the biochemical composition of cell walls are important traits in many applications. For example, the lengths of fibres define the strength and quality of paper, and lignin content is a critical parameter for the use of biomass in biofuel production. Identifying genes controlling these traits is comparatively difficult in woody species, because of long generation times and limited amenability to high-resolution genetic mapping. To address this problem, this study mapped quantitative trait loci (QTLs) defining fibre length and lignin content in the Arabidopsis recombinant inbred line population Col-4 × Ler-0. Adapting high-throughput phenotyping techniques for both traits for measurements in Arabidopsis inflorescence stems identified significant QTLs for fibre length on chromosomes 2 and 5, as well as one significant QTL affecting lignin content on chromosome 2. For fibre length, total variation within the population was 208% higher than between parental lines and the identified QTLs explained 50.58% of the observed variation. For lignin content, the values were 261 and 26.51%, respectively. Bioinformatics analysis of the associated intervals identified a number of candidate genes for fibre length and lignin content. This study demonstrates that molecular mapping of QTLs pertaining to wood and fibre properties is possible in Arabidopsis, which substantially broadens the use of Arabidopsis as a model species for the functional characterization of plant genes.
Collapse
Affiliation(s)
- Arnaud Capron
- University of Toronto-CSB, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | - Xue Feng Chang
- British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, Canada, V5G 3H2
| | - Hardy Hall
- University of British Columbia – Michael Smith Laboratories, #301–2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Brian Ellis
- University of British Columbia – Michael Smith Laboratories, #301–2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Rodger P. Beatson
- British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, Canada, V5G 3H2
| | - Thomas Berleth
- University of Toronto-CSB, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
18
|
Feltus FA, Vandenbrink JP. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:80. [PMID: 23122416 PMCID: PMC3502489 DOI: 10.1186/1754-6834-5-80] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/05/2012] [Indexed: 05/19/2023]
Abstract
For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities.
Collapse
Affiliation(s)
- Frank Alex Feltus
- Department of Genetics & Biochemistry, Clemson University, 105 Collings Street. BRC #302C, Clemson, SC, 29634, USA
| | - Joshua P Vandenbrink
- Department of Genetics & Biochemistry, Clemson University, 105 Collings Street. BRC #302C, Clemson, SC, 29634, USA
| |
Collapse
|
19
|
Brenner EA, Salazar AM, Zabotina OA, Lübberstedt T. Characterization of European forage maize lines for stover composition and associations with polymorphisms within O-methyltransferase genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:281-287. [PMID: 22325891 DOI: 10.1016/j.plantsci.2011.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
Cell wall components, such as lignin, cellulose, and hemicelluloses, play an important role in the conversion efficiency of corn stover into ethanol. Understanding the molecular basis of cell wall formation is fundamental for marker assisted selection to develop lines more suitable for ethanol production. In this study, we evaluated a set of 40 European forage maize lines for cellulose, lignin, total hemicellulose, glucuronoarabinoxylan (GAX), and monosaccharides, such as arabinose (ara), xylose (xyl), and glucuronic acid (GlcA). The most significant correlations were observed between hemicelluloses and GAX (0.9), and hemicelluloses and cellulose (-0.81). Cell wall digestibility (CWD, estimated by digestible neutral detergent fiber, DNDF) was negatively correlated with Xyl (-0.34). The association analysis between the evaluated traits and polymorphisms within ten "lignin" genes revealed significant associations between polymorphisms within CCoAOMT1, CCoAOMT2, 4CL2 and C4H, and cellulose/xyl, cellulose, cellulose, and GclA, respectively. None of the QTPs identified in this study corresponded to previously reported CWD QTPs.
Collapse
Affiliation(s)
- Everton A Brenner
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
20
|
Jung HJG, Samac DA, Sarath G. Modifying crops to increase cell wall digestibility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:65-77. [PMID: 22325867 DOI: 10.1016/j.plantsci.2011.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 05/18/2023]
Abstract
Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these cell walls remain largely digestible. Cell wall lignification creates an access barrier to potentially digestible wall material by rumen bacteria if cells have not been physically ruptured. Traditional breeding has focused on increasing total dry matter digestibility rather than cell wall digestibility, which has resulted in minimal reductions in cell wall lignification. Brown midrib mutants in some annual grasses exhibit small reductions in lignin concentration and improved cell wall digestibility. Similarly, transgenic approaches down-regulating genes in monolignol synthesis have produced plants with reduced lignin content and improved cell wall digestibility. While major reductions in lignin concentration have been associated with poor plant fitness, smaller reductions in lignin provided measurable improvements in digestibility without significantly impacting agronomic fitness. Additional targets for genetic modification to enhance digestibility and improve roughages for use as biofuel feedstocks are discussed; including manipulating cell wall polysaccharide composition, novel lignin structures, reduced lignin/polysaccharide cross-linking, smaller lignin polymers, enhanced development of non-lignified tissues, and targeting specific cell types. Greater tissue specificity of transgene expression will be needed to maximize benefits while avoiding negative impacts on plant fitness.cauliflower mosiac virus (CaMV) 35S promoter.
Collapse
Affiliation(s)
- Hans-Joachim G Jung
- USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108, USA.
| | | | | |
Collapse
|
21
|
Shiringani AL, Friedt W. QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:999-1011. [PMID: 21739141 DOI: 10.1007/s00122-011-1642-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 06/22/2011] [Indexed: 05/24/2023]
Abstract
Compared to maize and temperate grasses, sorghum has received less attention in terms of improving cell wall components. The objectives of this study were to identify quantitative trait loci (QTL) with main effects, epistatic and pleiotropic effects along with QTL × environment (QE) interactions controlling fibre-related traits in sorghum. Neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, fresh leaf mass, stripped stalk mass, dry stalk mass, fresh biomass and dry biomass were analysed from a population of 188 grain × sweet sorghum recombinant inbred lines. A genetic map consisting of 157 DNA markers was constructed, and QTL were detected using composite interval mapping (CIM). CIM detected more than 5 additive QTL per trait explaining 7.1-24.7% of the phenotypic variation. Abundant co-localization of these QTL was observed across all chromosomes, and the highest cluster was identified on chromosome 6. Searching for candidate genes using the confidence interval of our QTL clusters reveals that these clusters might comprise a set of genes that are tightly linked. Some QTL showed multiple effects; however, the allele for each trait was favouring the parent with the increasing effect. QE interactions were observed for QTL showing multiple effects. Additive × additive interaction was observed for 7 out of 10 traits, indicating the importance of epistatic analysis. However, the phenotypic variation explained by digenic interactions was lower compared to the individual QTL. Our results indicate that various genetic components contribute to fibre-related traits and should be considered during the enhancement of sorghum for lignocellulosic biomass.
Collapse
Affiliation(s)
- Amukelani L Shiringani
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig University-Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | |
Collapse
|
22
|
Xie JK, Kong XL, Chen J, Hu BL, Wen P, Zhuang JY, Bao JS. Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa×Oryza rufipogon. J Zhejiang Univ Sci B 2011; 12:518-26. [PMID: 21726058 DOI: 10.1631/jzus.b1000299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rice straw is always regarded as a by-product of rice production, but it could be a significant energy source for ruminant animals. Knowledge of the genetic variation and genetic architecture of cell wall traits will facilitate rice breeders by improving relevant traits through selective breeding and genetic engineering. The common wild rice, Oryza rufipogon Griff., which is considered to be the progenitor of Oryza sativa, has been widely utilized for the identification of genes of agronomic importance for rice genetic improvement. In the present study, the mapping of quantitative trait loci (QTLs) for acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin (ADL), and ADL/NDF ratio was carried out in two environments using a backcrossed inbred line (BIL) population derived from a cross between the recurrent parent Xieqingzao B (XB) and an accession of Dongxiang wild rice (DWR). The results indicated that all four traits tested were continuously distributed among the BILs, but many BILs showed transgressive segregation. A total of 16 QTLs were identified for the four traits, but no QTLs were in common in two environments, suggesting that environment has dramatic effects on fiber and lignin syntheses. Compared to the QTL positions for grain yield-related traits, there were no unfavorable correlations between grain yield components and cell wall traits in this population. The QTLs identified in this study are useful for the development of dual-purpose rice varieties that are high in grain yield and are also high in straw quality.
Collapse
Affiliation(s)
- Jian-kun Xie
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Jahn CE, Mckay JK, Mauleon R, Stephens J, McNally KL, Bush DR, Leung H, Leach JE. Genetic variation in biomass traits among 20 diverse rice varieties. PLANT PHYSIOLOGY 2011; 155:157-68. [PMID: 21062890 PMCID: PMC3075782 DOI: 10.1104/pp.110.165654] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biofuels provide a promising route of producing energy while reducing reliance on petroleum. Developing sustainable liquid fuel production from cellulosic feedstock is a major challenge and will require significant breeding efforts to maximize plant biomass production. Our approach to elucidating genes and genetic pathways that can be targeted for improving biomass production is to exploit the combination of genomic tools and genetic diversity in rice (Oryza sativa). In this study, we analyzed a diverse set of 20 recently resequenced rice varieties for variation in biomass traits at several different developmental stages. The traits included plant size and architecture, aboveground biomass, and underlying physiological processes. We found significant genetic variation among the 20 lines in all morphological and physiological traits. Although heritability estimates were significant for all traits, heritabilities were higher in traits relating to plant size and architecture than for physiological traits. Trait variation was largely explained by variety and breeding history (advanced versus landrace) but not by varietal groupings (indica, japonica, and aus). In the context of cellulosic biofuels development, cell wall composition varied significantly among varieties. Surprisingly, photosynthetic rates among the varieties were inversely correlated with biomass accumulation. Examining these data in an evolutionary context reveals that rice varieties have achieved high biomass production via independent developmental and physiological pathways, suggesting that there are multiple targets for biomass improvement. Future efforts to identify loci and networks underlying this functional variation will facilitate the improvement of biomass traits in other grasses being developed as energy crops.
Collapse
|
24
|
Truntzler M, Barrière Y, Sawkins MC, Lespinasse D, Betran J, Charcosset A, Moreau L. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1465-82. [PMID: 20658277 DOI: 10.1007/s00122-010-1402-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 07/05/2010] [Indexed: 05/17/2023]
Abstract
A meta-analysis of quantitative trait loci (QTL) associated with plant digestibility and cell wall composition in maize was carried out using results from 11 different mapping experiments. Statistical methods implemented in "MetaQTL" software were used to build a consensus map, project QTL positions and perform meta-analysis. Fifty-nine QTL for traits associated with digestibility and 150 QTL for traits associated with cell wall composition were included in the analysis. We identified 26 and 42 metaQTL for digestibility and cell wall composition traits, respectively. Fifteen metaQTL with confidence interval (CI) smaller than 10 cM were identified. As expected from trait correlations, 42% of metaQTL for digestibility displayed overlapping CIs with metaQTL for cell wall composition traits. Coincidences were particularly strong on chromosomes 1 and 3. In a second step, 356 genes selected from the MAIZEWALL database as candidates for the cell wall biosynthesis pathway were positioned on our consensus map. Colocalizations between candidate genes and metaQTL positions appeared globally significant based on χ(2) tests. This study contributed in identifying key chromosomal regions involved in silage quality and potentially associated genes for most of these regions. These genes deserve further investigation, in particular through association mapping.
Collapse
Affiliation(s)
- M Truntzler
- INRA, UMR de Genetique Vegetale INRA/Univ. Paris XI/CNRS/INA PG, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ordas B, Malvar RA, Santiago R, Butron A. QTL mapping for Mediterranean corn borer resistance in European flint germplasm using recombinant inbred lines. BMC Genomics 2010; 11:174. [PMID: 20230603 PMCID: PMC2841681 DOI: 10.1186/1471-2164-11-174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 03/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ostrinia nubilalis (ECB) and Sesamia nonagrioides (MCB) are two maize stem borers which cause important losses in temperate maize production, but QTL analyses for corn borer resistance were mostly restricted to ECB resistance and maize materials genetically related (mapping populations derived from B73). Therefore, the objective of this work was to identify and characterize QTLs for MCB resistance and agronomic traits in a RILs population derived from European flint inbreds. RESULTS Three QTLs were detected for stalk tunnel length at bins 1.02, 3.05 and 8.05 which explained 7.5% of the RILs genotypic variance. The QTL at bin 3.05 was co-located to a QTL related to plant height and grain humidity and the QTL at bin 8.05 was located near a QTL related to yield. CONCLUSIONS Our results, when compared with results from other authors, suggest the presence of genes involved in cell wall biosynthesis or fortification with effects on resistance to different corn borer species and digestibility for dairy cattle. Particularly, we proposed five candidate genes related to cell wall characteristics which could explain the QTL for stalk tunnelling in the region 3.05. However, the small proportion of genotypic variance explained by the QTLs suggest that there are also many other genes of small effect regulating MCB resistance and we conclude that MAS seems not promising for this trait. Two QTLs detected for stalk tunnelling overlap with QTLs for agronomic traits, indicating the presence of pleitropism or linkage between genes affecting resistance and agronomic traits.
Collapse
Affiliation(s)
- Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | | | | | | |
Collapse
|
26
|
Wei M, Li X, Li J, Fu J, Wang Y, Li Y. QTL detection for stover yield and quality traits using two connected populations in high-oil maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:886-94. [PMID: 19541493 DOI: 10.1016/j.plaphy.2009.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 05/04/2009] [Accepted: 06/27/2009] [Indexed: 05/01/2023]
Abstract
Both yield and quality traits for stover portion were important for forage and biofuel production utility in maize. A high-oil maize inbred GY220 was crossed with two normal-oil dent maize inbred lines 8984 and 8622 to generate two connected F(2:3) populations with 284 and 265 F(2:3) families. Seven yield and quality traits were evaluated under two environments. The variance components of genotype (sigma(g)(2)), environment (sigma(e)(2)) and genotype x environment interactions (sigma(ge)(2)) were all significant for most traits in both populations. Different levels of correlations were observed for all traits. QTL mapping was conducted using composite interval mapping (CIM) for data under each environment and in combined analysis in both populations. Totally, 45 and 42 QTL were detected in the two populations. Only five common QTL across the two populations, and one and three common QTL across the two environments in the two populations were detected, reflecting substantial influence of genetic backgrounds and environments on the results of QTL detection for stover traits. Combined analysis across two environments failed to detect most QTL mapped using individual environmental data in both populations. Few of the detected QTL displayed digenic epistatic interactions. Common QTL among all traits were consistent with their correlations. Some QTL herein have been detected in previous researches, and linked with candidate genes for enzymes postulated to have direct and indirect roles in cell wall components biosynthesis.
Collapse
Affiliation(s)
- Mengguan Wei
- College of Agriculture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
27
|
Xie J, Wu X, Jin L, Wan Y, Huang Y, Bao J. Identification of simple sequence repeat (SSR) markers for acid detergent fiber in rice straw by bulked segregant analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:7616-20. [PMID: 17002430 DOI: 10.1021/jf061432h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice straw is a significant energy source for ruminant animals. The acid detergent fiber (ADF) content of rice straw is negatively related to intake potential of forages. Therefore, improving the digestibility of rice straw by reducing ADF content is a necessary goal in breeding programs. In the present study, simple sequence repeat (SSR) markers and the bulked segregant analysis (BSA) approach were used to identify molecular markers associated with ADF. A total of 121 BC1F1 plants derived from the cross of JX974 (a cultivar with high ADF, 36.6%) and Dongxiang wild rice (a wild rice with low ADF, 31.3%), with JX974 as a recurrent parent, were used to conduct BSA. Phenotypic analysis showed that ADF displayed a normal distribution in BC1F1 population, indicating the involvement of polygenes. A SSR marker, RM566 on chromosome 9, was identified for ADF. A small linkage map consisting of five markers was constructed by adding four other markers, and a quantitative trait locus (QTL) controlling ADF was mapped at the RM321-RM566 interval, with a distance of 3.9 cM to RM566. This QTL explained 12% of the total phenotypic variation of ADF, and its additive effect was 3%. This study is the first step to map QTL for ADF, one of the plant cell wall components in rice.
Collapse
Affiliation(s)
- Jiankun Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | | | | | | | | | | |
Collapse
|
28
|
Buckler ES, Gaut BS, McMullen MD. Molecular and functional diversity of maize. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:172-6. [PMID: 16459128 DOI: 10.1016/j.pbi.2006.01.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/25/2006] [Indexed: 05/06/2023]
Abstract
Over the past 10,000 years, man has used the rich genetic diversity of the maize genome as the raw material for domestication and subsequent crop improvement. Recent research efforts have made tremendous strides toward characterizing this diversity: structural diversity appears to be largely mediated by helitron transposable elements, patterns of diversity are yielding insights into the number and type of genes involved in maize domestication and improvement, and functional diversity experiments are leading to allele mining for future crop improvement. The development of genome sequence and germplasm resources are likely to further accelerate this progress.
Collapse
Affiliation(s)
- Edward S Buckler
- USDA-ARS; Department of Plant Breeding & Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
29
|
Krakowsky MD, Lee M, Coors JG. Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.) II: leaf sheath tissue. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:717-26. [PMID: 16362276 DOI: 10.1007/s00122-005-0175-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 11/30/2005] [Indexed: 05/05/2023]
Abstract
While maize silage is a significant feed component in animal production operations, little information is available on the genetic bases of fiber and lignin concentrations in maize, which are negatively correlated with digestibility. Fiber is composed largely of cellulose, hemicellulose and lignin, which are the primary components of plant cell walls. Variability for these traits in maize germplasm has been reported, but the sources of the variation and the relationships between these traits in different tissues are not well understood. In this study, 191 recombinant inbred lines of B73 (low-intermediate levels of cell wall components, CWCs) x De811 (high levels of CWCs) were analyzed for quantitative trait loci (QTL) associated with CWCs in the leaf sheath. Samples were harvested from plots at two locations in 1998 and one in 1999 and assayed for neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL). QTL were detected on all ten chromosomes, most in tissue specific clusters in concordance with the high genotypic correlations for CWCs within the same tissue. Adjustment of NDF for its subfraction, ADF, revealed that most of the genetic variation in NDF was probably due to variation in ADF. The low to moderate genotypic correlations for the same CWC across leaf sheath and stalk tissues indicate that some genes for CWCs may only be expressed in certain tissues. Many of the QTL herein were detected in other populations, and some are linked to candidate genes for cell wall carbohydrate biosynthesis.
Collapse
Affiliation(s)
- M D Krakowsky
- United States Department of Agriculture, Agricultural Research Service, Tifton, GA, 31794, USA.
| | | | | |
Collapse
|