1
|
Wu S, Nie H, Liao J, Wang F, Long X, Huang J. Characterization of the complete chloroplast genome of Brunfelsia brasiliensis (Spreng.) L.B.Sm. & Downs. Mitochondrial DNA B Resour 2025; 10:392-396. [PMID: 40255915 PMCID: PMC12006934 DOI: 10.1080/23802359.2025.2492096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
Brunfelsia brasiliensis (B. brasiliensis) (Spreng.) L.B.Sm. & Downs is a perennial evergreen shrub that is widely cultivated as an ornamental plant in tropical and subtropical regions. This study presents the complete chloroplast genome of B. brasiliensis, having a length of 169,062 bp. The chloroplast genome contains 137 genes, including 92 protein-coding, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis reveals that Petunia hybrida and P. exserta are closely linked to B. brasiliensis in evolutionary terms. This first chloroplast genome assembly is a valuable resource for future genetic and molecular biology studies of the genus Brunfelsia.
Collapse
Affiliation(s)
- Shaoping Wu
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Hong Nie
- School of Computer Science and Software, Zhaoqing University, Guangdong, China
| | - Jinyan Liao
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Fei Wang
- Gaoyao No. 2 Middle School, Zhaoqing, China
| | - Xing Long
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Junwen Huang
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| |
Collapse
|
2
|
Kim JH, Kim CM, Jang CS. Development of a SYBR Green Real-Time PCR method for the detection of Coffea arabica and C. canephora using chloroplast genes. Food Sci Biotechnol 2025; 34:115-124. [PMID: 39758726 PMCID: PMC11695554 DOI: 10.1007/s10068-024-01636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 01/07/2025] Open
Abstract
Coffea arabica (Arabica) and C. canephora (Robusta) are valuable agricultural products traded worldwide. In this study, we designed specific primer pairs for Arabica and Robusta using chloroplast genes to distinguish and quantify the two types of coffee beans. We assessed the specificity, sensitivity, and applicability of the qRT-PCR assay using all the primer pairs. The six designed primer pairs (three for Arabica and three for Robusta) exhibited a correlation coefficient higher than 0.99 and a slope of approximately - 3.21 to - 3.52. The efficiency ranged from 92.09 to 104.79%. The Real-Time quantitative PCR (qPCR) assay had a detection limit of 0.001 ng DNA and a quantitative detection limit of 0.01% (w/w). Additionally, the specificity of the primer pairs was confirmed by analyzing 12 non-target plant species and verifying their practicality using 10 commercials. This study highlights the effectiveness of the SYBR-based qPCR assay in detecting adulteration in commercial coffee products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01636-7.
Collapse
Affiliation(s)
- Ju Hee Kim
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Cheol Min Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Cheol Seong Jang
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Hwang EM, Jeong KS, Yoo SY, Kim J, Choe S, Kim JY. Development of a diagnostic variable number tandem repeat marker and dual TaqMan genotyping assay to distinguish Lophophora species. Int J Legal Med 2025; 139:1-13. [PMID: 39190119 DOI: 10.1007/s00414-024-03318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The Lophophora genus of the Cactaceae family includes Lophophora diffusa and Lophophora williamsii, which has traditionally been used as a natural analgesic; however, its use is now under strict regulation worldwide as it contains mescaline, a unique psychotropic agent. Recently, non-medical and illegal distribution and abuse of L. williamsii have increased worldwide; thus, effective species identification methods are urgently needed. Here, we identified a new variable number tandem repeat (VNTR) marker in the trnL intron region to identify and characterize species in forensic analyses. The VNTR marker has a unique structure of tandem repeats, each with 13 nucleotides; one repeat unit was found in L. williamsii and two in L. diffusa. Phylogenetic and length polymorphism analyses confirmed that this novel VNTR marker could distinguish between Lophophora species. Furthermore, our newly developed TaqMan genotyping assay utilizes two probes; the color and position of dots on the discrimination plot differ according to the tandem repeat count within the VNTR marker. The limits of detection of the assay were 0.000063 ng (LW-VNTR probe-1) and 0.000066 ng (LW-VNTR probe-2), indicating high sensitivity. Moreover, when crime scene samples of 16 presumed L. williamsii species were analyzed, the results coincided with those of gas chromatography-mass spectrometry, confirming the applicability of our marker for Lophophora species identification. Thus, the tandem repeats within the trnL intron region can be exploited as a VNTR marker to identify L. williamsii and L. diffusa. Our dual TaqMan genotyping assay based on a novel marker demonstrates potential for forensic applications.
Collapse
Affiliation(s)
- Eun-Mi Hwang
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Kyu-Sik Jeong
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Seong Yeon Yoo
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Jihyun Kim
- Forensic Toxicology and Chemistry Division, Seoul Institute, National Forensic Service, Seoul, 08036, Republic of Korea
| | - Sanggil Choe
- Forensic Toxicology Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Joo-Young Kim
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea.
| |
Collapse
|
4
|
Frank K, Nagy E, Taller J, Wolf I, Polgár Z. Characterisation of the complete chloroplast genome of Solanum tuberosum cv. White Lady. Biol Futur 2024; 75:401-410. [PMID: 39251554 DOI: 10.1007/s42977-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
Potato (Solanum tuberosum) is considered worldwide as one of the most important non-cereal food crops. As a result of its adaptability and worldwide production area, potato displays a vast phenotypical variability as well as genomic diversity. Chloroplast genomes have long been a core issue in plant molecular evolution and phylogenetic studies, and have an important role in revealing photosynthetic mechanisms, metabolic regulations and the adaptive evolution of plants. We sequenced the complete chloroplast genome of the Hungarian cultivar White Lady, which is 155 549 base pairs (bp) in length and is characterised by the typical quadripartite structure composed of a large- and small single-copy region (85 991 bp and 18 374 bp, respectively) interspersed by two identical inverted repeats (25 592 bp). The genome consists of 127 genes of which 82 are protein-coding, eight are ribosomal RNAs and 37 are transfer RNAs. The overall gene content and distribution of the genes on the White Lady chloroplast was the same as found in other potato chloroplasts. The alignment of S. tuberosum chloroplast genome sequences resulted in a highly resolved tree, with 10 out of the 13 nodes recovered having bootstrap values over 90%. By comparing the White Lady chloroplast genome with available S. tuberosum sequences we found that gene content and synteny are highly conserved. The new chloroplast sequence can support further studies of genetic diversity, resource conservation, evolution and applied agricultural research. The new sequence can support further potato genetic diversity and evolutionary studies, resource conservation, and also applied agricultural research.
Collapse
Affiliation(s)
- Krisztián Frank
- Potato Research Centre, MATE Agrárcsoport Kft., Keszthely, Hungary.
| | - Erzsébet Nagy
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Hungarian University of Agricultural and Life Sciences, Keszthely, Hungary
| | - János Taller
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Hungarian University of Agricultural and Life Sciences, Keszthely, Hungary
| | - István Wolf
- Potato Research Centre, MATE Agrárcsoport Kft., Keszthely, Hungary
| | - Zsolt Polgár
- Potato Research Centre, MATE Agrárcsoport Kft., Keszthely, Hungary
- Department of Agronomy, Hungarian University of Agricultural and Life Sciences, Georgikon Campus, Keszthely, Hungary
| |
Collapse
|
5
|
Park TH. Complete chloroplast genome sequence of Solanum mochiquense, one of the tuber-bearing potato relatives. Mitochondrial DNA B Resour 2024; 9:1586-1591. [PMID: 39582776 PMCID: PMC11583358 DOI: 10.1080/23802359.2024.2432357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Solanum mochiquense is one of the wild tuber-bearing Solanum species belonging to the Solanaceae family. In this study, the chloroplast genome sequence of the species was completed with Illumina sequencing technology. The total length of the chloroplast genome is 155,547 bp with a GC content of 37.87%. It comprises a large single copy (LSC) region of 85,941 bp, a small single copy (SSC) region of 18,382 bp, and two inverted repeat regions (IRa and IRb) of 25,612 bp. Additionally, 158 functional genes in the genome were identified, including 105 protein-coding genes, eight ribosomal RNA genes, and 45 transfer RNA genes. Phylogenetic analysis revealed that S. mochiquense is grouped into a large clade with other Solanum species including cultivated potatoes (S. tuberosum). This study provides useful genomic information for future breeding and evolutionary studies of S. mochiquense and other Solanum species.
Collapse
Affiliation(s)
- Tae-Ho Park
- Department of Horticulture, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
6
|
Liu Y, Tang X, Deng A, Li H, Xiao Y, Zhao W, Xiang L, Liu Y, Yao Z, Zeng X, Du Z, Huang R, Yin H, Huang K. Characterization and phylogenetic analysis of the chloroplast genome of Solanum pseudocapsicum (Solanaceae). Mitochondrial DNA B Resour 2024; 9:1285-1290. [PMID: 39359382 PMCID: PMC11443543 DOI: 10.1080/23802359.2024.2410442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Solanum pseudocapsicum Linnaeus 1753, a popular indoor potted plant known for its ornamental fruits, had its chloroplast genome sequenced in this study to determine its phylogenetic relationship with other related species and to construct a phylogenetic analysis tree. The research findings are as follows: 1. The chloroplast genome of S. pseudocapsicum comprises a large single-copy (LSC) region of 86,260 base pairs, a small single-copy (SSC) region of 18,325 base pairs, and two inverted repeat (IR) regions, each measuring 25,390 base pairs in length. 2. The G + C content of the entire chloroplast genome is 37.59%, with the highest G + C content found in the IR regions, reaching 43.03%; followed by the LSC region, which has a G + C content of 35.68%; and the lowest in the SSC region, with a G + C content of 31.53%. 3. The genome contains 127 genes, including 82 protein-coding genes, 37 tRNA genes, and 8 rRNA genes, with 18 genes duplicated in the IR regions. 4. Phylogenetic analysis revealed that S. pseudocapsicum, Solanum betaceum, Solanum laciniatum, and Solanum nitidum are genetically closely related and are located on the same branch of the phylogenetic tree, indicating a close relationship among them. This study provides a foundation for the identification, classification, and exploration of genetic diversity within the Solanum genus.
Collapse
Affiliation(s)
- Yongle Liu
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Xuan Tang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Aihua Deng
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Huan Li
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Yulong Xiao
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Wenyan Zhao
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lixuan Xiang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Yi Liu
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Zui Yao
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Xingyu Zeng
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Zhitian Du
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Rongjie Huang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Hanbin Yin
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Kerui Huang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| |
Collapse
|
7
|
Zhang H, Liu P, Zhang Y, Sun H, Wang Y, Gao Z, Liu X. Chloroplast genome of Calamus tetradactylus revealed rattan phylogeny. BMC Genom Data 2024; 25:34. [PMID: 38528505 PMCID: PMC10962098 DOI: 10.1186/s12863-024-01222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Calamus tetradactylus, a species primarily distributed in Vietnam, Laos, and southern China, is highly valued for its utilization as a small-diameter rattan material. While its physical and mechanical properties have been extensively studied, the genomic characteristics of C. tetradactylus remain largely unexplored. RESULTS To gain a better understanding of its chloroplast genomic features and evolutionary relationships, we conducted sequencing and assembly of the chloroplast genome of C. tetradactylus. The complete chloroplast genome exhibited the typical highly conserved quartile structure, with specific variable regions identified in the single-copy region (like psbF-psbE, π = 0.10327, ndhF-rpl32, π = 0.10195), as well as genes such as trnT-GGU (π = 0.05764) and ycf1 (π = 0.03345) and others. We propose that these regions and genes hold potential as markers for species identification. Furthermore, phylogenetic analysis revealed that C. tetradactylus formed a distinct clade within the phylogenetic tree, alongside other Calamus species, and C. tetradactylus was most closely related to C. walkeri, providing support for the monophyly of the genus. CONCLUSION The analysis of the chloroplast genome conducted in this study provides valuable insights that can contribute to the improvement of rattan breeding programs and facilitate sustainable development in the future.
Collapse
Affiliation(s)
| | - Peng Liu
- BGI Research, Beijing, 102601, China
| | - Yi Zhang
- School of nursing, Chongqing Medical and Pharmaceutical College, P. R, Chongqing, China
| | - Huayu Sun
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yue Wang
- BGI Research, Beijing, 102601, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Xin Liu
- BGI Research, Beijing, 102601, China.
| |
Collapse
|
8
|
Gao Y, Chen Z, Li X, Malik K, Li C. Comparative Analyses of Complete Chloroplast Genomes of Microula sikkimensis and Related Species of Boraginaceae. Genes (Basel) 2024; 15:226. [PMID: 38397215 PMCID: PMC10887780 DOI: 10.3390/genes15020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The present study provides a detailed analysis of the chloroplast genome of Microula sikkimensis. The genome consisted of a total of 149,428 bp and four distinct regions, including a large single-copy region (81,329 bp), a small single-copy region (17,261 bp), and an inverted repeat region (25,419 bp). The genome contained 112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes, and some exhibited duplication in the inverted repeat region. The chloroplast genome displayed different GC content across regions, with the inverted repeat region exhibiting the highest. Codon usage analysis and the identification of simple sequence repeats (SSRs) offer valuable genetic markers. Comparative analysis with other Boraginaceae species highlighted conservation and diversity in coding and noncoding regions. Phylogenetic analysis placed M. sikkimensis within the Boraginaceae family, revealing its distinct relationship with specific species.
Collapse
Affiliation(s)
- Yunqing Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Tech Innovation Centre of Western China Grassland Industry, Lanzhou University, Lanzhou 730000, China
- Centre for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiuzhang Li
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China;
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Tech Innovation Centre of Western China Grassland Industry, Lanzhou University, Lanzhou 730000, China
- Centre for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Tech Innovation Centre of Western China Grassland Industry, Lanzhou University, Lanzhou 730000, China
- Centre for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
10
|
Wang X, Bai S, Zhang Z, Zheng F, Song L, Wen L, Guo M, Cheng G, Yao W, Gao Y, Li J. Comparative analysis of chloroplast genomes of 29 tomato germplasms: genome structures, phylogenetic relationships, and adaptive evolution. FRONTIERS IN PLANT SCIENCE 2023; 14:1179009. [PMID: 37229122 PMCID: PMC10203424 DOI: 10.3389/fpls.2023.1179009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
In order to compare and analyze the chloroplast (cp) genomes of tomato germplasms and understand their phylogenetic relationships, the cp genomes of 29 tomato germplasms were sequenced and analyzed in this study. The results showed highly conserved characteristics in structure, number of gene and intron, inverted repeat regions, and repeat sequences among the 29 cp genomes. Moreover, single-nucleotide polymorphism (SNP) loci with high polymorphism located at 17 fragments were selected as candidate SNP markers for future studies. In the phylogenetic tree, the cp genomes of tomatoes were clustered into two major clades, and the genetic relationship between S. pimpinellifolium and S. lycopersicum was very close. In addition, only rps15 showed the highest average K A/K S ratio in the analysis of adaptive evolution, which was strongly positively selected. It may be very important for the study of adaptive evolution and breeding of tomato. In general, this study provides valuable information for further study of phylogenetic relationships, evolution, germplasm identification, and molecular marker-assisted selection breeding of tomato.
Collapse
Affiliation(s)
- Xiaomin Wang
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Ningxia Facility Horticulture (Ningxia University) Technology Innovation Center, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Shengyi Bai
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
| | - Zhaolei Zhang
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Fushun Zheng
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
| | - Lina Song
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
| | - Lu Wen
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
| | - Meng Guo
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Ningxia Facility Horticulture (Ningxia University) Technology Innovation Center, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Guoxin Cheng
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Ningxia Facility Horticulture (Ningxia University) Technology Innovation Center, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Wenkong Yao
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Ningxia Facility Horticulture (Ningxia University) Technology Innovation Center, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Yanming Gao
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Ningxia Facility Horticulture (Ningxia University) Technology Innovation Center, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jianshe Li
- College of Enology and Horticultrue, Ningxia University, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Ningxia Facility Horticulture (Ningxia University) Technology Innovation Center, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| |
Collapse
|
11
|
Park TH. Complete chloroplast genome sequence of Solanum iopetalum, one of the tuber-bearing wild potato relatives. Mitochondrial DNA B Resour 2023; 8:347-351. [PMID: 36876142 PMCID: PMC9980020 DOI: 10.1080/23802359.2023.2183720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Solanum iopetalum belongs to the Solanaceae family and is one of the tuber-bearing wild Solanum species. In this study, chloroplast genome sequencing of the species, completed with Illumina sequencing technology, is presented. The length of the chloroplast genome is 155,625 bp with a GC content of 37.86%. It comprises a large single copy (LSC) region of 86,057 bp, a small single copy (SSC) region of 18,382 bp, and two inverted repeat regions (IRa and IRb) of 25,593 bp. Additionally, 158 functional genes in the genome are identified, including 105 protein-coding genes, 8 ribosomal RNAs, and 45 transfer RNAs. Phylogenetic analysis revealed that S. iopetalum is grouped into a large clade with other Solanum species, including cultivated potatoes (S. tuberosum) and is closely related to Mexican Solanum species (S. stoloniferum, S. verrucosum, S. hougasii, S. hjertingii, and S. demissum). This study provides useful genomic information for future breeding and evolutionary studies of S. iopetalum and other Solanum species.
Collapse
Affiliation(s)
- Tae-Ho Park
- Department of Horticulture, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
12
|
Li Y, Jian Y, Mao Y, Meng F, Shao Z, Wang T, Zheng J, Wang Q, Liu L. "Omics" insights into plastid behavior toward improved carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1001756. [PMID: 36275568 PMCID: PMC9583013 DOI: 10.3389/fpls.2022.1001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Plastids are a group of diverse organelles with conserved carotenoids synthesizing and sequestering functions in plants. They optimize the carotenoid composition and content in response to developmental transitions and environmental stimuli. In this review, we describe the turbulence and reforming of transcripts, proteins, and metabolic pathways for carotenoid metabolism and storage in various plastid types upon organogenesis and external influences, which have been studied using approaches including genomics, transcriptomics, proteomics, and metabonomics. Meanwhile, the coordination of plastid signaling and carotenoid metabolism including the effects of disturbed carotenoid biosynthesis on plastid morphology and function are also discussed. The "omics" insight extends our understanding of the interaction between plastids and carotenoids and provides significant implications for designing strategies for carotenoid-biofortified crops.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yue Jian
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yuanyu Mao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Revealing the Complete Chloroplast Genome of an Andean Horticultural Crop, Sweet Cucumber (Solanum muricatum), and Its Comparison with Other Solanaceae Species. DATA 2022. [DOI: 10.3390/data7090123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sweet cucumber (Solanum muricatum) sect. Basarthrum is a neglected horticultural crop native to the Andean region. It is naturally distributed very close to other two Solanum crops of high importance, potatoes, and tomatoes. To date, molecular tools for this crop remain undetermined. In this study, the complete sweet cucumber chloroplast (cp) genome was obtained and compared with seven Solanaceae species. The cp genome of S. muricatum was 155,681 bp in length and included a large single copy (LSC) region of 86,182 bp and a small single-copy (SSC) region of 18,360 bp, separated by a pair of inverted repeats (IR) regions of 25,568 bp. The cp genome possessed 87 protein-coding genes (CDS), 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes, and one pseudogene. Furthermore, 48 perfect microsatellites were identified. These repeats were mainly located in the noncoding regions. Whole cp genome comparative analysis revealed that the SSC and LSC regions showed more divergence than IR regions. Similar to previous studies, our phylogenetic analysis showed that S. muricatum is a sister species to members of sections Petota + Lycopersicum + Etuberosum. We expect that this first sweet cucumber chloroplast genome will provide potential molecular markers and genomic resources to shed light on the genetic diversity and population studies of S. muricatum, which will allow us to identify varieties and ecotypes. Finally, the features and the structural differentiation will provide us with information about the genes of interest, generating tools for the most precise selection of the best individuals of sweet cucumber, in less time and with fewer resources.
Collapse
|
14
|
Two Foreign Antimicrobial Peptides Expressed in the Chloroplast of Porphyridium purpureum Possessed Antibacterial Properties. Mar Drugs 2022; 20:md20080484. [PMID: 36005487 PMCID: PMC9409725 DOI: 10.3390/md20080484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
To solve the problem of antibiotic abuse in aquaculture and to utilize the application potential of antimicrobial peptides (AMPs), a chloroplast transformation system of Porphyridium purpureum was successfully constructed for effectively expressing two exogenous AMPs. The endogenous fragments of 16S rDNA/trnA-23S rDNA were used as flanking fragments for the homologous recombination in the chloroplast genome. Two AMPs encoded by the transformation vector were controlled by the native promoter psbB in a polycistron. The plasmids were transferred into P. purpureum via particle bombardment and the transformation vectors were screened using phosphinothricin (bar), a dominant selection marker under the control of the psbA promoter. Subsequently, in the positive transformed colonies, the exogenous fragments were found to be inserted in the flanking fragments directionally as expected and two foreign AMPs were successfully obtained. Finally, two exogenous peptides with antibacterial properties were obtained from the transformed strain. The two AMPs expressed by the transformed strain were shown to have similar inhibitory effects to antibiotics by inhibition tests. This suggested that AMPs can be introduced into aquaculture using baited microalgae, providing new ideas and ways to solve a series of aquaculture diseases caused by bacteria.
Collapse
|
15
|
Gene Losses and Plastome Degradation in the Hemiparasitic Species Plicosepalus acaciae and Plicosepalus curviflorus: Comparative Analyses and Phylogenetic Relationships among Santalales Members. PLANTS 2022; 11:plants11141869. [PMID: 35890506 PMCID: PMC9317152 DOI: 10.3390/plants11141869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/18/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
The Plicosepalus genus includes hemiparasitic mistletoe and belongs to the Loranthaceae family, and it has several medicinal uses. In the present study, we sequenced the complete plastomes of two species, Plicosepalus acaciae and Plicosepalus curviflorus, and compared them with the plastomes of photosynthetic species (hemiparasites) and nonphotosynthetic species (holoparasites) in the order Santalales. The complete chloroplast genomes of P. acaciae and P. curviflorus are circular molecules with lengths of 120,181 bp and 121,086 bp, respectively, containing 106 and 108 genes and 63 protein-coding genes, including 25 tRNA and 4 rRNA genes for each species. We observed a reduction in the genome size of P. acaciae and P. curviflorus and the loss of certain genes, although this reduction was less than that in the hemiparasite and holoparasitic cp genomes of the Santalales order. Phylogenetic analysis supported the taxonomic state of P. acaciae and P. curviflorus as members of the family Loranthaceae and tribe Lorantheae; however, the taxonomic status of certain tribes of Loranthaceae must be reconsidered and the species that belong to it must be verified. Furthermore, available chloroplast genome data of parasitic plants could help to strengthen efforts in weed management and encourage biotechnology research to improve host resistance.
Collapse
|
16
|
Hu G, Wu Y, Guo C, Lu D, Dong N, Chen B, Qiao Y, Zhang Y, Pan Q. Haplotype Analysis of Chloroplast Genomes for Jujube Breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:841767. [PMID: 35360311 PMCID: PMC8961131 DOI: 10.3389/fpls.2022.841767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 05/31/2023]
Abstract
Jujube (family Rhamnaceae) is an important economic fruit tree in China. In this study, we reported 26 chloroplast (cp) sequences of jujube using Illumina paired-end sequencing. The sequence length of cp genome was 161, 367-161, 849 bp, which was composed of a large single-copy region (89053-89437 bp) and a small single-copy region (19356-19362 bp) separated by a pair of reverse repeat regions (26478-26533 bp). Each cp genome encodes the same 130 genes, including 112 unique genes, being quite conserved in genome structure and gene sequence. A total of 118 single base substitutions (SNPs) and 130 InDels were detected in 65 jujube accessions. Phylogenetic and haplotype network construction methods were used to analyze the origin and evolution of jujube and its sour-tasting relatives. We detected 32 effective haplotypes, consisting of 20 unique jujube haplotypes and 9 unique sour-jujube haplotypes. Compared with sour-jujube, jujube showed greater haplotype diversity at the chloroplast DNA level. To cultivate crisp and sweet fruit varieties featuring strong resistance, by combining the characteristics of sour-jujube and cultivated jujube, three hybrid combinations were suggested for reciprocal crosses: "Dongzao" × "Jingzao39," "Dongzao" × "Jingzao60," "Dongzao" × "Jingzao28." This study provides the basis for jujube species' identification and breeding, and lays the foundation for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuping Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qinghua Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
17
|
Occhialini A, Pfotenhauer AC, Li L, Harbison SA, Lail AJ, Burris JN, Piasecki C, Piatek AA, Daniell H, Stewart CN, Lenaghan SC. Mini-synplastomes for plastid genetic engineering. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:360-373. [PMID: 34585834 PMCID: PMC8753362 DOI: 10.1111/pbi.13717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 05/19/2023]
Abstract
In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Alexander C. Pfotenhauer
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Li Li
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Stacee A. Harbison
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Andrew J. Lail
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jason N. Burris
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | | | | | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - C. Neal Stewart
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Scott C. Lenaghan
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| |
Collapse
|
18
|
Chang M, Lee EJ, Kim JY, Lee H, Choe S, Moon S. A new minisatellite VNTR marker, Pscp1, discovered for the identification of opium poppy. Forensic Sci Int Genet 2021; 55:102581. [PMID: 34517229 DOI: 10.1016/j.fsigen.2021.102581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Opium poppy, a member of the Papaveraceae family, is an ancient herbaceous plant and well-known medical resource in the pharmaceutical industry. However, opium poppies are grown worldwide for producing illicit drugs, significantly increasing the incidence of narcotic drug abuse. Since the narcotic poppy has not yet been genetically investigated, we characterized a novel variable number tandem repeat (VNTR) marker of forensically important poppy species based on the genetic analysis of 164 samples collected from two locations spanning the Jeolla province and Jeju island of South Korea. Comparing analysis of the chloroplast (cp) genome sequences for four representative species of Papaver (Papaver somniferum, Papaver somniferum subs. setigerum, Papaver orientale, and Papaver rhoeas) revealed a unique region with 1-3 repeats for 16 nucleotide motifs in the genome inverted repeat A (IRA, positions 128,651 to 128,698) region. For 16 nucleotide motifs, 3 repeats were found in P. somniferum, and 2 repeats were found in P. somniferum subs. setigerum. Therefore, 10 known and the 133 unknown, seized Papaver species were compared to determine whether the species could be identified via variations in the repeat units. The sizes of a novel VNTR ranged from 181 to 252 bp between the species. Phylogenetic analysis confirmed that a novel VNTR, which we named Pscp1, could clearly distinguish between the narcotic and non-narcotic types of Papaver species based on the patterns of sequence variation. Interestingly, we found that Pscp1 could also distinguish between P. somniferum and P. somniferum subs. setigerum. The regions of eight non-narcotic species displayed similar patterns and also differences were found due to the nucleotide substitution and deletion events. The structural differences of Pscp1 were observed within the two narcotic species or between the narcotic and non-narcotic species, suggesting that these variations may act as a genetic marker. We, therefore, developed a new Pscp1 PCR-capillary electrophoresis (CE) method that can reliably identify the narcotic type of Papaver species. Taken together, our findings suggest that the newly developed Pscp1 can be used as an identification marker of opium poppy, and establish that the Pscp1 genotyping method by PCR-CE is an effective primary screening tool that can also contribute to species discrimination in the field of forensic diagnosis and applications.
Collapse
Affiliation(s)
- Miwha Chang
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea
| | - Eun-Jung Lee
- Crime-scene DNA Section, Gwangju Institute, National Forensic Service, Gwangju 57231, Republic of Korea
| | - Joo-Young Kim
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea
| | - Haeyong Lee
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea
| | - Sanggil Choe
- Forensic Toxicology and Chemistry Division, Seoul Institute, National Forensic Service, Seoul 08036, Republic of Korea
| | - Seohyun Moon
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| |
Collapse
|
19
|
Senthilkumar S, Ulaganathan K, Ghosh Dasgupta M. Reference-based assembly of chloroplast genome from leaf transcriptome data of Pterocarpus santalinus. 3 Biotech 2021; 11:393. [PMID: 34458062 DOI: 10.1007/s13205-021-02943-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022] Open
Abstract
Chloroplast genome sequencing is an essential tool to understand genome evolution and phylogenetic relationship. The available methods for constructing chloroplast genome include chloroplast enrichment followed by long overlapping PCR or extraction and assembly of chloroplast-specific reads from whole-genome datasets. In the present study, we propose an alternate strategy of extraction and assembly of chloroplast-specific reads from leaf transcriptome data of Pterocarpus santalinus using bowtie2 aligner program. The assembled genome was compared with the published chloroplast genome of P. santalinus for genome size, number of predicted genes, microsatellite repeat motifs, and nucleotide repeats. A near-complete chloroplast genome was assembled from the transcriptome reads. The proposed method requires less computational time and know-how, limited virtual memory, and is cost-effective when compared to whole-genome sequencing. Assembly of Cp genome from transcriptome data will enhance the resolution of phylogenetic studies through comparative plastome analysis, facilitate accurate species/genotype discrimination and accelerate the development of transplastomic plants with enhanced biotic and abiotic tolerance. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02943-0.
Collapse
Affiliation(s)
- Shanmugavel Senthilkumar
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Kandasamy Ulaganathan
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, 500007 Andhra Pradesh India
| | - Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, Forest Campus, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| |
Collapse
|
20
|
Genetic Polymorphism and Lineage of Pigeon Pea [Cajanus cajan (L.) Millsp.] inferred from Chloroplast and Nuclear DNA gene regions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Polymorphism in the Chloroplast ATP Synthase Beta-Subunit Is Associated with a Maternally Inherited Enhanced Cold Recovery in Cucumber. PLANTS 2021; 10:plants10061092. [PMID: 34072439 PMCID: PMC8226925 DOI: 10.3390/plants10061092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Cucumber (Cucumis sativus L.) is a warm-season crop that is sensitive to chilling temperatures and a maternally inherited cold tolerance exists in the heirloom cultivar 'Chipper' (CH). Because the organelles of cucumber show differential transmission (maternal for chloroplast and paternal for mitochondrion), this cold tolerance is hypothesized to be chloroplast-associated. The goal of this research was to characterize the cold tolerant phenotype from CH and determine its genetic basis. Doubled haploid (DH) lines were produced from CH and cold susceptible cucumbers, reciprocal hybrids with identical nuclear genotypes were produced, and plants were subjected to cold treatments under lights at 4 °C for 5.5 h. Hybrid plants with CH as the maternal parent had significantly higher fresh and dry weights 14 days after cold treatment compared to the reciprocal hybrid, revealing an enhanced cold recovery phenotype maternally conferred by CH. Results from analyses of the nuclear transcriptome and reactive oxygen species (ROS) between reciprocal hybrids were consistent with the cold recovery phenotype. Sequencing of the chloroplast genome and transcriptome of the DH parents and reciprocal hybrids, respectively, revealed one maternally transmitted non-synonymous single nucleotide polymorphism (SNP) in the chloroplast F1FO-ATP synthase (CF1FO-ATPase) beta-subunit gene (atpB) of CH which confers an amino acid change from threonine to arginine. Protein modeling revealed that this change is located at the interface of the alpha- and beta-subunits in the CF1FO-ATPase complex. Polymorphisms in the CF1FO-ATPase complex have been associated with stress tolerances in other plants, and selection for or creation of polymorphic beta-subunit proteins by chloroplast transformation or gene editing could condition improved recovery from cold stress in plants.
Collapse
|
22
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
23
|
Li D, Qian J, Li W, Yu N, Gan G, Jiang Y, Li W, Liang X, Chen R, Mo Y, Lian J, Niu Y, Wang Y. A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Mol Ecol Resour 2021; 21:1274-1286. [PMID: 33445226 DOI: 10.1111/1755-0998.13321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
The eggplant (Solanum melongena L.) is one of the most important Solanaceae crops, ranking third for total production and economic value in its genus. Herein, we report a high-quality, chromosome-scale eggplant reference genome sequence of 1155.8 Mb, with an N50 of 93.9 Mb, which was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences occupied 70.1% of the assembly length, and 35,018 high-confidence protein-coding genes were annotated based on multiple sources. Comparative analysis revealed 646 species-specific families and 364 positive selection genes, conferring distinguishing traits on the eggplant. We performed genome-wide comparative identification of disease resistance genes and discovered an expanded gene family of bacterial spot resistance in eggplant and pepper, but not in tomato and potato. The genes involved in chlorogenic acid synthesis were comprehensively characterized. Highly similar chromosomal distribution patterns of polyphenol oxidase genes were observed in the eggplant, tomato, and potato genomes. The eggplant reference genome sequence will not only facilitate evolutionary studies of the Solanaceae but also facilitate their breeding and improvement.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Qian
- Biozeron Shenzhen, Inc, Shenzhen, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ning Yu
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuyu Liang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Riyuan Chen
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongcheng Mo
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | | | | | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
24
|
Chloroplast Genome Sequences and Comparative Analyses of Combretaceae Mangroves with Related Species. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5867673. [PMID: 33062686 PMCID: PMC7545412 DOI: 10.1155/2020/5867673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 11/17/2022]
Abstract
In the Combretaceae family, only two species of Lumnitzera and one species of Laguncularia belong to mangroves. Among them, Lumnitzera littorea (Jack) Voigt. is an endangered mangrove plant in China for the limited occurrence and seed abortion. In contrast, Lumnitzera racemosa Willd. is known as the most widespread mangrove plant in China. Laguncularia racemosa C. F. Gaertn., an exotic mangrove in China, has the fast growth and high adaptation ability. To better understand the phylogenetic positions of these mangroves in Combretaceae and in Myrtales and to provide information for studies on evolutionary adaptation for intertidal habitat, the complete chloroplast (cp) genomes of Lu. racemosa and La. racemosa were sequenced. Furthermore, we present here the results from the assembly and annotation of the two cp genomes, which were further subjected to the comparative analysis with Lu. littorea cp genomes we published before and other eleven closely related species within Myrtales. The chloroplast genomes of the three Combretaceae mangrove species: Lu. littorea, Lu. racemosa, and La. racemosa are 159,687 bp, 159,473 bp, and 158,311 bp in size. All three cp genomes host 130 genes including 85 protein-coding genes, 37 tRNAs, and 4 rRNAs. A comparative analysis of those three genomes revealed the high similarity of genes in coding-regions and conserved gene order in the IR and LSC/SSC regions. The differences between Lumnitzera and Laguncularia cp genomes are the locations of rps19 and rpl2 genes in the IR/SC boundary regions. Investigating the effects of selection events on shared protein-coding genes showed a relaxed selection had acted on the ycf2, ycf1, and matK genes of Combretaceae mangroves compared to the nonmangrove species Eucalyptus aromaphloia. The phylogenetic analysis based on the whole chloroplast genome sequence with one outgroup species strongly supported three Combretaceae mangroves together with other two Combretaceae species formed a cluster in Combretaceae. This study is the first report on the comparative analysis of three Combretaceae mangrove chloroplast genomes, which will provide the significant information for understanding photosynthesis and evolution in Combretaceae mangrove plants.
Collapse
|
25
|
Yarra R. Plastome engineering in vegetable crops: current status and future prospects. Mol Biol Rep 2020; 47:8061-8074. [PMID: 32880066 DOI: 10.1007/s11033-020-05770-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/28/2020] [Indexed: 01/12/2023]
Abstract
Plastome (plastid genome) engineering has grown up and got smarter for the transgene expression. Plastid transformation has profound benefits over nuclear transformation, includes a higher level of transgene expression, integration via homologous recombination, transgene containment, lack of gene silencing, and position effect. Substantial and fruitful progress has been achieved in plastome engineering of vegetable crops through the use of improved regeneration/selection procedures, plastid transformation vectors with efficient promoters, and 3/, 5/regulatory sequences. Plastid transformation technology developed for vegetable crops being used as a platform for the production of industrially important proteins and some of the genes of agronomic importance has been stably integrated and expressed in plastome. Although great progress has been accomplished in the plastid transformation of vegetable crops, still it is restricted to few species because of the unavailability of whole plastome sequencing. In this review, the author focus on the technology, progress, and advancements in plastid transformation of vegetable plants such as lettuce, tomato, potato, cabbage, cauliflower, eggplant, carrot, soybean, and bitter melon are reviewed. The conclusions, future prospects, and expansion of plastid transformation technology to other vegetable crops for genetic improvement and production of edible vaccines are proposed.
Collapse
Affiliation(s)
- Rajesh Yarra
- Department of Agronomy, University of Florida, IFAS, Gainesville, FL, 32611, USA.
| |
Collapse
|
26
|
Liu L, Du Y, Shen C, Li R, Lee J, Li P. The complete chloroplast genome of Papaver setigerum and comparative analyses in Papaveraceae. Genet Mol Biol 2020; 43:e20190272. [PMID: 32808964 PMCID: PMC7433754 DOI: 10.1590/1678-4685-gmb-2019-0272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 05/08/2020] [Indexed: 11/22/2022] Open
Abstract
Papaver setigerum is an annual herb that is closely related to the opium poppy, P. somniferum. Genetic resources for P. setigerum are scarce. In the present study, we assembled the complete chloroplast (cp) genome of P. setigerum based on genome skimming data, and we conducted comparative cp genome analyses to study the evolutionary pattern in Papaveraceae. The cp genome of P. setigerum is 152,862 bp in length with a typical quadripartite structure. Comparative analyses revealed no gene rearrangement in the Papaveraceae family, although differences were evident in genome size, gene losses, as well as inverted repeats (IR) region expansion and contraction. The rps15 gene has been lost from the genomes of Meconopsis racemosa, Coreanomecon hylomeconoides, P. orientale, P. somniferum, and P. setigerum, and the ycf15 gene is found only in C. hylomeconoides. Moreover, 13 cpDNA markers, including psbA-trnH, rps16-trnQ, trnS-trnG, trnC-petN, trnE-trnT, trnL-trnF, trnF-ndhJ, petA-psbJ, ndhF-rpl32, rpl32-trnL, ccsA-ndhD, ndhE-ndhG, and rps15-ycf1, were identified with relatively high levels of variation within Papaver, which will be useful for species identification in this genus. Among those markers, psbA-trnH is the best one to distinguish P. somniferum and P. setigerum.
Collapse
Affiliation(s)
- Luxian Liu
- Henan University, School of Life Sciences, Key Laboratory of
Plant Stress Biology, Kaifeng, China
| | - Yingxue Du
- Henan University, School of Life Sciences, Key Laboratory of
Plant Stress Biology, Kaifeng, China
| | - Cheng Shen
- Zhejiang University, College of Life Sciences, The Key
Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of
Education, Hangzhou, China
| | - Rui Li
- Food inspection and Testing Institute of Henan Province,
Physical and Chemical Laboratory, Zhengzhou, China
| | - Joongku Lee
- Chungnam National University, Department of Environment and
Forest Resources, Daejeon, South Korea
| | - Pan Li
- Zhejiang University, College of Life Sciences, The Key
Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of
Education, Hangzhou, China
| |
Collapse
|
27
|
Zhou C, Duarte T, Silvestre R, Rossel G, Mwanga ROM, Khan A, George AW, Fei Z, Yencho GC, Ellis D, Coin LJM. Insights into population structure of East African sweetpotato cultivars from hybrid assembly of chloroplast genomes. Gates Open Res 2020; 2:41. [PMID: 33062940 PMCID: PMC7536352 DOI: 10.12688/gatesopenres.12856.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The chloroplast (cp) genome is an important resource for studying plant diversity and phylogeny. Assembly of the cp genomes from next-generation sequencing data is complicated by the presence of two large inverted repeats contained in the cp DNA. Methods: We constructed a complete circular cp genome assembly for the hexaploid sweetpotato using extremely low coverage (<1×) Oxford Nanopore whole-genome sequencing (WGS) data coupled with Illumina sequencing data for polishing. Results: The sweetpotato cp genome of 161,274 bp contains 152 genes, of which there are 96 protein coding genes, 8 rRNA genes and 48 tRNA genes. Using the cp genome assembly as a reference, we constructed complete cp genome assemblies for a further 17 sweetpotato cultivars from East Africa and an I. triloba line using Illumina WGS data. Analysis of the sweetpotato cp genomes demonstrated the presence of two distinct subpopulations in East Africa. Phylogenetic analysis of the cp genomes of the species from the Convolvulaceae Ipomoea section Batatas revealed that the most closely related diploid wild species of the hexaploid sweetpotato is I. trifida. Conclusions: Nanopore long reads are helpful in construction of cp genome assemblies, especially in solving the two long inverted repeats. We are generally able to extract cp sequences from WGS data of sufficiently high coverage for assembly of cp genomes. The cp genomes can be used to investigate the population structure and the phylogenetic relationship for the sweetpotato.
Collapse
Affiliation(s)
- Chenxi Zhou
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Tania Duarte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | | - Awais Khan
- International Potato Center, P.O. Box 1558, Lima 12, Peru.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Andrew W George
- Data61, CSIRO, Ecosciences Precinct, Brisbane, QLD, 4102, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - G Craig Yencho
- Department of Horticulture, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - David Ellis
- International Potato Center, P.O. Box 1558, Lima 12, Peru
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
28
|
Zhang TT, Liu H, Gao QY, Yang T, Liu JN, Ma XF, Li ZH. Gene transfer and nucleotide sequence evolution by Gossypium cytoplasmic genomes indicates novel evolutionary characteristics. PLANT CELL REPORTS 2020; 39:765-777. [PMID: 32215683 DOI: 10.1007/s00299-020-02529-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The DNA fragments transferred among cotton cytoplasmic genomes are highly differentiated. The wild D group cotton species have undergone much greater evolution compared with cultivated AD group. Cotton (Gossypium spp.) is one of the most economically important fiber crops worldwide. Gene transfer, nucleotide evolution, and the codon usage preferences in cytoplasmic genomes are important evolutionary characteristics of high plants. In this study, we analyzed the nucleotide sequence evolution, codon usage, and transfer of cytoplasmic DNA fragments in Gossypium chloroplast (cp) and mitochondrial (mt) genomes, including the A genome group, wild D group, and cultivated AD group of cotton species. Our analyses indicated that the differences in the length of transferred cytoplasmic DNA fragments were not significant in mitochondrial and chloroplast sequences. Analysis of the transfer of tRNAs found that trnQ and nine other tRNA genes were commonly transferred between two different cytoplasmic genomes. The Codon Adaptation Index values showed that Gossypium cp genomes prefer A/T-ending codons. Codon preference selection was higher in the D group than the other two groups. Nucleotide sequence evolution analysis showed that intergenic spacer sequences were more variable than coding regions and nonsynonymous mutations were clearly more common in cp genomes than mt genomes. Evolutionary analysis showed that the substitution rate was much higher in cp genomes than mt genomes. Interestingly, the D group cotton species have undergone much faster evolution compared with cultivated AD groups, possibly due to the selection and domestication of diverse cotton species. Our results demonstrate that gene transfer and differential nucleotide sequence evolution have occurred frequently in cotton cytoplasmic genomes.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Heng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qi-Yuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ting Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jian-Ni Liu
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
29
|
Methods and Tools for Plant Organelle Genome Sequencing, Assembly, and Downstream Analysis. Methods Mol Biol 2020; 2107:49-98. [PMID: 31893443 DOI: 10.1007/978-1-0716-0235-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Organelles play an important role in a eukaryotic cell. Among them, the two organelles, chloroplast and mitochondria, are responsible for the critical function of photosynthesis and aerobic respiration. Organellar genomes are also very important for plant systematic studies. Here we have described the methods for isolation of the mitochondrial and plastid DNA and its subsequent sequencing with the help of NGS technology. We have also discussed in detail the various tools available for assembly, annotation, and visualization of the organelle genome sequence.
Collapse
|
30
|
Magdy M, Ou L, Yu H, Chen R, Zhou Y, Hassan H, Feng B, Taitano N, van der Knaap E, Zou X, Li F, Ouyang B. Pan-plastome approach empowers the assessment of genetic variation in cultivated Capsicum species. HORTICULTURE RESEARCH 2019; 6:108. [PMID: 31645963 PMCID: PMC6804749 DOI: 10.1038/s41438-019-0191-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/19/2019] [Accepted: 08/03/2019] [Indexed: 05/19/2023]
Abstract
Pepper species (Capsicum spp.) are widely used as food, spice, decoration, and medicine. Despite the recent old-world culinary impact, more than 50 commercially recognized pod types have been recorded worldwide from three taxonomic complexes (A, B, and P). The current study aimed to apply a pan-plastome approach to resolve the plastomic boundaries among those complexes and identify effective loci for the taxonomical resolution and molecular identification of the studied species/varieties. High-resolution pan-plastomes of five species and two varieties were assembled and compared from 321 accessions. Phyloplastomic and network analyses clarified the taxonomic position of the studied species/varieties and revealed a pronounced number of accessions to be the rare and endemic species, C. galapagoense, that were mistakenly labeled as C. annuum var. glabriusculum among others. Similarly, some NCBI-deposited plastomes were clustered differently from their labels. The rpl23-trnI intergenic spacer contained a 44 bp tandem repeat that, in addition to other InDels, was capable of discriminating the investigated Capsicum species/varieties. The rps16-trnQ/rbcL-accD/ycf3-trnS gene set was determined to be sufficiently polymorphic to retrieve the complete phyloplastomic signal among the studied Capsicum spp. The pan-plastome approach was shown to be useful in resolving the taxonomical complexes, settling the incomplete lineage sorting conflict and developing a molecular marker set for Capsicum spp. identification.
Collapse
Affiliation(s)
- Mahmoud Magdy
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070 Wuhan, China
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241 Egypt
| | - Lijun Ou
- College of Horticulture and Landscape, Hunan Agricultural University, 410128 Changsha, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070 Wuhan, China
| | - Rong Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuhong Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070 Wuhan, China
| | - Heba Hassan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070 Wuhan, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, 530004 Nanning, China
| | - Nathan Taitano
- Department of Horticulture, College of Agriculture & Environmental Sciences, University of Georgia, Athens, GA 30602 USA
| | - Esther van der Knaap
- Department of Horticulture, College of Agriculture & Environmental Sciences, University of Georgia, Athens, GA 30602 USA
| | - Xuexiao Zou
- College of Horticulture and Landscape, Hunan Agricultural University, 410128 Changsha, China
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070 Wuhan, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
31
|
Zhou T, Ruhsam M, Wang J, Zhu H, Li W, Zhang X, Xu Y, Xu F, Wang X. The Complete Chloroplast Genome of Euphrasia regelii, Pseudogenization of ndh Genes and the Phylogenetic Relationships Within Orobanchaceae. Front Genet 2019; 10:444. [PMID: 31156705 PMCID: PMC6528182 DOI: 10.3389/fgene.2019.00444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Euphrasia (Orobanchaceae) is a genus which is widely distributed in temperate regions of the southern and northern hemisphere. The taxonomy of Euphrasia is still controversial due to the similarity of morphological characters and a lack of genomic resources. Here, we present the first complete chloroplast (cp) genome of this taxonomically challenging genus. The cp genome of Euphrasia regelii consists of 153,026 bp, including a large single-copy region (83,893 bp), a small single-copy region (15,801 bp) and two inverted repeats (26,666 bp). There are 105 unique genes, including 71 protein-coding genes, 30 tRNA and 4 rRNA genes. Although the structure and gene order is comparable to the one in other angiosperm cp genomes, genes encoding the NAD(P)H dehydrogenase complex are widely pseudogenized due to mutations resulting in frameshifts, and stop codon positions. We detected 36 dispersed repeats, 7 tandem repeats and 65 simple sequence repeat loci in the E. regelii plastome. Comparative analyses indicated that the cp genome of E. regelii is more conserved compared to other hemiparasitic taxa in the Pedicularideae and Buchnereae. No structural rearrangements or loss of genes were detected. Our analyses suggested that three genes (clpP, ycf2 and rps14) were under positive selection and other genes under purifying selection. Phylogenetic analysis of monophyletic Orobanchaceae based on 45 plastomes indicated a close relationship between E. regelii and Neobartsia inaequalis. In addition, autotrophic lineages occupied the earliest diverging branches in our phylogeny, suggesting that autotrophy is the ancestral trait in this parasitic family.
Collapse
Affiliation(s)
- Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| | - Jian Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Honghong Zhu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Wenli Li
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Xiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), School of Life Sciences, Northwest University, Xi’an, China
| | - Yucan Xu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Fusheng Xu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
32
|
Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, Thannhauser TW, Foolad MR, Diez MJ, Blanca J, Canizares J, Xu Y, van der Knaap E, Huang S, Klee HJ, Giovannoni JJ, Fei Z. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 2019; 51:1044-1051. [DOI: 10.1038/s41588-019-0410-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/03/2019] [Indexed: 01/23/2023]
|
33
|
Sathishkumar R, Kumar SR, Hema J, Baskar V. Green Biotechnology: A Brief Update on Plastid Genome Engineering. ADVANCES IN PLANT TRANSGENICS: METHODS AND APPLICATIONS 2019. [PMCID: PMC7120283 DOI: 10.1007/978-981-13-9624-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant genetic engineering has become an inevitable tool in the molecular breeding of crops. Significant progress has been made in the generation of novel plastid transformation vectors and optimized transformation protocols. There are several advantages of plastid genome engineering over conventional nuclear transformation. Some of the advantages include multigene engineering by expression of biosynthetic pathway genes as operons, extremely high-level expression of protein accumulation, lack of transgene silencing, etc. Transgene containment owing to maternal inheritance is another important advantage of plastid genome engineering. Chloroplast genome modification usually results in alteration of several thousand plastid genome copies in a cell. Several therapeutic proteins, edible vaccines, antimicrobial peptides, and industrially important enzymes have been successfully expressed in chloroplasts so far. Here, we critically recapitulate the latest developments in plastid genome engineering. Latest advancements in plastid genome sequencing are briefed. In addition, advancement of extending the toolbox for plastid engineering for selected applications in the area of molecular farming and production of industrially important enzyme is briefed.
Collapse
Affiliation(s)
- Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu India
| | | | - Jagadeesan Hema
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu India
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu India
| |
Collapse
|
34
|
Nock CJ, Hardner CM, Montenegro JD, Ahmad Termizi AA, Hayashi S, Playford J, Edwards D, Batley J. Wild Origins of Macadamia Domestication Identified Through Intraspecific Chloroplast Genome Sequencing. FRONTIERS IN PLANT SCIENCE 2019; 10:334. [PMID: 30949191 PMCID: PMC6438079 DOI: 10.3389/fpls.2019.00334] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/04/2019] [Indexed: 05/13/2023]
Abstract
Identifying the geographic origins of crops is important for the conservation and utilization of novel genetic variation. Even so, the origins of many food crops remain elusive. The tree nut crop macadamia has a remarkable domestication history, from subtropical rain forests in Australia through Hawaii to global cultivation all within the last century. The industry is based primarily on Macadamia integrifolia and M. integrifolia-M. tetraphylla hybrid cultivars with Hawaiian cultivars the main contributors to world production. Sequence data from the chloroplast genome assembled using a genome skimming strategy was used to determine population structure among remnant populations of the main progenitor species, M. integrifolia. Phylogenetic analysis of a 506 bp chloroplast SNP alignment from 64 wild and cultivated accessions identified phylogeographic structure and deep divergences between clades providing evidence for historical barriers to seed dispersal. High levels of variation were detected among wild accessions. Most Hawaiian cultivars, however, shared a single chlorotype that was also present at two wild sites at Mooloo and Mt Bauple from the northernmost distribution of the species in south-east Queensland. Our results provide evidence for a maternal genetic bottleneck during early macadamia domestication, and pinpoint the likely source of seed used to develop the Hawaiian cultivars. The extensive variability and structuring of M. integrifolia chloroplast genomic variation detected in this study suggests much unexploited genetic diversity is available for improvement of this recently domesticated crop.
Collapse
Affiliation(s)
- Catherine J. Nock
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- *Correspondence: Catherine J. Nock,
| | - Craig M. Hardner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | | | - Ainnatul A. Ahmad Termizi
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Satomi Hayashi
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julia Playford
- Queensland Department of Environment and Science, Brisbane, QLD, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
35
|
Zhang R, Zhang L, Wang W, Zhang Z, Du H, Qu Z, Li XQ, Xiang H. Differences in Codon Usage Bias between Photosynthesis-Related Genes and Genetic System-Related Genes of Chloroplast Genomes in Cultivated and Wild Solanum Species. Int J Mol Sci 2018; 19:E3142. [PMID: 30322061 PMCID: PMC6213243 DOI: 10.3390/ijms19103142] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Solanum is one of the largest genera, including two important crops-potato (Solanum tuberosum) and tomato (Solanum lycopersicum). In this study we compared the chloroplast codon usage bias (CUB) among 12 Solanum species, between photosynthesis-related genes (Photo-genes) and genetic system-related genes (Genet-genes), and between cultivated species and wild relatives. The Photo-genes encode proteins for photosystems, the photosynthetic electron transport chain, and RuBisCO, while the Genet-genes encode proteins for ribosomal subunits, RNA polymerases, and maturases. The following findings about the Solanum chloroplast genome CUB were obtained: (1) the nucleotide composition, gene expression, and selective pressure are identified as the main factors affecting chloroplast CUB; (2) all these 12 chloroplast genomes prefer A/U over G/C and pyrimidines over purines at the third-base of codons; (3) Photo-genes have higher codon adaptation indexes than Genet-genes, indicative of a higher gene expression level and a stronger adaptation of Photo-genes; (4) gene function is the primary factor affecting CUB of Photo-genes but not Genet-genes; (5) Photo-genes prefer pyrimidine over purine, whereas Genet-genes favor purine over pyrimidine, at the third position of codons; (6) Photo-genes are mainly affected by the selective pressure, whereas Genet-genes are under the underlying mutational bias; (7) S. tuberosum is more similar with Solanum commersonii than with Solanum bulbocastanum; (8) S. lycopersicum is greatly different from the analyzed seven wild relatives; (9) the CUB in codons for valine, aspartic acid, and threonine are the same between the two crop species, S. tuberosum and S. lycopersicum. These findings suggest that the chloroplast CUB contributed to the differential requirement of gene expression activity and function between Photo-genes and Genet-genes and to the performance of cultivated potato and tomato.
Collapse
Affiliation(s)
- Ruizhi Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Li Zhang
- Department of Math and Information, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Wei Wang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zhu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Huihui Du
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zheng Qu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, NB E3B 4Z7, Canada.
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
36
|
Kim HT, Lee JM. Organellar genome analysis reveals endosymbiotic gene transfers in tomato. PLoS One 2018; 13:e0202279. [PMID: 30183712 PMCID: PMC6124701 DOI: 10.1371/journal.pone.0202279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/13/2023] Open
Abstract
We assembled three complete mitochondrial genomes (mitogenomes), two of Solanum lycopersicum and one of Solanum pennellii, and analyzed their intra- and interspecific variations. The mitogenomes were 423,596-446,257 bp in length. Despite numerous rearrangements between the S. lycopersicum and S. pennellii mitogenomes, over 97% of the mitogenomes were similar to each other. These mitogenomes were compared with plastid and nuclear genomes to investigate genetic material transfers among DNA-containing organelles in tomato. In all mitogenomes, 9,598 bp of plastome sequences were found. Numerous nuclear copies of mitochondrial DNA (NUMTs) and plastid DNA (NUPTs) were observed in the S. lycopersicum and S. pennellii nuclear genomes. Several long organellar DNA fragments were tightly clustered in the nuclear genome; however, the NUMT and NUPT locations differed between the two species. Our results demonstrate the recent occurrence of frequent endosymbiotic gene transfers in tomato genomes.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
37
|
Zhou C, Duarte T, Silvestre R, Rossel G, Mwanga ROM, Khan A, George AW, Fei Z, Yencho GC, Ellis D, Coin LJM. Insights into population structure of East African sweetpotato cultivars from hybrid assembly of chloroplast genomes. Gates Open Res 2018; 2:41. [PMID: 33062940 PMCID: PMC7536352 DOI: 10.12688/gatesopenres.12856.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2018] [Indexed: 03/31/2024] Open
Abstract
Background: The chloroplast (cp) genome is an important resource for studying plant diversity and phylogeny. Assembly of the cp genomes from next-generation sequencing data is complicated by the presence of two large inverted repeats contained in the cp DNA. Methods: We constructed a complete circular cp genome assembly for the hexaploid sweetpotato using extremely low coverage (<1×) Oxford Nanopore whole-genome sequencing (WGS) data coupled with Illumina sequencing data for polishing. Results: The sweetpotato cp genome of 161,274 bp contains 152 genes, of which there are 96 protein coding genes, 8 rRNA genes and 48 tRNA genes. Using the cp genome assembly as a reference, we constructed complete cp genome assemblies for a further 17 sweetpotato cultivars from East Africa and an I. triloba line using Illumina WGS data. Analysis of the sweetpotato cp genomes demonstrated the presence of two distinct subpopulations in East Africa. Phylogenetic analysis of the cp genomes of the species from the Convolvulaceae Ipomoea section Batatas revealed that the most closely related diploid wild species of the hexaploid sweetpotato is I. trifida. Conclusions: Nanopore long reads are helpful in construction of cp genome assemblies, especially in solving the two long inverted repeats. We are generally able to extract cp sequences from WGS data of sufficiently high coverage for assembly of cp genomes. The cp genomes can be used to investigate the population structure and the phylogenetic relationship for the sweetpotato.
Collapse
Affiliation(s)
- Chenxi Zhou
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Tania Duarte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | | - Awais Khan
- International Potato Center, P.O. Box 1558, Lima 12, Peru
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Andrew W. George
- Data61, CSIRO, Ecosciences Precinct, Brisbane, QLD, 4102, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - G. Craig Yencho
- Department of Horticulture, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - David Ellis
- International Potato Center, P.O. Box 1558, Lima 12, Peru
| | - Lachlan J. M. Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
38
|
Amiryousefi A, Hyvönen J, Poczai P. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLoS One 2018; 13:e0196069. [PMID: 29694416 PMCID: PMC5919006 DOI: 10.1371/journal.pone.0196069] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Bittersweet (Solanum dulcamara) is a native Old World member of the nightshade family. This European diploid species can be found from marshlands to high mountainous regions and it is a common weed that serves as an alternative host and source of resistance genes against plant pathogens such as late blight (Phytophthora infestans). We sequenced the complete chloroplast genome of bittersweet, which is 155,580 bp in length and it is characterized by a typical quadripartite structure composed of a large (85,901 bp) and small (18,449 bp) single-copy region interspersed by two identical inverted repeats (25,615 bp). It consists of 112 unique genes from which 81 are protein-coding, 27 tRNA and four rRNA genes. All bittersweet plastid genes including non-functional ones and even intergenic spacer regions are transcribed in primary plastid transcripts covering 95.22% of the genome. These are later substantially edited in a post-transcriptional phase to activate gene functions. By comparing the bittersweet plastid genome with all available Solanaceae sequences we found that gene content and synteny are highly conserved across the family. During genome comparison we have identified several annotation errors, which we have corrected in a manual curation process then we have identified the major plastid genome structural changes in Solanaceae. Interpreted in a phylogenetic context they seem to provide additional support for larger clades. The plastid genome sequence of bittersweet could help to benchmark Solanaceae plastid genome annotations and could be used as a reference for further studies. Such reliable annotations are important for gene diversity calculations, synteny map constructions and assigning partitions for phylogenetic analysis with de novo sequenced plastomes of Solanaceae.
Collapse
Affiliation(s)
- Ali Amiryousefi
- Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
| | - Péter Poczai
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
39
|
Narra M, Kota S, Velivela Y, Ellendula R, Allini VR, Abbagani S. Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L. 3 Biotech 2018; 8:140. [PMID: 29484279 PMCID: PMC5817051 DOI: 10.1007/s13205-018-1160-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Chloroplast transformation vectors require an expression cassette flanked by homologous plastid sequences to drive plastome recombination. The rrn16-rrn23 plastome region was selected and using this region, a new species-specific plastid transformation vector CuIA was developed with pKS+II as a backbone by inserting the rrn16-trnI and trnA-rrn23 sequences from Cucumis sativus L. An independent expression cassette with aadA gene encoding aminoglycoside 3'-adenylyltransferase with psbA controlling elements is added into the trnI-trnA intergenic region that confers resistance to spectinomycin. An efficient plastid transformation in bitter melon (Momordica charantia L.) was achieved by bombardment of petiole segments. The frequency of transplastomic plants yielded using standardized biolistic parameters with CuIA vector was two per 15 bombarded plates, each containing 20 petiole explants. Integration of aadA gene was verified by PCR analysis in transplastomes. Transplastomic technology developed may be a novel approach for high level expression of pharmaceutical traits.
Collapse
Affiliation(s)
| | - Srinivas Kota
- Department of Biotechnology, Kakatiya University, Warangal, 506009 India
| | | | - Raghu Ellendula
- Department of Biotechnology, Kakatiya University, Warangal, 506009 India
| | - V. Rao Allini
- Department of Biotechnology, Kakatiya University, Warangal, 506009 India
| | | |
Collapse
|
40
|
Frailey DC, Chaluvadi SR, Vaughn JN, Coatney CG, Bennetzen JL. Gene loss and genome rearrangement in the plastids of five Hemiparasites in the family Orobanchaceae. BMC PLANT BIOLOGY 2018; 18:30. [PMID: 29409454 PMCID: PMC5801802 DOI: 10.1186/s12870-018-1249-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/30/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND The chloroplast genomes (plastome) of most plants are highly conserved in structure, gene content, and gene order. Parasitic plants, including those that are fully photosynthetic, often contain plastome rearrangements. These most notably include gene deletions that result in a smaller plastome size. The nature of gene loss and genome structural rearrangement has been investigated in several parasitic plants, but their timing and contributions to the adaptation of these parasites requires further investigation, especially among the under-studied hemi-parasites. RESULTS De novo sequencing, assembly and annotation of the chloroplast genomes of five photosynthetic parasites from the family Orobanchaceae were employed to investigate plastome dynamics. Four had major structural rearrangements, including gene duplications and gene losses, that differentiated the taxa. The facultative parasite Aureolaria virginica had the most similar genome content to its close non-parasitic relative, Lindenbergia philippensis, with similar genome size and organization, and no differences in gene content. In contrast, the facultative parasite Buchnera americana and three obligate parasites in the genus Striga all had enlargements of their plastomes, primarily caused by expansion within the large inverted repeats (IRs) that are a standard plastome feature. Some of these IR increases were shared by multiple investigated species, but others were unique to particular lineages. Gene deletions and pseudogenization were also both shared and lineage-specific, with particularly frequent and independent loss of the ndh genes involved in electron recycling. CONCLUSIONS Five new plastid genomes were fully assembled and compared. The results indicate that plastome instability is common in parasitic plants, even those that retain the need to perform essential plastid functions like photosynthesis. Gene losses were slow and not identical across taxa, suggesting that different lineages had different uses or needs for some of their plastome gene content, including genes involved in some aspects of photosynthesis. Recent repeat region extensions, some unique to terminal species branches, were observed after the divergence of the Buchnera/Striga clade, suggesting that this otherwise rare event has some special value in this lineage.
Collapse
Affiliation(s)
| | | | - Justin N. Vaughn
- Department of Genetics, University of Georgia, Athens, GA 30677 USA
| | | | | |
Collapse
|
41
|
Danderson CA, Downie SR, Hermann M. Rampant polyphyly in the Arracacia clade (Apiaceae) and an assessment of the phylogenetic utility of 20 noncoding plastid loci. Mol Phylogenet Evol 2017; 118:286-305. [PMID: 29017853 DOI: 10.1016/j.ympev.2017.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
The Arracacia clade (Apiaceae, Apioideae) is a heterogeneous assemblage of 12 genera, comprising 111 known species distributed in high montane temperate and sub-alpine habitats of meso- and South America. Previous studies have indicated that the genera Arracacia, Coulterophytum, and Prionosciadium are polyphyletic, but for the most part relationships among the members of the clade are largely unknown. Initially, cladistic analyses of nrDNA ITS sequences were carried out on 212 accessions (122 taxa), representing 92 species of the Arracacia clade and outgroups from the closely-related páramo genera Cotopaxia, Niphogeton, and Perissocoeleum and members of the Perennial Endemic North American clade and its allies. Using the ITS results to inform sampling of a small subset of taxa, a pilot study examining the phylogenetic utility of 20 noncoding chloroplast loci was subsequently performed to identify those regions most useful at resolving relationships. A cost-benefit analysis determined that five loci (trnQ-5'rps16, trnD-trnT, rpl32-trnL, psbD-trnT, ndhA intron) would maximize resolution and branch support in the clade. Cladistic analyses of four of these loci (trnQ-5'rps16, trnD-trnT, rpl32-trnL, ndhA intron) and the ITS region, separately and combined, revealed that Arracacia, Coaxana, Coulterophytum, Prionosciadium, and Rhodosciadium are each polyphyletic and that Donnellsmithia and Myrrhidendron are each monophyletic. Although most relationships in the Arracacia clade and among the closely-related genera Cotopaxia, Niphogeton, and Perissocoeleum are poorly resolved and supported, ten groups are recognized for future revisionary studies. Polyploidy and rapid species radiation have likely confounded generic circumscriptions and interpretation of relationships.
Collapse
Affiliation(s)
- Clark A Danderson
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Stephen R Downie
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
42
|
Facella P, Carbone F, Placido A, Perrotta G. Cryptochrome 2 extensively regulates transcription of the chloroplast genome in tomato. FEBS Open Bio 2017; 7:456-471. [PMID: 28396831 PMCID: PMC5377390 DOI: 10.1002/2211-5463.12082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 11/07/2022] Open
Abstract
Light plays a key role in the regulation of many physiological processes required for plant and chloroplast development. Plant cryptochromes (crys) play an important role in monitoring, capturing, and transmitting the light stimuli. In this study, we analyzed the effects of CRY2 overexpression on transcription of tomato chloroplast genome by a tiling array, containing about 90 000 overlapping probes (5‐nucleotide resolution). We profiled transcription in leaves of wild‐type and CRY2‐overexpressing plants grown in a diurnal cycle, to generate a comprehensive map of chloroplast transcription and to monitor potential specific modulations of the chloroplast transcriptome induced by the overexpression of CRY2. Our results demonstrate that CRY2 is a master gene of transcriptional regulation in the tomato chloroplast. In fact, it modulates the day/night mRNA abundance of about 58% of the 114 ORFs. The effect of CRY2 includes a differential extension of some transcripts at their 5′‐end, according to the period of the day. We observed that the influence of CRY2 on chloroplast transcription is not limited to coding RNA; a great number of putative noncoding micro RNA also showed differential accumulation pattern. To our knowledge, this is the first study that highlights how a photoreceptor affects the day/night transcription of the chloroplast genome.
Collapse
Affiliation(s)
| | - Fabrizio Carbone
- Council for Agricultural Research and Economics The Olive Growing and Olive Product Industry Research Centre Rende (CS) Italy
| | | | | |
Collapse
|
43
|
Park TH. The complete chloroplast genome of Solanum berthaultii, one of the potato wild relative species. MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:88-89. [PMID: 33473725 PMCID: PMC7800855 DOI: 10.1080/23802359.2017.1285213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solanum berthaultii is a wild species belonging to Solanaceae family. The complete chloroplast genome of S. berthaultii was constituted by de novo assembly using a small amount of whole genome sequencing data. The chloroplast genome of S. berthaultii was 155,533 bp in length and consisted of 25,593 bp of a pair of inverted repeats, 18,372 bp of small single copy and 85,975 bp of large single-copy regions. 158 genes were annotated including 105 protein-coding, 45 tRNA, and 8 rRNA genes. Maximum-likelihood phylogenetic analysis with eight Solanaceae species revealed that S. berthaultii is most closely grouped with S. tuberosum.
Collapse
Affiliation(s)
- Tae-Ho Park
- Department of Horticulture, Daegu University, Gyeongsan, South Korea.,Institute of Life and Environment, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
44
|
Fonseca LHM, Lohmann LG. Plastome Rearrangements in the " Adenocalymma-Neojobertia" Clade (Bignonieae, Bignoniaceae) and Its Phylogenetic Implications. FRONTIERS IN PLANT SCIENCE 2017; 8:1875. [PMID: 29163600 PMCID: PMC5672021 DOI: 10.3389/fpls.2017.01875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/16/2017] [Indexed: 05/02/2023]
Abstract
The chloroplast is one of the most important organelles of plants. This organelle has a circular DNA with approximately 130 genes. The use of plastid genomic data in phylogenetic and evolutionary studies became possible with high-throughput sequencing methods, which allowed us to rapidly obtain complete genomes at a reasonable cost. Here, we use high-throughput sequencing to study the "Adenocalymma-Neojobertia" clade (Bignonieae, Bignoniaceae). More specifically, we use Hi-Seq Illumina technology to sequence 10 complete plastid genomes. Plastomes were assembled using selected plastid reads and de novo approach with SPAdes. The 10 assembled genomes were analyzed in a phylogenetic context using five different partition schemes: (1) 91 protein-coding genes ("coding"); (2) 76 introns and spacers with alignment manually edited ("non-coding edited"); (3) 76 non-coding regions with poorly aligned regions removed using T-Coffee ("non-coding filtered"); (4) 91 coding regions plus 76 non-coding regions edited ("coding + non-coding edited"); and, (5) 91 protein-coding regions plus the 76 filtered non-coding regions ("coding + non-coding filtered"). Fragmented regions were aligned using Mafft. Phylogenetic analyses were conducted using Maximum Likelihood (ML) and Bayesian Criteria (BC). The analyses of the individual plastomes consistently recovered an expansion of the Inverted Repeated (IRs) regions and a compression of the Small Single Copy (SSC) region. Major genomic translocations were observed at the Large Single Copy (LSC) and IRs. ML phylogenetic analyses of the individual datasets led to the same topology, with the exception of the analysis of the "non-coding filtered" dataset. Overall, relationships were strongly supported, with the highest support values obtained through the analysis of the "coding + non-coding edited" dataset. Four regions at the LSC, SSC, and IR were selected for primer development. The "Adenocalymma-Neojobertia" clade shows an unusual pattern of plastid structure variation, including four major genomic translocations. These rearrangements challenge the current view of conserved plastid genome architecture in terms of gene order. It also complicates both genomic assemblies using reference genomes and sequence alignments using whole plastomes. Therefore, strategies that employ de novo assemblies and manual evaluation of sequence alignments are required to prevent assembly and alignment errors.
Collapse
|
45
|
Liu LX, Li R, Worth JRP, Li X, Li P, Cameron KM, Fu CX. The Complete Chloroplast Genome of Chinese Bayberry ( Morella rubra, Myricaceae): Implications for Understanding the Evolution of Fagales. FRONTIERS IN PLANT SCIENCE 2017; 8:968. [PMID: 28713393 PMCID: PMC5492642 DOI: 10.3389/fpls.2017.00968] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
Morella rubra (Myricaceae), also known as Chinese bayberry, is an economically important, subtropical, evergreen fruit tree. The phylogenetic placement of Myricaceae within Fagales and the origin of Chinese bayberry's domestication are still unresolved. In this study, we report the chloroplast (cp) genome of M. rubra and take advantage of several previously reported chloroplast genomes from related taxa to examine patterns of evolution in Fagales. The cp genomes of three M. rubra individuals were 159,478, 159,568, and 159.586 bp in length, respectively, comprising a pair of inverted repeat (IR) regions (26,014-26,069 bp) separated by a large single-copy (LSC) region (88,683-88,809 bp) and a small single-copy (SSC) region (18,676-18,767 bp). Each cp genome encodes the same 111 unique genes, consisting of 77 different protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes, with 18 duplicated in the IRs. Comparative analysis of chloroplast genomes from four representative Fagales families revealed the loss of infA and the pseudogenization of ycf15 in all analyzed species, and rpl22 has been pseudogenized in M. rubra and Castanea mollissima, but not in Juglans regia or Ostrya rehderiana. The genome size variations are detected mainly due to the length of intergenic spacers rather than gene loss, gene pseudogenization, IR expansion or contraction. The phylogenetic relationships yielded by the complete genome sequences strongly support the placement of Myricaceae as sister to Juglandaceae. Furthermore, seven cpDNA markers (trnH-psbA, psbA-trnK, rps2-rpoC2, ycf4-cemA, petD-rpoA, ndhE-ndhG, and ndhA intron) with relatively high levels of variation and variable cpSSR loci were identified within M. rubra, which will be useful in future research characterizing the population genetics of M. rubra and investigating the origin of domesticated Chinese bayberry.
Collapse
Affiliation(s)
- Lu-Xian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, College of Life Sciences, Henan UniversityKaifeng, China
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Rui Li
- Food Inspection and Testing Institute of Henan ProvinceZhengzhou, China
| | - James R. P. Worth
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research InstituteIbaraki, Japan
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang UniversityHangzhou, China
| | - Pan Li
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang UniversityHangzhou, China
- *Correspondence: Pan Li,
| | | | - Cheng-Xin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
46
|
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet 2016; 50:595-618. [PMID: 27893966 PMCID: PMC5496655 DOI: 10.1146/annurev-genet-120215-035349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
47
|
Ding QX, Liu J, Gao LZ. The complete chloroplast genome of eggplant ( Solanum melongena L.). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:843-844. [PMID: 33473650 PMCID: PMC7800630 DOI: 10.1080/23802359.2016.1186510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Eggplant Solanum melongena L. is one of the most economically important vegetable crops. Here, we report the complete chloroplast (cp) genome of eggplant. The cp genome size was 154,289 bp that contained a pair of IR regions of 25,566 bp, one large single-copy (LSC) of 84,749 bp and a small single-copy (SSC) of 18,408bp, respectively. It encoded 125 predicted unique functional genes, including 84 tRNA genes, 85 protein-coding genes and 8 rRNA genes. The GC content was 37.86%. Phylogenetic analysis clearly showed a close evolutionary relationship between S. melongena and other species in the genus Solanum. The complete chloroplast genome of S. melongena provides valuable data for genetic improvement and allele mining of eggplant germplasm.
Collapse
Affiliation(s)
- Qing-Xia Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Li-Zhi Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Science, Plant Germplasm and Genomics Center, Kunming, China
| |
Collapse
|
48
|
Cho KS, Cheon KS, Hong SY, Cho JH, Im JS, Mekapogu M, Yu YS, Park TH. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum. PLANT CELL REPORTS 2016; 35:2113-23. [PMID: 27417695 DOI: 10.1007/s00299-016-2022-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/29/2016] [Indexed: 05/09/2023]
Abstract
Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.
Collapse
Affiliation(s)
- Kwang-Soo Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Kyeong-Sik Cheon
- Department of Biological Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Su-Young Hong
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Ji-Hong Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Ju-Seong Im
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Manjulatha Mekapogu
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Yei-Soo Yu
- Phygen Genomics Institute, Baekgoong Plaza 1, Bundang-gu, Seongnam, 13558, Republic of Korea
| | - Tae-Ho Park
- Department of Horticulture and Institute of Life and Environment, Daegu University, Gyeongsan, 38453, Republic of Korea.
| |
Collapse
|
49
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 865] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
50
|
Gross I, Durner J. In Search of Enzymes with a Role in 3', 5'-Cyclic Guanosine Monophosphate Metabolism in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:576. [PMID: 27200049 PMCID: PMC4858519 DOI: 10.3389/fpls.2016.00576] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/14/2016] [Indexed: 05/07/2023]
Abstract
In plants, nitric oxide (NO)-mediated 3', 5'-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3', 5'-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5'-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants.
Collapse
Affiliation(s)
- Inonge Gross
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- *Correspondence: Inonge Gross,
| | - Jörg Durner
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- Chair of Biochemical Plant Pathology, Technische Universität München, FreisingGermany
| |
Collapse
|